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Abstract

We identify the dual space of the Hardy-type space H1
L related to the time

independent Schrödinger operator L = −∆ + V , with V a potential satisfying
a reverse Hölder inequality, as a BMO-type space BMOL. We prove the
boundedness in this space of the versions of some classical operators associated
to L (Hardy-Littlewood, semigroup and Poisson maximal functions, square
function, fractional integral operator). We also get a characterization of BMOL
in terms of Carlesson measures.

1 Introduction

Let V be a fixed non-negative function on Rd, d ≥ 3, satisfying a reverse Hölder
inequality RHs(Rd) for some s > d

2
; that is, there exists C = C(s, V ) > 0 such that

(∫

B

V (x)s dx

) 1
s

≤ C

∫

B

V (x) dx, (1.1)

for every ball B ⊂ Rd. Consider the time independent Schrödinger operator with the
potential V :

L = −∆ + V,
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and its associated semigroup:

Ttf(x) = e−tLf(x) =

∫

Rd

kt(x, y)f(y)dy, f ∈ L2(Rd), t > 0. (1.2)

A Hardy-type space related to L is naturally defined by:

H1
L = {f ∈ L1(Rd) : T ∗f(x) = sup

t>0
|Ttf(x)| ∈ L1(Rd)},

with ‖f‖H1
L

:= ‖T ∗f‖L1(Rd). (1.3)

For the above class of potentials, it was shown in [2] that H1
L admits a special atomic

characterization, where cancellation conditions are only required for atoms with small
supports. In this paper we shall be interested in properties of the dual space of H1

L,
which we shall identify with a subclass of BMO functions, namely:

BMOL =

{
f ∈ BMO :

1

|B|
∫

B

|f | ≤ C, for all B = BR(x) : R > ρ(x)

}
. (1.4)

The precise definition of the norm in this space is given in Definition 3.5. The critical
radii above are determined by the function ρ(x; V ) = ρ(x) which takes the explicit
form

ρ(x) = sup

{
r > 0 :

1

rd−2

∫

B(x,r)

V (y)dy ≤ 1

}
. (1.5)

Throughout the paper shall assume that V 6≡ 0, so that 0 < ρ(x) < ∞ (see [7]). This
BMOL space turns out to be the suitable extreme point for p = ∞ concerning the
boundedness of the classical operators associated to the operator L. We shall use the
following notations:

Mf(x) = sup
B3x

1

|B|
∫

B

|f(y)| dy, (1.6)

T ∗f(x) = sup
t>0

|e−tLf(x)|, (1.7)

P∗f(x) = sup
t>0

∣∣∣Ptf(x)
∣∣∣, where Pt = e−t

√L =

∫ ∞

0

e−u

√
u

Tt2/4u du, (1.8)

sQf(x) =
( ∫ ∞

0

|Qtf(x)|2 dt
t

) 1
2
, (1.9)

Iαf(x) = L−α/2f(x) =

∫ ∞

0

e−tLf(x) tα/2−1 dt for 0 < α < d. (1.10)

These notations correspond, respectively, to the Hardy-Littlewood maximal func-
tion, the semigroup and Poisson-semigroup maximal functions, the L-square function
and the L-fractional integral operator. We observe that in the classical case (i.e.
V ≡ 0) these operators fail to be bounded in BMO, in fact may be identically infin-
ity for functions with certain growth (see §5 below). However in our case it turns out
that they behave correctly in BMOL as the following results shows.
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THEOREM 1.11 Let V 6≡ 0 be a non-negative potential in RHs(Rd) for some s > d
2
.

The operators M , T ∗, P∗ and sQ are well-defined and bounded in BMOL. For all
0 < α < d, the operator Iα is bounded from Ld/α(Rd) into BMOL.

We also show a characterization of BMOL in terms of Carleson measures. A
positive measure µ on Rd+1

+ := Rd × (0,∞) is said to be a Carleson measure if

‖µ‖C := sup
x∈Rd, r>0

µ(Br(x)× (0, r))

|Br(x)| < ∞. (1.12)

Our result characterizes the elements of BMOL by a Carleson measure condition
related to appropriate square function. To be more precise let

(Qtf)(x) = t2
(

dTs

ds

∣∣∣∣
s=t2

f

)
(x), (x, t) ∈ Rd+1

+ , (1.13)

then the following theorems holds

THEOREM 1.14 Let V 6≡ 0 be a non-negative potential in RHs(Rd) for some s > d
2

and ρ(x) = ρ(x) be the weight defined in (1.5).

1. If f ∈ BMOL, then dµf (x, t) := |Qtf(x)|2 dxdt/t is a Carleson measure.

2. Conversely, if f ∈ L1((1 + |x|)−(d+1)dx) and dµf (x, t) is a Carleson measure,
then f ∈ BMOL.

Moreover, in either case, there exists C > 0 such that

1

C
‖f‖2

BMOL ≤ ‖dµf‖C ≤ C ‖f‖2
BMOL .

The outline of the paper is as follows. In Section 2 we gather the required estimates
on the kernel Qt(x, y), which complement those presented for kt(x, y) in [2, 3, 4]. In
Section 3 we recall the atomic decomposition for H1

L and establish the identification
(H1

L)
∗ ≡ BMOL. In Section 5 we study the boundedness of classical operators in

BMOL. Some of the techniques needed in the proofs of Section 5 appear naturally
when proving Theorem 1.14, it is because of this reason that we present in Section 4
the proof of Theorem 1.14.

2 Estimates on the kernels

We begin by recalling some basic properties of the function ρ(x) under the assumption
(1.1) on V (see [7, Lemma 1.4]).
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PROPOSITION 2.1 There exist c > 0 and k0 ≥ 1 so that, for all x, y ∈ Rd

c−1 ρ(x)
(
1 + |x−y|

ρ(x)

)−k0 ≤ ρ(y) ≤ c ρ(x)
(
1 + |x−y|

ρ(x)

) k0
k0+1

. (2.2)

In particular, ρ(x) ∼ ρ(y) when y ∈ Br(x) and r ≤ Cρ(x).

From the Feynman-Kac formula, it is well-known that the semigroup kernels
kt(x, y), associated with Tt = e−tL, satisfy the estimates

0 ≤ kt(x, y) ≤ ht(x− y) := (4πt)−
d
2 exp(− |x−y|2

4t
). (2.3)

These estimates can be improved in time when V 6≡ 0 satisfies the reverse Hölder
condition RHs for some s > d/2. The function ρ(x) arises naturally in this context.

PROPOSITION 2.4 (see [3], [6] ) For every N , there is a constant CN such that

0 ≤ kt(x, y) ≤ CN t−
d
2 exp(− |x−y|2

5t
)
(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

. (2.5)

Below, we shall also make use of the Lipschitz regularity of the kernels, which is
again a consequence of (1.1) (see [4, Proposition 4.11]).

PROPOSITION 2.6 If V ∈ RHs(Rd), s > d/2, then there exists δ = δ(s) > 0 and
c > 0 such that for every N > 0 there is a constant CN so that, for all |h| ≤ √

t

|kt(x + h, y)− kt(x, y)| ≤ CN

(
|h|√

t

)δ

t−
d
2 exp(− c|x−y|2

t
)
(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

. (2.7)

We will also need estimates for the integral kernels of the operators Qt in (1.13):

Qt(x, y) = t2
∂ks(x, y)

∂s

∣∣∣∣
s=t2

(2.8)

PROPOSITION 2.9 There exist constants c, δ > 0 such that for every N there is a
constant CN so that

(a) |Qt(x, y)| ≤ CN t−d exp(− c|x−y|2
t2

)
(
1 + t

ρ(x)
+ t

ρ(y)

)−N

;

(b) |Qt(x + h, y)−Qt(x, y)| ≤ CN

(
|h|
t

)δ

t−d exp(− c|x−y|2
t2

)
(
1 + t

ρ(x)
+ t

ρ(y)

)−N

,

for all |h| ≤ t;

(c)

∣∣∣∣
∫

Rd

Qt(x, y)dy

∣∣∣∣ ≤ CN
(t/ρ(x))δ

(1 + t/ρ(x))N
.
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PROOF: Corollary 6.4 of [4] asserts that the integral kernels kζ(x, y) of the extension
of {Tt}t>0 to the holomorphic semigroup {Tζ}ζ∈∆π/4

satisfy

|kζ(x, y)| ≤ CN(<ζ)−d/2
(
1 + <ζ

ρ(x)2
+ <ζ

ρ(y)2

)−N

exp
(−c|x− y|2/<ζ

)
. (2.10)

The Cauchy integral formula combined with (2.10) gives

∣∣∣ d

dt
kt(x, y)

∣∣∣ =
∣∣∣ 1

2π

∫

|ζ−t|=t/10

kζ(x, y)

(ζ − t)2
dζ

∣∣∣ (2.11)

≤ CN

t
t−d/2

(
1 + t

ρ(x)2
+ t

ρ(y)2

)−N

exp
(−c′|x− y|2/t)

which, by (2.8), implies (a).
We now turn to prove (b). By the semigroup property, Proposition 2.6, and the

part (a) already proved, we obtain

∣∣Qt(x+h, y)−Qt(x, y)
∣∣ =

∣∣∣2
∫ (

kt2/2(x+h, z)− kt2/2(x, z)
)
Qt/

√
2(z, y) dz

∣∣∣

≤ CN

(
|h|
t

)δ
∫ (

1 + t
ρ(x)

)−N

t−de−c|x−z|2/t2t−de−c|z−y|2/t2
(
1 + t

ρ(y)

)−N

dz

. CN

(
|h|
t

)δ

t−d exp(− c′|x−y|2
t2

)
(
1 + t

ρ(x)
+ t

ρ(y)

)−N

which establishes (b).
It follows from [7] Lemmas 1.2 and 1.8 that there is a constant C0 such that for a

nonnegative Schwartz class function ϕ there exists a constant C such that

∫
ϕt(x− y)V (y) dy ≤





Ct−1
( √

t
ρ(x)

)δ

for t ≤ ρ(x)2

C
( √

t
ρ(x)

)C0+2−d

for t > ρ(x)2,
(2.12)

where ϕt(x) = t−d/2ϕ(x/
√

t). Therefore

∣∣∣
∫

d

dt
kt(x, y) dy

∣∣∣ =
∣∣∣TtL1(x)

∣∣∣ =

∫
kt(x, y)V (y) dy (2.13)

and (c) follows by first using (2.5) with N sufficiently large and then (2.12).
2

Finally, we recall some results about covering Rd by critical balls. These depend
entirely on the estimates in Proposition 2.1, and can be found in [2]. Throughout the
paper, given a ball B we denote by B∗ the ball with same center and twice radius.
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PROPOSITION 2.14 (see [2, Lemma 2.3]). There exists a sequence of points
{xk}∞k=1 in Rd, so that the family of “critical balls” Q = {Qk}∞k=1, defined by Qk :=
{|x− xk| < ρ(xk)}, satisfy

(a)
⋃

k Qk = Rd.

(b) There exists N = N(ρ) so that, for every k ≥ 1, card {j : Q∗∗
j ∩Q∗∗

k 6= ∅} ≤ N .

Combining the previous with (2.2) one easily gets

COROLLARY 2.15 There is a constant c = c(ρ) so that, for every ball BR(x) with
R > ρ(x), we have

|BR(x)| ≤
∑

Qk∩BR(x)6=∅
|Qk| ≤ c |BR(x)|.

COROLLARY 2.16 There exists a family of C∞ functions ϕk such that supp ϕk ⊂
Q∗

k, 0 ≤ ϕk ≤ 1, |∇ϕk| ≤ C/ρ(xk),
∑

k ϕk = 1.

3 The dual space of H1
L

We shall assume that V 6≡ 0 is a potential in the reverse Hölder class as stated in the
introduction. For such potentials it was shown in [2] the following characterization
of H1

L.
A function a : Rd → C is an H1

L-atom associated with a ball Br(x0) when

supp a ⊂ Br(x0), ‖a‖∞ ≤ 1/|Br(x0)|, (3.1)

and in addition, ∫
a(x) dx = 0, whenever 0 < r < ρ(x0). (3.2)

THEOREM 3.3 An integrable function f in Rd belongs to H1
L if and only if it can be

written as f =
∑

j λjaj, where aj are H1
L-atoms and

∑
j |λj| < ∞. Moreover, there

exists a constant c > 0 such that

c−1 ‖f‖H1
L
≤ inf {∑j |λj| : f =

∑
j λjaj} ≤ c ‖f‖H1

L
.

REMARK 3.4 We note that in the above atomic decomposition we may restrict to
atoms supported by balls Br(x) with r ≤ ρ(x). Indeed, if we are given an H1

L-atom
a associated with a ball Br(y0) with r > ρ(y0) then it easily follows from Proposition
2.14 that the atom a can be written as a =

∑
j λjaj, where

∑
j |λj| . 1, and aj are

H1
L-atoms supported by critical balls.
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DEFINITION 3.5 We shall say that a locally integrable function f belongs to BMOL
whenever there is a constant C ≥ 0 so that

1

|Bs|
∫

Bs

|f − fBs| ≤ C and
1

|Br|
∫

Br

|f | ≤ C, (3.6)

for all balls Bs = Bs(x), Br = Br(x) such that s ≤ ρ(x) ≤ r. We let ‖f‖BMOL denote
the smallest C in (3.6) above. Here and subsequently, fB = |B|−1

∫
B

f(x) dx.

We observe that ‖f‖BMOL is actually a norm (and not only a seminorm) making
BMOL a Banach space. Moreover, ‖f‖BMO ≤ 2‖f‖BMOL . We also observe that, by
Proposition 2.14 and its corollary, it is enough to consider the condition on the right
hand side of (3.6) only for balls from the family Q.

From the previous atomic decomposition, and the definition of f ∈ BMOL, it is
clear that

Φf (a) :=

∫

Rd

f(x)a(x) dx, acting on H1
L-atoms a,

defines a linear functional on H1
L with ‖Φf‖ ≤ c‖f‖BMOL . Our first result shows that

all linear functionals on H1
L do actually arise in this way.

THEOREM 3.7 The correspondence

BMOL 3 f 7−→ Φf ∈ (H1
L)
∗

is a linear isomorphism of Banach spaces.

We shall need a lemma about the size of H1
L-functions.

LEMMA 3.8 The space L2
c(Rd), of square-integrable functions with compact support

is contained in H1
L. Moreover, there is a constant C = C(L) > 0 so that, for large

balls B = BR(x0) with R ≥ ρ(x0), we have

‖g‖H1
L
≤ C |B| 12 ‖g‖L2(B), ∀ g ∈ L2(B). (3.9)

PROOF: Assume that g ∈ L2(BR(x0)), R ≥ ρ(x0). Then, using Corollary 2.16, we
can write g =

∑
k ϕkg =

∑
k gk and ‖g‖2

L2 ∼
∑

k ‖gk‖2
L2 . By Schwarz’s inequality and

Corollary 2.15 it suffices to prove (3.9) for g = gk. Obviously,

‖T ∗gk‖L1(Q∗∗k ) ≤ C |Qk|1/2‖T ∗gk‖L2(Q∗∗k ) ≤ C |Qk|1/2‖gk‖L2 . (3.10)

If x /∈ Q∗∗
k , then applying Propositions 2.4 and 2.1, we get

|Ttgk(x)| ≤ CN

∫ (
1 +

√
t

ρ(y)

)−N

t−d/2e−c|x−y|2/t|gk(y)| dy (3.11)

≤ CN
ρ(xk)

N

|x− xk|d+N
|Qk|1/2‖gk‖L2 .

Now (3.9) for g = gk follows from (3.11) and (3.10).
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2

PROOF of Theorem 3.7: Let Φ ∈ (H1
L)
∗, and denote BN = BN(0), N > ρ(0).

By Lemma 3.8, there exists a unique fN ∈ L2(BN) with ‖fN‖L2(BN ) ≤ C |BN | 12 ‖Φ‖,
and so that

Φ(g) =

∫

BN

fN g, ∀ g ∈ L2(BN).

Iterating in N , and noticing that fN+1|BN
= fN , one defines a unique locally square-

integrable function f in Rd so that

Φ(g) =

∫

Rd

f(x) g(x) dx, for all g ∈ L2
c(Rd).

Thus, Φ = Φf , and only remains to show that ‖f‖BMOL ≤ C‖Φ‖. If we test first on
atoms supported by large balls B = BR(x), R > ρ(x), and use again Lemma 3.8, we

see that ‖f‖L2(B) ≤ C |B| 12 ‖Φ‖. Thus, from Hölder’s inequality we conclude

1
|B|

∫

B

|f | ≤
(

1
|B|

∫

B

|f |2
) 1

2 ≤ C ‖Φ‖. (3.12)

On the other hand, since classical H1-atoms are particular cases of H1
L-atoms, it

follows that Φ|H1 ∈ (H1)∗, and thus Φ|H1 = Φh for a unique (modulo constants) h ∈
BMO(Rd). Now, testing on H1-atoms over a fixed ball B we see that f = h+ cB, for
some constant cB, and therefore f ∈ BMO(Rd) with ‖f‖BMO ≤ 2 ‖h‖BMO ≤ C ′ ‖Φ‖.
This establishes the theorem.

2

Observe that we have shown, for large balls, the local square integrability estimate
(3.12). The exponent 2 can actually be replaced by any 1 ≤ p < ∞, by just using in
the proof above the corresponding p′-version of Lemma 3.8. This, together with the
John-Nirenberg inequality gives the following corollary.

COROLLARY 3.13 For every p ∈ [1,∞) there exists c = c(p, ρ) > 0 such that, for
all f ∈ BMOL we have

(
1
|B|

∫

B

|f − fB|p
) 1

p ≤ c ‖f‖BMOL , for all balls B,

(
1
|B|

∫

B

|f |p
) 1

p ≤ c ‖f‖BMOL , for B = Br(x) : r ≥ ρ(x).

We conclude with the following lemma which will be used often below. Its proof
is elementary and left to the reader.

LEMMA 3.14 There exists c > 0 so that, for all f ∈ BMOL and B = Br(x) with
r < ρ(x), then

|fB∗| ≤ c (1 + log ρ(x)
r

) ‖f‖BMOL .
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4 Proof of Theorem 1.14

LEMMA 4.1 For all f ∈ L2(Rd) we have ‖sQf‖2 = 1√
8
‖f‖2. Moreover,

f(x) = 8 lim
ε→0, N→∞

∫ N

ε

Q2
t f(x)

dt

t
, in L2(Rd). (4.2)

PROOF: The proof is standard and follows by using spectral techniques, as in
[8, Chapter 3]. For completeness we provide some details. Since Tt = e−tL =∫∞
0

e−tλ dE(λ), we have

t
d Tt

dt
= −tLTt = −

∫ ∞

0

tλ e−tλ dE(λ).

Thus, for all f ∈ L2(Rd), using the self-adjointness of Qt, we get

‖sQf‖2
2 =

∫

Rd

∫ ∞

0

|Qtf(x)|2 dt

t
dx

=

∫ ∞

0

〈 t4(d Ts

ds
|s=t2

)2
f, f〉 dt

t

=

∫ ∞

0

[∫ ∞

0

t4λ2 e−2t2λ dt

t

]
dEf,f (λ) = 1

8
‖f‖2

2.

For the second part, it suffices to show that, for every pair of sequences nk ↗∞,
εk ↘ 0

lim
k→∞

∫ nk+m

nk

Q2
t f

dt

t
= lim

k→∞

∫ εk

εk+m

Q2
t f

dt

t
= 0, ∀ m ≥ 1. (4.3)

Indeed, when this is case we can find h ∈ L2(Rd) so that limk→∞
∫ nk

εk
Q2

t f
dt
t

= h, and
therefore, by using also a polarized version of the first part

〈h, g〉 = lim
k→∞

∫ nk

εk

〈Qtf,Qtg〉 dt

t

=

∫ ∞

0

〈Qtf, Qtg〉 dt

t
= 1

8
〈f, g〉, ∀ g ∈ L2(Rd), (4.4)

which implies h = 1
8
f . To prove (4.3) we use again functional calculus, so that

∥∥∥∥
∫ nk+m

nk

Q2
t f

dt

t

∥∥∥∥
2

≤
∫ ∞

0

∣∣∣
∫ nk+m

nk

t4λ2 e−2t2λ dt
t

∣∣∣
2

dEf,f (λ).

Computing the integral inside one is led to estimate∫ ∞

0

(1 + 2λn2
k)e

−2λn2
kdEf,f (λ), as nk →∞,

which by dominated convergence tends to 0. Observe that the last step makes use of
the fact that 0 is not an eigenvalue of L because, V (x) > 0 for almost every x, and
〈Lf, f〉 ≥ 〈V f, f〉 > 0 unless f ≡ 0). One proceeds similarly when εk → 0. 2
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4.1 Proof of part (1) of Theorem 1.14

Our first observation is that

Qtf(x) =

∫

Rd

Qt(x, y)f(y) dy

is a well-defined absolutely convergent integral for all (x, t) ∈ Rd+1
+ , as it follows from

the kernel decay in Proposition 2.9 and the integrability of (1+ |y|)−d−1|f(y)| (see [9,
page 141]). Let us fix a ball B = Br(x0). We wish to show that

1

|B|
∫ r

0

∫

B

|Qtf(x)|2 dxdt

t
≤ C ‖f‖2

BMOL . (4.5)

To do this, we split the function f into local, global, and constant parts as follows

f = (f − fB∗)χB∗ + (f − fB∗)χ(B∗)c + fB∗

= f1 + f2 + fB∗ ,

As we shall see, the novelty of the BMOL condition appears in the control of the
constant term. For the other two terms the proof follows from standard arguments
(cf. e.g. [9]) and estimates for the kernel Qt(x, y). Indeed, in the local case, a simple
use of Lemma 4.1 gives us

1

|B|
∫ r

0

∫

B

|Qtf1(x)|2 dxdt

t
≤ C

|B|
∫

B

|sQf1(x)|2 dx

≤ C

|B| ‖f1‖2
2 =

1

|B|
∫

B∗
|f − fB∗|2,

which is smaller than a multiple of ‖f‖2
BMO by Corollary 3.13.

To estimate the global term, we only need a very mild decay of |Qt(x, y)|: if
x ∈ B = Br(x0) and t < r then

|Qtf2(x)| .
∫

Rd

|f2(y)| t−d

(1 + |x−y|
t

)d+1
dy

.
∫

(B∗)c

|f(y)− fB∗| t

|x0 − y|d+1
dy

.
∞∑

k=1

t

(2kr)d+1

[ ∫

|y−x0|∼2kr

|f(y)− fB
2kr
| dy + (2kr)d |fB

2kr
− fB∗|

]

. t

r

∞∑

k=1

2−k [ ‖f‖BMO + k ‖f‖BMO] . t

r
‖f‖BMO.

Thus, integrating over B × (0, r) we obtain

1

|B|
∫ r

0

∫

B

|Qtf2(x)|2 dxdt

t
.

∫ r

0

t2

r2

dt

t
‖f‖2

BMO = 1
2
‖f‖2

BMO . ‖f‖2
BMOL .
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It remains to estimate the constant term, for which we shall make use of part (c) of
Proposition 2.9. Assuming first that r < ρ(x0), and using ρ(x) ∼ ρ(x0) for x ∈ B (cf.
Proposition 2.1), we have

1
|B|

∫ r

0

∫

B

|Qt(fB∗1)(x)|2 dxdt
t

= |fB∗ |2
|B|

∫ r

0

∫

B

∣∣∣
∫

Qt(x, y)dy
∣∣∣
2

dxdt
t

(4.6)

. |fB∗ |2
|B|

∫ r

0

∫

B

(
t/ρ(x)

)2δ dxdt

t

. |fB∗|2
(
r/ρ(x0)

)2δ

. ‖f‖2
BMOL

(
1 + log ρ(x0)

r

)2 (
r/ρ(x0)

)2δ . ‖f‖2
BMOL ,

where the last line follows from Lemma 3.14.
Suppose finally that r ≥ ρ(x0), and select from Corollary 2.15 a finite family of

critical balls {Q`} so that B ⊂ ∪Q` and
∑ |Q`| . |B|. Then, using again part (c) of

Proposition 2.9 and |fB∗ | ≤ ‖f‖BMOL , we can bound the left hand side of (4.6) by

‖f‖2BMOL
|B|

∑

`

(∫ ρ(x`)

0

∫

Q`

(t/ρ(x`))
2δ dxdt

t
+

∫ ∞

ρ(x`)

∫

Q`

dx

(1 + t/ρ(x`))2N−2δ
dt
t

)

. C‖f‖2
BMOL|B|−1

∑

`

|Q`| . ‖f‖2
BMOL ,

which, by Corollary 2.15, establishes the first part of Theorem 1.14.

REMARK 4.7 It is worthwhile to notice that, from the previous proof, it actually
follows that

sup
t>0

‖Qtf‖∞ = sup
t>0,x∈Rd

|Qtf(x)| . ‖f‖BMOL .

That is, the solution to the evolution equation
{

ut(t, x) = −Lu(t, x), (t, x) ∈ Rd+1
+

u(0, ·) = f
(4.8)

with initial data f ∈ BMOL, satisfies the regularity estimate

‖Lu(t, ·)‖∞ . t−1 ‖f‖BMOL .

4.2 Proof of part (2) of Theorem 1.14

Now, let us fix f ∈ L1((1 + |x|)−(d+1)dx) so that µf (x, t) := |Qtf(x)|2dxdt/t is a
Carleson measure. We wish to show that such f must belong to BMOL. By Theorem
3.7 it suffices to show that the linear functional

H1
L 3 g 7−→ Φf [g] :=

∫

Rd

f(x)g(x) dx,
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defined at least over finite linear combinations of H1
L-atoms, satisfies the estimate

∣∣ Φf [g]
∣∣ ≤ c ‖µf‖

1
2
C ‖g‖H1

L
. (4.9)

To do this, we shall proceed in three steps. First, we shall write Φf in terms of
the extended functions

F (x, t) := Qtf(x) and G(x, t) := Qtg(x), (x, t) ∈ Rd+1
+ .

More precisely, we shall show the following identity.

LEMMA 4.10 Let f ∈ L1((1 + |x|)−(d+1)dx) and g be an H1
L-atom. Then

1
8

∫

Rd

f(x) g(x) dx =

∫

Rd+1
+

F (x, t) G(x, t)
dxdt

t
. (4.11)

In our second step we shall bound the right hand side of (4.11) using a general
result about tent spaces.

LEMMA 4.12 : (see [9, p. 162]). Let F (x, t), G(x, t) be measurable functions on
Rd+1

+ satisfying

I(F )(x) := sup
x∈B

(
1

|B|
∫ r(B)

0

∫

B

|F (y, t)|2 dydt

t

) 1
2

∈ L∞(Rd),

G(G)(x) :=

(∫ ∫

Γ(x)

|G(y, t)|2 dydt

td+1

) 1
2

∈ L1(Rd),

where r(B) denotes the radius of B and Γ(x) = {(y, t) ∈ Rd+1
+ : |y−x| < t}. Then,

there is a universal c > 0 so that
∫ ∫

Rd+1
+

|F (y, t)G(y, t)| dydt

t
≤ c

∫

Rd

I(F )(x)G(G)(x) dx

≤ c ‖I(F )‖L∞ ‖G(G)‖L1 .

Observe that ‖µf‖C = ‖I(F )‖2
L∞ . Thus, in order to establish (4.9) we just need

to show that ‖G(G)‖L1 ≤ C ‖g‖H1
L
. Note that G(G)(x) = SQg(x), where SQ is the

following area integral operator,

SQg(x) :=

(∫ ∞

0

∫

|x−y|<t

|Qtg(y)|2 dydt

td+1

) 1
2

, x ∈ Rd.

Then, the following result about the boundedness of the area integral operator gives
us the desired inequality.
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LEMMA 4.13 There exists c > 0 so that ‖SQg‖L1 ≤ c ‖g‖H1
L

for every g being a

finite linear combination of H1
L-atoms.

Thus, we have reduced the proof of the theorem to show Lemmas 4.10 and 4.13.
Let us start with the proof of the second one.

PROOF of Lemma 4.13: By Theorem 1.5 in [2], it is enough to consider sums

of atoms associated to balls Br(x0) with r . ρ(x0). Let us fix an H1
L-atom, g(x),

associated with a ball B = Br(x0). Now, observe that

‖SQg‖2
L2(Rd) =

∫

Rd

[∫ ∫

Rd+1
+

|Qtg(y)|2 χΓ(x)(y, t)
dydt

td+1

]
dx

=

∫ ∫

Rd+1
+

|Qtg(y)|2
[∫

|x−y|<t

dx

]
dydt

td+1

= cd

∫ ∫

Rd+1
+

|Qtg(y)|2 dydt

t

= cd ‖sQg‖2
L2(Rd) =

cd

8
‖g‖2

L2(Rd),

after using Lemma 4.1 in the last step. Therefore,

∫

B∗∗∗
SQg(x) dx ≤ |B∗∗∗| 12

(∫

B∗∗∗
SQg(x)2 dx

) 1
2

. |B| 12 ‖g‖L2 . 1.

To complete the proof of Lemma 4.13, we must find a uniform bound for

I =

∫

(B∗∗∗)c

SQg(x) dx.

We consider first the case when r < ρ(x0). Then, by the moment condition on g,

SQg(x) =

[ ∫ ∞

0

∫

|x−y|<t

(∫

Rd

(Qt(y, x′)−Qt(y, x0))g(x′) dx′
)2 dydt

td+1

] 1
2

≤
[∫ |x−x0|

2

0

∫

|x−y|<t

(∫

B

|Qt(y, x′)−Qt(y, x0)| dx′

|B|
)2 dydt

td+1

] 1
2

+

[ ∫ ∞

|x−x0|
2

∫

|x−y|<t

(
· · ·

)2 dydt

td+1

] 1
2

= I1(x) + I2(x). (4.14)

We now use the smoothness of Qt(x, y) = Qt(y, x) established in Proposition 2.9. In
the first range of integration we have |y − x′| ∼ |y − x0| ∼ |x − x0| and |x′ − x0| <
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|y − x0|/4, so that

I1(x) .
[∫ |x−x0|

2

0

∫

|x−y|<t

(∫

B

(
|x′−x0|

t

)δ

t−d (1 + |y−x0|
t

)−(d+1) dx′
|B|

)2 dydt

td+1

] 1
2

≤
[∫ |x−x0|

2

0

∫

|x−y|<t

( r
t
)2δ t−2d (1 + |y−x0|

t
)−2(d+1) dydt

td+1

] 1
2

.
[∫ |x−x0|

2

0

( r
t
)2δ t−2d

(
t

|x−x0|

)2(d+1) dt

t

] 1
2

' rδ

|x− x0|d+1

[ ∫ |x−x0|
2

0

t2−2δ dt

t

] 1
2

' rδ

|x− x0|d+δ
. (4.15)

Thus, integrating over (B∗∗∗)c,

∫

(B∗∗∗)c

I1(x) dx .
∫

|x−x0|>8r

rδ

|x− x0|d+δ
dx . 1.

For I2(x) we have |x′ − x0| ≤ r < |x− x0|/2 ≤ t, so that Proposition 2.9 gives

|Qt(y, x′)−Qt(y, x0)| .
(
|x′−x0|

t

)δ

t−d.

Thus, for x ∈ (B∗∗∗)c a similar argument to that presented above leads to

I2(x) .
[ ∫ ∞

|x−x0|
2

∫

|x−y|<t

(∫

B

|x′−x0|δ
tδ

t−d dx′
|B|

)2 dydt

td+1

] 1
2

≤
[ ∫ ∞

|x−x0|
2

∫

|x−y|<t

r2δ

t2δ t−2d dydt

td+1

] 1
2

' rδ

[∫ ∞

|x−x0|
2

dt

t2d+2δ+1

] 1
2

' rδ

|x− x0|d+δ
.

Integrating over (B∗∗∗)c one gets the required bound.
We now turn to the estimate of

∫
(B∗∗∗)c SQg(x) dx when r is comparable to ρ(x0).

As before, we shall estimate pointwise SQg(x), for each x ∈ (B∗∗∗)c. Proceeding as
in (4.14), we break up the integral in t > 0 defining SQg(x) into three parts

SQg(x)2 =

∫ r
2

0

· · · +

∫ |x−x0|
4

r
2

· · · +

∫ ∞

|x−x0|
4

· · · = I ′1(x) + I ′2(x) + I ′3(x).
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In the first integrand we have |x′ − y| ∼ |x − x0|, so applying the estimate (a) of
Proposition 2.9, we get

I ′1(x) . r2

|x− x0|2(d+1)
, x ∈ (B∗∗∗)c.

For the second term we use the extra decay in time, together with |x′ − y| ∼ |x− x0|
and ρ(x′) ∼ ρ(x0) ∼ r (see Propositions 2.1 and 2.9):

I ′2(x) .
∫ |x−x0|

4

r
2

∫

|x−y|<t

(∫

B

t−d (1+|x−x0|/t)−(d+M+1)

(1+t/ρ(x0))M
dx′
|B|

)2 dydt

td+1

.
∫ |x−x0|

r
2

t−2d
(

t
|x−x0|

)2(d+M+1) (
ρ(x0)

t

)2M dt

t

' r2(M+1)

|x− x0|2(d+M+1)

∫ 2|x−x0|
r

1

t2
dt

t
' r2M

|x− x0|2(d+M)
.

Finally, for the last term the extra decay just gives

I ′3(x) .
∫ ∞

|x−x0|
4

∫

|x−y|<t

(∫

B

t−d (1 + t/ρ(x0))
−M dx′

|B|

)2 dydt

td+1

.
∫ ∞

|x−x0|
4

t−2d
(

ρ(x0)
t

)2M dt

t

' ρ(x0)
2M

|x− x0|2(d+M)
' r2M

|x− x0|2(d+M)
.

So, in the three cases we obtain bounds that lead to
∫
(B∗∗∗)c SQg(x) dx . 1. This

completes the proof of Lemma 4.13.
2

To conclude with the proof of Theorem 1.14, it only remains to justify the identity
in Lemma 4.10. We observe that such identity is clearly valid when f, g ∈ L2(Rd)
(see (4.4)), while we must justify the convergence of the integrals in the case when
f ∈ L1((1+ |x|)−(d+1)dx) and g is an H1

L-atom. As in the classical case (when V ≡ 0)
this requires further estimates of the kernels (cf. [9]). A sketch of the modifications
needed in this situation is the following.
PROOF of Lemma 4.10: First one observes that, by Lemmas 4.12 and 4.13, and

the dominated convergence theorem, the following integral is absolutely convergent
and satisfies

I =

∫

Rd+1
+

F (x, t) G(x, t)
dxdt

t
= lim

ε→0
N→∞

∫ N

ε

∫

Rd

Qtf(x) Qtg(x)
dxdt

t
.
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Next, a formal use of Fubini’s theorem allows us to write, for each t > 0,
∫

Rd

Qtf(x) Qtg(x) dx =

∫

Rd

∫

Rd

Qt(x, y)f(y) Qtg(x) dydx =

∫

Rd

f(y) Q2
t g(y) dy,

and, consequently, again formally

I = lim
ε→0

N→∞

∫ N

ε

[∫

Rd

f(y) Q2
t g(y) dy

]
dt

t

= lim
ε→0

N→∞

∫

Rd

f(y)

[∫ N

ε

Q2
t g(y)

dt

t

]
dy. (4.16)

The absolute integrability justifying these steps is a simple exercise, which combines
the hypothesis f ∈ L1((1 + |x|)−(d+1)dx), the kernel decay |Qt(x, y)| . t−d(1 + |x −
y|/t)−N , and the following general estimate on H1

L-atoms:

LEMMA 4.17 Let qt(x, y) be a function satisfying

|qt(x, y)| ≤ cN

(
1 + t

ρ(x)
+ t

ρ(y)

)−N

t−d(1 + |x− y|/t)−N . (4.18)

Then, for every H1
L-atom g supported by Br(y0), there is Cy0,r > 0 such that

Mqg(x) = sup
t>0

∣∣∣∣
∫

Rd

qt(x, y)g(y) dy

∣∣∣∣ ≤ Cy0,r (1 + |x|)−(d+1), x ∈ Rd. (4.19)

PROOF: There is no loss of generality in assuming that r < 2ρ(y0). Obviously,

∣∣∣
∫

qt(x, y)g(y) dy
∣∣∣ ≤ C‖g‖L∞ . (4.20)

If x /∈ B2r(y0) then for y ∈ Br(y0) we have |x − y| ∼ |x − y0|, ρ(y0) ∼ ρ(y). Hence,
applying (4.18), we get

∣∣∣
∫

qt(x, y)g(y) dy
∣∣∣ ≤ CN‖g‖L1

(
1 +

t

ρ(y0)

)−N

t−d
(
1 +

|x− y0|
t

)−N

≤ CN |x− y0|−d−Nρ(y0)
N (4.21)

Now (4.19) easily follows from (4.20) and (4.21).
2

Finally, in order to complete proof of the lemma we also need to justify the estimate

sup
ε,N>0

∣∣∣∣
∫ N

ε

Q2
t g(y)

dt

t

∣∣∣∣ ≤ Cy0,r (1 + |y|)−(d+1), y ∈ Rd. (4.22)
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Indeed, such bound allows passing the limit inside the integral in (4.16), and conclude
from (4.2) that

I =
1

8

∫

Rd

f(y) g(y) dy.

For the justification of (4.22) one defines a new kernel Hε(x, y) as the one associated
to the operator

∫∞
ε

Q2
t g(y) dt

t
and observes that

∣∣∣
∫ N

ε

Q2
t g(y) dt

t

∣∣∣ ≤ sup
ε>0

∣∣∣
∫

Rd

Hε(x, y)g(y) dy
∣∣∣ + sup

N>0

∣∣∣
∫

Rd

HN(x, y)g(y) dy
∣∣∣.

So, it suffices to verify that Hε(x, y) satisfies the assumption of Lemma 4.17. But
this is an immediate consequence of the same properties for the kernels Tt2(x, y) and
Qt(x, y), due to the identity

Hε(x, y) = 1
8

(
T2ε2(x, y)−Q√

2 ε(x, y)
)
.

The verification of this last identity is left to the reader, which may use spectral
techniques as in the proof of (4.2). This establishes Lemma 4.10, and completes the
proof of Theorem 1.14.

2

5 Operators acting on BMOL

5.1 The Hardy-Littlewood maximal operator

Bennet, DeVore and Sharpley [1] proved that for a function f ∈ BMO, the (un-
centered) Hardy-Littlewood maximal function Mf(x) (see (1.6)) is either identically
infinity or belongs to BMO, with norm ‖Mf‖BMO ≤ C‖f‖BMO. The first situation
occurs when f grows at infinity, e.g. with f(x) = log+ |x|.

Below we show that Mf(x) is always well-defined when f ∈ BMOL, and moreover,
that M preserves this space. This extends some known properties about the action
of M over the local bmo space of Goldberg.

THEOREM 5.1 The operator M maps BMOL into BMOL. Moreover, there exists
C > 0 such that ‖Mf‖BMOL ≤ C‖f‖BMOL for all f ∈ BMOL.

PROOF: We first show that, for every f ∈ BMOL the maximal function is finite
a.e. This is a consequence of the following lemma.

LEMMA 5.2 Given f ∈ BMOL, x0 ∈ Rd and any C0 ≥ 1, then Mf(x) < ∞ at
almost every x ∈ B0 = B(x0, C0ρ(x0)).
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PROOF: Let us split f = f1 + f2, with f1(x) = f(x)χB∗0
. Since every function

in BMOL is locally integrable, we have Mf1(x) < ∞, for a.e. x ∈ Rd. To bound
the second term, we use that supp f2 ⊂ (B∗

0)
c. Then, we may compute Mf2(x) at

x ∈ B0 by just considering the integrals over balls B 3 x for which B ∩ (B∗
0)

c 6= ∅,
and therefore with diameter 2r ≥ C0ρ(x0). Thus, we have B ⊂ B4r(x0) = B̃, and
consequently, by the definition of BMOL (observe that r(B̃) = 4r > ρ(x0))

1

|B|
∫

B

|f2(y)| dy ≤ 4d

|B4r(x0)|
∫

B4r(x0)

|f(y)| dy ≤ c ‖f‖BMOL . (5.3)
2

We turn to the boundedness of M in BMOL. By invoking the results in [1] and
the definition of BMOL, it suffices to prove that for every B = Br(x0) with r ≥ ρ(x0)

1

|B|
∫

B

|Mf(y)| dy ≤ C‖f‖BMOL . (5.4)

To show this, we split f = f1 + f2, with f1(x) = f(x)χB∗ . From (5.3) it follows that
Mf2(x) ≤ c‖f‖BMOL for all x ∈ B, so (5.4) follows with f replaced by f2. For the
other term, we may use the boundedness of M in L2 to obtain:

1

|B|
∫

B

|Mf1(y)| dy ≤
( 1

|B|
∫

B

|Mf1(y)|2 dy
)1/2

≤ C
( 1

|B|
∫

B∗
|f(y)|2 dy

)1/2

. ‖f‖BMOL ,

where in the last inequality we have used Corollary 3.13.
2

5.2 Semigroup maximal functions

In our setting, we are also interested in maximal functions arising from the semigroup
Tt. These are more naturally related with the definition of our spaces (recall the
definition of H1

L in §1), and give us information about the solution to the evolution
equation in (4.8).

More precisely, we shall consider T ∗ and P∗, that is, the “heat” and the “Poisson”
maximal functions related to L (see (1.7) and (1.8)). We observe that, in general,
these maximal operators are not bounded in the classical BMO(Rd). E.g., when
V (x) = |x|2 (Hermite operator), then T ∗1(x) is not a constant function, and so T ∗

cannot be bounded in BMO (see [11]). Our next result shows that the natural space
for boundedness of T ∗ and P∗ is BMOL.

THEOREM 5.5 Let f ∈ BMOL. Then T ∗f and P∗f belong to BMOL, and more-
over, there exists C > 0 such that

‖T ∗f‖BMOL + ‖P∗f‖BMOL ≤ C ‖f‖BMOL .
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For a fixed ball B ⊂ Rd we say that f ∈ BMO(B) if

‖f‖BMO(B) = sup
Br(x)⊂B

1

|Br(x)|
∫

Br(x)

|f(y)− fBr(x)| dy (5.6)

∼ sup
Br(x)⊂B

inf
c∈C

1

|Br(x)|
∫

Br(x)

|f(y)− c| dy.

is finite.
PROOF of Theorem 5.5: We will use systematically the following elementary
lemma.

LEMMA 5.7 Let h ∈ BMO(Q∗
k) and g1 and g2 be functions in L∞. If f is any

measurable function satisfying

h− g1 ≤ f ≤ h + g2, a.e.

then f ∈ BMO(Q∗
k) and ‖f‖BMO(Q∗k) ≤ ‖h‖BMO(Q∗k) + max{‖g1‖L∞ , ‖g2‖L∞}.

We shall consider first the operator T ∗. By the definition of BMOL and Proposi-
tion 2.1 it suffices to prove the following: there exists a constant C > 0 such that for
every fixed Qk ∈ Q (see Proposition 2.14), we have

(i)
1

|Qk|
∫

Qk

|T ∗f(x)| dx ≤ C ‖f‖BMOL ;

(ii) ‖T ∗f‖BMO(Q∗k) ≤ C ‖f‖BMOL .

Observe that (i) implies the almost everywhere finiteness of the operator. This
part is immediate from Lemma 5.2 and (5.4), since T ∗f(x) ≤ supt>0 |f | ∗ ht(x) .
M |f |(x), and therefore

1

|Qk|
∫

Qk

|T ∗f(x)| dx . 1

|Qk|
∫

Qk

M |f |(x) dx ≤ C ‖f‖BMOL .

We just need to show (ii), which we shall split into three different estimates:

∥∥∥ sup
t≥ρ(xk)2

|Ttf(x)|
∥∥∥

L∞(Q∗k)
≤ C ‖f‖BMOL , (5.8)

∥∥∥ sup
t≤ρ(xk)2

|(Tt − T̃t)f(x)|
∥∥∥

L∞(Q∗k)
≤ C ‖f‖BMOL , (5.9)

∥∥∥ sup
t≤ρ(xk)2

|T̃tf(x)|
∥∥∥

BMO(Q∗k)
≤ C ‖f‖BMOL , (5.10)

where T̃tf = f ∗ ht. It is not difficult to verify that (ii) follows from these three
estimates by using Lemma 5.7.
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The proof of each of them requires a different use of the decay and the smoothness
of the kernels. For instance, (5.8) follows easily from (2.5). More precisely,

|Ttf(x)| .
∫

Rd

|f(y)| t−d/2(1 + |x− y|/
√

t)−M dy

. 1

td/2

∫

|x−y|≤√t

|f(y)| dy +
∞∑

j=1

1

2jN

1

td/2

∫

|x−y|∼2j
√

t

|f(y)| dy.

Now, for j ≥ 0, we have 2j
√

t ≥ ρ(xk) ∼ ρ(x) for every x ∈ Q∗
k, thus

1

td/2

∫

|x−y|∼2j
√

t

|f(y)| dy . 2jd

|B2j
√

t(x)|
∫

B
2j
√

t
(x)

|f(y)| dy ≤ 2jd ‖f‖BMOL .

Therefore,

sup
t≥ρ(xk)2

|Ttf(x)| .
∞∑

j=0

1

2j(N−d)
‖f‖BMOL = C‖f‖BMOL . (5.11)

To prove (5.9) we shall need the following estimates on the difference kt − ht,
which can be found in [3].

LEMMA 5.12 (See Proposition 2.16 in [3].) There exists a nonnegative Schwartz
class function w in Rd so that

|ht(x− y)− kt(x, y)| ≤





( √
t

ρ(x)

)δ

wt(x− y), for
√

t ≤ ρ(x)
( √

t
ρ(y)

)δ

wt(x− y), for
√

t ≤ ρ(y)

wt(x− y), elsewhere,

(5.13)

where wt(x− y) = t−d/2w((x− y)/
√

t).

Going back to (5.9), since ρ(x) ∼ ρ(xk) for all x ∈ Q∗
k, and in this case

√
t ≤ ρ(xk),

we can use Lemma 5.12 and proceed as in the previous estimate to obtain:

|(Tt − T̃t)f(x)| ≤
∫

Rd

( √
t

ρ(x)

)δ

wt(x− y)|f(y)| dy

.
( √

t
ρ(xk)

)δ ∞∑
j=0

2−j(N−d) 1
|B

2j
√

t
(x)|

∫

B
2j
√

t
(x)

|f(y)| dy

=

( √
t

ρ(xk)

)δ( ∑

1≤2j≤ ρ(xk)√
t

2−j(N−d) 1
|B

2j
√

t
(x)|

∫

B
2j
√

t
(x)

|f(y)| dy

+
∑

2j>
ρ(xk)√

t

2−j(N−d)‖f‖BMOL

)
.
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Now, by Lemma 3.14, for j such that 1 ≤ 2j ≤ ρ(xk)√
t

, we have

1
|B

2j
√

t
(x)|

∫

B
2j
√

t
(x)

|f(y)| dy . 1 + log ρ(x)

2j
√

t
. 1 + log ρ(xk)√

t
.

Therefore,

|(Tt − T̃t)f(x)| .
( √

t
ρ(xk)

)δ (
1 + log ρ(xk)√

t

)
‖f‖BMOL

∞∑
j=0

2−j(N−d) . ‖f‖BMOL .

Finally, let us sketch the proof of (5.10). This seems to be a classical result,
following from a vector-valued singular integral theory. Consider B = Br(x0) ⊂ Q∗

k

and split f as

f = (f − fB)χB∗ +
[
(f − fB)χ(B∗)c + fB

]
= f1 + f2. (5.14)

Denote ‖T̃tf(x)‖`∞(t) = supt≤ρ(xk)2 |T̃tf(x)| and choose cB = ‖T̃tf2(x0)‖`∞(t), which is
a finite real number by (5.4). Then,

1

|B|
∫

B

∣∣ sup
t≤ρ(xk)2

|T̃tf(x)| − cB

∣∣ dx ≤ 1

|B|
∫

B

‖T̃tf(x)− T̃tf2(x0)‖`∞(t) dx

≤ 1

|B|
∫

B

‖T̃tf1(x)‖`∞(t) dx +
1

|B|
∫

B

‖T̃tf2(x)− T̃tf2(x0)‖`∞(t) dx = I + II.

For the first integral, observe that by the L2 boundedness of supt≤ρ(xk)2 |T̃tf(x)|, we
have

I ≤
(

1

|B|
∫

B∗
|f(x)− fB|2 dx

)1/2

≤ C‖f‖BMO ≤ C‖f‖BMOL .

For the second integral, the standard arguments of singular integrals and the smooth-
ness of the kernel will give:

1

|B|
∫

B

‖T̃tf2(x)− T̃tf2(x0)‖`∞(t) dx

≤ 1

|B|
∫

B

∥∥∥∥
∫

(B∗)c

(ht(x, y)− ht(x0, y))(f(y)− fB) dy

∥∥∥∥
`∞(t)

dx ≤ C‖f‖BMO.

It should be observed that in this last step the constant C is independent of Qk.

We now turn to the Poisson maximal function P∗f , for which we indicate the main
differences with respect to the previous proof. As before, it is enough to prove (i)–(ii)
with T ∗ replaced by P∗. By subordination we have P∗f(x) . T ∗f(x). Hnence there is
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no problem in verifying (i). It thus suffices to prove that ‖P∗f‖BMO(Q∗k) ≤ C‖f‖BMOL
for any fixed Qk ∈ Q. Set ρ = ρ(xk). Observe that

P∗1f(x)− P∗2f(x) ≤ P∗f(x) ≤ P∗1f(x) + P∗2f(x),

where

P∗1f(x) = sup
t≥0

∣∣∣∣
∫ ∞

t2/4ρ2

e−u

√
u

Tt2/4uf(x) du

∣∣∣∣,

P∗2f(x) = sup
t≥0

∣∣∣∣
∫ t2/4ρ2

0

e−u

√
u

Tt2/4uf(x) du

∣∣∣∣.

Moreover, |P∗2f(x)| ≤ sups≥ρ2 |Tsf(x)|, which by (5.8), belongs to L∞(Q∗
k). An ap-

plication of Lemma 5.7 reduces matters to show that P∗1f is in BMO(Q∗
k). We shall

repeat this argument two more times. Indeed

P∗11f(x)− P∗12f(x) ≤ P∗1f(x) ≤ P∗11f(x) + P∗12f(x),

where

P∗11f(x) = sup
t≥0

∣∣∣∣
∫ ∞

t2/4ρ2

e−u

√
u

T̃t2/4uf(x) du

∣∣∣∣,

P∗12f(x) = sup
t≥0

∣∣∣∣
∫ ∞

t2/4ρ2

e−u

√
u

(Tt2/4u − T̃t2/4u)f(x) du

∣∣∣∣.

Now P∗12f(x) ≤ C sups≤ρ(xk)2 |(Ts − T̃s)f(x)|, which belongs to L∞ by (5.9). Next for
the remaining term P∗11f(x) we have

P∗111f(x)− P∗112f(x) ≤ P∗11f(x) ≤ P∗111f(x) + P∗112f(x),

where

P∗111f(x) = sup
t≥0

∣∣∣∣
∫ ∞

0

e−u

√
u

T̃t2/4uf(x) dx

∣∣∣∣,

P∗112f(x) = sup
t≥0

∣∣∣∣
∫ t2/4ρ2

0

e−u

√
u

T̃t2/4uf(x) dx

∣∣∣∣.

Again, |P∗112f(x)| ≤ sups≥ρ2 |T̃sf(x)| which is bounded by the same reasoning as
in (5.8). Thus, we have reduced matters to show that P∗111f , which is the classical
Poisson maximal function, belongs to BMO(Q∗

k). This will again follow from classical
arguments of vector-valued singular integrals. Skipping these details, the proof of the
theorem is now complete.

2
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REMARK 5.18 It is interesting to observe that an analog of the previous theorem
holds as well for the non-tangential maximal operator

T ∗∗f(x) = sup
|x−y|<t

|Ttf(y)|, x ∈ Rd.

In fact, the reader can easily check that the same proof above goes along in this more
general situation.

5.3 Fractional integrals

In this section we shall be interested in the behavior of the fractional integral operator
Iα = L−α/2 (see (1.10)).

Recall that in the classical setting Iα = (−∆)−α/2 maps Lp(Rd) into Lq(Rd) for
0 < α < d and 0 < p < q < ∞ with 1/p = 1/q − α/d. Moreover, there is a
dichotomy in the limiting case q = ∞: for every f ∈ Ld/α(Rd), either Iαf ≡ ∞
or Iαf ∈ BMO(Rd) with ‖Iαf‖BMO ≤ C ‖f‖Ld/α(Rd) (see page 221 in [10]). Simple

examples like f(x) = 1
|x|α log |x| show that Iαf may be identically ∞.

Our next result shows that such pathological behaviors cannot happen to the
operator Iα, when the potential V 6≡ 0. Moreover, the natural target space is now
BMOL.

THEOREM 5.19 For all 0 < α < d, the operator Iα is bounded from Ld/α(Rd) into
BMOL, that is, there is a constant C > 0 so that

‖Iαf‖BMOL ≤ C ‖f‖Ld/α , for every f ∈ Ld/α(Rd).

PROOF: The proof follows the same scheme as in the previous section. We shall
try to establish the analogs of (i)-(ii) with T ∗ replaced by Iα. To see (i), let us split

Iαf(x) =

∫ ρ(x)2

0

Ttf(x)tα/2−1 dt +

∫ ∞

ρ(x)2
Ttf(x)tα/2−1 dt = I1f(x) + I2f(x). (5.20)

For the first integral, we use the trivial estimate

|I1f(x)| ≤
∫ ρ(x)2

0

T ∗f(x)tα/2−1 dt . ρ(x)α M |f |(x). (5.21)

For the second integral, the extra decay in time of kt(x, y) gives

|I2f(x)| ≤ CN

∫ ∞

ρ(x)2

∫

Rd

(
ρ(x)√

t

)N

hct(x− y)|f(y)| dy tα/2−1 dt

. M |f |(x) ρ(x)N

∫ ∞

ρ(x)2
tα/2−N/2−1 dt . ρ(x)αM |f |(x). (5.22)
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Thus, combining these two estimates, and using ρ(x) ∼ ρ(xk) if x ∈ Qk, we obtain

1

|Qk|
∫

Qk

|Iαf(x)| dx . 1

|Qk|1−α/d

∫

Qk

|Mf(x)| dx ≤ ‖Mf‖Ld/α . ‖f‖Ld/α ,

where in the last two steps we used Hölder’s inequality and the boundedness of M in
Ld/α.

We pass now to prove the analog of assertion (ii), that is, ‖Iαf‖BMO(Q∗k) ≤
C ‖f‖BMOL . As before, the strategy is based on an iterative use of Lemma 5.7.
Splitting Iαf = I1f(x) + I2f(x) as in (5.20), we shall show that I1f ∈ BMO(Q∗

k)
and I2f ∈ L∞(Q∗

k), with norms controlled by ‖f‖Ld/α . For the second term we must
slightly refine the argument in (5.22): if x ∈ Q∗

k then

|I2f(x)| . ρ(xk)
N

∫ ∞

ρ(xk)2

∫

Rd

1

t(d−α)/2
e−

|x−y|2
4ct |f(y)| dy t−N/2−1 dt.

Now, observe that

∫

Rd

t−(d−α)/2 e−
|x−y|2

4ct |f(y)| dy .
∞∑

j=0

2j(d−α) e−c′22j

(2j
√

t)d−α

∫
|x−y|√

t
≤2j

|f(y)| dy

. sup
r>0

1

|Br(x)|1−α/d

∫

Br(x)

|f(y)| dy =: Mαf(x),

where Mα denotes the fractional maximal operator, which trivially maps Ld/α(Rd)
into L∞(Rd). Thus,

|I2f(x)| . ρ(xk)
N Mαf(x)

∫ ∞

ρ(xk)2
t−N/2−1 dt . ‖f‖Ld/α(Rd). (5.23)

To deal with I1f we make some further splittings:

I1f =

∫ ρ(xk)2

0

T̃tf tα/2−1 dt +

∫ ρ(xk)2

0

(Tt − T̃t)f tα/2−1 dt = I11f + I12f.

A new use of Lemma 5.12, Proposition 2.1, and reasoning with a similar estimate to
that presented above gives

|I12f(x)| .
∫ ρ(xk)2

0

∫

Rd

( √
t

ρ(x)

)δ

wt(x− y)|f(y)| dy tα/2−1 dt

.
∫ ρ(xk)2

0

tδ/2−1

ρ(x)δ
Mαf(x) dt . ‖f‖Ld/α(Rd)

for all x ∈ Q∗
k.
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It remains to control the term I11f , for which we must show that, given any ball
B = Br(x0) ⊂ Q∗

k there is a constant cB so that

1
|B|

∫

B

| I11f(x)− cB| dx ≤ C ‖f‖Ld/α(Rd). (5.24)

This is elementary to verify with cB = 0 when the radius of the ball B is comparable
to ρ(xk). Indeed, in this case Hölder’s and Minkowski’s inequalities give

1
|B|

∫

B

| I11f(x)| dx ≤
(

1
|B|

∫

B

| I11f(x)|d/α dx

)α/d

≤ 1
|B|α/d

∫ ρ(xk)2

0

‖T̃tf‖Ld/αtα/2−1 dt . ‖f‖Ld/α . (5.25)

Suppose instead we are given a ball with r ¿ ρ(xk). In this case we must further
split the integral defining I11f(x) into two new pieces:

I11f(x) =

∫ r2

0

T̃tf(x)tα/2−1 dt +

∫ ρ(xk)2

r2

T̃tf(x)tα/2−1 dt = I111f(x) + I112f(x).

For the first piece we can repeat the previous calculation to obtain 1
|B|

∫
B
|I111f(x)| dx .

‖f‖Ld/α . For the second piece we write f = f1 + f2 with f1(x) = f(x)χB∗(x), and
choose cB = I112f2(x0) (which is a finite number for a.e. x0). Then,

1
|B|

∫

B

|I112f(x)− cB| dx ≤ 1
|B|

∫

B

|I112f1(x)| dx + 1
|B|

∫

B

|I112f2(x)− I112f2(x0)| dx.

When x ∈ B, the first integrand is uniformly bounded by

|I112f1(x)| .
∫ ρ(xk)2

r2

∫

B∗
t−d/2e−

|x−y|2
4t |f(y)| dy tα/2−1 dt

.
∫ ρ(xk)2

r2

∫

|x−y|<3r

|f(y)| dy t−d/2+α/2−1 dt

. Mαf(x) rd−α

∫ ∞

r2

t−d/2+α/2−1 dt ≤ ‖f‖Ld/α .

For the second integrand we use smoothness

∣∣∣I112f(x)− I112f(x0)
∣∣∣ .

∫ ρ(xk)2

r2

∫

(B∗)c

1

td/2

∣∣∣∣e−
|x−y|2

4t − e−
|x0−y|2

4t

∣∣∣∣|f(y)| dy tα/2−1 dt

.
∫ ρ(xk)2

r2

∞∑
j=1

1

td/2

∫

|x0−y|∼2jr

∣∣∣∣e−
|x−y|2

4t − e−
|x0−y|2

4t

∣∣∣∣|f(y)| dy tα/2−1 dt.
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By the mean value theorem (and the fact |x− x0| < r <
√

t) we have:

∫

|x0−y|∼2jr

∣∣∣e− |x−y|2
4t − e−

|x0−y|2
4t

∣∣∣|f(y)| dy . |x−x0|√
t

e−c(2jr)2/t

∫

B
2jr

(x0)

|f(y)| dy

. |x−x0|√
t

(2jr)d−α Mαf(x0)

(1 + 2jr/
√

t)N
,

for a sufficiently large integer N . Hence,

∣∣I112f(x)− I112f(x0)
∣∣ .

∫ ρ(xk)2

r2

t−d/2+α/2−1
[ ∞∑

j=1

(2jr)d−α

(1+2jr/
√

t)N

]
|x−x0|√

t
dtMαf(x0) .

Breaking the inner sum into two parts it is easy to see that it is bounded by a constant
times (

√
t)d−α. Therefore

∣∣I112f(x)− I112f(x0)
∣∣ . Mαf(x0)|x− x0|

∫ ∞

r2

t−1/2−1 dt . Mαf(x0) . ‖f‖Ld/α .

From here it is immediate that 1
|B|

∫
B

∣∣I112f(x)−I112f(x0)
∣∣ dx . ‖f‖Ld/α , establishing

the assertion (ii).
2

5.4 Square functions

Consider the following square function associated with L:

s(f)(x) =
(∫ ∞

0

|tdTt

dt
f(x)|2 dt

t

)1/2

. (5.26)

This is just a multiple of the square function sQf(x) defined in (1.9).

THEOREM 5.27 There exists a constant C > 0 such that

‖s(f)‖BMOL ≤ C‖f‖BMOL . (5.28)

PROOF: Fix f ∈ BMOL and Qk ∈ Q with center xk. It is not difficult to prove
using (2.11) that

1

|Qk|
∫

Qk

|s(f)(x)| dx . ‖f‖BMOL . (5.29)

In fact, if we split

|s(f)(x)|2 = |s1f(x)|2 + |s2f(x)|2 :=

∫ ρ(xk)2

0

|tdTt

dt
f(x)|2 dt

t
+

∫ ∞

ρ(xk)2
|tdTt

dt
f(x)|2 dt

t
,
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then (5.29) for s1(f) was shown in (4.5). The second term s2(f)(x) has a uniform
bound when x ∈ Qk. In fact, by using (a) in Proposition 2.9 and the same reasoning
as in (5.11), we get

|s2f(x)|2 .
∫ ∞

ρ(xk)2

[ ∫

Rd

(
ρ(x)√

t

)N
t−d/2e−

c|x−y|2
t |f(y)| dy

]2
dt
t

.
[

sup
s≥ρ(xk)2

|f | ∗ hs(x)
]2

. ‖f‖2
BMOL .

To complete the proof, it suffices to show that

‖s(f)(x)‖BMO(Q∗k) ≤ C‖f‖BMOL (5.30)

with some constant C independent Qk. Decompose f = f1 + f2 as in (5.14) and set

cB =
(∫ ρ(xk)2

0
|tdeTt

dt
f2(x0)|2 dt

t

)1/2

, which is a finite number. Then

|s(f)(x)− cB| ≤
(∫ ∞

ρ(xk)2
|tdTt

dt
f(x)|2 dt

t

)1/2

+
(∫ ρ(xk)2

0

|tdeTt

dt
f(x)− td eTt

dt
f2(x0)|2 dt

t

)1/2

+
(∫ ρ(xk)2

0

|tdTt

dt
f(x)− tdeTt

dt
f(x)|2 dt

t

)1/2

= S1(x) + S2(x) + S3(x).

One can easily check using standard arguments combined with (2.11) that

1

|B|
∫

B

(
S1(x) + S2(x)

)
dx . ‖f‖BMOL . (5.31)

The proof of (5.30) will be finished if we show that

S3(x) . ‖f‖BMOL for x ∈ B. (5.32)

The perturbation formula implies

dT̃t

dt
− dTt

dt
= T̃t/2V Tt/2 +

∫ t/2

0

(
d

dt
T̃t−s)V Ts ds +

∫ t

t/2

T̃t−sV
dTs

ds
ds. (5.33)

Thus (5.32) will be established if we verify that

∫ ρ(xk)2

0

|tT̃t/2V Tt/2f(x)|2 dt
t

+

∫ ρ(xk)2

0

∣∣∣
∫ t/2

0

t(
d

dt
T̃t−s)V Tsf(x) ds

∣∣∣
2

dt
t

(5.34)

+

∫ ρ(xk)2

0

∣∣∣
∫ t

t/2

tT̃t−sV
dTs

ds
f(x) ds

∣∣∣
2

dt
t

= S ′3(x) + S ′′3 (x) + S ′′′3 (x) . ‖f‖2
BMOL .

The following lemma is a direct consequence of the definition of BMOL and Lemma
3.14
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LEMMA 5.35 Let qt(x, y) be a function satisfying (4.18). Then, for every N there
is a constant CN > 0 such that

∣∣∣
∫

qt(x, y)f(y) dy
∣∣∣ ≤ CN‖f‖BMOL

(
1 + log+

ρ(x)
t

)(
1 +

t

ρ(x)

)−N

. (5.36)

Hence, from Propositions 2.4 and 2.1 we conclude

S ′3(x) .
∫ ρ(xk)2

0

∣∣∣
∫

tht/2(x, z)V (z)
(
1 + log+

ρ(z)√
t

)
dz

∣∣∣
2 dt

t
‖f‖2

BMOL

.
∫ ρ(xk)2

0

∣∣∣
∫

tht/2(x, z)V (z) (5.37)

×
(
1 + log+

[ρ(x)√
t

(
1 + |x−z|√

t

√
t

ρ(x)

) k0
1+k0

])
dz

∣∣∣
2 dt

t
‖f‖2

BMOL .

By using (2.12) and the fact that ρ(x) ∼ ρ(xk) for x ∈ B, we have

S ′3(x) .
∫ ρ(xk)2

0

∣∣∣
( √

t
ρ(x)

)δ(
1 + log+

ρ(x)√
t

)∣∣∣
2 dt

t
‖f‖2

BMOρ
. ‖f‖2

BMOρ
.

The estimates for S ′′3 (x) and S ′′′3 (x) stated in (5.34) could be proved by applying the
same arguments and the bounds for ks(x, y) and d

ds
ks(x, y) established in Section 2.

2
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