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Abstract

Besov spaces of holomorphic functions in tubes over cones have
been recently defined by Békollé et al. in [9]. In this paper we show
that Besov p-seminorms are invariant under conformal transforma-
tions of the domain when n/r is an integer, at least in the range
2− r/n < p ≤ ∞.

1 Introduction

In the upper half plane H =
{
z = x + iy ∈ C : y > 0

}
, when 1 < p ≤ ∞,

the analytic Besov p-space, Bp(H), consists of all holomorphic functions f(z)
so that

‖f‖Bp :=
∥∥∥y f ′(z)

∥∥∥
Lp(H,dz/y2)

< ∞.

An easy computation shows that these seminorms are Möbius invariant,
that is,

‖f ◦ Φ‖Bp = ‖f‖Bp , ∀ Φ ∈ Aut (H). (1.1)

When 0 < p ≤ 1, Besov spaces are defined by the condition

∥∥ymf (m)
∥∥

Lp(H,dz/y2)
< ∞,

where m is the smallest integer so that m > 1/p. In this case there is also
an equivalent seminorm so that (1.1) holds, although the proof is harder
(see [4] or [14, Thm 5.18]).

This family of analytic Besov spaces (actually in the unit disc setting)
was extensively studied in the 80’s by Arazy, Fisher and Peetre [4, 5, 6, 7]
(see also the text by K. Zhu [14]). The Möbius invariance of Bp-norms is a
relevant property which is related with a number of remarkable results, such
as the characterization of (big) Hankel operators belonging to the Schatten
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p-class [7]. Another interesting fact says that all Möbius invariant semi-
Banach spaces X of analytic functions must necessarily satisfy B1 ↪→ X ↪→
B∞, while B2 is the only semi-Hilbert space with such property (see eg [11]).

In higher dimensions, the right setting for these questions is the class of
bounded symmetric domains D ⊂ Cn (or their unbounded realizations), in
which case the rank r of the domain plays a role. When D is the unit ball
of Cn (ie the case of rank 1), invariant Besov spaces of analytic functions
are quite well understood; see eg [12] or [16]. For higher ranks, however,
the picture is not yet complete. There is a general theory of analytic Besov
spaces in bounded symmetric domains developed by K. Zhu [15], but Möbius
invariance is not considered there; in fact it is left as an open question in
[17, p. 300]. A different approach is taken by Arazy in [1, 2, 3], which
in the special case of bounded symmetric domains of tube type defines a
family of Besov p-spaces which are indeed Aut(D)-invariant when n

r
∈ N

and 2 − r
n

< p ≤ ∞ (see [3, p. 119], or section 4 below). The condition
n
r
∈ N turns out to be necessary, while the cases 0 < p ≤ 2 − r/n, that

require a different definition, seem to be still open.

In this paper we are interested in Möbius invariance of Besov spaces in
tube domains over cones, that is the unbounded realization of the domains
considered by Arazy. More precisely, TΩ =

{
z = x + iy ∈ Cn : y ∈ Ω

}
,

where Ω is an irreducible symmetric cone in Rn. Analytic Besov spaces
in TΩ have recently been introduced in [9] in relation with a difficult and
still open problem about boundedness of Bergman projections (see also [8]).
Namely, Bp(TΩ) consists of all functions F ∈ H(TΩ) so that

‖F‖Bp(TΩ) =
∥∥∆(y)m 2mF (z)

∥∥
Lp(TΩ,dλ(z))

< ∞, (1.2)

where m is a sufficiently large integer, and dλ(z), ∆(y) and 2 denote re-
spectively the Aut(TΩ)-invariant measure in TΩ, the determinant function
of the cone, and the generalized wave operator 2 = ∆( ∂

∂z
) (see §2 for pre-

cise definitions). One of the non-trivial questions studied in [9] concerns the
smallest number of derivatives m so that the Bp-seminorms in (1.2) are all
equivalent.

The purpose of this note is to give a proof of the Möbius invariance of
Bp(TΩ) spaces, at least in the same range considered by Arazy for bounded
domains. Rather than trying to transfer the result from the bounded setting
(which does not seem so straightforward to us), we have preferred to give
a direct proof in tube domains, based entirely on elementary properties of
symmetric cones from the text [10], and independent of the results in [2, 3].

THEOREM 1.3 Suppose that n
r
∈ N and 2 − r

n
< p ≤ ∞. Then the holo-

morphic Besov space Bp(TΩ) is invariant under conformal transformations
of the tube domain TΩ, that is

‖F ◦ Φ‖Bp = ‖F‖Bp , ∀ Φ ∈ Aut (TΩ). (1.4)

In (1.4) is understood that we use the Bp-seminorm defined in (1.2) with
m = n

r
, which is indeed an admissible exponent when p > 2 − r/n by the
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results in [9]. In §3 we also give explicit examples showing that n
r
∈ N is

a necessary condition for (1.4) (see Remark 3.11), but as in the bounded
setting we do not know yet whether Möbius invariance may hold in the
range 0 < p ≤ 2− r/n (except of course in the 1-dimensional case).

The proof of the theorem is mainly based on the explicit formula

2
n
r

[
F ◦ ϕ

]
(z) = Jϕ(z)

[
2

n
r F

]
(ϕ(z)), ϕ ∈ Aut (TΩ), (1.5)

which in the bounded setting is known as “intertwining formula” of Arazy,
ie when ϕ ∈ Aut(D) and D denotes the bounded realization of TΩ (see [2,
Theorem 6.4]). We could not find a reference for (1.5) in the unbounded
setting of TΩ, and for this reason we give a proof in Proposition 3.4 below
(which is different from Arazy’s). We remark that (1.5) is trivial for linear
transformations, so the main case becomes ϕ(z) = −z−1, for which the
identity takes the form

2
n
r

[
F (−z−1)

]
= ∆− 2n

r (z)
[
2

n
r F

]
(−z−1).

In §4 we show a variant of (1.5) with ϕ replaced by the Cayley transform
c, which maps conformally D into TΩ. As a consequence we obtain that
the Cayley transform actually induces an isometry between Bp(TΩ) and the
Besov space Bp(D) of Arazy. This gives a direct passage between the two
settings which may be of independent interest; see Theorem 4.1 below.

Acknowledgements: The author thanks Aline Bonami for many useful con-
versations on this topic. We also thank an anonymous referee for comments
which helped improving the presentation of this paper.

2 Definitions

We denote by TΩ = Rn + iΩ the tube domain in Cn based on a cone Ω,
which we assume irreducible and symmetric with respect to the usual inner
product (·|·) in Rn. We write r for the rank of Ω and ∆(y) for the associated
determinant function, as in the text [10].

Consider the (complex) differential operator 2 = ∆( ∂
∂z

) given by the
equality:

2 [e(z|ξ)] = ∆(ξ)e(z|ξ), z, ξ ∈ Cn. (2.1)

This is the usual derivative d
dz

when the rank is 1 (ie, in the upper half
plane), and the complex wave operator 2 = 1

4
(∂2

z1
− ∂2

z2
− . . . − ∂2

zn
) when

r = 2. Observe that 2 = ∆( ∂
∂x

) = ∆(1
i

∂
∂y

) when acting on holomorphic
functions in TΩ.

DEFINITION 2.2 For 1 ≤ p ≤ ∞, we say that a holomorphic function
F (z) in TΩ belongs to the Besov space Bp = Bp(TΩ) when

∥∥∆m(=m ·) 2mF
∥∥

Lp(TΩ,dλ)
< ∞, (2.3)
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where dλ = ∆− 2n
r (y)dz is the invariant measure under conformal transfor-

mations of TΩ, and m is the smallest integer such that

m > max
{
(2n

r
− 1)1

p
, (n

r
− 1)(1− 1

p
) + 1

p

}
. (2.4)

When p = ∞, we call B∞ the Bloch space of TΩ.

REMARK 2.5 It is shown in [9] that different integers m as in (2.4) lead
to equivalent seminorms in Bp. In this paper, we shall only consider the
case m = n

r
∈ N, that is we set

‖F‖Bp ≡
∥∥∆

n
r (=m ·) 2

n
r F

∥∥
Lp(TΩ,dλ)

, (2.6)

which in view of (2.4) forces the restriction 2− r
n

< p ≤ ∞. Thus, Bp(TΩ) is
the semi-Banach space defined by (2.6), which can be made into a Banach
space if we consider Bp/ ker 2

n
r .

Some additional notation

As in [10], we consider V = Rn with the Jordan algebra structure in-
duced by Ω, and denote by e its identity element. We shall write G(Ω) for
the group of linear invertible transformations of Rn which leave the cone Ω
invariant, and G for its identity component. It is well known that G acts
transitively on Ω, which may be identified with the Riemannian symmetric
space G/K, where K is the compact subgroup of elements of G which fix
e.

Below we shall use the following invariance property of ∆ and 2 under
g ∈ G(Ω):

∆(gy) = ∆(ge)∆(y), ∀ y ∈ Ω (2.7)

(see eg [10, p. 56]) and, for F holomorphic in TΩ,

2
[
F (g·)] = ∆(ge)

[
2F

]
(g·). (2.8)

The second formula follows from the first and the definition of 2, by writing
F (z) as a Fourier-Laplace integral.

3 Results

Let Aut(TΩ) denote the group of conformal transformations of the tube TΩ.
It is well known (see e.g. [10, Theorem X.5.6]) that this group is generated
by

(i) Real translations : z 7−→ z + u, where u ∈ Rn;

(ii) Linear transformations: z 7−→ gz, where g ∈ G(Ω);

(iii) Inversion: z 7−→ −z−1,

where z−1 is the usual Jordan algebra inverse. The goal of this section is to
prove the following:
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THEOREM 3.1 Assume n/r is an integer. Then, for all Φ ∈ Aut(TΩ) and
F ∈ H(TΩ) we have

∣∣∣∆n
r (=m z)

[
2

n
r (F ◦ Φ)

]
(z)

∣∣∣ =
∣∣∣∆n

r (=m (Φ(z))
[
2

n
r F

]
(Φ(z))

∣∣∣, z ∈ TΩ.

(3.2)

Theorem 1.3 is an immediate corollary of Theorem 3.1 and the definition
of Besov norm in (2.6), since

‖F ◦ Φ‖Bp =
∥∥∆

n
r (=m ·) 2

n
r [F ◦ Φ]

∥∥
Lp(TΩ,dλ)

=
∥∥∆

n
r (=m Φ(·)) [2

n
r F ] ◦ Φ]

∥∥
Lp(TΩ,dλ)

= ‖F‖Bp ,

where in the last equality we have changed variables and used the Aut(TΩ)-
invariance of dλ.

There are two special cases in which the identity (3.2) is easy to show,
even when n

r
is replaced by any integer k ≥ 1; namely, if Φ is a real trans-

lation or a linear transformation. Indeed, the first case is trivial since 2 is
translation invariant, while for Φ(z) = gz we have, from (2.7) and (2.8),

∆k(y)
[
2k(F ◦ g)

]
(z) = ∆k(gy) (2kF )(gz),

where z = x + iy. Thus, from now on we will assume Φ(z) = −z−1. We
also observe that, in this case, the analog of (3.2) with n

r
replaced by any

other integer does not hold for general F , as can be already seen in the 1
dimensional setting (see also Remark 3.11 below).

Below we shall prove the following identity for z ∈ TΩ

∆
n
r (=m z) 2

n
r

[
F (−z−1)

]
= ∆

n
r (=m (−z−1))

[
2

n
r F

]
(−z−1) |∆(z)| 2n

r /∆(z)
2n
r ,

(3.3)
which clearly implies (3.2) for Φ(z) = −z−1. Observe that

∆
(=m (−z−1)

)
= ∆

(
z̄−1−z−1

2i

)

= ∆(z̄)−1 ∆(−z)−1 ∆
(

z̄−z
2i

)
= |∆(z)|−2 ∆(=m z),

where the second equality is justified in [10, p. 341]. Thus (3.3) can equiv-
alently be formulated as follows.

PROPOSITION 3.4 If z ∈ TΩ then

2
n
r

[
F (−z−1)

]
= ∆− 2n

r (z)
[
2

n
r F

]
(−z−1). (3.5)

It suffices to prove (3.5) when F (z) is a holomorphic polynomial. To do so,
we use the decomposition of the vector space P of such polynomials as the
direct sum

⊕
m≥0Pm which is described in [10, Ch. XI]. To describe these

spaces, we denote by ∆m(y), m = (m1, . . . , mr) ∈ Cr, the generalized power
function of Ω

∆m(y) = ∆m1−m2
1 (y) · · ·∆mr−1−mr

r−1 (y) ∆mr
r (y), y ∈ Ω,
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where ∆k are the principal minors with respect to a fixed Jordan frame
{c1, . . . , cr}. This definition extends to ∆m(z/i) when z ∈ TΩ. By m ≥ 0
we mean that mi are integers so that m1 ≥ m2 ≥ . . . ≥ mr ≥ 0, in which
case ∆m(z/i) are holomorphic polynomials. The subspaces Pm are defined
by

Pm = span
{
∆m(g−1z) : g ∈ G(Ω)

}
.

The polynomials in Pm are homogeneous of degree |m| = m1 + . . . + mr.
Thus, we must show (3.5) for all F ∈ Pm and m ≥ 0, which will be

a consequence of the next two lemmas. Below we shall use the following
standard notation: given s = (s1, . . . , sr) ∈ Cr and k ∈ N,

(
s
)

k
= ΓΩ(s + k)/ΓΩ(s)

=
r∏

i=1

[(
si − (i−1)d

2

)(
si − (i−1)d

2
+ 1

) · · · (si − (i−1)d
2

+ k − 1
)]

(see [10, p. 129]). Here d is the integer satisfying n
r

= 1 + (r−1)d
2

, which
coincides with the dimension of the subspaces Vi,j, i < j, from the Peirce
decomposition of V .

LEMMA 3.6 Let m ≥ 0 and k a positive integer. Then for all p ∈ Pm

∆(z)k (2kp)(z) =
(
m + n

r
− k

)
k
p(z). (3.7)

PROOF: This is a particular case of [10, Lemma XIV.2.1], but we sketch
the proof for completeness. It suffices to prove the result for the generators
of Pm, p(z) = ∆m(gz) with g ∈ G(Ω). Since ∆k(z)2k is G(Ω)-invariant (by
(2.8)), we may assume that g is the identity. Then the result follows from
[10, Prop. VII.1.6].

2

LEMMA 3.8 Let m ≥ 0 and k a positive integer. Then for all p ∈ Pm

∆k(z)
[
2k(p ◦ Φ)

]
(z) = (−1)kr

(
m

)
k
p(Φ(z)), (3.9)

where Φ(z) = −z−1.

PROOF: We shall obtain the result from the following identity
∫

Ω

e−(y|ξ)p(ξ)∆α−n
r (ξ) dξ = ΓΩ(m + α) ∆−α(y) p(y−1), y ∈ Ω, (3.10)

valid for all complex numbers α with <(α) > n
r
− 1. The proof of (3.10) for

the generators of Pm is straightforward and can be found in [10, Lemma
XI.2.3]. The identity continues to hold when y is replaced by z/i with
z ∈ TΩ. Now, apply the operator 2k to both sides of (3.10) to obtain

2k
[
∆−α(z/i) p(iz−1)

]
= 1

ΓΩ(m+α)

∫

Ω

2k
z

[
ei(z|ξ)] p(ξ)∆α−n

r (ξ) dξ

= 1
ΓΩ(m+α)

∫

Ω

ei(z|ξ) ∆k(iξ) p(ξ)∆α−n
r (ξ) dξ

= (−1)kr ΓΩ(m+α+k)
ΓΩ(m+α)

∆−α(z/i) ∆−k(z) p(iz−1),
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where the last equality follows from a new application of (3.10). Since
ΓΩ(m+α+k)
ΓΩ(m+α)

= (m + α)k is a polynomial in α, the last expression is holomor-

phic in C (as a function of α), and hence also valid for α = 0. But in this
case we obtain precisely (3.9).

2

Combining the previous two lemmas with k = n
r
∈ N we see that, for

m ≥ 0 and p ∈ Pm

∆(z)
n
r 2

n
r

[
p(−z−1)

]
= (−1)n

(
m

)
n
r

p(−z−1)

= (−1)n ∆(−z−1)
n
r

[
2

n
r p

]
(−z−1),

which is the same as (3.5). This establishes Proposition 3.4, and hence
completes the proof of Theorem 3.1.

2

REMARK 3.11 A counterexample when n
r
6∈ N. We claim that there

are holomorphic functions F ∈ H(TΩ) with 2F = 0 and 2k[F ◦ Φ] 6≡ 0 for
all k ∈ N, where Φ(z) = −z−1. Thus, such functions F are null in Bp, while
F ◦Φ is not, so the seminorms in (2.3) cannot be Möbius invariant for any
0 < p ≤ ∞.

To see this, first observe that n
r

= 1 + (r−1)d
2

is not an integer only when
r is even and d is odd. That is when Ω = Λn, the light-cone in Rn with
n odd, or when Ω = Sym+(r,R), the cone of positive definite symmetric
matrices with r even (see [10, p. 97]). Consider the function

F (z) = ϕm(z) =

∫

K

∆m(kz) dk,

which is the only K-invariant polynomial in Pm (see e.g. [10, Ch. XI]).
Then, by Lemma 3.6,

2ϕm(z) =
[ r∏

i=1

(
mi + n

r
− 1− (i−1)d

2

) ]
ϕm(z)/∆(z),

which is equal to 0 if we choose mr = 0. On the other hand, by Lemma 3.8

[
2k(ϕm ◦ Φ)

]
(z) =

(
m

)
k
ϕm(−z−1) ∆−k(−z),

which is a non zero function when (m)k 6= 0. Let us see that we can
choose such an index m in each of the two cases described above. When
Ω = Sym+(r,R) and r is even, this happens e.g. if we set m1 = . . . =
mr−1 = r/2 and mr = 0. Thus the function F (z) = ϕm(z) satisfies 2F = 0
and 2k[F ◦ Φ] 6≡ 0 for all k ∈ N. When Ω = Λn with n odd, just choose
F (z) = ϕ(1,0)(z) = z1 (see [10, p. 236]).
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4 Besov spaces in the bounded realization of

TΩ

We denote by D the bounded symmetric domain of Cn which is mapped
conformally onto TΩ by the Cayley transform

c(w) = i(e + w)(e− w)−1, w ∈ D

(see [10, p. 190]). The Bergman kernel in D can be written as a constant
multiple of h(z, w)−2n/r for some polynomial h(z, w) (holomorphic in z and
antiholomorphic in w) such that h(x, x) = ∆(e − x2), x ∈ Rn (see eg [10,
p.201 and 262]). Denoting h(w) = h(w, w), then

dµ(w) = h(w)−2n/rdw

is an Aut(D)-invariant measure in D.
When n

r
∈ N and 2 − r

n
< p ≤ ∞, Arazy defines Besov spaces in D as

follows: G ∈ H(D) belongs to Bp(D) if

‖G‖Bp(D) ≡
∥∥∥h(w)

n
r

(
2

n
r G

)
(w)

∥∥∥
Lp(D,dµ)

< ∞

(see [1, 3]). When p = ∞ or p = 2 one obtains respectively, generalized
Bloch and Dirichlet spaces in D, the latter appearing also in the work of Z.
Yan [13]. Our main result in this section, which we shall deduce from the
identities in §3, is the following.

THEOREM 4.1 Let n
r
∈ N and 2− r

n
< p ≤ ∞. Then for every F ∈ H(TΩ)

we have∥∥∥ ∆
n
r (=m ·) 2

n
r F

∥∥∥
Lp(TΩ,dλ)

= 2n(1− 2
p
)
∥∥∥ h

n
r 2

n
r

(
F ◦ c

) ∥∥∥
Lp(D,dµ)

. (4.2)

In particular, F 7−→ F ◦c defines an isometric isomorphism between Bp(TΩ)
and Bp(D).

We shall use the following identity, which can be derived easily from
(3.5).

LEMMA 4.3 Let F ∈ H(TΩ). Then

2
n
r

[
F ◦ c

]
(w) = (2i)n ∆(e− w)−

2n
r

[
2

n
r F

]
(c(w)), w ∈ D. (4.4)

PROOF: Define the elementary transformations

τ(z) = z − ie, d(z) = −2iz, Φ(z) = −z−1,

and write c(w) = −ie + 2i(e− w)−1, so that

F ◦ c(w) =
[
F ◦ τ ◦ d ◦ Φ

]
(e− w), w ∈ D.

Using the identity in (3.5), the invariance of 2 under translations, and the
trivial property 2(G ◦ d) = (−2i)r(2G) ◦ d (since 2 is homogeneous of
degree r), we easily obtain (4.4).
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2

REMARK 4.5 Observe that (4.4) can also be written as

2
n
r

[
F ◦ c

]
(w) = Jc(w)

[
2

n
r F

]
(c(w)), w ∈ D,

where Jc(w) = (2i)n ∆(e − w)−
2n
r is the complex jacobian of the Cayley

transform; see [10, p.52 and p.278].

We shall also use the following identity, which can be found in the text
[10, p. 263]

h(w) = |∆(e− w)|2 ∆
(=m [c(w)]

)
, w ∈ D . (4.6)

Combining these two results, it is clear that for every w ∈ D we have

h(w)
n
r

∣∣2n
r

(
F ◦ c

)
(w)

∣∣ = 2n ∆
n
r

(=m [c(w)]
) ∣∣∣

(
2

n
r F

)
(c(w))

∣∣∣.

From here (4.2) follows easily, since the change of variables z = c(w) trans-
forms dλ(z) into 4nd µ(w) (again see [10, p.263]). This proves Theorem
4.1.

2
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Möbius invariant Hilbert spaces”. Illinois J. Math. 29 (1985), 449–462.

[6] J. Arazy, S. Fisher and J. Peetre Möbius invariant function spaces.
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