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Abstract

We identify the dual space of the Hardy-type space Hé related to the time
independent Schrodinger operator £ = —A 4+ V, with V' a potential satisfying
a reverse Holder inequality, as a BMO-type space BMO;. We prove the
boundedness in this space of the versions of some classical operators associated
to £ (Hardy-Littlewood, semigroup and Poisson maximal functions, square
function, fractional integral operator). We also get a characterization of BM O,
in terms of Carlesson measures.

1 Introduction

Let V be a fixed non-negative function on R? d > 3, satisfying a reverse Holder
inequality RH,(R?) for some s > 4; that is, there exists C' = C(s,V) > 0 such that

(/BV(I)SCM;)1 < (J/BV(x)dx, (1.1)

for every ball B C R%. Consider the time independent Schrodinger operator with the

potential V:
L=—-A+YV,
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and its associated semigroup:

Tf(e) = 2f ) = [ W)@y, fel®Y, >0 (12)
R
A Hardy-type space related to £ is naturally defined by:
Hp={feL'R") : T"f(x) =sup|T,f(x)| € L'(RI)},
>0

with || flly = 17"l r ). (1.3)

For the above class of potentials, it was shown in [2] that H} admits a special atomic
characterization, where cancellation conditions are only required for atoms with small
supports. In this paper we shall be interested in properties of the dual space of H},
which we shall identify with a subclass of BM O functions, namely:

BMO[;:{fEBMO ; /|f]<C for all B = Bg(z ):R>p($)}. (1.4)

Bl
The precise definition of the norm in this space is given in Definition 3.5. The critical
radii above are determined by the function p(z; V') = p(x) which takes the explicit

form
1

p(x) = sup {'r >0 : s o )V(y)dy < 1} : (1.5)

Throughout the paper shall assume that V' # 0, so that 0 < p(z) < oo (see [7]). This
BMO/, space turns out to be the suitable extreme point for p = oo concerning the
boundedness of the classical operators associated to the operator £. We shall use the
following notations:

Mf) = s [ ) (1.6
') = suple sl (1.7
Pfa) = sup|Pf(a)], where P = E | ) S Tedn, (18)

afe) = ([T lasare )’ (19)

T.f(z) = L7%f(z) = /000 e Ef(x)t?dt for 0<a<d  (1.10)

These notations correspond, respectively, to the Hardy-Littlewood maximal func-
tion, the semigroup and Poisson-semigroup maximal functions, the £-square function
and the L-fractional integral operator. We observe that in the classical case (i.e.
V' = 0) these operators fail to be bounded in BMO, in fact may be identically infin-
ity for functions with certain growth (see §5 below). However in our case it turns out
that they behave correctly in BM O/ as the following results shows.



THEOREM 1.11 Let V # 0 be a non-negative potential in RH,(R?) for some s > g.
The operators M, T*, P* and sg are well-defined and bounded in BMO,. For all
0 < a < d, the operator L, is bounded from L¥*(R%) into BMO,.

We also show a characterization of BM O, in terms of Carleson measures. A
positive measure y on R := R? x (0, 00) is said to be a Carleson measure if

lule = sup MEDxOr) (1.12)

2€RY, >0 |B,(z)]

Our result characterizes the elements of BM O, by a Carleson measure condition
related to appropriate square function. To be more precise let

dT,
ds

@ =t (

P, @ eri (1.13)
s=t2
then the following theorems holds

THEOREM 1.14 Let V # 0 be a non-negative potential in RH,(R?) for some s > g
and p(x) = p(x) be the weight defined in (1.5).

1. If f € BMOg, then dug(x,t) :=|Qif (x)|* dzdt/t is a Carleson measure.

2. Conversely, if f € L*((1 + |z|)~“*Vdx) and dus(x,t) is a Carleson measure,
then f € BMO¢.

Moreover, in either case, there exists C' > 0 such that

1
5 1o, < llduslle < C 1 Earo,

The outline of the paper is as follows. In Section 2 we gather the required estimates
on the kernel Q;(z,y), which complement those presented for k;(z,y) in [2, 3, 4]. In
Section 3 we recall the atomic decomposition for H} and establish the identification
(H})* = BMO;. In Section 5 we study the boundedness of classical operators in
BMO/,. Some of the techniques needed in the proofs of Section 5 appear naturally
when proving Theorem 1.14, it is because of this reason that we present in Section 4
the proof of Theorem 1.14.

2 Estimates on the kernels

We begin by recalling some basic properties of the function p(z) under the assumption
(1.1) on V (see [7, Lemma 1.4]).



PROPOSITION 2.1 There exist ¢ > 0 and ky > 1 so that, for all z,y € R?

—k k’iol
o) (14 B) < o) < epla) (14 )T (2:2)
In particular, p(x) ~ p(y) when y € B.(z) and r < Cp(x).

From the Feynman-Kac formula, it is well-known that the semigroup kernels
ki(x,7), associated with T} = e~* satisfy the estimates

d

0 < ki(z,y) < ha(x —y) == (4mt) "2 exp(— 2720, (2.3)

4t

These estimates can be improved in time when V' # 0 satisfies the reverse Holder
condition RH, for some s > d/2. The function p(z) arises naturally in this context.

PROPOSITION 2.4 (see [3], [6] ) For every N, there is a constant Cy such that

—N
0 < k() < Owt~% exp(—52) (14 ¥4 ) (2.5)

Below, we shall also make use of the Lipschitz regularity of the kernels, which is
again a consequence of (1.1) (see [4, Proposition 4.11]).

PROPOSITION 2.6 IfV € RH,(R?), s > d/2, then there exists § = 6(s) > 0 and
c > 0 such that for every N > 0 there is a constant Ciy so that, for all |h| < v/t

d cla —N
o+ hoy) — k(o) < On (1) 178 (-2 (14 25 4 22) . 27)

We will also need estimates for the integral kernels of the operators @ in (1.13):

Oks(,y)

Qt(x7y> - t2 s

(2.8)

s=t2

PROPOSITION 2.9 There exist constants ¢,d > 0 such that for every N there is a
constant C'y so that

2 —N
(a) |Qi(x,y)| < Cnt™ d exp(— M) <1+%@+@> ;

0 B clo—ul? —-N
() 1@+ hy) — Qe y) < Ox (B) 1 exp(- 2520 (14 25+ 55)
for all |h| <t

@)
/ Gl dy' Yt/ pla)Y




PROOF: Corollary 6.4 of [4] asserts that the integral kernels k¢(z, y) of the extension
of {T}}41~0 to the holomorphic semigroup {T¢}cea_,, satisfy

/4

-N
ke (2, )| < Cn(RCO)™ d/2<1+ e p(y)z) exp(—clz — y[*/RC). (2.10)

The Cauchy integral formula combined with (2.10) gives

’dtkt ' y)‘ B ‘%/Iﬁ—tlt/m%dq (2.11)

C B -N
< (0t gkt g) (=l =y

which, by (2.8), implies (a).
We now turn to prove (b). By the semigroup property, Proposition 2.6, and the
part (a) already proved, we obtain

Quta-+ ) = Qulw )] = [2 [ (koo 2) = biale, ) Qua(e )

5 -N -N
1h] t —d —clz—z|?/t? y—d ,—c|z—y|?/t? t
< C’N< : > /(1 + —p(x)> t % t % (1 + —p(y)> dz
5 -N
|h[\" —d \x 1
S On (T) 7 exp(—==%" )<1 roR p<y>>

which establishes (b).
It follows from [7] Lemmas 1.2 and 1.8 that there is a constant Cj such that for a
nonnegative Schwartz class function ¢ there exists a constant C' such that

5
Ct1 r‘@) for t < p(z)?
/sot(x —y)V(y)dy < C2-d (2.12)
C’(p—\/j) for t > p(x)?,

where ¢, (x) = t=%%p(2/+/t). Therefore

d
| [ Gkt ds] =

and (c) follows by first using (2.5) with N sufficiently large and then (2.12).

T,L1()| = / iz, y)V (y) dy (2.13)

|

Finally, we recall some results about covering R? by critical balls. These depend
entirely on the estimates in Proposition 2.1, and can be found in [2]. Throughout the
paper, given a ball B we denote by B* the ball with same center and twice radius.



PROPOSITION 2.14 (see [2, Lemma 2.3]). There ezists a sequence of points
{2 }32, in R, so that the family of “critical balls” Q = {Q1}2%,, defined by Qy :=
{lo — x| < p(ax)}, satisfy

(a) U @x = R%.
(b) There exists N = N(p) so that, for every k > 1, card {j : Q7*NQy* #0} < N.

Combining the previous with (2.2) one easily gets

COROLLARY 2.15 There is a constant ¢ = c(p) so that, for every ball Br(x) with
R > p(x), we have

Br(@)] < > Q| < ¢|Bg(@)l.

QkﬁBR(m)f(Z)

COROLLARY 2.16 There exists a family of C*° functions . such that supp ¢ C

3 The dual space of H}

We shall assume that V' # 0 is a potential in the reverse Holder class as stated in the
introduction. For such potentials it was shown in [2] the following characterization
of H}.

A function a: R? — C is an H}-atom associated with a ball B,.(xy) when

suppa C By(zo),  [lallee < 1/[Br(0)], (3.1)

and in addition,
/a(x) dr =0, whenever 0 < r < p(zo). (3.2)

THEOREM 3.3 An integrable function f in R? belongs to H}: if and only if it can be
written as f = Y. \ja;, where a; are Hp-atoms and Y. |\j| < oo. Moreover, there
exists a constant ¢ > 0 such that

Iy < inf {35501 0 f =301 < cllfllm

REMARK 3.4 We note that in the above atomic decomposition we may restrict to
atoms supported by balls B,.(z) with 7 < p(z). Indeed, if we are given an Hj-atom
a associated with a ball B, (yy) with r > p(yo) then it easily follows from Proposition
2.14 that the atom a can be written as a = ) ; Aja;, where }_;|A;| < 1, and a; are

H}-atoms supported by critical balls.



DEFINITION 3.5 We shall say that a locally integrable function f belongs to BM O,
whenever there is a constant C' > 0 so that

1 1
|f — f,] <C and
|BS| Bs |BT| By

for all balls B; = Bs(x), B, = B,(x) such that s < p(x) <r. Welet ||f||smo, denote
the smallest C' in (3.6) above. Here and subsequently, fp = |B|™" [, f(z)dzx.

1< C, (3.6)

We observe that || f|smo, is actually a norm (and not only a seminorm) making
BMO/ a Banach space. Moreover, ||f|lgmo < 2| fllsrmo,. We also observe that, by
Proposition 2.14 and its corollary, it is enough to consider the condition on the right
hand side of (3.6) only for balls from the family Q.

From the previous atomic decomposition, and the definition of f € BMO,, it is
clear that

Qs(a) = /Rd f(x)a(x)dr, acting on H}-atoms a,

defines a linear functional on H} with ||®¢]| < ¢||f||smo,. Our first result shows that
all linear functionals on H} do actually arise in this way.
THEOREM 3.7 The correspondence
BMO; > f+—— ®; € (H})*
s a linear isomorphism of Banach spaces.

We shall need a lemma about the size of H-functions.

LEMMA 3.8 The space L?(RY), of square-integrable functions with compact support
is contained in H}:. Moreover, there is a constant C = C(L) > 0 so that, for large
balls B = Br(xg) with R > p(xg), we have

lgllzy < C1BI= llgllLes), ¥ g € LA(B). (3.9)

PROOF: Assume that g € L?(Bg(zg)), R > p(xg). Then, using Corollary 2.16, we

can write g = >, @rg = Y, gk and ||g[|7. ~ >°, [lgk[|72. By Schwarz’s inequality and
Corollary 2.15 it suffices to prove (3.9) for ¢ = gx. Obviously,

1T gill 2oy < ClOKYPIT grll2ipy < C QK12 (19l 2. (3.10)
If = ¢ Q;*, then applying Propositions 2.4 and 2.1, we get

VENTY i el
Tante) < Oy [(1+05) e g iay @1
plar)™
< On AT I Pl

Now (3.9) for g = gy, follows from (3.11) and (3.10).



|

PROOF of Theorem 3.7:  Let ® € (H})*, and denote By = By(0), N > p(0).
By Lemma 3.8, there exists a unique fy € L*(By) with || fx|lr2(5y) < C |Bn |z |9,
and so that
®(g)= [ fvg, YgeL(Bn)
By
Iterating in N, and noticing that fyi1|py = fn, one defines a unique locally square-
integrable function f in R? so that

®(g) = [ f(x)g(z)dz, forall g€ L*(R?).
Rd

Thus, ® = @, and only remains to show that || f|| gm0, < C||®||. If we test first on
atoms supported by large balls B = Bg(x), R > p(z), and use again Lemma 3.8, we
see that || f|| 2y < C |B|z ||®||. Thus, from Hélder’s inequality we conclude

& [1= (i [ ) <cial (3.12)

On the other hand, since classical H'-atoms are particular cases of H}-atoms, it
follows that |y € (H')*, and thus ®|;1 = ®;, for a unique (modulo constants) h €
BMO(R?). Now, testing on H!'-atoms over a fixed ball B we see that f = h+cp, for
some constant cp, and therefore f € BMO(R?) with || f||zao < 2 ||h|lzyo < C'||@]].
This establishes the theorem. 0

Observe that we have shown, for large balls, the local square integrability estimate
(3.12). The exponent 2 can actually be replaced by any 1 < p < oo, by just using in
the proof above the corresponding p’-version of Lemma 3.8. This, together with the
John-Nirenberg inequality gives the following corollary.

COROLLARY 3.13 For every p € [1,00) there exists ¢ = c¢(p,p) > 0 such that, for
all f € BMO, we have

1
<ﬁ / ’f_fB|p>p < c||fllemo,, for all balls B,
B

(%/B|f|p>p§ cllfllemo,, for B=B.(z) : > p(x).

We conclude with the following lemma which will be used often below. Its proof
is elementary and left to the reader.

LEMMA 3.14 There exists ¢ > 0 so that, for all f € BMO; and B = B,.(x) with
r < p(z), then

[fae] < (1 +1og Z2) [If | sacor



4 Proof of Theorem 1.14

LEMMA 4.1 For all f € L*(R?) we have ||5Qf||2 = \/Lg | f|l2. Moreover,

flz) = Ohrj{[l / Q2 f(x) —, in L*(R%). (4.2)
PROOF: The proof is standard and follows by using spectral techniques, as in
[8, Chapter 3]. For completeness we provide some details. Since T, = e ¢ =
J,- e dE(X), we have
dT; o
t—L = —tLT, = —/ the N dE(N).
dt 0

Thus, for all f € L*(RY), using the self-adjointness of Q;, we get
lsoflf = [, [ i@t as

Rd

= / <t4(d7;88 t2) f7f>_
0
e o2y dt

=[] e arg,m = L
0 0

For the second part, it suffices to show that, for every pair of sequences n; " oo,

5k\0

Nk+m Ek

klim Qtf——hm Qtf—— , Ym>1 (4.3)
o0 Nk Ek+m

Indeed, when this is case we can find h € L?(R?) so that limy_. f;;’“ Q3 f % = h, and
therefore, by using also a polarized version of the first part

hog) =t [ (Qu1Qu) T
- [ @a9 T =t Yoe @) (1.4

0
which implies h = % f. To prove (4.3) we use again functional calculus, so that

Nk+m dt 2 [o’e)
/ Qi f r < /
ng 0

Computing the integral inside one is led to estimate

Nk+m 9 2
/ N2 e A B p(N).

k

/ (1+ 2/\ni)e’2>‘"idEf,f(>\), as ng — 00,
0

which by dominated convergence tends to 0. Observe that the last step makes use of
the fact that 0 is not an eigenvalue of £ because, V (z) > 0 for almost every z, and
(Lf, f) > (V[ f)>0unless f =0). One proceeds similarly when ¢, — 0. O
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4.1 Proof of part (1) of Theorem 1.14

Our first observation is that
0= [ Qe f)dy
]Rd

is a well-defined absolutely convergent integral for all (z,t) € ]Rff“l, as it follows from
the kernel decay in Proposition 2.9 and the integrability of (1+ |y|)=% ! f(y)| (see [9,
page 141]). Let us fix a ball B = B,(zo). We wish to show that

dxdt
51 | [ 1@r@r S < Cli o (45)
To do this, we split the function f into local, global, and constant parts as follows
Fo= (F = fa) X+ (F = f22) X oy + Ji
= fit+ fot fBr,

As we shall see, the novelty of the BM O, condition appears in the control of the
constant term. For the other two terms the proof follows from standard arguments
(cf. e.g. [9]) and estimates for the kernel Q;(x,y). Indeed, in the local case, a simple
use of Lemma 4.1 gives us

" dxd C
5 | @@t < 2 sentas

C 1
< s 2 = —/ — * 2’
= |B| ||f1||2 |B| - |f fB |

which is smaller than a multiple of || f||%,,0 by Corollary 3.13.
To estimate the global term, we only need a very mild decay of |Q:(z,y)|: if
x € B = B,(x9) and ¢t < r then
t*d
(1+ \fﬂ;y|)d+1

/IM%M !
(B*)C

Ty — y|dtL
t

5 (ri)d—i—l [/|yxo|~2kr |f(y) B fB?k’“| dy + <2k7,)d ’fszr — /B

=1

- t
> 27 [ fllsmo + kI fllsao) S M fllsaro.
k=1

Q@ 5 [ 150 1y

AN

dy

<

~Y

=S | ?r

Thus, integrating over B x (0,r) we obtain

I dxdt 2 dt
@AL@WWTﬁfgqmm:wmmumm
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It remains to estimate the constant term, for which we shall make use of part (c) of
Proposition 2.9. Assuming first that r < p(zy), and using p(z) ~ p(xo) for x € B (cf.
Proposition 2.1), we have

b [ et nwrs - % / [ @t<x7y>dyr@ )

< t/ 25 dxdt
Ik (r/puo))
< 13000, (1 +1log 2202 (r/p(20))* S 13m0,

where the last line follows from Lemma 3.14.

Suppose finally that r > p(z), and select from Corollary 2.15 a finite family of
critical balls {Q,} so that B C UQy and ) |Q¢| < |B|. Then, using again part (¢) of
Proposition 2.9 and |fg+| < || fl|Bmo,, we can bound the left hand side of (4.6) by

11000, /p(w)/ 25 dwdt ~ dz dt
(t/p(e))™ S5 + 0
. zé: ( 0 Qe ' p(ze) J Qe (1+ t/p(xf))zNi% '

S Clflbao B Y 1Qd S I mo,
l

which, by Corollary 2.15, establishes the first part of Theorem 1.14.

REMARK 4.7 It is worthwhile to notice that, from the previous proof, it actually
follows that

SUp [Qefllee = sup_ [Quf(2) S [/ ll53o,-

t>0,0€R4

That is, the solution to the evolution equation

{ut(t,x) = —Lu(t,z), (t,r)c R
U(O,) = f

with initial data f € BM O/, satisfies the regularity estimate

I£u(t, Moo S ¢ I fllBrr0,

4.2 Proof of part (2) of Theorem 1.14

Now, let us fix f € LY((1 + |z|)~*Vdx) so that us(z,t) == |Qif(x)]>dzdt/t is a
Carleson measure. We wish to show that such f must belong to BMO,. By Theorem
3.7 it suffices to show that the linear functional

Hp 3 g— lg) = | @)g() dx
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defined at least over finite linear combinations of H}-atoms, satisfies the estimate

1
| @slgl| < cllugllé llgllmy- (4.9)

To do this, we shall proceed in three steps. First, we shall write ®; in terms of
the extended functions

F(z,t) == Q:f(z) and G(z,t):= Qig(z), (x,t) € RL™.
More precisely, we shall show the following identity.
LEMMA 4.10 Let f € L*((1 + |z|)~%Ydz) and g be an H}-atom. Then
da:dt
[ 1waae = [ FanGn S (a11)
REH t

In our second step we shall bound the right hand side of (4.11) using a general
result about tent spaces.

LEMMA 4.12 : (see [9, p. 162]). Let F(z,t), G(x,t) be measurable functions on
Rffrl satisfying

1

r(B) 2
I(F)(x) 1= sup (ﬁ I/ |F<y,t>|2@> € (R,

dydt \ 2
=(f ] oworis ) e v

where r(B) denotes the radius of B and I'(x) = {(y,t) € RE™" |y —=| < t}. Then,
there is a universal ¢ > 0 so that

/ / oua WG dytdt CAH(F)(x)Q(@)(@m
< | Z(F) e 1G(E) .

IN

Observe that ||pysllec = |Z(F)||?«. Thus, in order to establish (4.9) we just need
to show that [|[G(G)[[r < C|lgllgy. Note that G(G)(z) = Sgg(z), where Sg is the
following area integral operator,

1
dydt\ 2
Sog(x (/ /|I et |Qug(y ‘2 td+1) , T E RY.

Then, the following result about the boundedness of the area integral operator gives
us the desired inequality.
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LEMMA 4.13 There exists ¢ > 0 so that |[Sgl < cllgllm for every g being a
finite linear combination of H}-atoms.

Thus, we have reduced the proof of the theorem to show Lemmas 4.10 and 4.13.
Let us start with the proof of the second one.

PROOF of Lemma 4.13: By Theorem 1.5 in [2], it is enough to consider sums

of atoms associated to balls B,(zg) with r < p(zg). Let us fix an Hj-atom, g(x),
associated with a ball B = B,.(z(). Now, observe that

dydt
2 _ 2
||SQ9HL2(Rd) - /]Rd [//Rd“ Qeg(y)| Xr(x)(yat)th] dx
+
dydt
— 2 d
/[ . 00 [ [ o|
dydt
= [ [, QP
H@A:Fl t

Cd
= (4 HSQQH%?(Rd) -3 ||g||%2(Rd)7

after using Lemma 4.1 in the last step. Therefore,

1

1 2 1
[ Sogtoyde < B ( / ng<x>2dx) < B gl < 1

To complete the proof of Lemma 4.13, we must find a uniform bound for

I = / Sog(x) dx.
( ***)c

We consider first the case when r < p(xy). Then, by the moment condition on g,

Sae) = | [ ([ @) - 0naorar) s

7 oy

/'Oo /|x-y|<t(“')“tl3ffr = h@) + L. (A1)

We now use the smoothness of Q;(z,y) = Q:(y, z) established in Proposition 2.9. In
the first range of integration we have |y — /| ~ |y — xo| ~ |z — x| and |2’ — zo| <

dydt }
1
2

IN
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ly — o] /4, so that
lz— ﬂfol : dydt
\x zo| —d ly—zo|\—(d+1) dz’
Li(z) S / /|my<t / tO)t (1+-yto>( )I?I> td+1]

1
lz— lol 2
(z 25 —2d ly—z0|\ —2(d+1 dydt
/ / ()2 4724 (1 4 =m0l ( )th
lz—y|<t

1
= r\26 ,—2d ¢\ 2D di ’
<?> t (|xfxo|> 7

N

IN

A\

(4.15)

2
B
|-
§ >
=
+
—
—
O\
g
[V
o
N
S
I3
[
B
|
IR
a
+
<,

Thus, integrating over (B**)¢,
o
Jo 85 | e 5
For I5(x) we have |z' — xo| < r < |z — x0|/2 < t, so that Proposition 2.9 gives

, B
Q') = Quly o) S (E52) e,

Thus, for z € (B***)¢ a similar argument to that presented above leads to

1
‘x I |§ d de dydt 2
[2(1:) S /x xo/lac y|<t / -t |B|> td+1

1

/ / 26 t 2d dydt
lz— IO\ lo— y|<t td+1
1
5 dt ’ N 7
" Ia:—;co\ $2d+26+1 - |ZE _ x0|d+5'

Integrating over (B***)¢ one gets the required bound.
We now turn to the estimate of f(B***)C Sog(z) dx when r is comparable to p(zo).

IN

12

As before, we shall estimate pointwise Sgg(z), for each x € (B**)°. Proceeding as

n (4.14), we break up the integral in ¢ > 0 defining Spg(z) into three parts

|z—xg|

SQg($)2:/Og--~+/S4--~+/:;0---:I{(x)—i—lé(x)—i-lé(x).
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In the first integrand we have |z’ — y| ~ |x — x|, so applying the estimate (a) of
Proposition 2.9, we get

7,2

I/ 6 B*** c'

For the second term we use the extra decay in time, together with |2/ —y| ~ |z — x|
and p(z') ~ p(xg) ~ 1 (see Propositions 2.1 and 2.9):

|z— JCol

, t*d(l—l—\x—xo\/t)*(d*M"Ll) d_z’ Qdydt
[2($) S / /xy|<t / (1+t/p(z0)) M |B|> -+

_ |z —a0] (-2 . 2(d+M+1) o) 2M @
~ - |z—x0| t t
2
F2(M+1) 2ozl , dt 2M
= |z — xo|2(d+M+1) / + = |z — o 2@HM)

Finally, for the last term the extra decay just gives

_ M ae \ 2 dydt
hw) = / ([ eta e )
20 S |e—yl<t
< t*2d (P(xo))QM ﬁ
~ [z—=q] t t
4
p($0)2M N T2M
T o — 2@ T g — g2

So, in the three cases we obtain bounds that lead to f(B***)C Sog(z)dx < 1. This

completes the proof of Lemma 4.13. .

To conclude with the proof of Theorem 1.14, it only remains to justify the identity
in Lemma 4.10. We observe that such identity is clearly valid when f,g € L*(RY)
(see (4.4)), while we must justify the convergence of the integrals in the case when
f e LY(1+]z])~“*dx) and g is an H}:-atom. As in the classical case (when V = 0)
this requires further estimates of the kernels (cf. [9]). A sketch of the modifications
needed in this situation is the following.

PROOF of Lemma 4.10:  First one observes that, by Lemmas 4.12 and 4.13, and

the dominated convergence theorem, the following integral is absolutely convergent
and satisfies

dxdt
—~

e—0
N—oo

1:/@1 F(a, )G 1) 0 = tim 6N/Rd Quf(x) Qug()
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Next, a formal use of Fubini’s theorem allows us to write, for each ¢ > 0,

» Qi f(7) Qrg(x) dw:/ Qt(w y)f(y) Qig(x) dydr = Rdf( y) Qg(y) dy,

Rd
and, consequently, again formally
) N ——— dt
I = lim Fly) Qig(y)dy| —
€ R4

e—0
N —o0

- i [ |[ @Y (4.16)

e—0
N —oo

The absolute integrability justifying these steps is a simple exercise, which combines
the hypothesis f € L'((1 + |z|)~@+Ydz), the kernel decay |Q.(z,y)| < t~4(1 4 |z —
y|/t)™", and the following general estimate on H }-atoms:

LEMMA 4.17 Let ¢(x,y) be a function satisfying

—N
(e y)l < ex (14 75 +55) 0+ lz =yl (4.18)

p(y)

Then, for every Hp-atom g supported by B,(yo), there is Cy,, > 0 such that

M,g(x) = sup

t>0

[ ate i) dn] < G141 0, weRL (119
R4
PROOF: There is no loss of generality in assuming that r < 2p(yg). Obviously,

| [tz o) dy] < Clal~. (4.20)

If x ¢ Ba.(yo) then for y € B,(yo) we have |x — y| ~ |z — yol|, p(yo) ~ p(y). Hence,
applying (4.18), we get

(/qt(x,y)g(y) dy‘ < Cyllgll <1+@)‘NM(1+ |x—y0|>—N

t

=N (o)™ (4.21)

Now (4.19) easily follows from (4.20) and (4.21).

< Cpylz—1yo

a

Finally, in order to complete proof of the lemma we also need to justify the estimate

sup
e,N>0

N dt
[ @] < ol @ yert  am




17

Indeed, such bound allows passing the limit inside the integral in (4.16), and conclude

from (4.2) that
1 S

I=g Rdf(y)g(y) dy.

For the justification of (4.22) one defines a new kernel H.(z,y) as the one associated
to the operator [~ Q%g(y) % and observes that

‘/gN Qrg(y) &

So, it suffices to verify that H.(x,y) satisfies the assumption of Lemma 4.17. But
this is an immediate consequence of the same properties for the kernels Tj2(z,y) and
Qi(z,y), due to the identity

HE(*ruy) = % (T252($,y) - Q\/is(x7y))'

The verification of this last identity is left to the reader, which may use spectral
techniques as in the proof of (4.2). This establishes Lemma 4.10, and completes the
proof of Theorem 1.14.

H.(z,9)g(y) dy| + sup| | Hy(w,p)g(y) dy|

< sup (
N>0! JRd

e>0 Rd

a

5 Operators acting on BMO,

5.1 The Hardy-Littlewood maximal operator

Bennet, DeVore and Sharpley [1] proved that for a function f € BMO, the (un-
centered) Hardy-Littlewood mazimal function M f(x) (see (1.6)) is either identically
infinity or belongs to BMO, with norm | M f|smo < C| fllsmo- The first situation
occurs when f grows at infinity, e.g. with f(z) =log, |z|.

Below we show that M f(x) is always well-defined when f € BM O/, and moreover,
that M preserves this space. This extends some known properties about the action
of M over the local bmo space of Goldberg.

THEOREM 5.1 The operator M maps BMO, into BMO,. Moreover, there exists
C > 0 such that | M fllsmo, < C\fllsymo, for all f € BMO,.

PROOF: We first show that, for every f € BMO, the maximal function is finite
a.e. This is a consequence of the following lemma.

LEMMA 5.2 Given f € BMO;, o € R? and any Cy > 1, then M f(z) < oo at
almost every x € By = B(xq, Cop(xo)).-
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PROOF: Let us split f = f; + fo, with fi(z) = f(x)XBS. Since every function

in BMO¢ is locally integrable, we have M fi(z) < oo, for a.e.x € R% To bound
the second term, we use that supp fo C (Bg)°. Then, we may compute M fo(x) at
x € By by just considering the integrals over balls B 3 z for which B N (Bg)¢ # 0,

and therefore with diameter 2r > Cyp(zg). Thus, we have B C By.(z9) = B, and

consequently, by the definition of BM O, (observe that r(B) = 4r > p(zy))

d

1 / 4
= | |)|dy < ——F— lf(y)|dy < cllfllBmo.- (5.3
1B| J5'"* |Bar (0)| J v (20) - 0

~—

We turn to the boundedness of M in BMO,. By invoking the results in [1] and
the definition of BM O, it suffices to prove that for every B = B,.(x¢) with r > p(zo)

1
5 /B M) dy < O s, (5.4)

To show this, we split f = fi + fo, with fi(z) = f(x)X . - From (5.3) it follows that
M fo(z) < || fllsmo, for all z € B, so (5.4) follows with f replaced by fo. For the
other term, we may use the boundedness of M in L? to obtain:

w1 Ll < (g [ eaora)”
< (g [ 116Fa)" < Iflovo

where in the last inequality we have used Corollary 3.13.

5.2 Semigroup maximal functions

In our setting, we are also interested in maximal functions arising from the semigroup
T;. These are more naturally related with the definition of our spaces (recall the
definition of H} in §1), and give us information about the solution to the evolution
equation in (4.8).

More precisely, we shall consider 7* and P*, that is, the “heat” and the “Poisson”
maximal functions related to £ (see (1.7) and (1.8)). We observe that, in general,
these maximal operators are not bounded in the classical BMO(R?). E.g., when
V(x) = |x|* (Hermite operator), then 7*1(z) is not a constant function, and so 7*
cannot be bounded in BMO (see [11]). Our next result shows that the natural space
for boundedness of 7* and P* is BM Oy .

THEOREM 5.5 Let f € BMOy. Then T*f and P*f belong to BMO/, and more-
over, there exists C' > 0 such that

|7 fllBrro, + IP* fllBro, < CllfllBumo,-
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For a fixed ball B C R? we say that f € BMO(B) if

Iflwom = s s [ 1)~ fooldy (56)
Br(z)CB |B ’
~  sup 1nf— |f(y) — | dy.
B, (@)cB <C | Br ()| /B, @)
is finite.
PROOF of Theorem 5.5: We will use systematically the following elementary
lemma.

LEMMA 5.7 Let h € BMO(Q3) and g1 and go be functions in L. If f is any
measurable function satisfying

h—g <f<h+gs ae.

then f € BMO(Qy) and || fl|saos) < 1Pl saroey) + max{|lgillze; llg2]l o }-

We shall consider first the operator 7*. By the definition of BM O, and Proposi-
tion 2.1 it suffices to prove the following: there exists a constant C' > 0 such that for
every fixed Qy € Q (see Proposition 2.14), we have

. 1
(l)m o

(i) 7" fllemoy < CIfllBmo,-

Observe that (i) implies the almost everywhere finiteness of the operator. This
part is immediate from Lemma 5.2 and (5.4), since 7*f(z) < sup,q|f] * he(z) <
M| f|(x), and therefore

77 f(x)| de < C|fllByo,;

1 o 1
o7 [T f@)lde 5 M| f|(z)dz < C|[fllBrmo,-
We just need to show (ii), which we shall split into three different estimates:

s [Lf@)|,_ < Cllfllson (5.8)

t2>p(zk)?
sup|(Ty = ) (@) < Clfllaor, (5.9)

t<p(zx)? Le=(QF)

sup |T,f(z H < C , 5.10
tSp(;tIZ)2| if ()] o 1fllBaro, (5.10)

where T,f = f % hy. It is not difficult to verify that (ii) follows from these three
estimates by using Lemma 5.7.
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The proof of each of them requires a different use of the decay and the smoothness
of the kernels. For instance, (5.8) follows easily from (2.5). More precisely,

Ti@] 5 [ @I =l VD dy

1 / .1 1
< L )l dy + +—] F(y)] dy.
2 Jlomyi<vi ;WN £/ |lz—y|~29 V1

Now, for j > 0, we have 271/t > p(:ck) ~ p( ) for every x € @, thus

1
[ w5 e [ il < 2w
je—yl~2I Vi [Byvi(@)] JB,, s
Therefore,
sup [Tif(z)] S 22] v lflBrro, = Cllfllaro,- (5.11)
t>p(zi)? j=0

To prove (5.9) we shall need the following estimates on the difference k; — hy,
which can be found in [3].

LEMMA 5.12 (See Proposition 2.16 in [3].) There ezists a nonnegative Schwartz
class function w in R? so that

wi(z —y), for vVt < p(y)

y), elsewhere,

(%wam,MﬁSM)
e~ y) ~ al.y) < (t)é (5.13)

where wy(z — y) = t=?w((x — y)/V1).

Going back to (5.9), since p(x) ~ p(xy) for all z € Qf, and in this case vt < p(x4),
we can use Lemma 5.12 and proceed as in the previous estimate to obtain:

Kﬂ—ﬂﬁwlét@<£OQMvawwy
S(W)Eyf Yot [ Il

Qjﬁ(x)
5
_ Vit —j(N—d) 1
- (p(m)( > 2 —BQM@)/B. |f(y)|dy
1§2j§&\/§> 27 vilZ

+ ) 2j(Nd)”J':HBMOg)-

i P(zk)
20> 27k
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Now, by Lemma 3.14, for j such that 1 < 27/ < ”(jf), we have

e < plz) <« p(zy)
'Bﬂﬁ(”‘)'/B. ()lf(y)\dy S 1+log £ < 1+log 2458
27 VE\T

Therefore,

)
@~ Tys) 5 () (1+105258) ||f||BMO.cZQ -0 < | Fllprro.

Finally, let us sketch the proof of (5.10). This seems to be a classical result,
following from a vector-valued singular integral theory. Consider B = B,(z) C Q)
and split f as

f=~fe)Xp + [(f = FB)X (5e) + [B] = fi + fo. (5.14)

Denote ||th(:v)||goo( = SUD;< ()2 |Tt ()| and choose cp = ||th2(l’0)||goo(t), which is
a finite real number by (5.4). Then,

|B|/B’ sup |Tt ) —CB‘dl’< |B|/ HTt ﬁfQ(SEO)Hgoo(t)dSL’

t<p(zy)?

< —/ IIﬁfl(fU)Hew(t)dfCJr—/ IT: fo(@) = Ti fo(zo)lle= oy dz = T + I1.
1Bl J5 1B| /5

For the first integral, observe that by the L? boundedness of SUP< ()2 T, f (z)], we
have

1 1/2
I< (\B! |f(x) — fBde) < O\ flsso < Cllf s,
B*

For the second integral, the standard arguments of singular integrals and the smooth-
ness of the kernel will give:

) ) N
E/B||th2(g;)—T,:fz(t%o)lleoo(t) dx

(he(z,y) — he(o,y))(f(y) — fB) dy

dz < C||f|[smo-
£°(t)

(B*)°
It should be observed that in this last step the constant C' is independent of Q).

We now turn to the Poisson maximal function P* f, for which we indicate the main
differences with respect to the previous proof. As before, it is enough to prove (i)—(ii)

with 7* replaced by P*. By subordination we have P* f(x) < 7* f(x). Hnence there is
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no problem in verifying (i). It thus suffices to prove that |P* f||zro(q:) < C|lfllBao,
for any fixed Qr € Q. Set p = p(xy). Observe that

Pif(z) =P f(x) <P f(x) < Piflz) + Py f(x),

where
Pif(x) = su _ Ti2 /a0,
1 f(r) tZIO) t2/4p\/_t/4f(>
2/4p? -

Psf(x) = sup

>0

71152/4uf( )

o Vu

Moreover, |P; f(z)| < supys 2 |Tsf ()], which by (5.8), belongs to L=(Q}). An ap-
plication of Lemma 5.7 reduces matters to show that P; f is in BMO(Q}). We shall
repeat this argument two more times. Indeed

Prif(x) = Piof(x) < Pif(z) < Pif(z) + P f(x),

where
. et
Pif(z) = sup / —= Tz jauf () du
120 | Ji2/4p2 \/_
Piof(z) = sup (Tt2/4u — Tyoyau) f(z) dul.
t>0 t2/4p? \/_

Now Py f(x) < Csupyc,iz [(Ts — T,)f(x)|, which belongs to L*® by (5.9). Next for
the remaining term Py, f(z) we have

Prif(x) = Priof(z) < Prif(x) < Prf(x) + Phof(z),

where

o0 —u

Piaf(z) = sup \/—Tt2/4uf( z) dx

t>0

0
t2/4p?

Priaf(x) = sup \/—Tt2/4uf(>

t>0

0

Again, |Pf,f(7)] < supgs e T, f(z)| which is bounded by the same reasoning as
n (5.8). Thus, we have reduced matters to show that Pj;; f, which is the classical
Poisson maximal function, belongs to BMO(Q}). This will again follow from classical
arguments of vector-valued singular integrals. Skipping these details, the proof of the

theorem is now complete.
O
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REMARK 5.18 It is interesting to observe that an analog of the previous theorem
holds as well for the non-tangential maximal operator

T f(x) = sup |Tif(y)l, =eR”

|lz—y|<t

In fact, the reader can easily check that the same proof above goes along in this more
general situation.

5.3 Fractional integrals

In this section we shall be interested in the behavior of the fractional integral operator
T, = L7 (see (1.10)).

Recall that in the classical setting I, = (—A)~%/2 maps LP(R9) into L¢(R?) for
0 <a<dand 0 < p < q < oo with 1/p = 1/q — a/d. Moreover, there is a
dichotomy in the limiting case ¢ = oo: for every f € L¥%(R%), either I,f = oo
or I.f € BMO(RY) with || Iofllzrmo < C||fllasa(waey (see page 221 in [10]). Simple
examples like f(x) = m show that I, f may be identically oo.

Our next result shows that such pathological behaviors cannot happen to the
operator Z,, when the potential V' # 0. Moreover, the natural target space is now

BMO:¢.

THEOREM 5.19 For all 0 < a < d, the operator I, is bounded from LY*(R?) into
BMOg, that is, there is a constant C' > 0 so that

\ZofllBMmo, < C|fllzasa,  for every f € Ld/o‘(Rd).

PROOF: The proof follows the same scheme as in the previous section. We shall
try to establish the analogs of (i)-(ii) with 7* replaced by Z,. To see (i), let us split

T.f(z) = /p(x)ZTf(x)to‘/21dt+/oo Tof (2)t?7Vdt = I f (z) + Lof (). (5.20)
a 0 t ()2 t 1 2 . .

For the first integral, we use the trivial estimate

p(x)?
()] < / T (@)t dt < p(x)® M f|(x). (5.21)

For the second integral, the extra decay in time of k;(z,y) gives

o < o [T [ (80) e alslaveeta

S MA@ o) [ PN e Mlf@). (522

p(x)
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Thus, combining these two estimates, and using p(z) ~ p(zy) if * € Q, we obtain

1
Qx| Ja,

where in the last two steps we used Holder’s inequality and the boundedness of M in
L/,

1
Tof@)dr S e / Mf() de < M F e S 1F e

We pass now to prove the analog of assertion (ii), that is, |Zof|lBmor) <

C|lfllBmo,- As before, the strategy is based on an iterative use of Lemma 5.7.
Splitting Z,f = L f(x) + Iof(x) as in (5.20), we shall show that I, f € BMO(Q})
and Irf € L*(Q}), with norms controlled by || f|| 4/«. For the second term we must
slightly refine the argument in (5.22): if x € @} then

_lz—yl? _ _
[Lf(z)] S p(ar) /( /dtda @ | f(y)|dyt= N2 dt.
p(zk R

Now, observe that

/ 4 (d=a)/2 _|904—y\2’f( Wy < i 9i(d—a) 60’22j/ Fld
(& ct —_——
o yey < s (2]\/¥)d—a lo—gl g y)lay

Vi
1
sup

Sup W/Brm [f ()l dy =: Mo f(2),

where M, denotes the fractional mazimal operator, which trivially maps L%(R%)
into L°>°(R%). Thus,

L@ S pa) Mt @) [ NS e (529
p(xs

To deal with I f we make some further splittings:

p(z)? p(zr)? -
Ilf:/ thta/z—ldtJr/ (T, = Ty ft** dt = L f + T f.
0 0

A new use of Lemma 5.12, Proposition 2.1, and reasoning with a similar estimate to
that presented above gives

\Laof(2)] < /(xk /Rd( > — )| f ()| dyt*/> " dt

p(xy)? 756/2 1
——5 Mo f(z)dt S || fllLasega
/0 p(x)’ FRED

for all x € Q5.
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It remains to control the term Iy, f, for which we must show that, given any ball
B = B,(z0) C @} there is a constant c¢p so that

ﬁ/ | 11 f(x) = eplde < C|| fl| pasaga).- (5.24)
B

This is elementary to verify with ¢g = 0 when the radius of the ball B is comparable
to p(zx). Indeed, in this case Holder’s and Minkowski’s inequalities give

a/d
ﬁ/ [l f(2)de < (ﬁ/ ]Illf(x)]d/o‘dx)
B B
. ple)?® -
= B“/d/ T fllarat 7t dt S | fllpare (5.25)
0

Suppose instead we are given a ball with r < p(z). In this case we must further
split the integral defining I1; f(x) into two new pieces:
r? 1 p(zk)? 1
hf@) = [ D@t [ D@ d = (@) + i )

0 r2

For the first piece we can repeat the previous calculation to obtain ﬁ [ f ()] de <

| f|lzasa. For the second piece we write f = fi + fo with fi(x) = f(x)X g.(2), and
choose cg = I112f2(x) (which is a finite number for a.e.xy). Then,

%/ |1112f(I)—CB|dl'§ ﬁ/ |1112f1($)|dx+|T£|/ |1112f2<x)—1112f2(1‘0)|dl’.
B B B

When z € B, the first integrand is uniformly bounded by

p(z)?
Liofi(2)] < / /t

|x— y\<37"

SRINION ‘LtW“WlﬁgumWw

(y)| dy t**~ L at

For the second integrand we use smoothness

plax)?
Laa f(z) — Lina f( 960 / / td/2

plz)?
r2 Z td/2 |xo—y|~27r

Jj=1

_Jz— y\ \xo yl

f(y)| dyt*/*~ at

le—y|? \Lo yl
e 4  —

|f(y)| dy />~ dt.




26

By the mean value theorem (and the fact |x — x| < r < v/t) we have:

/l,vro—y|w2jr

lo—y|? |zo yl

_ T—x —c(277r)?
e f)ldy 5 Egpleern il
27 (L0

< lz==d (2jr>d—oz Maf(x())
~oVE (42BN

for a sufficiently large integer N. Hence,

2 o]

p(zk) jpyd—a o
‘[112f(3§') — [112f(330)| 5 /2 d/2+a/2 1 |:Z 1122174/\[ i| | \/ZO| diMaf(l“o) )

J=1

Breaking the inner sum into two parts it is easy to see that it is bounded by a constant
times (v/1)%"®. Therefore

|2 f (2) = Tiaf (20) | S Mo f (o) |z — o /:O 2 AL S Mof(zo) S Il pave-

From here it is immediate that |—;| [ T2 f(2) = Lz f(w0)| dz < || f|| pase, establishing

the assertion (ii).
O

5.4 Square functions

Consider the following square function associated with L:

st = ([ e rr )" (5.26)

This is just a multiple of the square function sq f(x) defined in (1.9).

THEOREM 5.27 There exists a constant C' > 0 such that

Is()syvo. < CllfllBmo, - (5.28)

PROOF: Fix f € BMO, and @, € Q with center z. It is not difficult to prove

using (2.11) that
1

A |s(f)(@)| dz S || fll Baro, - (5.29)
|Qk‘ Qk

In fact, if we split

p(xy)? 00
S(N@ = [s1f @) + |saf (@) = / 140 () & 4 / 14 ()2

(zr)?
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then (5.29) for s;(f) was shown in (4.5). The second term so(f)(z) has a uniform
bound when x € Q. In fact, by using (a) in Proposition 2.9 and the same reasoning
as in (5.11), we get

> o\N ,_qra _cle=ul® 2
N A R T
ply

2
S [ sw 11 h@)] S 1 o,

s>p(xy)?

To complete the proof, it suffices to show that

[s(f) (@)l Braocqr) < CllfllBmo, (5.30)

with some constant C' independent Q. Decompose f = f; + f2 as in (5.14) and set
(wr)? |, dT, a2 s 1o :
cg = < PRtk |t St folx )|27> , which is a finite number. Then

> dr, AN plo)” df, dT, A
st —esl < (f  WBp@PL) 4 ([ ) — 1D fowo) )
plzg)? 0
p(zr)? ~ 1/2
([ 1@ -t @) P) T = Si0) + Sale) + Sy(o)
0
One can easily check using standard arguments combined with (2.11) that
1
57 [ (510 + $:(0) e 5 o (531
B
The proof of (5.30) will be finished if we show that
53(.17) S HfHBMog for x € B. (532)
The perturbation formula implies
ar, dT,  ~ V2 d ~ L. dT,
— — — =T VT, T, Tsd T,V —ds. .
di di t/QV t/2+/0 (d t— S)V S+//2 t SV ds S (5 33)

Thus (5.32) will be established if we verify that

p(xy)? _ ) p(zi)? t/2 d ~ 2
| v tas@pe s [T ] [ aGTeovns@a 4 6
0 0 0

pzy)? t ar 2
+ / | / (T, V 42 f () ds
0 t/2

The following lemma is a direct consequence of the definition of BM O, and Lemma
3.14

&= (@) + S5 (x) + S5 () S 13m0,




28

LEMMA 5.35 Let q/(x,y) be a function satisfying (4.18). Then, for every N there
18 a constant C'y > 0 such that

@ tNTY
| [atens@an] < Cull o (1102, 42) (14 25) T 630)
Hence, from Propositions 2.4 and 2.1 we conclude
/ plee)” () 2dt 9
Si@ 5 [ | [ thate Vi) (14 108, 82) def T v,
0
p(zk)?
< / ‘ / theja(z, 2)V(2) (5.37)
0
x T—2z liL 2 dt
><<1+log+ [£) (1 4 koA vE) +’“0])dz = £ B0,

By using (2.12) and the fact that p(x) ~ p(zy) for z € B, we have

p(zr)? 5 2 dt
si@s [ [(35) (14108 2) [ F 1Mo, < 1Fuo,
0
The estimates for 4 (z) and SY’(x) stated in (5.34) could be proved by applying the

same arguments and the bounds for k¢(z,y) and d%k:s(a:, y) established in Section 2|:l
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