
HILBERT-TYPE INEQUALITIES IN HOMOGENEOUS CONES

G. GARRIGÓS AND C. NANA

Abstract. We prove Lp-Lq bounds for the class of Hilbert-type operators associ-

ated with generalized powers Qα in a homogeneous cone Ω. Our results extend and

slightly improve earlier work from [16], where the problem was considered for scalar

powers α = (α, . . . , α) and symmetric cones. We give a more transparent proof, pro-

vide new examples, and briefly discuss the open question regarding characterization

of Lp boundedness for the case of vector indices α. Some applications are given to

boundedness of Bergman projections in the tube domain over Ω.

1. Introduction

Let Ω be a homogeneous open convex cone in Rn, and consider the associated

generalized powers

Qα(x) =
r∏
j=1

Q
αj

j (x), x ∈ Ω, α = (α1, . . . , αr) ∈ Rr,

where r is the rank of the cone, and Qj(x), j = 1, . . . , r, are the basic power functions

with respect to a fixed coordinate system; see §2 below for precise definitions. We

shall also denote the invariant measure in Ω by dσ(x) = Q−τ (x)dx, with τ as in (2.3).

In this paper we shall be interested in the following Hilbert-type operators

(1.1) Sα,β,γf(x) = Qα(x)

∫
Ω

Qβ(y)

Qγ(x+ y)
f(y) dσ(y), x ∈ Ω,

for general multi-indices α,β,γ ∈ Rr. More precisely, we wish to determine the

validity of the inequalities

(1.2)
[ ∫

Ω

|Sα,β,γf(x)|qQµ(x) dσ(x)
] 1

q ≤ C
[ ∫

Ω

|f(y)|pQν(y) dσ(y)
] 1

p

for general exponents 1 ≤ p, q < ∞ and all multi-indices α,β,γ,ν,µ ∈ Rr. Note

that when n = r = 1 and Ω = (0,∞), these are versions of the classical Hilbert

inequalities, as they are called in [13, Ch IX].

When Ω is a symmetric cone, this question has been addressed in [16] in the special

case of scalar multi-indices, that is when α = (α, . . . , α) and likewise for β,γ,ν,µ.
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In that case, a suitable variation of the classical Schur test provides a characterization

of the exponents for which (1.2) holds, see [16, Theorem 2.1], at least under the

constraints 1 ≤ p ≤ q <∞ and

(1.3)
ν

p′
+
µ

q
> 0.

The situation for vector multi-indices, however, has additional difficulties, as more

complicated test functions are expected in the Schur test, even when Ω is a symmetric

cone. Moreover, if r ≥ 3 then the known necessary and sufficient conditions do

not match in general, even when p = q and ν = µ; see the comments in [17, §8]

(which implicitly go back to [8] and [9]). Although this last phenomenon seems a

harder question, it actually suggests that a better understanding of the general (vector

indexed) inequalities is needed.

In this note we present a first step in this direction, and obtain necessary conditions

and sufficient conditions so that (1.2) holds in the case of vector multi-indices. More

precisely, using the notation in §2, we shall prove the following.

THEOREM 1.4. Let 1 ≤ p, q < ∞ and α,β,γ,ν,µ ∈ Rr. Let Ω ⊂ Rn be a ho-

mogeneous convex cone, and let g and g′ be the associated indices defined in (2.3).

i) Suppose that 1 ≤ p ≤ q <∞ and that

(A1) γ = α +
µ

q
+ β − ν

p

(A2) α +
µ

q
>

g

q
+

g′

p′
and β − ν

p
>

g

p′
+

g′

q
;

then the inequality (1.2) holds for all non-negative f .

ii) Assume the validity of (1.2) for all f ≥ 0. Then necessarily p ≤ q and the

conditions (A1) and (A2’) must hold, where

(A2’) α +
µ

q
> max

{g

q
,

g′

p′

}
and β − ν

p
> max

{ g

p′
,

g′

q

}
iii) The conditions (A2) and (A2’) coincide in each of the following cases

• if p = 1

• if r ∈ {1, 2}, or if r = 3 and Ω is the Vinberg cone

• if Ω is an irreducible symmetric cone and both, α+
µ

q
and β− ν

p
, are scalars.

REMARK 1.5. It is easily checked that letting

a = α +
µ

q
and b = β − ν

p
,



HILBERT-TYPE INEQUALITIES IN HOMOGENEOUS CONES 3

then, the validity of (1.2) for all f ≥ 0 is equivalent to the boundedness of

Sa,b,γ : Lp(Ω, dσ) −→ Lq(Ω, dσ).

So, below it will suffice to look at this case, which involves a simpler notation. A

version of Theorem 1.4 for the case q =∞ is also given in Corollary 4.12 below.

We make some remarks about Theorem 1.4 and its comparison with [16, Theorem

2.1]. Our proof is also based on a Schur test strategy, however we find a simpler

and slightly more efficient approach than in [2, 16], which in particular removes the

artificial constraint in (1.3). We provide a correction of an unclear statement in [16, p.

510] concerning the class of test functions that are needed in these proofs; see Remark

3.15 below. We also provide new examples that disregard the cases p > q, which were

not considered in the scalar setting of [16].

Finally, we consider homogeneous cones Ω as a natural framework for this problem.

The new required tools are based on the Vinberg theory of T-algebras (as in [17]), and

a key explicit identity for beta-type integrals due to Gindikin, see Lemma 2.7 below.

To conclude the paper, we briefly discuss some applications to the boundedness of

Bergman projections in the tube domain TΩ = Rn + iΩ of Cn. As in earlier papers

[3, 6, 19, 5, 16, 7] this is a main motivation for the study of Hilbert-type inequalities.

Letting z = x+ iy ∈ TΩ, we consider the measure

dVν(z) = Qν(y) dx dσ(y),

and denote by Lpν(TΩ), 1 ≤ p ≤ ∞, the Lebesgue space Lp(TΩ, dVν). The (weighted)

Bergman space Apν(TΩ) is the closed subspace of Lpν(TΩ) consisting of holomorphic

functions. In order that A2
ν 6= {0}, we must take ν > g; see [8, II.2, II.3].

The (weighted) Bergman projection Pν is the orthogonal projection of the Hilbert

space L2
ν(TΩ) onto its subspace A2

ν(TΩ). It is defined by the integral

Pνf(z) =

∫
TΩ

Bν(z, w)f(w)dVν(w), z ∈ TΩ,

where the associated Bergman kernel is explicitly given by

Bν(z, w) = cν Q
−ν−τ((z − w̄)/i

)
, z, w ∈ TΩ,

for a suitable constant cν > 0; see e.g. [17, p. 499]. An important problem in the

field is to determine when Pν extends as a bounded operator from Lpν into Apν ; see

[3, 8, 6, 4, 17, 7].

Let us now introduce mixed norm spaces. For 1 ≤ s, p ≤ ∞, let Ls,pν (TΩ) be the set

of all measurable functions f on TΩ such that

||f ||Ls,p
ν (TΩ) :=

(∫
Ω

(∫
Rn

|f(x+ iy)|sdx
) p

s

Qν(y)dσ(y)

) 1
p

<∞
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(with obvious modifications if s or p are ∞). Note that for s = p, we have Lp,pν = Lpν .

Consider now the positive operator P+
ν defined by

P+
ν f(z) =

∫
TΩ

|Bν(z, w)| f(w) dVν(w), z ∈ TΩ.

Clearly the boundedness of P+
ν implies the boundedness of Pν , but the converse is in

general not true. More generally, consider the class of operators

T+
α,β,γf(z) = Qα(=z)

∫
TΩ

f(w) dVβ(w)

|Qγ+τ ((z − w̄)/i)|
, z ∈ TΩ.

Observe that P+
ν = cν T

+
0,ν,ν . These operators appear in various papers [6, 19, 5, 16,

7], and are linked to the Hilbert-type operators Sα,β,γ by the following result. Below

we denote Lpν(Ω) = Lp
(
Ω, Qν(y)dσ(y)

)
.

THEOREM 1.6. Let 1 ≤ p, q <∞ and α,β,γ,ν,µ ∈ Rr be such that

(1.7) γ > g′.

Then, the following are equivalent

(i) Sα,β,γ : Lpν(Ω)→ Lqµ(Ω) is a bounded operator

(ii) T+
α,β,γ : Ls,pν (TΩ)→ Ls,qµ (TΩ) is bounded for all 1 ≤ s ≤ ∞

(iii) T+
α,β,γ : Ls,pν (TΩ)→ Ls,qµ (TΩ) is bounded for some 1 ≤ s ≤ ∞.

As a corollary of Theorems 1.4 and 1.6, we can state the following special case,

which seems new in this generality. The “diagonal” case, corresponding to λ = 1, can

be found in [17, Theorem 6.2 and (8.1)].

COROLLARY 1.8. Let ν > max{g,g′} and 1 ≤ p, q, s <∞.

(i) Then P+
ν : Ls,pν (TΩ) −→ Ls,qµ (TΩ) is bounded whenever

(1.9) q = λp, µ = λν, for some λ ≥ 1,

and

(1.10) 1 +
g′/λ

ν − g
< p < 1 +

ν − g/λ

g′
.

(ii) If P+
ν : Ls,pν (TΩ) −→ Ls,qµ (TΩ) is bounded then necessarily (1.9) holds and

(1.11) 1 +
g′/λ

ν
< p < 1 +

ν

g′
.
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2. Preliminaries

2.1. Homogeneous cones. A theorem of Vinberg [20, Theorem III.4] establishes

that every convex homogeneous cone Ω can be described in a unique way (modulo

isomorphisms) as the cone arising from a T-algebra structure. Next, we briefly de-

scribe how these are defined; we refer to [20, §III.1] or [17, §2] for further details and

bibliography on the subject.

A matrix algebra of rank r is a real algebra U (not necessarily associative) bigraded

by subspaces

U =
⊕

1≤i,j≤r

Uij ,

such that the following product rules hold for all i, j, k ∈ {1, . . . , r}

UijUjk ⊂ Uik, and UijU`k = {0} if ` 6= j.

An involution in U is a linear mapping x 7→ x? such that for all x, y ∈ U it holds

(x?)? = x, (xy)? = y?x? , and additionally (Uij)? = Uji, ∀ i, j.

The elements x ∈ U can be represented by formal matrices (xij)1≤i,j≤r with xij ∈ Uij.
Then x? corresponds to the formal transpose matrix, that is (x?)ij = (xji)

?.

A T-algebra is a matrix algebra with an involution ? satisfying the following axioms,

(T1) through (T7).

(T1) The subalgebras Uii are 1-dimensional, and there are (unique) idempotents ci =

c2
i such that

Uii = Rci, i = 1, . . . , r.

We denote by ρii : Uii → R the algebra isomorphism so that ρii(ci) = 1. More

generally, we let ρii(x) = ρii(xii), if x ∈ U .

(T2) For every xij ∈ Uij it holds

xijcj = cixij = xij.

In particular, the unit element in U is given by e :=
∑r

i=1 ci.

Consider the “trace” operator defined by

tr(x) =
r∑
j=1

ρii(x), x ∈ U .

Then it must hold

(T3) tr(xy) = tr(yx), x, y ∈ U
(T4) tr

(
x(yz)

)
= tr

(
(xy)z

)
, x, y, z ∈ U

(T5) tr(xx?) > 0, if x ∈ U and x 6= 0.
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Consider the subalgebra of upper triangular matrices

T =
⊕

1≤i≤j≤r

Uij .

Then it must hold

(T6) t(uv) = (tu)v, ∀ t, u, v ∈ T
(T7) t(uu?) = (tu)u?, ∀ t, u ∈ T .

In particular, by (T6), T is associative. The open subalgebra of elements with positive

diagonal entries

H =
{
t ∈ T : ρii(t) > 0, i = 1, . . . , r

}
contains no divisors of zero, and hence it is a Lie group; [20, p. 383]. Finally, consider

the real vector space of hermitian matrices in U

V = {x ∈ U : x? = x},

endowed with the inner product 〈x|y〉 = tr(xy). We define the cone Ω associated with

the T-algebra structure by

Ω =
{
tt? : t ∈ H

}
⊂ V.

It can be shown that Ω is a homogeneous convex cone in V , with no straight lines,

and that the group H acts simply and transitively in Ω, via the transformations

π(s)[tt?] = (st)(st)? , s, t ∈ H;

see [20, Prop III.1]. In particular, to every y ∈ Ω it corresponds a unique t ∈ H such

that

(2.1) y = π(t)[e] = t · e = tt?.

All these concepts have a clear meaning when U consists of real r × r matrices, in

which case V = Sym (r,R) and Ω is the cone of positive definite symmetric matri-

ces; see more examples in §2.3 below. In general, all homogeneous cones (modulo

isomorphisms) can be obtained by this procedure; see [20, Theorem III.4].

2.2. Generalized powers in Ω. We set some further notation from [11]; see also

[17]. Let nij = dimUij = dimUji, 1 ≤ i, j ≤ r, and consider the numbers

(2.2) ni =
i−1∑
j=1

nij and mi =
r∑

j=i+1

nij, i = 1, . . . , r.

Consider also the parameters

τi = 1 + 1
2
(ni +mi), i = 1, . . . , r,
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and note that

n = dimV = r +
r∑
i=1

mi = r +
r∑
i=1

ni =
r∑
i=1

τi.

From these quantities we define the following distinguished multi-indices

(2.3) g = 1
2
(m1, . . . ,mr), g′ = 1

2
(n1, . . . , nr), τ = (τ1, . . . , τr).

Observe in particular that g + g′ = τ − 1, with the usual convention 1 = (1, . . . , 1).

We turn to the definition of the generalized powers in Ω. If y = tt? ∈ Ω, for some

(unique) t ∈ H, we let

Qj(y) = Qj(tt
?) = ρjj(t)

2, j = 1, . . . , r,

see [17, p 482] or [20, (III.27)]. This coincides with the quantity denoted by χj(y) in

Gindikin’s work; see e.g. [12, (2.21)]. It can be shown that these are rational functions

of y (ie, quotients of polynomials), and that they can be extended to Ω + iV . These

functions verify the following homogeneity under the action of H

(2.4) Qj(t · y) = Qj(t · e)Qj(y), t ∈ H, y ∈ Ω.

Finally, given a multi-index α = (α1, . . . , αr) ∈ Rr (or even in Cr) one defines

Qα(y) :=
r∏
j=1

Q
αj

j (y), y ∈ Ω.

It can be shown that π(t), extended as a linear map in V , satisfies

detπ(t) = Qτ (t · e), if t ∈ H and t · e = tt? ∈ Ω,

see [17, (2.10)]. It follows that

dσ(y) = Q−τ (y) dy

is a (left)-invariant measure in Ω under the action of the group H.

2.3. Some examples. The following examples are discussed in [11, pp.17-19]; see

also [12, Chapter 2, §1.8].

2.3.1. Cones of positive-definite symmetric matrices. Let U be the algebra of

real r × r matrices. Then Ω = Sym+(r,R) is the cone of positive definite symmetric

matrices. The representation of y ∈ Ω as y = tt?, t ∈ H, see (2.1), corresponds to

the standard decomposition of a positive-definite symmetric matrix as a product of

an upper triangular matrix and its transpose. The parameters in (2.3) take the form

g =
1

2
(r − 1, . . . , 1, 0), g′ =

1

2
(0, 1, . . . , r − 1), and τ ≡ 1 + r−1

2
,
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while the basic power functions associated with the cone are given by

Qj(y) =
∆r−j+1(y)

∆r−j(y)
, j = 1, . . . , r,

where ∆i(y) is the principal lower corner minor of the matrix y (with ∆0 = 1). In

particular, when r = 2 we have

Q1(y) =
y11y22 − y2

12

y22

, and Q2(y) = y22, if y =

(
y11 y12

y12 y22

)
.

2.3.2. Vinberg cone. Let U consist of real 3× 3 matrices with

U23 = U32 = {0}.

When x, y ∈ U its product z = xy is defined by zij =
∑3

k=1 xikykj if i + j 6= 5, and

z23 = z32 = 0 (that is, the U -projection of the usual matrix product). It is easily

seen that this product is compatible with the T-algebra axioms. In this case we have

n12 = n13 = 1 and n23 = 0, so that

g = (1, 0, 0), g′ = (0, 1
2
, 1

2
), and τ = (2, 3

2
, 3

2
).

The associated cone Ω is the set of all positive-definite matrices of the form

y =

y11 y12 y13

y12 y22 0

y13 0 y33

 ,

and the basic power functions are given by

Q1(y) = y11 −
y2

12

y22

− y2
13

y33

, Q2(y) = y22, and Q3(y) = y33.

2.4. A beta integral formula. Below we use standard conventions for multi-indices,

namely if α = (α1, . . . , αr), β = (β1, . . . , βr) ∈ Rr, then

(2.5) α > β means αi > βi, ∀ i = 1, . . . , r,

and

(2.6) αβ = (α1β1, . . . , αrβr) ∈ Rr.

A key result in the later computations will be the following lemma due to Gindikin.

We remark that the formulation in [11, Proposition 2.6] contains a mistake, so we

present the correct statement given in [17, Lemma 4.19]; see also [9, Corollary 2.19].

LEMMA 2.7. Let s, t ∈ Rr be such that

t > g and s > g′ .

Then, and only then, the following integrals are finite and take the value∫
Ω

Qt−τ (y)

Qs+t(x+ y)
dy = cQ−s(x), x ∈ Ω,
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for some constant c = βΩ(s + g − g′, t) > 0.

We quote two more integral estimates that can be found in [17]. In these statements

the euclidean vector space (V, 〈·|·〉) is identified with Rn.

LEMMA 2.8. [17, Lemma 4.20] Let γ ∈ Rr. Then the integral

Jγ(y) =

∫
V

∣∣Q−(γ+τ )(y + ix)
∣∣ dx, y ∈ Ω(2.9)

converges if and only if γ > g′. In this case, there exists cγ > 0 such that

Jγ(y) = cγ Q
−γ(y).

LEMMA 2.10. [17, Lemma 4.21] Let γ ∈ Rr. Then there is a constant Cγ > 0 such

that for all y ∈ Ω, |y| ≤ 1/4,∫
{x∈V : |x|<1}

∣∣Q−(γ+τ )(y + ix)
∣∣ dx ≥ Cγ Q

−γ(y).

2.5. A Schur type test. Below we use a known test for Lp − Lq boundedness of

positive operators. When p = q it is the usual Schur test, see e.g. [10, Lemma 3.1], or

[1, Theorem 6.3] for a statement closer to the notation below. For p ≤ q, this test (in

a slightly weaker form) can be found in the work of Okikiolu [18]. We reproduce the

elementary proof for completeness. We consider abstract (σ-finite) Lebesgue spaces

Lp = Lp(Y, dν) and Lq = Lq(X, dµ), and as usual, 1/p+ 1/p′ = 1.

LEMMA 2.11. Let 1 ≤ p ≤ q ≤ ∞. Given a non-negative kernel K(x, y) ≥ 0,

consider the formal operator

Tf(x) :=

∫
Y

K(x, y) f(y) dν(y), x ∈ X.

Assume that

(2.12) 0 ≤ K(x, y) ≤ G(x, y)H(x, y),

and that there exist functions φ1(y) > 0 and φ2(x) > 0 and constants c1, c2 > 0, such

that [ ∫
Y

|G(x, y)φ1(y)|p′ dν(y)
] 1

p′ ≤ c2 φ2(x), ∀x ∈ X(2.13) [ ∫
X

|H(x, y)φ2(x)|q dµ(x)
] 1

q ≤ c1 φ1(y), ∀ y ∈ Y.(2.14)

Then T maps Lp(Y, dµ)→ Lq(X, dµ) boundedly, and

‖Tf‖Lq(X,dµ) ≤ c1 c2 ‖f‖Lp(Y,dν), ∀ f ∈ Lp(Y, dν).
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Proof. If f ≥ 0 and x ∈ X, by (2.12) and Hölder’s inequality we have

Tf(x) =

∫
Y

K(x, y)f(y) dν(y) ≤
∫
Y

φ1(y)G(x, y)H(x, y)φ−1
1 (y)f(y) dν(y)

≤
∥∥φ1G(x, ·)‖Lp′ (Y )

[ ∫
Y

∣∣∣H(x, y)φ−1
1 (y)f(y)

∣∣∣p dν(y)
] 1

p
.

By (2.13), the first factor is bounded by c2φ2(x), so taking Lq-norms we obtain

‖Tf‖Lq(X) ≤ c2

(∫
X

[ ∫
Y

∣∣∣H(x, y)φ−1
1 (y)φ2(x)f(y)

∣∣∣p dν(y)
] q

p
dµ(x)

) 1
q
.

Since q ≥ p we can use the Minkowski integral inequality to deduce

‖Tf‖Lq(X) ≤ c2

[ ∫
Y

(∫
X

∣∣∣H(x, y)φ−1
1 (y)φ2(x)f(y)

∣∣∣q dµ(x)
) p

q
dν(y)

] 1
p

= c2

∥∥∥φ−1
1 (y) f(y)

∥∥H(x, y)φ2(x)
∥∥∥
Lq(dµ(x))

∥∥∥
Lp(dν(y))

≤ c1 c2

∥∥f∥∥
Lp(Y )

,

using in the last step the assumption (2.14). Observe that the above argument for

1 < p ≤ q <∞, remains also valid if p = 1 or q =∞. �

3. Proof of Theorem 1.4: sufficient conditions

3.1. Proof of part (i) for p > 1. As observed in Remark 1.5, it suffices to show

that if 1 < p ≤ q <∞, then

Sa,b,γ : Lp(Ω, dσ) −→ Lq(Ω, dσ),

under the conditions γ = a + b and

(3.1) a >
g

q
+

g′

p′
and b >

g

p′
+

g′

q
.

We apply the Schur test to

Tf(x) =

∫
Ω

K(x, y)f(y) dσ(y), with K(x, y) =
Qa(x)Qb(y)

Qa+b(x+ y)
.

To do so, we shall split the kernel as

(3.2) K(x, y) = K(x, y)tK(x, y)1−t,

for some t ∈ Rr with 0 < t < 1, where we use the multi-index conventions in (2.5)

and (2.6). It then suffices to find test functions

(3.3) φ1(y) = Q−σ(y) and φ2(x) = Q−δ(x),

for suitable σ, δ ∈ Rr, such that

(3.4)

[ ∫
Ω

∣∣∣Qat(x)Qbt(y)

Q(a+b)t(x+ y)
Q−σ(y)

∣∣∣p′ dσ(y)

]1/p′

. Q−δ(x), x ∈ Ω,
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and

(3.5)

[ ∫
Ω

∣∣∣Qa(1−t)(x)Qb(1−t)(y)

Q(a+b)(1−t)(x+ y)
Q−δ(x)

∣∣∣q dσ(x)

]1/q

. Q−σ(y), y ∈ Ω,

To do so we use Lemma 2.7. The expression in the left hand side of (3.4) is finite iff

(bt− σ)p′ > g and (at + σ)p′ > g′ ,

in which case it takes the value c1Q
−σ(x), for some c1 > 0. Similarly, the left expres-

sion in (3.5) is finite iff

(a(1− t)− δ)q > g and (b(1− t) + δ)q > g′ ,

in which case it takes the value c2Q
−δ(y), for some c2 > 0. Thus, (3.4) and (3.5) will

hold if we take δ = σ, and if we can select σ and t such that

(3.6)
g′

p′
− at < σ < bt− g

p′
and

g′

q
− b(1− t) < σ < a(1− t)− g

q
.

For each of these two “intervals” to be non-empty we must impose the conditions

g + g′

p′
< (a + b)t and

g + g′

q
< (a + b)(1− t),

which solving for t lead to

(3.7)
g + g′

(a + b) p′
< t < 1− g + g′

(a + b) q
,

interpreted as pointwise inequalities for each coordinate i = 1, . . . , r. By the assump-

tions in (3.1), it is always possible to find such a t.

Once t is chosen, we check that a multi-index σ as in (3.6) exists. To do so we

conveniently denote by (u1,v1) and (u2,v2) the two “intervals” of multi-indices in

(3.6) (formally, rectangles in Rr). We must show that

(3.8)
(
u1,v1

)
∩
(
u2,v2

)
6= ∅.

Indeed, the conditions in (3.1) can be written as

(3.9) u1 < v2 and u2 < v1,

regardless of the value of t, and this in turn is easily seen to be equivalent to (3.8).

This completes the proof of part (i) in Theorem 1.4 when p > 1.

3.2. Proof of part (i) for p = 1. The only difference is that, rather than (3.4), we

need to require

(3.10) sup
y∈Ω

Qat(x)Qbt−σ(y)

Q(a+b)t(x+ y)
. Q−δ(x), x ∈ Ω.
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Letting x = t · e with t ∈ H, we may as well take the sup over y = t · u, u ∈ Ω; thus,

the homogeneity in (2.4) shows that (3.10) can be written as

Q−σ(x) sup
u∈Ω

Qbt−σ(u)

Q(a+b)t(e + u)
. Q−δ(x), x ∈ Ω.

For this to hold we need δ = σ and

−at ≤ σ ≤ bt.

This is less restrictive than the left expression in (3.6) with p = 1. So the same

arguments given above can be used in this case, providing the existence of the required

multi-index σ under the assumptions (3.1), which now take the simpler form

(3.11) a > g/q and b > g′/q .

3.3. The case q = ∞. We have excluded this case to avoid end-point situations,

however, the same argument as in §3.2 can be applied when q = ∞, at least if

1 < p ≤ ∞. The sufficient conditions in (3.1) remain valid, and now take the form

(3.12) a > g′/p′ and b > g/p′ .

Alternatively, this could also be proved by duality.

Finally, we mention the special case corresponding to p = 1 and q = ∞, for which

a direct inequality shows that Sa,b,γ (with γ = a + b) maps L1 into L∞ in the larger

range

(3.13) a ≥ 0 and b ≥ 0.

3.4. Some remarks on the sufficient conditions. We make some comments about

the previous proof

REMARK 3.14. We have used a multi-index t ∈ Rr in (3.2), in order to allow for

greater generality. However, the proof works as well with a scalar t = (t, . . . , t).

Indeed, in view of (3.7) (and using g + g′ = τ − 1), it suffices to pick t such that

ϑ

p′
< t < 1− ϑ

q
, where ϑ := max

1≤i≤r

τi − 1

ai + bi
.

Now, (3.1) implies a + b > (τ − 1)( 1
p′

+ 1
q
), and thus ( 1

p′
+ 1

q
)ϑ < 1, so such a t can

always be chosen. In particular, when p = q we could take t = 1/p′, which is the usual

choice in Schur’s test.

REMARK 3.15. Even in the special case when Ω = Sym+(2,R), p = q and a,b are

scalars, the optimal sufficient conditions in (3.1) cannot be obtained merely with test

functions φ1, φ2 involving a scalar parameter σ = (σ, . . . , σ). Indeed, in this special

case we have

g = (1/2, 0) and g′ = (0, 1/2)
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so the condition in (3.6) becomes

1

2p′
− at < σ < bt− 1

2p′
and

1

2p
− (1− t)b < σ < (1− t)a− 1

2p
.

However, arguing as in (3.8) and (3.9), one sees that these two conditions cannot

simultaneously hold if a ≤ 1/2 or b ≤ 1/2. So one would not cover the whole range of

sufficient conditions in (3.1), which in this case should be

a > max
{ 1

2p
,

1

2p′
}

and b > max
{ 1

2p
,

1

2p′
}
.

This suggests that the proof of [16, Lemma 4.1] may not be correct, and must be

modified according to Remark 4.2 in that paper.

4. Proof of Theorem 1.4: necessary conditions

As observed in Remark 1.5, to prove part (ii) of Theorem 1.4 it suffices to find

necessary conditions for the boundedness of

(4.1) Sa,b,γ : Lp(Ω, dσ) −→ Lq(Ω, dσ),

for fixed 1 ≤ p, q <∞ and a,b,γ ∈ Rr. Observe that Sa,b,γf(x) is always well-defined

for non-negative f . So, the boundedness of the mapping (4.1) must be understood as

(4.2)
∥∥Sa,b,γf

∥∥
q
≤ C

∥∥f∥∥
p
, ∀ f ≥ 0,

for some constant C > 0. The p-norms will always refer to the spaces Lp(Ω, dσ).

4.1. Necessary condition on γ.

LEMMA 4.3. Let 1 ≤ p, q ≤ ∞ and a,b,γ ∈ Rr. Assume that (4.2) holds. Then

γ = a + b.

Proof. We use the homogeneity under the H-action in Ω. Let t ∈ H and define

ft(y) := f(t · y), y ∈ Ω.

Then, by the left-invariance of dσ and (2.4) we have

Sa,b,γ(ft)(x) = Qa(x)

∫
Ω

f(y)
Qb(t−1 · y)

Qγ(x+ t−1 · y)
dσ(y)

= Qa+b−γ(t−1 · e)
(
Sa,b,γf

)
(t · x) .

Thus, if (4.2) holds we will have

Qa+b−γ(t−1 · e)
∥∥Sa,b,γ(f)

∥∥
q

=
∥∥Sa,b,γ(ft)

∥∥
q
≤ C ‖ft‖p = C ‖f‖p.

Fixing a positive f ∈ Lp, and letting t vary in the set of diagonal matrices whose

entries go to 0 or +∞, we see that necessarily γ = a + b. �
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4.2. Necessity of p ≤ q. We begin with an elementary observation, which is similar

to the one used in [14, Theorem 1.1].

LEMMA 4.4. Let 1 ≤ p <∞, and for R > 0 let fR(y) := f(y/R), y ∈ Ω. Then

(4.5) lim
R→∞

∥∥f + fR
∥∥
p

= 21/p ‖f‖p, ∀ f ∈ Lp(Ω, dσ).

Proof. If we assume that supp f b Ω, then f and fR will have disjoint supports for

large enough R, and thus

‖f + fR‖pp =

∫
Ω

(
|f(y)|p + |fR(y)|p

)
dσ(y) = 2‖f‖pp,

by the invariance of the measure. For general f ∈ Lp, given ε > 0, one finds h with

supph b Ω and ‖f − h‖p < ε. Then, by the triangle inequality∣∣∣‖f + fR‖p − 2
1
p‖f‖p

∣∣∣ ≤ 2‖f − h‖p +
∣∣∣‖h+ hR‖p − 2

1
p‖h‖p

∣∣∣+ 2
1
p

∣∣∣‖h‖p − ‖f‖p∣∣∣
≤ (2 + 2

1
p )ε +

∣∣∣‖h+ hR‖p − 2
1
p‖h‖p

∣∣∣ ≤ (2 + 2
1
p )ε,

if R is sufficiently large. The result now follows by the definition of limit. �

LEMMA 4.6. Let 1 ≤ p, q < ∞ and a,b,γ ∈ Rr. Assume that (4.2) holds. Then

p ≤ q.

Proof. Assume that p > q and that (4.2) holds. By Lemma 4.3 we must have γ = a+b,

so with the notation fR(y) := f(y/R), from the previous lemma, one easily sees that(
Sa,b,γfR

)
(x) =

(
Sa,b,γf)(x/R).

Thus,∥∥(Sa,b,γf
)

+
(
Sa,b,γf

)
(·/R)

∥∥
q

=
∥∥Sa,b,γ(f + fR)

∥∥
q
≤ ‖Sa,b,γ‖ ‖f + fR‖p,

where ‖Sa,b,γ‖ denotes the infimum of all constants C such that (4.2) holds. Letting

R↗∞ and using Lemma 4.4 we conclude that

2
1
q

∥∥Sa,b,γf
∥∥
q
≤ 2

1
p ‖Sa,b,γ‖ ‖f‖p.

Since this is valid for all f ≥ 0 we conclude that

‖Sa,b,γ‖ ≤ 2
1
p
− 1

q ‖Sa,b,γ‖,

which is not possible when p > q (since ‖Sa,b,γ‖ > 0). �
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4.3. Necessary conditions on a and b. We first recall some notions from [17, §4.2].

For y0 ∈ Ω, we let Br(y0) := {y ∈ Ω : d(y, y0) < r}, where d denotes the associated

riemannian distance in Ω (which is H-invariant). The following result is known for

symmetric cones; see [6, Corollary 2.3]. In the appendix we sketch a different proof,

which is valid as well for homogeneous cones.

LEMMA 4.7. Let Ω be a homogeneous cone. Then, there are constants c1, c2 > 0

such that

c1 ≤
Qj(x+ y)

Qj(x+ y0)
≤ c2, if d(y, y0) < 1, x ∈ Ω, j = 1, . . . , r.

LEMMA 4.8. Let 1 ≤ p ≤ q <∞, and let a,b,γ ∈ Rr with γ = a + b. Assume that

(4.2) holds. Then

(4.9) a > max
{g

q
,
g′

p′

}
and b > max

{ g

p′
,
g′

q

}
.

Proof. Let f = χB1(e). Then, by the previous lemma

(Sa,b,γf)(x) =

∫
B1(e)

Qa(x)Qb(y)

Qa+b(x+ y)
dσ(y) ≈ Qa(x)

Qa+b(x+ e)
, x ∈ Ω.

So, if (4.2) holds we deduce that[∫
Ω

∣∣∣ Qa(x)

Qa+b(x+ e)

∣∣∣q dσ(x)

] 1
q

.
∥∥Sa,b,γf

∥∥
q
≤ C ‖f‖p <∞,

which by Gindinkin’s result, Lemma 2.7, implies that

a > g/q and b > g′/q.

The other condition follows by duality, since S∗a,b,γ = Sb,a,γ and (4.2) implies that∥∥Sb,a,γf
∥∥
p′
≤ C ‖f‖q′ .

Hence, testing with f = χB1(e) as above leads to

a > g′/p′ and b > g/p′,

at least if p > 1. When p = 1 the above inequalities are no longer strict, and become

(4.10) a ≥ 0 and b ≥ 0.

But in this case a > g/q is the same as a > max
{
g/q,0 = g′/p′

}
, and likewise for b.

So, the result is proved in all cases. �

REMARK 4.11. Lemma 4.8 is also valid in the case q = ∞, as long as 1 < p ≤ ∞.

The only special case happens when p = 1 and q = ∞, for which the necessary

condition would just be (4.10). This matches the sufficient condition discussed in

(3.13). Thus, overall we can state the following
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COROLLARY 4.12 (Case q = ∞). Let 1 < p ≤ ∞, and a,b,γ ∈ Rr. Then

Sa,b,γ : Lp(dσ)→ L∞(dσ) if and only if γ = a + b and

(4.13) a > g′/p′ and b > g/p′ .

If p = 1 the same characterization holds with (4.13) replaced by

a ≥ 0 and b ≥ 0.

5. Comparison of necessary and sufficient conditions

Here we prove the statements in part iii) of Theorem 1.4. Namely, for the operators

Sa,b,γ : Lp → Lq (with γ = a + b) we compare the necessary conditions

(A2’) a > max
{g

q
,
g′

p′

}
and b > max

{ g

p′
,
g′

q

}
and the sufficient conditions

(A2) a >
g

q
+

g′

p′
and b >

g

p′
+

g′

q
;

see (3.1) and (4.9) above. These clearly coincide when p = 1 (or q = ∞), so we will

assume 1 < p ≤ q <∞.

5.1. (A2) and (A2’) for a general cone Ω. When r = 1, then Ω = (0,∞) and

the conditions trivially coincide, since g = g′ = 0. This is the classical setting for the

Hilbert inequalities, see also [2]. For r ≥ 2 we use the following simple observation.

LEMMA 5.1. Let u,v ∈ Rr. Then

u + v = max{u,v}

if and only if supp u ∩ supp v = ∅, that is, iff uivi = 0, ∀ i = 1, . . . , r.

The previous lemma has the following immediate consequence. Recall that g and

g′ are defined in (2.2) and (2.3) in terms of the indices nij = dimUij.

COROLLARY 5.2. Let 1 < p ≤ q < ∞. Let Ω be a homogeneous cone associated

with a T-algebra U =
⊕

1≤i,j≤r Uij. Then the set of indices a,b ∈ Rr satisfying (A2)

coincides with (A2’) if and only if

(5.3)
( i−1∑
j=1

nij

)( r∑
j=i+1

nij

)
= 0, ∀ i ∈ {1, . . . , r}.

We discuss some examples.

(1) Case r = 2. There is only one relevant index, namely, n12 = d ∈ N ∪ {0}.
Therefore, we have

g = (d/2, 0) and g′ = (0, d/2).
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By Lemma 5.1 conditions (A2) and (A2’) coincide, and take the form

a >
( d

2q
,
d

2p′

)
and b >

( d

2p′
,
d

2q

)
,

Note that if d = 0, the cone is isomorphic to Ω = (0,∞)× (0,∞) and we are

again in a trivial situation. If d ≥ 1 then Ω is isomorphic to a light-cone in

Rd+2, which is the only irreducible homogeneous cone of rank 2.

(2) Vinberg cone. Let Ω be the cone of rank 3 defined in §2.3.2; see also [17, Ex-

ample 2.9]. This is the first relevant example of a homogeneous non-symmetric

cone. In this case we have n12 = n13 = 1 and n23 = 0, so that

g = (1, 0, 0) and g′ = (0, 1
2
, 1

2
).

Thus, also in this case (A2) and (A2’) coincide, and take the form

a >
(1

q
,

1

2p′
,

1

2p′

)
, b >

( 1

p′
,

1

2q
,

1

2q

)
.

(3) Symmetric cones. Let Ω be an irreducible symmetric cone of rank r. Then,

there is a constant d such that nij = d, ∀ i 6= j. The values of g and g′ are

given by

(5.4) g =
(

(r − i)d
2

)r
i=1

and g′ =
(

(i− 1)
d

2

)r
i=1

,

so the conditions of Lemma 5.1 will never be met if r ≥ 3 and d ≥ 1. So in

these cases, conditions (A2) and (A2’) will not agree in general.

5.2. (A2) and (A2’) for scalar parameters. We prove the last assertion in The-

orem 1.4. Suppose that Ω is an irreducible symmetric cone and that

a = (a, . . . , a) and b = (b, . . . , b).

In view of (5.4), we can write the first condition in (A2) as

(5.5) a > max
1≤i≤r

(r − i
q

+
i− 1

p′

)d
2

= (r − 1)
d

2
max

{1

q
,

1

p′

}
,

where the last equality follows from the fact that a linear expression in i must attain

its maximum either at i = 1 or i = r. Note that (5.5) clearly coincides with the

condition in (A2’). The situation is similar for b, leading also to the expression

(5.6) b > (r − 1)
d

2
max

{1

q
,

1

p′

}
.

Finally, using that (r−1)d/2 = n
r
−1, we obtain the following version for [16, Theorem

2.1].

COROLLARY 5.7. Let 1 ≤ p, q <∞. Let Ω be an irreducible symmetric cone in Rn.

Then Sa,b,γ maps Lp(Ω, dσ) into Lq(Ω, dσ) if and only if p ≤ q, γ = a+ b and

min{a, b} >
(n
r
− 1
)

max
{1

q
,

1

p′

}
.
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6. Positive Bergman operators: proof of Theorem 1.6

As in Remark 1.5, letting

a = α +
µ

q
and b = β − ν

p
,

it suffices to prove Theorem 1.6 for the operators Sa,b,γ and T+
a,b,γ , assuming that

ν = µ = 0. So throughout the proof we assume this case, and for simplicity we

denote Ls,p = Ls,p(TΩ, dx dσ(y)).

6.1. Proof of “(i) ⇒ (ii)” of Theorem 1.6. We shall use the following notation:

for f ∈ Ls,p(TΩ) and v ∈ Ω we let

fv(u) = f(u+ iv), u ∈ Rn.

For fixed y ∈ Ω, using Minkowski’s integral inequality and Lemma 2.8 (since γ > g′),

one obtains∥∥∥T+
a,b,γf(x+ iy)

∥∥∥
Ls(dx)

≤ Qa(y)

∫
Ω

∫
Rn

‖fv(x− u)‖Ls(dx)

|Qγ+τ (y + v − iu)|
Qb(v) du dv

= cγ Q
a(y)

∫
Ω

‖fv‖Ls Qb(v) dv

Qγ(y + v)
= cγ Sa,b,γ

(
‖fv‖Ls

)
(y).

Thus, taking Lq(Ω, dσ)-norms in both sides and using (i) we obtain∥∥∥T+
a,b,γf

∥∥∥
Ls,q(TΩ)

.
∥∥∥Sa,b,γ(‖fv‖Ls)

∥∥∥
Lq(dσ)

.
∥∥∥‖fv‖Ls

∥∥∥
Lp(dσ)

= ‖f‖Ls,p(TΩ).

Since s here is arbitrary, we obtain the assertion in (ii) of Theorem 1.6.

6.2. Proof of “(ii) ⇒ (iii)” of Theorem 1.6. This assertion is trivial.

6.3. Proof of “(iii) ⇒ (i)” of Theorem 1.6. We first observe that (iii) implies, by

a homogeneity argument as in Lemma 4.3, that necessarily

(6.1) γ = a + b.

Now, let f ∈ Lp(Ω, dσ) be such that f ≥ 0 and

supp f ⊂ Ω ∩B1/8(0),

and define g(u+ iv) = χB2(0)(u) f(v), for u+ iv ∈ TΩ. If |x| ≤ 1 and y ∈ Ω ∩ B1/8(0)

then, by Lemma 2.10, there is a constant Cγ > 0 such that(
T+
a,b,γg

)
(x+ iy) = Qa(y)

∫
Ω

∫
B2(x)

du

|Qγ+τ (y + v − iu)|
f(v)Qb(v) dv

≥ Cγ Q
a(y)

∫
Ω

f(v)Qb(v) dv

Qγ(y + v)
= Cγ

(
Sa,b,γf

)
(y),
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since B2(x) ⊃ {|u| < 1}. So taking first the Ls-norm over |x| ≤ 1, and then the

Lq(dσ)-norm over y ∈ Ω ∩B1/8(0), and using the assumption (iii), we see that∥∥∥Sa,b,γf
∥∥∥
Lq(Ω∩B1/8(0))

.
∥∥∥T+

a,b,γg
∥∥∥
Ls,q(TΩ)

. ‖g‖Ls,p(TΩ) = c ‖f‖Lp(dσ).

Let now f be an arbitrary function in Lp(Ω, dσ) with compact support, and pick any

large R such that supp f ⊂ Ω ∩ BR/8(0). Then, we can apply the previous reasoning

to the rescaled function fR = f(R·) to obtain∥∥∥Sa,b,γfR

∥∥∥
Lq(Ω∩B1/8(0))

. ‖fR‖Lp(dσ) = ‖f‖Lp(dσ).

Using (6.1) one easily sees that (Sa,b,γfR)(y) = (Sa,b,γf)(Ry), so changing variables

the above inequality becomes∥∥∥Sa,b,γf
∥∥∥
Lq(Ω∩BR/8(0))

. ‖f‖Lp(dσ).

Letting R → ∞ we conclude that ‖Sa,b,γf‖Lq(Ω,dσ) . ‖f‖Lp(dσ), which implies the

assertion in (i). �

6.4. Proof of Corollary 1.8. Since P+
ν = cν T

+
0,ν,ν and we assume ν > g′, it follows

from Theorem 1.6 that the boundedness of

P+
ν : Ls,pν (TΩ) −→ Ls,qµ (TΩ)

is equivalent to the boundedness of

S0,ν,ν : Lpν(Ω) −→ Lqµ(Ω).

Now one uses Theorem 1.4 and finds that in this case the conditions p ≤ q and (A1)

are the same as (1.9), while (A2) and (A2’) can be written, respectively, as (1.10) and

(1.11). �

7. Appendix: Proof of Lemma 4.7

We give a proof of Lemma 4.7, as we did not find one in the literature which is valid

for homogeneous cones. The proof below only uses the H-invariance of the riemannian

metric, and hence of the associated distance d in Ω. It is based on the following facts:

(i) There exists δ0 ∈ (0, 1) such that

(7.1) B1(e) ⊂ δ0e + Ω,

Indeed, recall that such a distance d is complete and hence every d-bounded

set is relatively compact; see e.g. Theorems 4.1 and 4.5 in Chapter IV of [15].

The result then follows by compactness from B1(e) ⊂ ∪δ>0(δe + Ω) = Ω.
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(ii) The following equivalence holds for each t ∈ H,

t · e ∈ B1(e) if and only if t−1 · e ∈ B1(e)

Indeed, this is just a consequence of d(t·e, e) = d(e, t−1·e), by theH-invariance.

(iii) The following inequalities hold for every x, y ∈ Ω

Qj(x+ y) ≥ Qj(x), j = 1, . . . , r.

This has been shown in [17, Lemma 4.13].

We now establish Lemma 4.7, that is, the existence of c1, c2 > 0 such that

(7.2) c1 ≤
Qj(x+ y)

Qj(x+ y0)
≤ c2, if d(y, y0) < 1, x ∈ Ω, j = 1, . . . , r.

By H-invariance we may assume that y0 = e. Now, if y ∈ B1(e), facts (i) and (iii)

above imply

Qj(x+ y) = Qj(x+ y − δ0e + δ0e) ≥ Qj(x+ δ0e)

= Qj

(
(1− δ0)x+ δ0x+ δ0e

)
≥ δ0Qj(x+ e).

On the other hand, if y = t · e ∈ B1(e), then t−1 · e ∈ B1(e), so (2.4) and the previous

case give

Qj(x+ y) = Qj(t · e)Qj(t
−1 · x+ e)

≤ δ−1
0 Qj(t · e)Qj(t

−1 · x+ t−1 · e) = δ−1
0 Qj(x+ e).

Thus, we have shown (7.2) with c1 = 1/c2 = δ0.

Acknowledgments

The authors are grateful to an anonymous referee for various useful suggestions that have

improved the presentation of this paper. G.G. was supported in part by grants MTM2016-

76566-P, MTM2017-83262-C2-2-P and PID2019-105599GB-I00 from Micinn (Spain), and
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[5] D. Békollé, A. Bonami, G. Garrigós, F. Ricci and B. Sehba, Hardy-type inequalities

and analytic Besov spaces in tube domains over symmetric cones. J. Reine Angew. Math. 647

(2010), 25–56.
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[8] D. Békollé, A. Temgoua, Reproducing properties and Lp-estimates for Bergman projections

in Siegel domains of type II. Stud. Math. 115 (3) (1995), 219–239.

[9] D. Debertol. Besov spaces and boundedness of weighted Bergman projections over symmetric
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