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Abstract. We present in printed form the contents of a survey lecture
given at the International Workshop in Classical Analysis and Applications
held in Yaoundé in December 2001. We intend to introduce, for a gen-
eral public of mathematicians and engineers, several approaches to image
compression based on linear and non-linear approximation. We compare
Fourier and wavelet-based methods, and present some of the mathematics
behind them. In particular we show how Sobolev and Besov spaces arise
naturally from this theory. The results are known in the literature, so we
have selected a suitable bibliography for further reading into the subject.

1. Introduction

In this lecture we shall consider the following general problem arising in
signal processing.

The signal compression problem. Given a signal f , which typically
belongs to a Hilbert space H, find an “approximated representation” fM of f
with the following three conditions:

1. The signal fM is given by a fixed number of coefficients M ;
2. There is a known control of the error: ε[M ] = ‖f − fM‖;
3. There is a fast algorithm to produce fM .

In applications, fM can be seen as a “compressed version” of the original
signal f , from which we have removed the less essential information in order
to speed up transmissions or reduce storage memory. Understanding the in-
terplay between “quality” of the compressed signal and number of coefficients
employed is the main point in this theory.

Some practical situations where this problem arises are, for instance, the
coding of sound signals for cellular telephones or music for CD’s, digitalizing
pictures to store in computers, or compressing video sequences for real time
transmission via Internet. In these cases, f could correspond to an electric
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voltage (associated, e.g., with an acoustic pressure) varying in time t > 0, or
to a light intensity field which varies at every point (x, y) ∈ R2. In mathemat-
ical problems, f could also be the (unknown) solution to a PDE and fM an
approximation by a certain numerical method. In all these cases it is important
that the compressed signal fM is a faithful representation of the original f , for
which often we do not know a precise expression or this cannot be measured
in the whole continuous range of space.

In this lecture we shall present two approaches to this problem based on
the orthogonal structure of Hilbert spaces: the so-called linear and non-linear
approximation methods. We shall describe these methods with Fourier and
wavelet bases, and see the different roles played in each case by Sobolev and
Besov spaces. We are mostly following the references [5, 1], with scattered
results from other sources. We also refer to [6] for a much wider perspective
on the mathematics underlying image processing.

2. Mathematical setting

A natural mathematical model for the previous problem considers the signal
f as an element of a Hilbert space H. Typically, H is taken to be L2(Rd),
L2[0, N ]d or `2(Nd), depending on the kind of application. For instance, im-
ages from real life may be seen as functions f(x, y) which correspond to light
intensity fields in [0, 1]2. We explain briefly how these can be discretized to be
manipulated and stored in computers (we follow [1, p. 324]).

EXAMPLE 2.1. : A mathematical model for images.

First one notices that the intensity function f(x, y) associated with an image
cannot in general be measured at all points 0 ≤ x, y ≤ 1. In practice, a
measuring device (a photometer) averages the light intensity over small squares
distributed dyadically along the picture frame [0, 1]2. So if N is large (typically,
N ≥ 8), we can codify the image as a sequence of 22N coefficients:

(2.2) pk = p
(N)
k =

1

|IN,k|

∫ ∫
IN,k

f(x, y) dxdy, 0 ≤ k1, k2 < 2N ,

where IN,k denotes the dyadic square [ k1
2N ,

k1+1
2N ] × [ k2

2N ,
k2+1
2N ]. These squares

are usually called pixels (or picture elements) located at position 2−Nk, and
correspond in practice to the number of “dots” that form a computer screen.
To each of them we must associate a single number pk (typically between 0
and 28), which represents the “grey level” of the picture at that point. In this
way we have converted the image into a sequence of “bits” which can be stored
and processed by computers.

For the theoretical model we still wish to see the image as a concrete function
corresponding to the collection of observed pixels. One does this by considering
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a sequence {φN,k} of real functions supported in IN,k, and constructing the so-
called observed image:

(2.3) f (o)(x) =
∑
k

pk φN,k(x).

Typically, φN,k(x) = φ(2Nx− k), for a fixed function φ, which can be chosen
simply as χ[0,1]2 , or replaced by smoother versions such as splines or “scaling

functions”. We observe that for large N , f (o) is an almost indistinguishable
copy of f , and thus can be identified for mathematical purposes with the orig-
inal image. The compression problem then consists in representing f (o) with
a much smaller amount of coefficients without loosing the visual resemblance
with the original f .

Continuing with the abstract framework, let H be a Hilbert space and
{ej}∞j=1 a fixed orthonormal basis. Then, every f ∈ H can be expanded as
f =

∑∞
j=1 cjej, where cj = 〈f, ej〉 are the basis coefficients. There are two

standard ways of constructing an approximating signal fM , by keeping only
M basis coefficients:

1. The linear approximation method. Corresponds to minimizing the func-
tional

‖f −
M∑
j=1

ajej‖, over all a1, . . . , aM ∈ C.

For an orthonormal basis {ej}, the minimizer is given by fM =
∑M

j=1〈f, ej〉ej,
i.e., fM is the orthogonal projection of f over VM := span{e1, . . . , eM}.

2. The non-linear approximation method. Corresponds to minimizing

‖f −
∑
λ∈Λ

aλeλ‖, over all aλ ∈ C

and all sets of indices Λ ⊂ Z+ such that Card Λ ≤ M . When {ej} is an

orthonormal basis, the minimizer is given by fM =
∑M

k=1〈f, ejk〉ejk , where we
have rearranged non-increasingly the coefficients

|〈 f , ej1 〉| ≥ |〈 f , ej2 〉| ≥ . . .

The three main questions which one poses at this point are the following:

A. Find “natural bases” to represent a typical applied signal, with the
property that the approximation error is as small as possible.

B. Characterize in such bases the set of all signals with a given rate of
approximation, say ε[M ] = O(M−α).

C. Find efficient algorithms to compute numerically fM , or store it with
minimal information.
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We shall discuss about the first two problems in the next sections, referring
for the last one to the specialized literature. More precisely, we present the
situation with Fourier and wavelet bases, compare their different roles, and
derive the function spaces naturally related to question (B).

3. Linear Fourier approximation and Sobolev spaces

The results in this section are taken from [5, Ch.9.1]. To make simpler the
exposition, we assume d = 1. Consider the Hilbert space H = L2[0, N ], and
its associated Fourier basis

em(t) = 1√
N
e2πimt/N , m ∈ Z.

This is an orthonormal basis for L2[0, N ], so that any function f can be rep-
resented in terms of its Fourier series :

f(t) =
∑
m∈Z

〈 f , em 〉 em(t) =
∑
m∈Z

1√
N
f̂(2πm

N
) em(t),

with convergence in the L2-sense. The last identity makes sense when we
extend f to be zero outside [0, N ] and denote the Fourier transform by:

f̂(ω) =

∫ ∞

−∞
f(t) e−iωt dt.

The best linear approximation for f with M coefficients is given by

fM(t) =
∑
|m|≤M

1√
N
f̂(2πm

N
) em(t),

and the error of approximation by

(3.1) ε[M ] = ‖f − fM‖ =

 1

N

∑
|m|>M

∣∣∣f̂(2πm
N

)
∣∣∣2

 1
2

.

We concentrate now in problem (B) from the previous section. That is, char-
acterize the set of all signals f ∈ L2[0, N ] for which the error of approximation
decays like ε[M ] = O(M−α). Taking into account the expression for the error
in (3.1), we see that the smallness of ε[M ] is closely related to the fast decay of

f̂(ω) when |ω| → ∞. This asymptotic decay is in turn equivalent to regularity
of the original f , due to the well-known identity

(3.2) f̂ (k)(ω) =

∫ ∞

−∞
f (k)(t) e−iωt dt = (iω)k f̂(ω).

These facts lead to a natural candidate for the study of Linear Fourier Ap-
proximation: the family of Sobolev spaces

Hα(R) =

{
f ∈ L2(R) :

∫
R

|ω|2α|f̂(ω)|2 dω <∞
}
.
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The next theorem shows that this is indeed the case, providing a character-
ization in terms of the error, not exactly of the form O(M−α), but with an
`2-variant of it.

THEOREM 3.3. : Linear Approximation spaces.

If α > 0 and f ∈ L2
c(0, N), then

f ∈ Hα(R) ⇐⇒
∞∑

M=1

M2α−1ε[M ]2 <∞.

In this case, ε[M ] = o(M−α).

PROOF:
The idea of the proof is very simple, so we sketch it here:

∞∑
M=1

M2α−1ε[M ]2 =
∞∑

M=1

M2α−1
( 1

N

∑
|m|>M

∣∣∣f̂(2πm
N

)
∣∣∣2 )

=
1

N

∑
m∈Z

( |m|∑
M=1

M2α−1
) ∣∣∣f̂(2πm

N
)
∣∣∣2

=
cα
N

∑
m∈Z

|m|2α
∣∣∣f̂(2πm

N
)
∣∣∣2 ∼ ∫

R

|ω|2α|f̂(ω)|2 dω,

where the last step can be roughly justified by looking at the integral as a
Riemann sum. We observe that a rigorous argument for this step requires
some more effort, making essential use of the compact support condition for f
in the statement of the theorem. 2

We can conclude from the previous theorem that Linear Fourier Approxi-
mation is a good method to analyze signals with uniform smoothness at all
points t ∈ R. These can be coded using Fourier coefficients, and may be eas-
ily handled with the precise expression we have obtained for ε[M ]. Observe
that looking at the decay rate of the error of approximation we can estimate
numerically the best α for which f ∈ Hα. Examples of signals to which this
technique can be applied are, for instance, audio recordings, which are only
perceived in a limited range of low frequency harmonics (typically, smaller than
20 kHz), and therefore have a reasonably high uniform smoothness over R [5,
p. 49]. Linear Fourier Approximation is however a bad model for images, since
a single discontinuity at a point will turn in a low exponent of global smooth-
ness. In fact, the simple example of the characteristic function of an interval
f = χ[0,1/2], which belongs to Hα for all α < 1

2
, has an error of linear approx-

imation of the order ε[M ] ∼ M−1/2. Figure 9.1 in [5, p. 381] shows that this
error is due to Gibbs oscillations near discontinuities, providing a very “fuzzy”
representation of the original f . As we shall see below the representation of
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such signals can be largely improved by using non-linear approximation and
wavelet bases.

4. Wavelet bases and local regularity

Before passing to a more modern approach to the problem in terms of wavelet
bases, we spend some time describing the main features of these. We say that
a function ψ ∈ L2(R) is an orthonormal wavelet whenever the system formed
by translating and dilating this function

(4.1) ψj,k(t) = 2
j
2ψ(2jt− k), j, k ∈ Z,

is an orthonormal basis for L2(R).

EXAMPLE 4.2. The most classical example is the Haar wavelet, given by

ψ(x) = χ[0, 1
2
) − χ[ 1

2
,1) =

{
1, if 0 ≤ x < 1

2
−1, if 1

2
≤ x < 1.

The two main properties of the Haar system {ψj,k}, which are shared by most
wavelet systems, are time localization and vanishing moments :

(4.3) Suppψj,k ⊂
[
k
2j ,

k+1
2j

]
and

∫ ∞

−∞
ψj,k(t)dt =

∫ ∞

−∞
ψ(t)dt = 0.

It is easy to verify from these two facts that {ψj,k} is actually an orthonormal
basis of L2(R). Indeed, the orthonormality follows from the nesting property
of dyadic intervals, while the completeness is a consequence of the L2-density
of the set {

f =
∑

finite aIχI : I dyadic ,
∫
f = 0

}
.

This elementary example already illustrates the “zoom property” that makes
of wavelet bases excellent detectors of local singularities. Roughly speaking,

2
j
2 〈 f , ψj,k 〉 subtracts the means of f over the left-half and right-half parts of

the dyadic interval Ij,k. If f is very smooth, so that f(t) ∼ f(t0) in a small

interval around t0, then 2
j
2 〈 f , ψj,k 〉 ∼ 0 for ψj,k’s supported very close to t0.

On the other hand, if f has a jump at t0, then |2 j
2 〈 f , ψj,k 〉| has the size of

the jump for ψj,k’s with a small support containing the singular point t0.
This zoom property is common to all wavelet systems, constituting a major

difference with Fourier systems for the detection of singularities. We recall that
singularities carry essential information of signals in many applied problems,
such as the presence of edges in images. This makes of wavelet bases very good
tools for image processing, in detriment of Fourier bases. A general theorem
which presents with more rigor the above arguments is presented below. The
statement is a simplified version of Theorem 9.7 in the first edition of [5].
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THEOREM 4.4. : Wavelet characterization of local smoothness.

1. Let f ∈ L2(R) be a signal with local smoothness Lipα(t0), that is

(4.5) |f(t)− f(t0)| ≤ Ct0 |t− t0|α, t ∈ R.

Then, the wavelet coefficients decay as:

(4.6) |〈 f , ψj,k 〉| . 2−j(α+ 1
2
) (1 + |2jt0 − k|α).

2. Conversely, if for some ε > 0 it holds

|〈 f , ψj,k 〉| . 2−j(α+ 1
2
) (1 + |2jt0 − k|α−ε),

then f belongs to Lipα(t0).

PROOF: We sketch the proof of the first part, since it shows in a very transpar-
ent way the role of vanishing moments for the detection of local singularities:

|〈 f , ψj,k 〉| =
∣∣∣ ∫

(f(t)− f(t0))ψj,k(t) dt
∣∣∣

.
∫
|t− t0|α |ψj,k(t)| dt

= 2−
j
2

∫
|2−jt+ 2−jk − t0|α |ψ(t)| dt

. 2−j(
1
2
+α)

∫
|t|α |ψ(t)| dt + 2−

j
2 |2−jk − t0|α.

We observe that this proof is valid for 0 < α ≤ 1, while for n− 1 < α ≤ n one
needs a slightly different definition in (4.5) (with a Taylor polynomial, rather
than f(t0)) and more moment conditions in the wavelet∫ ∞

−∞
t` ψ(t) dt = 0, ` = 0, 1, . . . , n− 1.

Finally, about the second part, we just mention that it is a deeper theorem of
S. Jaffard, where finer techniques in Harmonic Analysis involving Littlewood-
Paley theory must be used (see [5, p. 173]). 2

We point out that the construction of wavelet bases with good properties for
applications is still a vast field of research. Polynomial spline wavelets general-
izing the Haar case were introduced by Battle and Lemarié, but they failed to
have compact support. The now most popular Daubechies’ wavelets exist for
all smoothness degrees and have minimal compact support. Most important
for applications are the wavelet bases in L2[0, N ], formed by restricting L2(R)
wavelets to [0, N ], and adding some special “boundary wavelets” which keep
the vanishing moments at the extreme points t = 0, N . The construction and
numerical implementation of algorithms with wavelet bases owes much to the
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contribution of S. Mallat and his Multiresolution Analysis. For more detailed
discussion on all this part we refer to [5, Ch. 7], or to the text [4].

Finally, we conclude this section with a note on wavelet bases in d-dimensions.
These are defined as unions of systems

ψj,k(x) = 2
jd
2 ψ(2jx− k), j ∈ Z, k ∈ Zd,

with the particularity that for an orthonormal basis in L2(Rd) one needs ex-
actly 2d − 1 such functions ψ ∈ L2(R) (at least if we want them compactly
supported). In practice, wavelets in d-dimensions are constructed as tensor
products of 1-dimensional wavelets, and the numerical algorithms are very
similar to these ones (see [5, Ch. 7.7]). As an exercise, the reader can amuse
himself with the construction of a 2-dimensional Haar wavelet.

5. Non-linear wavelet approximation and Besov spaces

We come back to the problem of signal compression, this time using wavelet
rather than Fourier bases, and concentrating in the non-linear approach (linear
wavelet approximation produces similar results as Fourier methods, see [5,
§9.1]). We let H = L2(R), and consider an orthonormal basis of the form
{ψj,k} as in (4.1) above. Our goal is to profit from the “zoom property” of
wavelets in order to reproduce the essential singularities of f in the compressed
image fM . Remember that singularities produce large wavelet coefficients, so
we can expect a considerable improvement by using non-linear approximation.

Recall from §2 that, for a signal f ∈ L2(R), the non-linear approximation
with M coefficients is given by

fM =
∑
λ∈ΛM

〈 f , ψλ 〉ψλ,

where ΛM =
{
λ1 = (j1, k1), . . . , λM = (jM , kM)

}
and we have sorted the

coefficients non-increasingly:∣∣〈 f , ψj1,k1 〉∣∣ ≥ ∣∣〈 f , ψj2,k2 〉∣∣ ≥ . . .

The error of approximation now takes the form

(5.1) ε[M ] = ‖f − fM‖ =
( ∑
λ6∈ΛM

|〈 f , ψλ 〉|2
) 1

2
.

This quantity is certainly smaller than the linear error, but we must still see
whether it produces a significant improvement. We wish to characterize the
sets of signals for which ε[M ] ∼ O(M−α), and compare them with the corre-
sponding ones in the linear method. Observe that the candidate spaces cannot
correspond to fast asymptotic decays of |〈 f , ψλ 〉|, when |λ| → ∞, since non-
linear errors do not see the position of coefficients. We should instead measure
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sizes, for which better quantifiers are the `p-norms:
∑

λ |〈 f , ψλ 〉|p, in our case
with 0 < p < 2. Indeed, let us define the following spaces:

(5.2) Bp = B(ψ)
p =

{
f ∈ L2(R) : ‖f‖Bp =

(∑
λ

|〈 f , ψλ 〉|p
) 1

p <∞
}
.

Then, the following theorem tells us that these are the “right candidates” for
non-linear approximation spaces.

THEOREM 5.3. Non-linear approximation spaces.

1. If f ∈ Bp and 0 < p < 2, then

(5.4) ε[M ] .
‖f‖Bp

M
1
p
− 1

2

.

2. Conversely, if ε[M ] = O(M−( 1
p
− 1

2
)), then f ∈ Bp+ε, for all ε > 0.

PROOF: The proof is quite elementary and illustrates the link between non-
increasing rearrangements and `p-norms. For the first part just observe that

k |〈 f , ψλk
〉|p = |〈 f , ψλk

〉|p + . . . + |〈 f , ψλk
〉|p

≤ |〈 f , ψλ1 〉|p + . . . + |〈 f , ψλk
〉|p,

and therefore |〈 f , ψλk
〉| ≤ ‖f‖Bpk

− 1
p . Substituting this estimate in the error

(5.1) and summing the series leads directly to (5.4). The converse is analogous,

since from ε[M ] = O(M−( 1
p
− 1

2
)) it follows

M−( 1
p
− 1

2
) &

( ∑
M<k≤2M

|〈 f , ψλk
〉|2

) 1
2 ≥M

1
2 |〈 f , ψλ2M

〉|.

Thus |〈 f , ψλ2M
〉| . M− 1

p , implying that the coefficients {〈 f , ψλ 〉} belong to
`p+ε, for all ε > 0. 2

The reader should observe that, so far, the previous construction of Bp ap-
plies to any orthonormal basis {ψλ} in H. The difficult question now becomes,
for each such basis, to identify Bp among the classical families of smoothness
spaces in Rd. Observe that this is already a non-trivial question for the Fourier
basis, where the only extensively studied case seems to be the Wiener algebra,
corresponding to p = 1. This is however typically formed by nowhere Lipschitz
functions (such as

∑
k k

−2ei2
kt), so it is not a good model for signals arising in

applications.
With wavelet bases the situation is surprisingly much better, since the asso-

ciated Bp’s coincide with a subfamily of the classical Besov smoothness spaces.
Besov spaces were introduced in the 60’s as generalizations of Lipschitz spaces,
where the smoothness is measured with Lp-versions of the modulus of conti-
nuity. More precisely, the Besov space Bα

q (Lp) is defined as the subspace of
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Lp(Rd) such that

|f |Bα
q (Lp) :=

d∑
i=1

[ ∫ 1

0

(‖∆[α]+1
tei

f‖p
tα

)q dt
t

] 1
q
< ∞.

The characterization of Besov spaces in terms of wavelets was first obtained
by Y. Meyer in the mid 80’s, and requires deeper techniques from Harmonic
Analysis. The theorem we state below, characterizing Bα

p (Lp) in terms of Bp
for indices of integrability p below 1, was independently obtained by DeVore
and Popov using techniques from Approximation Theory. We refer to [2, § 30],
and also to work of the author [3], where some extensions to higher dimensions
are given.

THEOREM 5.5. Let 0 < p < 2 and α defined by α
d

= 1
p
− 1

2
. Then, for

all sufficiently “regular” wavelet bases in L2(Rd) the approximation space Bp
coincides with the Besov space Bα

p (Lp), with equivalence of norms

‖f‖Bp . ‖f‖p + |f |Bα
p (Lp) . ‖f‖Bp .

The previous theorem is a nice theoretical result, which would not be of much
use if Bp did not contain the typical signals arising in applications. Remember
this is exactly the problem we had with Sobolev classesHα, whose uniform way
of measuring smoothness excludes many discontinuous signals (such as images)
except for very low α’s. This produces low compression rates, which make the
linear approximation method not very suitable for image processing. The
situation turns out to be much better with Besov spaces due to the “zooming
property” of wavelets. The discontinuities of signals are concentrated in few
wavelet coefficients, which do not affect the `p-summability of the total series,
and hence the total Besov smoothness. A precise statement of this is given in
our last theorem, which has been taken from §9.2.2 in the first edition of [5].

THEOREM 5.6. : Piecewise regularity.

1. Let t0 = 0 < t1 < . . . < tr = N , be a finite partition of [0, N ]. If
f ∈ L∞[0, N ] belongs to Lip α(ti−1, ti), for all i = 1, . . . , r, then

f ∈ Bp, for all p >
1

α+ 1
2

.

2. Let [0, N ]d = Ω1 ∪ . . . ∪ Ωr be a finite partition of a d-dimensional
cube with domains Ωi having a “regular” border. If f ∈ L∞[0, N ]d belongs to
Lip α(Ωi), for all i = 1, . . . , r, then

f ∈ Bp, for all p > max
{2(d− 1)

d
,

1
α
d

+ 1
2

}
.
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PROOF: The theorem can be proved directly from the “smoothness charac-
terization” of Bp in Theorem 5.5. A more illustrative proof in 1-dimension,
which shows the role of wavelet coefficients, is as follows. For “good points”
around which f is Lipschitz, we can bound the coefficients by

(5.7) |〈 f , ψj,k 〉| . 2−j(α+ 1
2
),

as in Theorem 4.4. For “bad points” the most we can say is

|〈 f , ψj,k 〉| . 2−
j
2 .

Now, at each resolution level j, there are at most a constant number of dyadic
intervals Ij,k which contain “bad points”. Thus, the bad part of the `p-series
defining Bp gives:

SB =
∞∑
j=0

∑
k finite

|〈 f , ψj,k 〉|p .
∞∑
j=0

2−
jp
2 <∞.

For the rest of coefficients we use the “good estimate” in (5.7) to obtain

SG =
∞∑
j=0

2jN∑
k=0

|〈 f , ψj,k 〉|p .
∞∑
j=0

2jN 2−j(α+ 1
2
)p,

which is finite exactly when p > 1
α+ 1

2

. The d-dimensional case follows similarly,

except that the number of “bad coefficients” at each resolution level j is now of
the order of 2j(d−1). Observe that to have such a control for “bad coefficients”
we need to assume some “regularity” of the borders ∂Ωi, avoiding domains
with fractal behavior. 2

6. Conclusions and further results

We have presented a very brief sketch of the mathematics behind two natural
methods for image processing, so it is time to compare practically the results
derived with each of them. As explained in §2, we shall regard an image as a
function f ∈ L2[0, 1]2. We also know from §2 that linear approximation keeps
the first M elements in the basis expansion. When using wavelets, which
remember are supported in small dyadic squares Ij,k over [0, 1]2, it is natural
to take M = 22m, since we want the same resolution over the whole image.
Thus the best linear approximant is:

fM =
m∑
j=0

∑
0≤|k|<2j

〈 f , ψj,k 〉ψj,k,

from which 2-dimensional versions of §3 produce a linear error :

‖f − fM‖ . M−α
2 ‖f‖Hα , ∀ f ∈ Hα.

From §5, the best non-linear approximant, f̃M , produces instead:
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‖f − f̃M‖ . M−α
2 ‖f‖Bp , ∀ f ∈ Bp, if α

2
= 1

p
− 1

2
.

The improvement of non-linear approximation over linear approximation can
now be seen in two ways:

1. With the same rate of approximation M−α
2 , there are more images in

Bp = Bα
p (Lp) than there are in Hα. In fact, when α > 1

2
the former contains

discontinuous signals that cannot belong to the latter.

2. For a given image f , the best non-linear approximation rate is much
faster than its linear counterpart. For instance, a typical image with border
∂Ω, which we can think as belonging to f ∈ Lip1(R

2 \ ∂Ω), will satisfy the
best estimates

f ∈ Hα, ∀ α < 1
2

=⇒ εLIN[M ] . M− 1
4
+ε

f ∈ Bp, ∀ p > 1 =⇒ εN−L[M ] . M− 1
2
+ε.

A well-known picture that illustrates this fact is called Lena, and can be seen
in [5, Fig. 9.3]. Compressing by 1

16
the original picture of 2562 pixels, non-linear

approximation reduces by one third the linear error, and produces in addition
a more than acceptable reproduction of the original f . For other examples,
in [1] the best Besov exponents from 24 pictures of the Kodak Photo Sampler
are numerically estimated with non-linear errors, resulting in all cases within
the range 0.3 ≤ α ≤ 0.7 . Thus, it seems reasonable that typical smoothness
lies below 1, which is important because of the d-dimensional constraints of
Theorem 5.6. Unfortunately, due to these constraints higher smoothness does
not necessarily improve the non-linear rate.

We do not wish to conclude this exposition without mentioning some further
advances in this field which are under current investigation:

1. The study of bounded variation spaces, BV (I), as larger classes of spaces
with norms that better adapt to human visual perception. In 2-dimensions,
they are related with classical Besov’s by:

B1 = B1
1(L1) ⊂ BV [0, 1]2 ⊂ B1

∞(L1),

with errors of approximation characterized by:

εLIN[M ] = O(M− 1
4 ) and εN−L[M ] = O(M− 1

2 ).

The new space BV contains functions discontinuous along curves, while B1

does not. An excellent introduction to these spaces is given in the survey
paper [6].

2. The study of adaptive basis algorithms, which optimize the non-linear
approximation of a particular signal among a whole “dictionary of bases”.
One can also compare wavelet non-linear approximation with spline adaptive
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approximation. The latter partitions the image with narrow triangles elon-
gated along the edges, so as to minimize the overlap of the spline supports
with the border lines (see [5, Fig. 9.6]). This produces, for functions such as
f = χΩ, errors of approximation of the order εspl[M ] = O(M−1), compared

with εN−L[M ] = O(M− 1
2 ) using standard wavelet bases. The spline triangular-

ization, however, has a high computational cost, so much research is employed
trying to adapt wavelet bases to specific contours of images (wedgelets).

3. Finally, approximation techniques are also valid for the estimation of
signals in additive noises. These models consider signals as random vectors
X = f +W , where the (unknown) signal f is corrupted by a Gaussian noise.
An approach for noise-removal consists in minimizing E[‖X − fM‖2], with
non-linear techniques similar to the ones presented above. We refer again to
Chapter 10 of [5], or the survey paper [6] for a wider introduction on these
questions.
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