HILBERT-TYPE INEQUALITIES IN HOMOGENEOUS CONES

G. GARRIGÓS AND C. NANA

Abstract

We prove $L^{p}-L^{q}$ bounds for the class of Hilbert-type operators associated with generalized powers $Q^{\boldsymbol{\alpha}}$ in a homogeneous cone Ω. Our results extend and slightly improve earlier work from [16], where the problem was considered for scalar powers $\boldsymbol{\alpha}=(\alpha, \ldots, \alpha)$ and symmetric cones. We give a more transparent proof, provide new examples, and briefly discuss the open question regarding characterization of L^{p} boundedness for the case of vector indices $\boldsymbol{\alpha}$. Some applications are given to boundedness of Bergman projections in the tube domain over Ω.

1. Introduction

Let Ω be a homogeneous open convex cone in \mathbb{R}^{n}, and consider the associated generalized powers

$$
Q^{\alpha}(x)=\prod_{j=1}^{r} Q_{j}^{\alpha_{j}}(x), \quad x \in \Omega, \quad \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{R}^{r}
$$

where r is the rank of the cone, and $Q_{j}(x), j=1, \ldots, r$, are the basic power functions with respect to a fixed coordinate system; see $\S 2$ below for precise definitions. We shall also denote the invariant measure in Ω by $d \sigma(x)=Q^{-\boldsymbol{\tau}}(x) d x$, with $\boldsymbol{\tau}$ as in (2.3).

In this paper we shall be interested in the following Hilbert-type operators

$$
\begin{equation*}
S_{\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma} f(x)=Q^{\boldsymbol{\alpha}}(x) \int_{\Omega} \frac{Q^{\boldsymbol{\beta}}(y)}{Q^{\gamma}(x+y)} f(y) d \sigma(y), \quad x \in \Omega, \tag{1.1}
\end{equation*}
$$

for general multi-indices $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathbb{R}^{r}$. More precisely, we wish to determine the validity of the inequalities

$$
\begin{equation*}
\left[\int_{\Omega}\left|S_{\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma} f(x)\right|^{q} Q^{\boldsymbol{\mu}}(x) d \sigma(x)\right]^{\frac{1}{q}} \leq C\left[\int_{\Omega}|f(y)|^{p} Q^{\nu}(y) d \sigma(y)\right]^{\frac{1}{p}} \tag{1.2}
\end{equation*}
$$

for general exponents $1 \leq p, q<\infty$ and all multi-indices $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\nu}, \boldsymbol{\mu} \in \mathbb{R}^{r}$. Note that when $n=r=1$ and $\Omega=(0, \infty)$, these are versions of the classical Hilbert inequalities, as they are called in [13, Ch IX].

When Ω is a symmetric cone, this question has been addressed in [16] in the special case of scalar multi-indices, that is when $\boldsymbol{\alpha}=(\alpha, \ldots, \alpha)$ and likewise for $\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\nu}, \boldsymbol{\mu}$.

2010 Mathematics Subject Classification. 47B34, 26D15, 32M15, 32A25, 15B48.
Key words and phrases. Homogeneous cones, T-algebras, Schur test, Bergman projections.

In that case, a suitable variation of the classical Schur test provides a characterization of the exponents for which (1.2) holds, see [16, Theorem 2.1], at least under the constraints $1 \leq p \leq q<\infty$ and

$$
\begin{equation*}
\frac{\nu}{p^{\prime}}+\frac{\mu}{q}>0 \tag{1.3}
\end{equation*}
$$

The situation for vector multi-indices, however, has additional difficulties, as more complicated test functions are expected in the Schur test, even when Ω is a symmetric cone. Moreover, if $r \geq 3$ then the known necessary and sufficient conditions do not match in general, even when $p=q$ and $\boldsymbol{\nu}=\boldsymbol{\mu}$; see the comments in [17, §8] (which implicitly go back to [8] and [9]). Although this last phenomenon seems a harder question, it actually suggests that a better understanding of the general (vector indexed) inequalities is needed.

In this note we present a first step in this direction, and obtain necessary conditions and sufficient conditions so that (1.2) holds in the case of vector multi-indices. More precisely, using the notation in $\S 2$, we shall prove the following.

THEOREM 1.4. Let $1 \leq p, q<\infty$ and $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\nu}, \boldsymbol{\mu} \in \mathbb{R}^{r}$. Let $\Omega \subset \mathbb{R}^{n}$ be a homogeneous convex cone, and let \mathbf{g} and \mathbf{g}^{\prime} be the associated indices defined in (2.3).
i) Suppose that $1 \leq p \leq q<\infty$ and that

$$
\begin{gather*}
\boldsymbol{\gamma}=\boldsymbol{\alpha}+\frac{\boldsymbol{\mu}}{q}+\boldsymbol{\beta}-\frac{\boldsymbol{\nu}}{p} \tag{A1}\\
\boldsymbol{\alpha}+\frac{\boldsymbol{\mu}}{q}>\frac{\mathbf{g}}{q}+\frac{\mathbf{g}^{\prime}}{p^{\prime}} \quad \text { and } \quad \boldsymbol{\beta}-\frac{\boldsymbol{\nu}}{p}>\frac{\mathbf{g}}{p^{\prime}}+\frac{\mathbf{g}^{\prime}}{q} \tag{A2}
\end{gather*}
$$

then the inequality (1.2) holds for all non-negative f.
ii) Assume the validity of (1.2) for all $f \geq 0$. Then necessarily $p \leq q$ and the conditions (A1) and (A2') must hold, where

$$
\begin{equation*}
\boldsymbol{\alpha}+\frac{\boldsymbol{\mu}}{q}>\max \left\{\frac{\mathbf{g}}{q}, \frac{\mathbf{g}^{\prime}}{p^{\prime}}\right\} \quad \text { and } \quad \boldsymbol{\beta}-\frac{\boldsymbol{\nu}}{p}>\max \left\{\frac{\mathbf{g}}{p^{\prime}}, \frac{\mathbf{g}^{\prime}}{q}\right\} \tag{A2'}
\end{equation*}
$$

iii) The conditions (A2) and (A2') coincide in each of the following cases

- if $p=1$
- if $r \in\{1,2\}$, or if $r=3$ and Ω is the Vinberg cone
- if Ω is an irreducible symmetric cone and both, $\boldsymbol{\alpha}+\frac{\boldsymbol{\mu}}{q}$ and $\boldsymbol{\beta}-\frac{\boldsymbol{\nu}}{p}$, are scalars.

REMARK 1.5. It is easily checked that letting

$$
\mathbf{a}=\boldsymbol{\alpha}+\frac{\boldsymbol{\mu}}{q} \quad \text { and } \quad \mathbf{b}=\boldsymbol{\beta}-\frac{\boldsymbol{\nu}}{p}
$$

then, the validity of (1.2) for all $f \geq 0$ is equivalent to the boundedness of

$$
S_{\mathbf{a}, \mathbf{b}, \gamma}: L^{p}(\Omega, d \sigma) \longrightarrow L^{q}(\Omega, d \sigma) .
$$

So, below it will suffice to look at this case, which involves a simpler notation. A version of Theorem 1.4 for the case $q=\infty$ is also given in Corollary 4.12 below.

We make some remarks about Theorem 1.4 and its comparison with [16, Theorem 2.1]. Our proof is also based on a Schur test strategy, however we find a simpler and slightly more efficient approach than in [2, 16], which in particular removes the artificial constraint in (1.3). We provide a correction of an unclear statement in [16, p. 510] concerning the class of test functions that are needed in these proofs; see Remark 3.15 below. We also provide new examples that disregard the cases $p>q$, which were not considered in the scalar setting of [16].

Finally, we consider homogeneous cones Ω as a natural framework for this problem. The new required tools are based on the Vinberg theory of T-algebras (as in [17]), and a key explicit identity for beta-type integrals due to Gindikin, see Lemma 2.7 below.

To conclude the paper, we briefly discuss some applications to the boundedness of Bergman projections in the tube domain $T_{\Omega}=\mathbb{R}^{n}+i \Omega$ of \mathbb{C}^{n}. As in earlier papers $[3,6,19,5,16,7]$ this is a main motivation for the study of Hilbert-type inequalities. Letting $z=x+i y \in T_{\Omega}$, we consider the measure

$$
d V_{\nu}(z)=Q^{\nu}(y) d x d \sigma(y)
$$

and denote by $L_{\nu}^{p}\left(T_{\Omega}\right), 1 \leq p \leq \infty$, the Lebesgue space $L^{p}\left(T_{\Omega}, d V_{\nu}\right)$. The (weighted) Bergman space $A_{\nu}^{p}\left(T_{\Omega}\right)$ is the closed subspace of $L_{\nu}^{p}\left(T_{\Omega}\right)$ consisting of holomorphic functions. In order that $A_{\nu}^{2} \neq\{0\}$, we must take $\boldsymbol{\nu}>\mathbf{g}$; see [8, II.2, II.3].

The (weighted) Bergman projection P_{ν} is the orthogonal projection of the Hilbert space $L_{\nu}^{2}\left(T_{\Omega}\right)$ onto its subspace $A_{\nu}^{2}\left(T_{\Omega}\right)$. It is defined by the integral

$$
P_{\nu} f(z)=\int_{T_{\Omega}} B_{\nu}(z, w) f(w) d V_{\nu}(w), \quad z \in T_{\Omega}
$$

where the associated Bergman kernel is explicitly given by

$$
B_{\nu}(z, w)=\mathfrak{c}_{\nu} Q^{-\boldsymbol{\nu}-\boldsymbol{\tau}}((z-\bar{w}) / i), \quad z, w \in T_{\Omega}
$$

for a suitable constant $\mathfrak{c}_{\nu}>0$; see e.g. [17, p. 499]. An important problem in the field is to determine when P_{ν} extends as a bounded operator from L_{ν}^{p} into A_{ν}^{p}; see $[3,8,6,4,17,7]$.

Let us now introduce mixed norm spaces. For $1 \leq s, p \leq \infty$, let $L_{\nu}^{s, p}\left(T_{\Omega}\right)$ be the set of all measurable functions f on T_{Ω} such that

$$
\|f\|_{L_{\nu}^{s, p}\left(T_{\Omega}\right)}:=\left(\int_{\Omega}\left(\int_{\mathbb{R}^{n}}|f(x+i y)|^{s} d x\right)^{\frac{p}{s}} Q^{\nu}(y) d \sigma(y)\right)^{\frac{1}{p}}<\infty
$$

(with obvious modifications if s or p are ∞). Note that for $s=p$, we have $L_{\boldsymbol{\nu}}^{p, p}=L_{\boldsymbol{\nu}}^{p}$.
Consider now the positive operator P_{ν}^{+}defined by

$$
P_{\nu}^{+} f(z)=\int_{T_{\Omega}}\left|B_{\nu}(z, w)\right| f(w) d V_{\nu}(w), \quad z \in T_{\Omega}
$$

Clearly the boundedness of P_{ν}^{+}implies the boundedness of P_{ν}, but the converse is in general not true. More generally, consider the class of operators

$$
T_{\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma}^{+} f(z)=Q^{\boldsymbol{\alpha}}(\Im z) \int_{T_{\Omega}} \frac{f(w) d V_{\boldsymbol{\beta}}(w)}{\left|Q^{\gamma+\tau}((z-\bar{w}) / i)\right|}, \quad z \in T_{\Omega}
$$

Observe that $P_{\nu}^{+}=\mathfrak{c}_{\nu} T_{0, \nu, \nu}^{+}$. These operators appear in various papers [6, 19, 5, 16, 7], and are linked to the Hilbert-type operators $S_{\alpha, \boldsymbol{\beta}, \boldsymbol{\gamma}}$ by the following result. Below we denote $L_{\nu}^{p}(\Omega)=L^{p}\left(\Omega, Q^{\nu}(y) d \sigma(y)\right)$.

THEOREM 1.6. Let $1 \leq p, q<\infty$ and $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\nu}, \boldsymbol{\mu} \in \mathbb{R}^{r}$ be such that

$$
\begin{equation*}
\gamma>\mathrm{g}^{\prime} \tag{1.7}
\end{equation*}
$$

Then, the following are equivalent
(i) $S_{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}}: L_{\boldsymbol{\nu}}^{p}(\Omega) \rightarrow L_{\mu}^{q}(\Omega)$ is a bounded operator
(ii) $T_{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}}^{+}: L_{\nu}^{s, p}\left(T_{\Omega}\right) \rightarrow L_{\mu}^{s, q}\left(T_{\Omega}\right)$ is bounded for all $1 \leq s \leq \infty$
(iii) $T_{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}}^{+}: L_{\boldsymbol{\nu}}^{s, p}\left(T_{\Omega}\right) \rightarrow L_{\mu}^{s, q}\left(T_{\Omega}\right)$ is bounded for some $1 \leq s \leq \infty$.

As a corollary of Theorems 1.4 and 1.6 , we can state the following special case, which seems new in this generality. The "diagonal" case, corresponding to $\lambda=1$, can be found in [17, Theorem 6.2 and (8.1)].

COROLLARY 1.8. Let $\boldsymbol{\nu}>\max \left\{\mathbf{g}, \mathbf{g}^{\prime}\right\}$ and $1 \leq p, q, s<\infty$.
(i) Then $P_{\nu}^{+}: L_{\nu}^{s, p}\left(T_{\Omega}\right) \longrightarrow L_{\mu}^{s, q}\left(T_{\Omega}\right)$ is bounded whenever

$$
\begin{equation*}
q=\lambda p, \quad \boldsymbol{\mu}=\lambda \boldsymbol{\nu}, \quad \text { for some } \lambda \geq 1 \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{\mathbf{g}^{\prime} / \lambda}{\boldsymbol{\nu}-\mathbf{g}}<p<1+\frac{\boldsymbol{\nu}-\mathbf{g} / \lambda}{\mathbf{g}^{\prime}} \tag{1.10}
\end{equation*}
$$

(ii) If $P_{\nu}^{+}: L_{\nu}^{s, p}\left(T_{\Omega}\right) \longrightarrow L_{\mu}^{s, q}\left(T_{\Omega}\right)$ is bounded then necessarily (1.9) holds and

$$
\begin{equation*}
1+\frac{\mathbf{g}^{\prime} / \lambda}{\boldsymbol{\nu}}<p<1+\frac{\boldsymbol{\nu}}{\mathbf{g}^{\prime}} \tag{1.11}
\end{equation*}
$$

2. Preliminaries

2.1. Homogeneous cones. A theorem of Vinberg [20, Theorem III.4] establishes that every convex homogeneous cone Ω can be described in a unique way (modulo isomorphisms) as the cone arising from a T-algebra structure. Next, we briefly describe how these are defined; we refer to $[20, \S I I I .1]$ or $[17, \S 2]$ for further details and bibliography on the subject.

A matrix algebra of rank r is a real algebra \mathcal{U} (not necessarily associative) bigraded by subspaces

$$
\mathcal{U}=\bigoplus_{1 \leq i, j \leq r} \mathcal{U}_{i j}
$$

such that the following product rules hold for all $i, j, k \in\{1, \ldots, r\}$

$$
\mathcal{U}_{i j} \mathcal{U}_{j k} \subset \mathcal{U}_{i k}, \quad \text { and } \quad \mathcal{U}_{i j} \mathcal{U}_{\ell k}=\{0\} \quad \text { if } \ell \neq j
$$

An involution in \mathcal{U} is a linear mapping $x \mapsto x^{\star}$ such that for all $x, y \in \mathcal{U}$ it holds

$$
\left(x^{\star}\right)^{\star}=x, \quad(x y)^{\star}=y^{\star} x^{\star}, \quad \text { and additionally } \quad\left(\mathcal{U}_{i j}\right)^{\star}=\mathcal{U}_{j i}, \forall i, j .
$$

The elements $x \in \mathcal{U}$ can be represented by formal matrices $\left(x_{i j}\right)_{1 \leq i, j \leq r}$ with $x_{i j} \in \mathcal{U}_{i j}$. Then x^{\star} corresponds to the formal transpose matrix, that is $\left(x^{\star}\right)_{i j}=\left(x_{j i}\right)^{\star}$.

A T-algebra is a matrix algebra with an involution \star satisfying the following axioms, (T1) through (T7).
(T1) The subalgebras $\mathcal{U}_{i i}$ are 1-dimensional, and there are (unique) idempotents $c_{i}=$ c_{i}^{2} such that

$$
\mathcal{U}_{i i}=\mathbb{R} c_{i}, \quad i=1, \ldots, r
$$

We denote by $\rho_{i i}: \mathcal{U}_{i i} \rightarrow \mathbb{R}$ the algebra isomorphism so that $\rho_{i i}\left(c_{i}\right)=1$. More generally, we let $\rho_{i i}(x)=\rho_{i i}\left(x_{i i}\right)$, if $x \in \mathcal{U}$.
(T2) For every $x_{i j} \in \mathcal{U}_{i j}$ it holds

$$
x_{i j} c_{j}=c_{i} x_{i j}=x_{i j}
$$

In particular, the unit element in \mathcal{U} is given by $\mathbf{e}:=\sum_{i=1}^{r} c_{i}$.

Consider the "trace" operator defined by

$$
\operatorname{tr}(x)=\sum_{j=1}^{r} \rho_{i i}(x), \quad x \in \mathcal{U}
$$

Then it must hold
(T3) $\operatorname{tr}(x y)=\operatorname{tr}(y x), x, y \in \mathcal{U}$
(T4) $\operatorname{tr}(x(y z))=\operatorname{tr}((x y) z), x, y, z \in \mathcal{U}$
$\operatorname{tr}\left(x x^{\star}\right)>0$, if $x \in \mathcal{U}$ and $x \neq 0$.

Consider the subalgebra of upper triangular matrices

$$
\mathcal{T}=\bigoplus_{1 \leq i \leq j \leq r} \mathcal{U}_{i j}
$$

Then it must hold

$$
\begin{align*}
& t(u v)=(t u) v, \quad \forall t, u, v \in \mathcal{T} \tag{T6}\\
& t\left(u u^{\star}\right)=(t u) u^{\star}, \quad \forall t, u \in \mathcal{T} \tag{T7}
\end{align*}
$$

In particular, by (T6), \mathcal{T} is associative. The open subalgebra of elements with positive diagonal entries

$$
H=\left\{t \in \mathcal{T}: \quad \rho_{i i}(t)>0, i=1, \ldots, r\right\}
$$

contains no divisors of zero, and hence it is a Lie group; [20, p. 383]. Finally, consider the real vector space of hermitian matrices in \mathcal{U}

$$
V=\left\{x \in \mathcal{U}: \quad x^{\star}=x\right\},
$$

endowed with the inner product $\langle x \mid y\rangle=\operatorname{tr}(x y)$. We define the cone Ω associated with the T-algebra structure by

$$
\Omega=\left\{t t^{\star}: t \in H\right\} \subset V .
$$

It can be shown that Ω is a homogeneous convex cone in V, with no straight lines, and that the group H acts simply and transitively in Ω, via the transformations

$$
\pi(s)\left[t t^{\star}\right]=(s t)(s t)^{\star}, \quad s, t \in H
$$

see [20, Prop III.1]. In particular, to every $y \in \Omega$ it corresponds a unique $t \in H$ such that

$$
\begin{equation*}
y=\pi(t)[\mathbf{e}]=t \cdot \mathbf{e}=t t^{\star} \tag{2.1}
\end{equation*}
$$

All these concepts have a clear meaning when \mathcal{U} consists of real $r \times r$ matrices, in which case $V=\operatorname{Sym}(r, \mathbb{R})$ and Ω is the cone of positive definite symmetric matrices; see more examples in $\S 2.3$ below. In general, all homogeneous cones (modulo isomorphisms) can be obtained by this procedure; see [20, Theorem III.4].
2.2. Generalized powers in Ω. We set some further notation from [11]; see also
[17]. Let $n_{i j}=\operatorname{dim} \mathcal{U}_{i j}=\operatorname{dim} \mathcal{U}_{j i}, 1 \leq i, j \leq r$, and consider the numbers

$$
\begin{equation*}
n_{i}=\sum_{j=1}^{i-1} n_{i j} \quad \text { and } \quad m_{i}=\sum_{j=i+1}^{r} n_{i j}, \quad i=1, \ldots, r . \tag{2.2}
\end{equation*}
$$

Consider also the parameters

$$
\tau_{i}=1+\frac{1}{2}\left(n_{i}+m_{i}\right), \quad i=1, \ldots, r,
$$

and note that

$$
n=\operatorname{dim} V=r+\sum_{i=1}^{r} m_{i}=r+\sum_{i=1}^{r} n_{i}=\sum_{i=1}^{r} \tau_{i} .
$$

From these quantities we define the following distinguished multi-indices

$$
\begin{equation*}
\mathbf{g}=\frac{1}{2}\left(m_{1}, \ldots, m_{r}\right), \quad \mathbf{g}^{\prime}=\frac{1}{2}\left(n_{1}, \ldots, n_{r}\right), \quad \boldsymbol{\tau}=\left(\tau_{1}, \ldots, \tau_{r}\right) \tag{2.3}
\end{equation*}
$$

Observe in particular that $\mathbf{g}+\mathbf{g}^{\prime}=\boldsymbol{\tau}-\mathbf{1}$, with the usual convention $\mathbf{1}=(1, \ldots, 1)$.

We turn to the definition of the generalized powers in Ω. If $y=t t^{\star} \in \Omega$, for some (unique) $t \in H$, we let

$$
Q_{j}(y)=Q_{j}\left(t t^{\star}\right)=\rho_{j j}(t)^{2}, \quad j=1, \ldots, r,
$$

see [17, p 482] or [20, (III.27)]. This coincides with the quantity denoted by $\chi_{j}(y)$ in Gindikin's work; see e.g. [12, (2.21)]. It can be shown that these are rational functions of y (ie, quotients of polynomials), and that they can be extended to $\Omega+i V$. These functions verify the following homogeneity under the action of H

$$
\begin{equation*}
Q_{j}(t \cdot y)=Q_{j}(t \cdot \mathbf{e}) Q_{j}(y), \quad t \in H, \quad y \in \Omega \tag{2.4}
\end{equation*}
$$

Finally, given a multi-index $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{R}^{r}$ (or even in \mathbb{C}^{r}) one defines

$$
Q^{\alpha}(y):=\prod_{j=1}^{r} Q_{j}^{\alpha_{j}}(y), \quad y \in \Omega
$$

It can be shown that $\pi(t)$, extended as a linear map in V, satisfies

$$
\operatorname{det} \pi(t)=Q^{\boldsymbol{\tau}}(t \cdot \mathbf{e}), \quad \text { if } t \in H \text { and } t \cdot \mathbf{e}=t t^{\star} \in \Omega
$$

see [17, (2.10)]. It follows that

$$
d \sigma(y)=Q^{-\tau}(y) d y
$$

is a (left)-invariant measure in Ω under the action of the group H.
2.3. Some examples. The following examples are discussed in [11, pp.17-19]; see also [12, Chapter 2, §1.8].
2.3.1. Cones of positive-definite symmetric matrices. Let \mathcal{U} be the algebra of real $r \times r$ matrices. Then $\Omega=\operatorname{Sym}_{+}(r, \mathbb{R})$ is the cone of positive definite symmetric matrices. The representation of $y \in \Omega$ as $y=t t^{\star}, t \in H$, see (2.1), corresponds to the standard decomposition of a positive-definite symmetric matrix as a product of an upper triangular matrix and its transpose. The parameters in (2.3) take the form

$$
\mathbf{g}=\frac{1}{2}(r-1, \ldots, 1,0), \quad \mathbf{g}^{\prime}=\frac{1}{2}(0,1, \ldots, r-1), \quad \text { and } \quad \boldsymbol{\tau} \equiv 1+\frac{r-1}{2},
$$

while the basic power functions associated with the cone are given by

$$
Q_{j}(y)=\frac{\Delta_{r-j+1}(y)}{\Delta_{r-j}(y)}, \quad j=1, \ldots, r
$$

where $\Delta_{i}(y)$ is the principal lower corner minor of the matrix y (with $\Delta_{0}=1$). In particular, when $r=2$ we have

$$
Q_{1}(y)=\frac{y_{11} y_{22}-y_{12}^{2}}{y_{22}}, \quad \text { and } \quad Q_{2}(y)=y_{22}, \quad \text { if } \quad y=\left(\begin{array}{ll}
y_{11} & y_{12} \\
y_{12} & y_{22}
\end{array}\right)
$$

2.3.2. Vinberg cone. Let \mathcal{U} consist of real 3×3 matrices with

$$
\mathcal{U}_{23}=\mathcal{U}_{32}=\{0\} .
$$

When $x, y \in \mathcal{U}$ its product $z=x y$ is defined by $z_{i j}=\sum_{k=1}^{3} x_{i k} y_{k j}$ if $i+j \neq 5$, and $z_{23}=z_{32}=0$ (that is, the \mathcal{U}-projection of the usual matrix product). It is easily seen that this product is compatible with the T-algebra axioms. In this case we have $n_{12}=n_{13}=1$ and $n_{23}=0$, so that

$$
\mathbf{g}=(1,0,0), \quad \mathbf{g}^{\prime}=\left(0, \frac{1}{2}, \frac{1}{2}\right), \quad \text { and } \quad \boldsymbol{\tau}=\left(2, \frac{3}{2}, \frac{3}{2}\right)
$$

The associated cone Ω is the set of all positive-definite matrices of the form

$$
y=\left(\begin{array}{ccc}
y_{11} & y_{12} & y_{13} \\
y_{12} & y_{22} & 0 \\
y_{13} & 0 & y_{33}
\end{array}\right)
$$

and the basic power functions are given by

$$
Q_{1}(y)=y_{11}-\frac{y_{12}^{2}}{y_{22}}-\frac{y_{13}^{2}}{y_{33}}, \quad Q_{2}(y)=y_{22}, \quad \text { and } \quad Q_{3}(y)=y_{33}
$$

2.4. A beta integral formula. Below we use standard conventions for multi-indices, namely if $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right), \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{r}\right) \in \mathbb{R}^{r}$, then

$$
\begin{equation*}
\boldsymbol{\alpha}>\boldsymbol{\beta} \quad \text { means } \quad \alpha_{i}>\beta_{i}, \quad \forall i=1, \ldots, r \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\alpha} \boldsymbol{\beta}=\left(\alpha_{1} \beta_{1}, \ldots, \alpha_{r} \beta_{r}\right) \in \mathbb{R}^{r} \tag{2.6}
\end{equation*}
$$

A key result in the later computations will be the following lemma due to Gindikin. We remark that the formulation in [11, Proposition 2.6] contains a mistake, so we present the correct statement given in [17, Lemma 4.19]; see also [9, Corollary 2.19].

LEMMA 2.7. Let $\mathbf{s}, \mathbf{t} \in \mathbb{R}^{r}$ be such that

$$
\mathbf{t}>\mathbf{g} \quad \text { and } \quad \mathbf{s}>\mathbf{g}^{\prime}
$$

Then, and only then, the following integrals are finite and take the value

$$
\int_{\Omega} \frac{Q^{\mathbf{t}-\boldsymbol{\tau}}(y)}{Q^{\mathbf{s}+\mathbf{t}}(x+y)} d y=c Q^{-\mathbf{s}}(x), \quad x \in \Omega
$$

for some constant $c=\beta_{\Omega}\left(\mathbf{s}+\mathbf{g}-\mathbf{g}^{\prime}, \mathbf{t}\right)>0$.
We quote two more integral estimates that can be found in [17]. In these statements the euclidean vector space $(V,\langle\cdot \mid \cdot\rangle)$ is identified with \mathbb{R}^{n}.

LEMMA 2.8. [17, Lemma 4.20] Let $\boldsymbol{\gamma} \in \mathbb{R}^{r}$. Then the integral

$$
\begin{equation*}
J_{\gamma}(y)=\int_{V}\left|Q^{-(\gamma+\boldsymbol{\tau})}(y+i x)\right| d x, \quad y \in \Omega \tag{2.9}
\end{equation*}
$$

converges if and only if $\boldsymbol{\gamma}>\mathbf{g}^{\prime}$. In this case, there exists $c_{\boldsymbol{\gamma}}>0$ such that

$$
J_{\gamma}(y)=c_{\gamma} Q^{-\gamma}(y)
$$

LEMMA 2.10. [17, Lemma 4.21] Let $\boldsymbol{\gamma} \in \mathbb{R}^{r}$. Then there is a constant $C_{\gamma}>0$ such that for all $y \in \Omega,|y| \leq 1 / 4$,

$$
\int_{\{x \in V:|x|<1\}}\left|Q^{-(\gamma+\tau)}(y+i x)\right| d x \geq C_{\gamma} Q^{-\gamma}(y)
$$

2.5. A Schur type test. Below we use a known test for $L^{p}-L^{q}$ boundedness of positive operators. When $p=q$ it is the usual Schur test, see e.g. [10, Lemma 3.1], or [1, Theorem 6.3] for a statement closer to the notation below. For $p \leq q$, this test (in a slightly weaker form) can be found in the work of Okikiolu [18]. We reproduce the elementary proof for completeness. We consider abstract (σ-finite) Lebesgue spaces $L^{p}=L^{p}(Y, d \nu)$ and $L^{q}=L^{q}(X, d \mu)$, and as usual, $1 / p+1 / p^{\prime}=1$.

LEMMA 2.11. Let $1 \leq p \leq q \leq \infty$. Given a non-negative kernel $K(x, y) \geq 0$, consider the formal operator

$$
T f(x):=\int_{Y} K(x, y) f(y) d \nu(y), \quad x \in X
$$

Assume that

$$
\begin{equation*}
0 \leq K(x, y) \leq G(x, y) H(x, y) \tag{2.12}
\end{equation*}
$$

and that there exist functions $\phi_{1}(y)>0$ and $\phi_{2}(x)>0$ and constants $c_{1}, c_{2}>0$, such that

$$
\begin{array}{ll}
{\left[\int_{Y}\left|G(x, y) \phi_{1}(y)\right|^{p^{\prime}} d \nu(y)\right]^{\frac{1}{p^{\prime}}} \leq c_{2} \phi_{2}(x),} & \forall x \in X \\
{\left[\int_{X}\left|H(x, y) \phi_{2}(x)\right|^{q} d \mu(x)\right]^{\frac{1}{q}} \leq c_{1} \phi_{1}(y),} & \forall y \in Y . \tag{2.14}
\end{array}
$$

Then T maps $L^{p}(Y, d \mu) \rightarrow L^{q}(X, d \mu)$ boundedly, and

$$
\|T f\|_{L^{q}(X, d \mu)} \leq c_{1} c_{2}\|f\|_{L^{p}(Y, d \nu)}, \quad \forall f \in L^{p}(Y, d \nu)
$$

Proof. If $f \geq 0$ and $x \in X$, by (2.12) and Hölder's inequality we have

$$
\begin{aligned}
T f(x) & =\int_{Y} K(x, y) f(y) d \nu(y) \leq \int_{Y} \phi_{1}(y) G(x, y) H(x, y) \phi_{1}^{-1}(y) f(y) d \nu(y) \\
& \leq\left\|\phi_{1} G(x, \cdot)\right\|_{L^{p^{\prime}}(Y)}\left[\int_{Y}\left|H(x, y) \phi_{1}^{-1}(y) f(y)\right|^{p} d \nu(y)\right]^{\frac{1}{p}}
\end{aligned}
$$

By (2.13), the first factor is bounded by $c_{2} \phi_{2}(x)$, so taking L^{q}-norms we obtain

$$
\|T f\|_{L^{q}(X)} \leq c_{2}\left(\int_{X}\left[\int_{Y}\left|H(x, y) \phi_{1}^{-1}(y) \phi_{2}(x) f(y)\right|^{p} d \nu(y)\right]^{\frac{q}{p}} d \mu(x)\right)^{\frac{1}{q}}
$$

Since $q \geq p$ we can use the Minkowski integral inequality to deduce

$$
\begin{aligned}
\|T f\|_{L^{q}(X)} & \leq c_{2}\left[\int_{Y}\left(\int_{X}\left|H(x, y) \phi_{1}^{-1}(y) \phi_{2}(x) f(y)\right|^{q} d \mu(x)\right)^{\frac{p}{q}} d \nu(y)\right]^{\frac{1}{p}} \\
& =c_{2}\left\|\phi_{1}^{-1}(y) f(y)\right\| H(x, y) \phi_{2}(x)\left\|_{L^{q}(d \mu(x))}\right\|_{L^{p}(d \nu(y))} \\
& \leq c_{1} c_{2}\|f\|_{L^{p}(Y)},
\end{aligned}
$$

using in the last step the assumption (2.14). Observe that the above argument for $1<p \leq q<\infty$, remains also valid if $p=1$ or $q=\infty$.

3. Proof of Theorem 1.4: sufficient conditions

3.1. Proof of part (i) for $p>1$. As observed in Remark 1.5, it suffices to show that if $1<p \leq q<\infty$, then

$$
S_{\mathbf{a}, \mathbf{b}, \gamma}: L^{p}(\Omega, d \sigma) \longrightarrow L^{q}(\Omega, d \sigma),
$$

under the conditions $\gamma=\mathbf{a}+\mathbf{b}$ and

$$
\begin{equation*}
\mathbf{a}>\frac{\mathbf{g}}{q}+\frac{\mathbf{g}^{\prime}}{p^{\prime}} \quad \text { and } \quad \mathbf{b}>\frac{\mathbf{g}}{p^{\prime}}+\frac{\mathbf{g}^{\prime}}{q} . \tag{3.1}
\end{equation*}
$$

We apply the Schur test to

$$
T f(x)=\int_{\Omega} K(x, y) f(y) d \sigma(y), \quad \text { with } \quad K(x, y)=\frac{Q^{\mathbf{a}}(x) Q^{\mathbf{b}}(y)}{Q^{\mathbf{a}+\mathbf{b}}(x+y)} .
$$

To do so, we shall split the kernel as

$$
\begin{equation*}
K(x, y)=K(x, y)^{\mathbf{t}} K(x, y)^{\mathbf{1}-\mathbf{t}} \tag{3.2}
\end{equation*}
$$

for some $\mathbf{t} \in \mathbb{R}^{r}$ with $\mathbf{0}<\mathbf{t}<\mathbf{1}$, where we use the multi-index conventions in (2.5) and (2.6). It then suffices to find test functions

$$
\begin{equation*}
\phi_{1}(y)=Q^{-\sigma}(y) \quad \text { and } \quad \phi_{2}(x)=Q^{-\delta}(x) \tag{3.3}
\end{equation*}
$$

for suitable $\boldsymbol{\sigma}, \boldsymbol{\delta} \in \mathbb{R}^{r}$, such that

$$
\begin{equation*}
\left[\int_{\Omega}\left|\frac{Q^{\mathbf{a t}}(x) Q^{\mathbf{b t}}(y)}{Q^{(\mathbf{a}+\mathbf{b}) \mathbf{t}}(x+y)} Q^{-\boldsymbol{\sigma}}(y)\right|^{p^{\prime}} d \sigma(y)\right]^{1 / p^{\prime}} \lesssim Q^{-\delta}(x), \quad x \in \Omega \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\int_{\Omega}\left|\frac{Q^{\mathbf{a}(\mathbf{1 - \mathbf { t })}}(x) Q^{\mathbf{b}(1-\mathbf{t})}(y)}{Q^{(\mathbf{a}+\mathbf{b})(\mathbf{1}-\mathbf{t})}(x+y)} Q^{-\delta}(x)\right|^{q} d \sigma(x)\right]^{1 / q} \lesssim Q^{-\boldsymbol{\sigma}}(y), \quad y \in \Omega \tag{3.5}
\end{equation*}
$$

To do so we use Lemma 2.7. The expression in the left hand side of (3.4) is finite iff

$$
(\mathbf{b t}-\boldsymbol{\sigma}) p^{\prime}>\mathbf{g} \quad \text { and } \quad(\mathbf{a t}+\boldsymbol{\sigma}) p^{\prime}>\mathbf{g}^{\prime}
$$

in which case it takes the value $c_{1} Q^{-\boldsymbol{\sigma}}(x)$, for some $c_{1}>0$. Similarly, the left expression in (3.5) is finite iff

$$
(\mathbf{a}(\mathbf{1}-\mathbf{t})-\boldsymbol{\delta}) q>\mathbf{g} \quad \text { and } \quad(\mathbf{b}(\mathbf{1}-\mathbf{t})+\boldsymbol{\delta}) q>\mathbf{g}^{\prime}
$$

in which case it takes the value $c_{2} Q^{-\boldsymbol{\delta}}(y)$, for some $c_{2}>0$. Thus, (3.4) and (3.5) will hold if we take $\boldsymbol{\delta}=\boldsymbol{\sigma}$, and if we can select $\boldsymbol{\sigma}$ and \mathbf{t} such that

$$
\begin{equation*}
\frac{\mathbf{g}^{\prime}}{p^{\prime}}-\mathbf{a t}<\boldsymbol{\sigma}<\mathbf{b t}-\frac{\mathbf{g}}{p^{\prime}} \quad \text { and } \quad \frac{\mathbf{g}^{\prime}}{q}-\mathbf{b}(\mathbf{1}-\mathbf{t})<\boldsymbol{\sigma}<\mathbf{a}(\mathbf{1}-\mathbf{t})-\frac{\mathbf{g}}{q} . \tag{3.6}
\end{equation*}
$$

For each of these two "intervals" to be non-empty we must impose the conditions

$$
\frac{\mathbf{g}+\mathbf{g}^{\prime}}{p^{\prime}}<(\mathbf{a}+\mathbf{b}) \mathbf{t} \quad \text { and } \quad \frac{\mathbf{g}+\mathbf{g}^{\prime}}{q}<(\mathbf{a}+\mathbf{b})(\mathbf{1}-\mathbf{t})
$$

which solving for \mathbf{t} lead to

$$
\begin{equation*}
\frac{\mathbf{g}+\mathbf{g}^{\prime}}{(\mathbf{a}+\mathbf{b}) p^{\prime}}<\mathbf{t}<\mathbf{1}-\frac{\mathbf{g}+\mathbf{g}^{\prime}}{(\mathbf{a}+\mathbf{b}) q} \tag{3.7}
\end{equation*}
$$

interpreted as pointwise inequalities for each coordinate $i=1, \ldots, r$. By the assumptions in (3.1), it is always possible to find such a \mathbf{t}.

Once \mathbf{t} is chosen, we check that a multi-index $\boldsymbol{\sigma}$ as in (3.6) exists. To do so we conveniently denote by $\left(\mathbf{u}_{1}, \mathbf{v}_{1}\right)$ and $\left(\mathbf{u}_{2}, \mathbf{v}_{2}\right)$ the two "intervals" of multi-indices in (3.6) (formally, rectangles in \mathbb{R}^{r}). We must show that

$$
\begin{equation*}
\left(\mathbf{u}_{1}, \mathbf{v}_{1}\right) \cap\left(\mathbf{u}_{2}, \mathbf{v}_{2}\right) \neq \emptyset \tag{3.8}
\end{equation*}
$$

Indeed, the conditions in (3.1) can be written as

$$
\begin{equation*}
\mathbf{u}_{1}<\mathbf{v}_{2} \quad \text { and } \quad \mathbf{u}_{2}<\mathbf{v}_{1}, \tag{3.9}
\end{equation*}
$$

regardless of the value of \mathbf{t}, and this in turn is easily seen to be equivalent to (3.8). This completes the proof of part (i) in Theorem 1.4 when $p>1$.
3.2. Proof of part (i) for $p=1$. The only difference is that, rather than (3.4), we need to require

$$
\begin{equation*}
\sup _{y \in \Omega} \frac{Q^{\mathbf{a t}}(x) Q^{\mathbf{b}-\boldsymbol{\sigma}}(y)}{Q^{(\mathbf{a}+\mathbf{b}) \mathbf{t}}(x+y)} \lesssim Q^{-\delta}(x), \quad x \in \Omega . \tag{3.10}
\end{equation*}
$$

Letting $x=t \cdot \mathbf{e}$ with $t \in H$, we may as well take the sup over $y=t \cdot u, u \in \Omega$; thus, the homogeneity in (2.4) shows that (3.10) can be written as

$$
Q^{-\boldsymbol{\sigma}}(x) \sup _{u \in \Omega} \frac{Q^{\mathbf{b t}-\boldsymbol{\sigma}}(u)}{Q^{(\mathbf{a}+\mathbf{b}) \mathbf{t}}(\mathbf{e}+u)} \lesssim Q^{-\boldsymbol{\delta}}(x), \quad x \in \Omega
$$

For this to hold we need $\boldsymbol{\delta}=\boldsymbol{\sigma}$ and

$$
-\mathbf{a t} \leq \boldsymbol{\sigma} \leq \mathbf{b} \mathbf{t}
$$

This is less restrictive than the left expression in (3.6) with $p=1$. So the same arguments given above can be used in this case, providing the existence of the required multi-index $\boldsymbol{\sigma}$ under the assumptions (3.1), which now take the simpler form

$$
\begin{equation*}
\mathbf{a}>\mathbf{g} / q \quad \text { and } \quad \mathbf{b}>\mathbf{g}^{\prime} / q \tag{3.11}
\end{equation*}
$$

3.3. The case $q=\infty$. We have excluded this case to avoid end-point situations, however, the same argument as in $\S 3.2$ can be applied when $q=\infty$, at least if $1<p \leq \infty$. The sufficient conditions in (3.1) remain valid, and now take the form

$$
\begin{equation*}
\mathbf{a}>\mathbf{g}^{\prime} / p^{\prime} \quad \text { and } \quad \mathbf{b}>\mathbf{g} / p^{\prime} \tag{3.12}
\end{equation*}
$$

Alternatively, this could also be proved by duality.
Finally, we mention the special case corresponding to $p=1$ and $q=\infty$, for which a direct inequality shows that $S_{\mathbf{a}, \mathbf{b}, \gamma}($ with $\gamma=\mathbf{a}+\mathbf{b})$ maps L^{1} into L^{∞} in the larger range

$$
\begin{equation*}
\mathbf{a} \geq \mathbf{0} \quad \text { and } \quad \mathbf{b} \geq \mathbf{0} \tag{3.13}
\end{equation*}
$$

3.4. Some remarks on the sufficient conditions. We make some comments about the previous proof

REMARK 3.14. We have used a multi-index $\mathbf{t} \in \mathbb{R}^{r}$ in (3.2), in order to allow for greater generality. However, the proof works as well with a scalar $\mathbf{t}=(t, \ldots, t)$. Indeed, in view of (3.7) (and using $\mathbf{g}+\mathbf{g}^{\prime}=\boldsymbol{\tau}-\mathbf{1}$), it suffices to pick t such that

$$
\frac{\vartheta}{p^{\prime}}<t<1-\frac{\vartheta}{q}, \quad \text { where } \quad \vartheta:=\max _{1 \leq i \leq r} \frac{\tau_{i}-1}{a_{i}+b_{i}}
$$

Now, (3.1) implies $\mathbf{a}+\mathbf{b}>(\boldsymbol{\tau}-\mathbf{1})\left(\frac{1}{p^{\prime}}+\frac{1}{q}\right)$, and thus $\left(\frac{1}{p^{\prime}}+\frac{1}{q}\right) \vartheta<1$, so such a t can always be chosen. In particular, when $p=q$ we could take $t=1 / p^{\prime}$, which is the usual choice in Schur's test.

REMARK 3.15. Even in the special case when $\Omega=\operatorname{Sym}_{+}(2, \mathbb{R}), p=q$ and \mathbf{a}, \mathbf{b} are scalars, the optimal sufficient conditions in (3.1) cannot be obtained merely with test functions ϕ_{1}, ϕ_{2} involving a scalar parameter $\boldsymbol{\sigma}=(\sigma, \ldots, \sigma)$. Indeed, in this special case we have

$$
\mathbf{g}=(1 / 2,0) \quad \text { and } \quad \mathbf{g}^{\prime}=(0,1 / 2)
$$

so the condition in (3.6) becomes

$$
\frac{1}{2 p^{\prime}}-a t<\sigma<b t-\frac{1}{2 p^{\prime}} \quad \text { and } \quad \frac{1}{2 p}-(1-t) b<\sigma<(1-t) a-\frac{1}{2 p}
$$

However, arguing as in (3.8) and (3.9), one sees that these two conditions cannot simultaneously hold if $a \leq 1 / 2$ or $b \leq 1 / 2$. So one would not cover the whole range of sufficient conditions in (3.1), which in this case should be

$$
a>\max \left\{\frac{1}{2 p}, \frac{1}{2 p^{\prime}}\right\} \quad \text { and } \quad b>\max \left\{\frac{1}{2 p}, \frac{1}{2 p^{\prime}}\right\} .
$$

This suggests that the proof of [16, Lemma 4.1] may not be correct, and must be modified according to Remark 4.2 in that paper.

4. Proof of Theorem 1.4: necessary conditions

As observed in Remark 1.5, to prove part (ii) of Theorem 1.4 it suffices to find necessary conditions for the boundedness of

$$
\begin{equation*}
S_{\mathbf{a}, \mathbf{b}, \gamma}: L^{p}(\Omega, d \sigma) \longrightarrow L^{q}(\Omega, d \sigma) \tag{4.1}
\end{equation*}
$$

for fixed $1 \leq p, q<\infty$ and $\mathbf{a}, \mathbf{b}, \gamma \in \mathbb{R}^{r}$. Observe that $S_{\mathbf{a}, \mathbf{b}, \gamma} f(x)$ is always well-defined for non-negative f. So, the boundedness of the mapping (4.1) must be understood as

$$
\begin{equation*}
\left\|S_{\mathbf{a}, \mathbf{b}, \gamma} f\right\|_{q} \leq C\|f\|_{p}, \quad \forall f \geq 0 \tag{4.2}
\end{equation*}
$$

for some constant $C>0$. The p-norms will always refer to the spaces $L^{p}(\Omega, d \sigma)$.

4.1. Necessary condition on γ.

LEMMA 4.3. Let $1 \leq p, q \leq \infty$ and $\mathbf{a}, \mathbf{b}, \gamma \in \mathbb{R}^{r}$. Assume that (4.2) holds. Then $\gamma=\mathbf{a}+\mathbf{b}$.

Proof. We use the homogeneity under the H-action in Ω. Let $t \in H$ and define

$$
f_{t}(y):=f(t \cdot y), \quad y \in \Omega .
$$

Then, by the left-invariance of $d \sigma$ and (2.4) we have

$$
\begin{aligned}
S_{\mathbf{a}, \mathbf{b}, \gamma}\left(f_{t}\right)(x) & =Q^{\mathbf{a}}(x) \int_{\Omega} f(y) \frac{Q^{\mathbf{b}}\left(t^{-1} \cdot y\right)}{Q^{\gamma}\left(x+t^{-1} \cdot y\right)} d \sigma(y) \\
& =Q^{\mathbf{a}+\mathbf{b}-\gamma}\left(t^{-1} \cdot \mathbf{e}\right)\left(S_{\mathbf{a}, \mathbf{b}, \gamma} f\right)(t \cdot x)
\end{aligned}
$$

Thus, if (4.2) holds we will have

$$
Q^{\mathbf{a}+\mathbf{b}-\gamma}\left(t^{-1} \cdot \mathbf{e}\right)\left\|S_{\mathbf{a}, \mathbf{b}, \gamma}(f)\right\|_{q}=\left\|S_{\mathbf{a}, \mathbf{b}, \gamma}\left(f_{t}\right)\right\|_{q} \leq C\left\|f_{t}\right\|_{p}=C\|f\|_{p}
$$

Fixing a positive $f \in L^{p}$, and letting t vary in the set of diagonal matrices whose entries go to 0 or $+\infty$, we see that necessarily $\gamma=\mathbf{a}+\mathbf{b}$.
4.2. Necessity of $p \leq q$. We begin with an elementary observation, which is similar to the one used in [14, Theorem 1.1].

LEMMA 4.4. Let $1 \leq p<\infty$, and for $R>0$ let $f_{R}(y):=f(y / R), y \in \Omega$. Then

$$
\begin{equation*}
\lim _{R \rightarrow \infty}\left\|f+f_{R}\right\|_{p}=2^{1 / p}\|f\|_{p}, \quad \forall f \in L^{p}(\Omega, d \sigma) \tag{4.5}
\end{equation*}
$$

Proof. If we assume that supp $f \Subset \Omega$, then f and f_{R} will have disjoint supports for large enough R, and thus

$$
\left\|f+f_{R}\right\|_{p}^{p}=\int_{\Omega}\left(|f(y)|^{p}+\left|f_{R}(y)\right|^{p}\right) d \sigma(y)=2\|f\|_{p}^{p}
$$

by the invariance of the measure. For general $f \in L^{p}$, given $\varepsilon>0$, one finds h with $\operatorname{supp} h \Subset \Omega$ and $\|f-h\|_{p}<\varepsilon$. Then, by the triangle inequality

$$
\begin{aligned}
\left|\left\|f+f_{R}\right\|_{p}-2^{\frac{1}{p}}\|f\|_{p}\right| & \leq 2\|f-h\|_{p}+\left|\left\|h+h_{R}\right\|_{p}-2^{\frac{1}{p}}\|h\|_{p}\right|+2^{\frac{1}{p}}\left|\|h\|_{p}-\|f\|_{p}\right| \\
& \leq\left(2+2^{\frac{1}{p}}\right) \varepsilon+\left|\left\|h+h_{R}\right\|_{p}-2^{\frac{1}{p}}\|h\|_{p}\right| \leq\left(2+2^{\frac{1}{p}}\right) \varepsilon,
\end{aligned}
$$

if R is sufficiently large. The result now follows by the definition of limit.
LEMMA 4.6. Let $1 \leq p, q<\infty$ and $\mathbf{a}, \mathbf{b}, \gamma \in \mathbb{R}^{r}$. Assume that (4.2) holds. Then $p \leq q$.

Proof. Assume that $p>q$ and that (4.2) holds. By Lemma 4.3 we must have $\boldsymbol{\gamma}=\mathbf{a}+\mathbf{b}$, so with the notation $f_{R}(y):=f(y / R)$, from the previous lemma, one easily sees that

$$
\left(S_{\mathbf{a}, \mathbf{b}, \gamma} f_{R}\right)(x)=\left(S_{\mathbf{a}, \mathbf{b}, \gamma} f\right)(x / R)
$$

Thus,

$$
\left\|\left(S_{\mathbf{a}, \mathbf{b}, \gamma} f\right)+\left(S_{\mathbf{a}, \mathbf{b}, \gamma} f\right)(\cdot / R)\right\|_{q}=\left\|S_{\mathbf{a}, \mathbf{b}, \gamma}\left(f+f_{R}\right)\right\|_{q} \leq\left\|S_{\mathbf{a}, \mathbf{b}, \gamma}\right\|\left\|f+f_{R}\right\|_{p}
$$

where $\left\|S_{\mathbf{a}, \mathbf{b}, \boldsymbol{\gamma}}\right\|$ denotes the infimum of all constants C such that (4.2) holds. Letting $R \nearrow \infty$ and using Lemma 4.4 we conclude that

$$
2^{\frac{1}{q}}\left\|S_{\mathbf{a}, \mathbf{b}, \gamma} f\right\|_{q} \leq 2^{\frac{1}{p}}\left\|S_{\mathbf{a}, \mathbf{b}, \gamma}\right\|\|f\|_{p}
$$

Since this is valid for all $f \geq 0$ we conclude that

$$
\left\|S_{\mathbf{a}, \mathbf{b}, \boldsymbol{\gamma}}\right\| \leq 2^{\frac{1}{p}-\frac{1}{q}}\left\|S_{\mathbf{a}, \mathbf{b}, \boldsymbol{\gamma}}\right\|
$$

which is not possible when $p>q\left(\right.$ since $\left.\left\|S_{\mathbf{a}, \mathbf{b}, \boldsymbol{\gamma}}\right\|>0\right)$.
4.3. Necessary conditions on \mathbf{a} and \mathbf{b}. We first recall some notions from [17, §4.2]. For $y_{0} \in \Omega$, we let $B_{r}\left(y_{0}\right):=\left\{y \in \Omega: d\left(y, y_{0}\right)<r\right\}$, where d denotes the associated riemannian distance in Ω (which is H-invariant). The following result is known for symmetric cones; see [6, Corollary 2.3]. In the appendix we sketch a different proof, which is valid as well for homogeneous cones.

LEMMA 4.7. Let Ω be a homogeneous cone. Then, there are constants $c_{1}, c_{2}>0$ such that

$$
c_{1} \leq \frac{Q_{j}(x+y)}{Q_{j}\left(x+y_{0}\right)} \leq c_{2}, \quad \text { if } d\left(y, y_{0}\right)<1, \quad x \in \Omega, \quad j=1, \ldots, r .
$$

LEMMA 4.8. Let $1 \leq p \leq q<\infty$, and let $\mathbf{a}, \mathbf{b}, \boldsymbol{\gamma} \in \mathbb{R}^{r}$ with $\boldsymbol{\gamma}=\mathbf{a}+\mathbf{b}$. Assume that (4.2) holds. Then

$$
\begin{equation*}
\mathbf{a}>\max \left\{\frac{\mathbf{g}}{q}, \frac{\mathbf{g}^{\prime}}{p^{\prime}}\right\} \quad \text { and } \quad \mathbf{b}>\max \left\{\frac{\mathbf{g}}{p^{\prime}}, \frac{\mathbf{g}^{\prime}}{q}\right\} \tag{4.9}
\end{equation*}
$$

Proof. Let $f=\chi_{B_{1}(\mathbf{e})}$. Then, by the previous lemma

$$
\left(S_{\mathbf{a}, \mathbf{b}, \gamma} f\right)(x)=\int_{B_{1}(\mathbf{e})} \frac{Q^{\mathbf{a}}(x) Q^{\mathbf{b}}(y)}{Q^{\mathbf{a}+\mathbf{b}}(x+y)} d \sigma(y) \approx \frac{Q^{\mathbf{a}}(x)}{Q^{\mathbf{a}+\mathbf{b}}(x+\mathbf{e})}, \quad x \in \Omega
$$

So, if (4.2) holds we deduce that

$$
\left[\int_{\Omega}\left|\frac{Q^{\mathbf{a}}(x)}{Q^{\mathbf{a}+\mathbf{b}}(x+\mathbf{e})}\right|^{q} d \sigma(x)\right]^{\frac{1}{q}} \lesssim\left\|S_{\mathbf{a}, \mathbf{b}, \gamma} f\right\|_{q} \leq C\|f\|_{p}<\infty
$$

which by Gindinkin's result, Lemma 2.7, implies that

$$
\mathbf{a}>\mathbf{g} / q \quad \text { and } \quad \mathbf{b}>\mathbf{g}^{\prime} / q
$$

The other condition follows by duality, since $S_{\mathbf{a}, \mathbf{b}, \gamma}^{*}=S_{\mathbf{b}, \mathbf{a}, \gamma}$ and (4.2) implies that

$$
\left\|S_{\mathbf{b}, \mathbf{a}, \gamma} f\right\|_{p^{\prime}} \leq C\|f\|_{q^{\prime}}
$$

Hence, testing with $f=\chi_{B_{1}(e)}$ as above leads to

$$
\mathbf{a}>\mathbf{g}^{\prime} / p^{\prime} \quad \text { and } \quad \mathbf{b}>\mathbf{g} / p^{\prime}
$$

at least if $p>1$. When $p=1$ the above inequalities are no longer strict, and become

$$
\begin{equation*}
\mathbf{a} \geq \mathbf{0} \quad \text { and } \quad \mathbf{b} \geq \mathbf{0} \tag{4.10}
\end{equation*}
$$

But in this case $\mathbf{a}>\mathbf{g} / q$ is the same as $\mathbf{a}>\max \left\{\mathbf{g} / q, \mathbf{0}=\mathbf{g}^{\prime} / p^{\prime}\right\}$, and likewise for \mathbf{b}. So, the result is proved in all cases.

REMARK 4.11. Lemma 4.8 is also valid in the case $q=\infty$, as long as $1<p \leq \infty$. The only special case happens when $p=1$ and $q=\infty$, for which the necessary condition would just be (4.10). This matches the sufficient condition discussed in (3.13). Thus, overall we can state the following

COROLLARY 4.12 (Case $q=\infty$). Let $1<p \leq \infty$, and $\mathbf{a}, \mathbf{b}, \gamma \in \mathbb{R}^{r}$. Then $S_{\mathbf{a}, \mathbf{b}, \gamma}: L^{p}(d \sigma) \rightarrow L^{\infty}(d \sigma)$ if and only if $\gamma=\mathbf{a}+\mathbf{b}$ and

$$
\begin{equation*}
\mathbf{a}>\mathbf{g}^{\prime} / p^{\prime} \quad \text { and } \quad \mathbf{b}>\mathbf{g} / p^{\prime} \tag{4.13}
\end{equation*}
$$

If $p=1$ the same characterization holds with (4.13) replaced by

$$
\mathbf{a} \geq \mathbf{0} \quad \text { and } \quad \mathbf{b} \geq \mathbf{0}
$$

5. Comparison of necessary and sufficient conditions

Here we prove the statements in part iii) of Theorem 1.4. Namely, for the operators $S_{\mathbf{a}, \mathbf{b}, \gamma}: L^{p} \rightarrow L^{q}$ (with $\gamma=\mathbf{a}+\mathbf{b}$) we compare the necessary conditions

$$
\begin{equation*}
\mathbf{a}>\max \left\{\frac{\mathbf{g}}{q}, \frac{\mathbf{g}^{\prime}}{p^{\prime}}\right\} \quad \text { and } \quad \mathbf{b}>\max \left\{\frac{\mathbf{g}}{p^{\prime}}, \frac{\mathbf{g}^{\prime}}{q}\right\} \tag{A2'}
\end{equation*}
$$

and the sufficient conditions

$$
\begin{equation*}
\mathbf{a}>\frac{\mathbf{g}}{q}+\frac{\mathbf{g}^{\prime}}{p^{\prime}} \quad \text { and } \quad \mathbf{b}>\frac{\mathbf{g}}{p^{\prime}}+\frac{\mathbf{g}^{\prime}}{q} ; \tag{A2}
\end{equation*}
$$

see (3.1) and (4.9) above. These clearly coincide when $p=1$ (or $q=\infty$), so we will assume $1<p \leq q<\infty$.
5.1. (A2) and (A2') for a general cone Ω. When $r=1$, then $\Omega=(0, \infty)$ and the conditions trivially coincide, since $\mathbf{g}=\mathbf{g}^{\prime}=0$. This is the classical setting for the Hilbert inequalities, see also [2]. For $r \geq 2$ we use the following simple observation.

Lemma 5.1. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{r}$. Then

$$
\mathbf{u}+\mathbf{v}=\max \{\mathbf{u}, \mathbf{v}\}
$$

if and only if $\operatorname{supp} \mathbf{u} \cap \operatorname{supp} \mathbf{v}=\emptyset$, that is, iff $\quad u_{i} v_{i}=0, \forall i=1, \ldots, r$.
The previous lemma has the following immediate consequence. Recall that \mathbf{g} and \mathbf{g}^{\prime} are defined in (2.2) and (2.3) in terms of the indices $n_{i j}=\operatorname{dim} \mathcal{U}_{i j}$.

COROLLARY 5.2. Let $1<p \leq q<\infty$. Let Ω be a homogeneous cone associated with a T-algebra $\mathcal{U}=\bigoplus_{1 \leq i, j \leq r} \mathcal{U}_{i j}$. Then the set of indices $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{r}$ satisfying (A2) coincides with (A2') if and only if

$$
\begin{equation*}
\left(\sum_{j=1}^{i-1} n_{i j}\right)\left(\sum_{j=i+1}^{r} n_{i j}\right)=0, \quad \forall i \in\{1, \ldots, r\} . \tag{5.3}
\end{equation*}
$$

We discuss some examples.
(1) Case $r=2$. There is only one relevant index, namely, $n_{12}=d \in \mathbb{N} \cup\{0\}$. Therefore, we have

$$
\mathbf{g}=(d / 2,0) \quad \text { and } \quad \mathbf{g}^{\prime}=(0, d / 2)
$$

By Lemma 5.1 conditions (A2) and (A2') coincide, and take the form

$$
\mathbf{a}>\left(\frac{d}{2 q}, \frac{d}{2 p^{\prime}}\right) \quad \text { and } \quad \mathbf{b}>\left(\frac{d}{2 p^{\prime}}, \frac{d}{2 q}\right),
$$

Note that if $d=0$, the cone is isomorphic to $\Omega=(0, \infty) \times(0, \infty)$ and we are again in a trivial situation. If $d \geq 1$ then Ω is isomorphic to a light-cone in \mathbb{R}^{d+2}, which is the only irreducible homogeneous cone of rank 2 .
(2) Vinberg cone. Let Ω be the cone of rank 3 defined in $\S 2.3 .2$; see also [17, Example 2.9]. This is the first relevant example of a homogeneous non-symmetric cone. In this case we have $n_{12}=n_{13}=1$ and $n_{23}=0$, so that

$$
\mathbf{g}=(1,0,0) \quad \text { and } \quad \mathbf{g}^{\prime}=\left(0, \frac{1}{2}, \frac{1}{2}\right)
$$

Thus, also in this case (A2) and (A2') coincide, and take the form

$$
\mathbf{a}>\left(\frac{1}{q}, \frac{1}{2 p^{\prime}}, \frac{1}{2 p^{\prime}}\right), \quad \mathbf{b}>\left(\frac{1}{p^{\prime}}, \frac{1}{2 q}, \frac{1}{2 q}\right) .
$$

(3) Symmetric cones. Let Ω be an irreducible symmetric cone of rank r. Then, there is a constant d such that $n_{i j}=d, \forall i \neq j$. The values of \mathbf{g} and \mathbf{g}^{\prime} are given by

$$
\begin{equation*}
\mathbf{g}=\left((r-i) \frac{d}{2}\right)_{i=1}^{r} \quad \text { and } \quad \mathbf{g}^{\prime}=\left((i-1) \frac{d}{2}\right)_{i=1}^{r} \tag{5.4}
\end{equation*}
$$

so the conditions of Lemma 5.1 will never be met if $r \geq 3$ and $d \geq 1$. So in these cases, conditions (A2) and (A2') will not agree in general.
5.2. (A2) and (A2') for scalar parameters. We prove the last assertion in Theorem 1.4. Suppose that Ω is an irreducible symmetric cone and that

$$
\mathbf{a}=(a, \ldots, a) \quad \text { and } \quad \mathbf{b}=(b, \ldots, b)
$$

In view of (5.4), we can write the first condition in (A2) as

$$
\begin{equation*}
a>\max _{1 \leq i \leq r}\left(\frac{r-i}{q}+\frac{i-1}{p^{\prime}}\right) \frac{d}{2}=(r-1) \frac{d}{2} \max \left\{\frac{1}{q}, \frac{1}{p^{\prime}}\right\}, \tag{5.5}
\end{equation*}
$$

where the last equality follows from the fact that a linear expression in i must attain its maximum either at $i=1$ or $i=r$. Note that (5.5) clearly coincides with the condition in (A2'). The situation is similar for \mathbf{b}, leading also to the expression

$$
\begin{equation*}
b>(r-1) \frac{d}{2} \max \left\{\frac{1}{q}, \frac{1}{p^{\prime}}\right\} . \tag{5.6}
\end{equation*}
$$

Finally, using that $(r-1) d / 2=\frac{n}{r}-1$, we obtain the following version for $[16$, Theorem 2.1].

Corollary 5.7. Let $1 \leq p, q<\infty$. Let Ω be an irreducible symmetric cone in \mathbb{R}^{n}. Then $S_{a, b, \gamma}$ maps $L^{p}(\Omega, d \sigma)$ into $L^{q}(\Omega, d \sigma) \quad$ if and only if $\quad p \leq q, \gamma=a+b$ and

$$
\min \{a, b\}>\left(\frac{n}{r}-1\right) \max \left\{\frac{1}{q}, \frac{1}{p^{\prime}}\right\} .
$$

6. Positive Bergman operators: proof of Theorem 1.6

As in Remark 1.5, letting

$$
\mathbf{a}=\boldsymbol{\alpha}+\frac{\boldsymbol{\mu}}{q} \quad \text { and } \quad \mathbf{b}=\boldsymbol{\beta}-\frac{\boldsymbol{\nu}}{p}
$$

it suffices to prove Theorem 1.6 for the operators $S_{\mathbf{a}, \mathbf{b}, \gamma}$ and $T_{\mathbf{a}, \mathbf{b}, \gamma}^{+}$, assuming that $\boldsymbol{\nu}=\boldsymbol{\mu}=\mathbf{0}$. So throughout the proof we assume this case, and for simplicity we denote $L^{s, p}=L^{s, p}\left(T_{\Omega}, d x d \sigma(y)\right)$.
6.1. Proof of "(i) \Rightarrow (ii)" of Theorem 1.6. We shall use the following notation: for $f \in L^{s, p}\left(T_{\Omega}\right)$ and $v \in \Omega$ we let

$$
f_{v}(u)=f(u+i v), u \in \mathbb{R}^{n}
$$

For fixed $y \in \Omega$, using Minkowski's integral inequality and Lemma 2.8 (since $\boldsymbol{\gamma}>\mathbf{g}^{\prime}$), one obtains

$$
\begin{aligned}
\left\|T_{\mathbf{a}, \mathbf{b}, \gamma}^{+} f(x+i y)\right\|_{L^{s}(d x)} & \leq Q^{\mathbf{a}}(y) \int_{\Omega} \int_{\mathbb{R}^{n}} \frac{\left\|f_{v}(x-u)\right\|_{L^{s}(d x)}}{\left|Q^{\gamma+\boldsymbol{\tau}}(y+v-i u)\right|} Q^{\mathbf{b}}(v) d u d v \\
& =c_{\gamma} Q^{\mathbf{a}}(y) \int_{\Omega} \frac{\left\|f_{v}\right\|_{L^{s}} Q^{\mathbf{b}}(v) d v}{Q^{\gamma}(y+v)}=c_{\gamma} S_{\mathbf{a}, \mathbf{b}, \gamma}\left(\left\|f_{v}\right\|_{L^{s}}\right)(y)
\end{aligned}
$$

Thus, taking $L^{q}(\Omega, d \sigma)$-norms in both sides and using (i) we obtain

$$
\left\|T_{\mathbf{a}, \mathbf{b}, \gamma}^{+} f\right\|_{L^{s, q}\left(T_{\Omega}\right)} \lesssim \| S_{\mathbf{a}, \mathbf{b}, \gamma}\left(\left\|f_{v}\right\|_{\left.L^{s}\right)}\left\|_{L^{q}(d \sigma)} \lesssim\right\|\left\|f_{v}\right\|_{L^{s}}\left\|_{L^{p}(d \sigma)}=\right\| f \|_{L^{s, p}\left(T_{\Omega}\right)} .\right.
$$

Since s here is arbitrary, we obtain the assertion in (ii) of Theorem 1.6.

6.2. Proof of "(ii) \Rightarrow (iii)" of Theorem 1.6. This assertion is trivial.

6.3. Proof of "(iii) \Rightarrow (i)" of Theorem 1.6. We first observe that (iii) implies, by a homogeneity argument as in Lemma 4.3, that necessarily

$$
\begin{equation*}
\gamma=\mathbf{a}+\mathbf{b} \tag{6.1}
\end{equation*}
$$

Now, let $f \in L^{p}(\Omega, d \sigma)$ be such that $f \geq 0$ and

$$
\operatorname{supp} f \subset \Omega \cap B_{1 / 8}(0)
$$

and define $g(u+i v)=\chi_{B_{2}(0)}(u) f(v)$, for $u+i v \in T_{\Omega}$. If $|x| \leq 1$ and $y \in \Omega \cap B_{1 / 8}(0)$ then, by Lemma 2.10, there is a constant $C_{\gamma}>0$ such that

$$
\begin{aligned}
\left(T_{\mathbf{a}, \mathbf{b}, \gamma}^{+} g\right)(x+i y) & =Q^{\mathbf{a}}(y) \int_{\Omega} \int_{B_{2}(x)} \frac{d u}{\left|Q^{\gamma+\tau}(y+v-i u)\right|} f(v) Q^{\mathbf{b}}(v) d v \\
& \geq C_{\gamma} Q^{\mathbf{a}}(y) \int_{\Omega} \frac{f(v) Q^{\mathbf{b}}(v) d v}{Q^{\gamma}(y+v)}=C_{\gamma}\left(S_{\mathbf{a}, \mathbf{b}, \gamma} f\right)(y)
\end{aligned}
$$

since $B_{2}(x) \supset\{|u|<1\}$. So taking first the L^{s}-norm over $|x| \leq 1$, and then the $L^{q}(d \sigma)$-norm over $y \in \Omega \cap B_{1 / 8}(0)$, and using the assumption (iii), we see that

$$
\left\|S_{\mathbf{a}, \mathbf{b}, \gamma} f\right\|_{L^{q}\left(\Omega \cap B_{1 / 8}(0)\right)} \lesssim\left\|T_{\mathbf{a}, \mathbf{b}, \gamma}^{+} g\right\|_{L^{s, q}\left(T_{\Omega}\right)} \lesssim\|g\|_{L^{s, p}\left(T_{\Omega}\right)}=c\|f\|_{L^{p}(d \sigma)}
$$

Let now f be an arbitrary function in $L^{p}(\Omega, d \sigma)$ with compact support, and pick any large R such that supp $f \subset \Omega \cap B_{R / 8}(0)$. Then, we can apply the previous reasoning to the rescaled function $f_{R}=f(R \cdot)$ to obtain

$$
\left\|S_{\mathbf{a}, \mathbf{b}, \gamma} f_{R}\right\|_{L^{q}\left(\Omega \cap B_{1 / 8}(0)\right)} \lesssim\left\|f_{R}\right\|_{L^{p}(d \sigma)}=\|f\|_{L^{p}(d \sigma)}
$$

Using (6.1) one easily sees that $\left(S_{\mathbf{a}, \mathbf{b}, \boldsymbol{\gamma}} f_{R}\right)(y)=\left(S_{\mathbf{a}, \mathbf{b}, \boldsymbol{\gamma}} f\right)(R y)$, so changing variables the above inequality becomes

$$
\left\|S_{\mathbf{a}, \mathbf{b}, \gamma} f\right\|_{L^{q}\left(\Omega \cap B_{R / 8}(0)\right)} \lesssim\|f\|_{L^{p}(d \sigma)}
$$

Letting $R \rightarrow \infty$ we conclude that $\left\|S_{\mathbf{a}, \mathbf{b}, \gamma} f\right\|_{L^{q}(\Omega, d \sigma)} \lesssim\|f\|_{L^{p}(d \sigma)}$, which implies the assertion in (i).
6.4. Proof of Corollary 1.8. Since $P_{\nu}^{+}=\mathfrak{c}_{\boldsymbol{\nu}} T_{\mathbf{0}, \boldsymbol{\nu}, \boldsymbol{\nu}}^{+}$and we assume $\boldsymbol{\nu}>\mathbf{g}^{\prime}$, it follows from Theorem 1.6 that the boundedness of

$$
P_{\nu}^{+}: L_{\nu}^{s, p}\left(T_{\Omega}\right) \longrightarrow L_{\mu}^{s, q}\left(T_{\Omega}\right)
$$

is equivalent to the boundedness of

$$
S_{0, \nu, \nu}: L_{\nu}^{p}(\Omega) \longrightarrow L_{\mu}^{q}(\Omega)
$$

Now one uses Theorem 1.4 and finds that in this case the conditions $p \leq q$ and (A1) are the same as (1.9), while (A2) and (A2') can be written, respectively, as (1.10) and (1.11).

7. Appendix: Proof of Lemma 4.7

We give a proof of Lemma 4.7, as we did not find one in the literature which is valid for homogeneous cones. The proof below only uses the H-invariance of the riemannian metric, and hence of the associated distance d in Ω. It is based on the following facts:
(i) There exists $\delta_{0} \in(0,1)$ such that

$$
\begin{equation*}
B_{1}(\mathbf{e}) \subset \delta_{0} \mathbf{e}+\Omega \tag{7.1}
\end{equation*}
$$

Indeed, recall that such a distance d is complete and hence every d-bounded set is relatively compact; see e.g. Theorems 4.1 and 4.5 in Chapter IV of [15]. The result then follows by compactness from $\overline{B_{1}}(\mathbf{e}) \subset \cup_{\delta>0}(\delta \mathbf{e}+\Omega)=\Omega$.
(ii) The following equivalence holds for each $t \in H$,

$$
t \cdot \mathbf{e} \in B_{1}(\mathbf{e}) \quad \text { if and only if } \quad t^{-1} \cdot \mathbf{e} \in B_{1}(\mathbf{e})
$$

Indeed, this is just a consequence of $d(t \cdot \mathbf{e}, \mathbf{e})=d\left(\mathbf{e}, t^{-1} \cdot \mathbf{e}\right)$, by the H-invariance.
(iii) The following inequalities hold for every $x, y \in \Omega$

$$
Q_{j}(x+y) \geq Q_{j}(x), \quad j=1, \ldots, r
$$

This has been shown in [17, Lemma 4.13].
We now establish Lemma 4.7, that is, the existence of $c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
c_{1} \leq \frac{Q_{j}(x+y)}{Q_{j}\left(x+y_{0}\right)} \leq c_{2}, \quad \text { if } d\left(y, y_{0}\right)<1, \quad x \in \Omega, \quad j=1, \ldots, r . \tag{7.2}
\end{equation*}
$$

By H-invariance we may assume that $y_{0}=\mathbf{e}$. Now, if $y \in B_{1}(\mathbf{e})$, facts (i) and (iii) above imply

$$
\begin{aligned}
Q_{j}(x+y) & =Q_{j}\left(x+y-\delta_{0} \mathbf{e}+\delta_{0} \mathbf{e}\right) \geq Q_{j}\left(x+\delta_{0} \mathbf{e}\right) \\
& =Q_{j}\left(\left(1-\delta_{0}\right) x+\delta_{0} x+\delta_{0} \mathbf{e}\right) \geq \delta_{0} Q_{j}(x+\mathbf{e})
\end{aligned}
$$

On the other hand, if $y=t \cdot \mathbf{e} \in B_{1}(\mathbf{e})$, then $t^{-1} \cdot \mathbf{e} \in B_{1}(\mathbf{e})$, so (2.4) and the previous case give

$$
\begin{aligned}
Q_{j}(x+y) & =Q_{j}(t \cdot \mathbf{e}) Q_{j}\left(t^{-1} \cdot x+\mathbf{e}\right) \\
& \leq \delta_{0}^{-1} Q_{j}(t \cdot \mathbf{e}) Q_{j}\left(t^{-1} \cdot x+t^{-1} \cdot \mathbf{e}\right)=\delta_{0}^{-1} Q_{j}(x+\mathbf{e})
\end{aligned}
$$

Thus, we have shown (7.2) with $c_{1}=1 / c_{2}=\delta_{0}$.

Acknowledgments

The authors are grateful to an anonymous referee for various useful suggestions that have improved the presentation of this paper. G.G. was supported in part by grants MTM2016-76566-P, MTM2017-83262-C2-2-P and PID2019-105599GB-I00 from Micinn (Spain), and grant 20906/PI/18 from Fundación Séneca (Región de Murcia, Spain). C.N. thanks the University of Murcia and the Erasmus Plus Program for their hospitality and support during a research visit in which part of this work was carried out.

References

[1] N. Aronszajn, F. Mulla, P. Szeptycki, On spaces of potentials connected with L^{p} classes. Ann. Inst. Fourier (Grenoble) 18 (2) (1963), 211-306.
[2] J.S. Bansah, B.F. Sehba, Boundedness of a family of Hilbert-type operators and its Bergmantype analogue. Ill. J. Math. 59 (4) (2015), 949-977.
[3] D. Békollé and A. Bonami, Estimates for the Bergman and Szegö projections in two symmetric domains of \mathbb{C}^{n}. Colloq. Math. 68 (1995), 81-100.
[4] D. Békollé, A. Bonami, G. Garrigós and F. Ricci, Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains. Proc. Lond. Math. Soc. 89 (2004), 317-360.
[5] D. Békollé, A. Bonami, G. Garrigós, F. Ricci and B. Sehba, Hardy-type inequalities and analytic Besov spaces in tube domains over symmetric cones. J. Reine Angew. Math. 647 (2010), 25-56.
[6] D. Békollé, A. Bonami, M. Peloso and F. Ricci, Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z. 237 (2001), 31-59.
[7] D. Békollé, J. Gonessa and C. Nana, Lebesgue mixed norm estimates for Bergman projectors: from tube domains over homogeneous cones to homogeneous Siegel domains of type II. Math. Ann. 374 (2019), 395-427.
[8] D. Békollé, A. Temgoua, Reproducing properties and L^{p}-estimates for Bergman projections in Siegel domains of type II. Stud. Math. 115 (3) (1995), 219-239.
[9] D. Debertol. Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains. Ph.D. Thesis, Università di Genova, Politecnico di Torino (2003).
[10] F. Forelli, W. Rudin, Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 24 (6) (1974), 593-602.
[11] S.G. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys 19 (1964), 1-83.
[12] S.G. Gindikin. Tube domains and the Cauchy problem. Translations of Math Monographs vol 111. Amer. Math. Soc. 1992.
[13] G.H. Hardy, J. E. Littlewood, G. Pólya, Inequalities. Cambridge Univ Press, 1934.
[14] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces. Acta Math. 104 (1960), 93-140.
[15] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol I. Interscience Publ., 1963.
[16] C. Nana, B. F. Sehba, Off-diagonal estimates of some Bergman- type operators of tube domains over symmetric cones, Positivity 22 (2018) 507-531.
[17] C. Nana, B. Trojan, L^{p}-boundedness of Bergman projections in tube domains over homogeneous cones, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. X (2011), 477-511.
[18] G.O. Okikiolu, On inequalities for integral operators, Glasg. Math. J. 11 (2) (1969), 126-133.
[19] B. Sehba, Bergman type operators in tubular domains over symmetric cones. Proc. Edin. Math. Soc. 52 (2) (2009), 529-544.
[20] E.B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1963), 340-403.

Gustavo Garrigós, Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain

Email address: gustavo.garrigos@um.es
Cyrille Nana, Department of Mathematics, Faculty of Science, University of Buea, P.o. Box 63, Buea, Cameroon

Email address: nana.cyrille@ubuea.cm

