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Chapter 1

Introduction

This thesis consists of two independent parts, each belonging to the �eld of what now

can be called wavelet theory. In the �rst part (Chapter 2) we give a characterization of

wavelets, and functions that generate more general expansions in L

2

(R

n

) (like frames

or ('; )-transforms), in terms of two fundamental equations involving their Fourier

transforms. In the second part (Chapter 3) we study some topological properties of

a particular class of wavelets in L

2

(R): the �-localized ones, our main result being

a complete description of this set of wavelets in connected components. Finally, in

the appendix we present a few new examples of wavelets in L

2

(R) satisfying some

pathological conditions.

The motivation to work on each of the problems treated in this dissertation arose

after reading various articles, attending seminar lectures and having private conver-

sations with di�erent people from the wavelet �eld. Although most of the results

we present are new, the reader need not have a deep knowledge of wavelet theory

to follow the reasonings. Familiarity with the notion of wavelet and multiresoltion

analysis will help, but to facilitate the task to the non-specialized reader we present

in xx2; 3 of Chapter 1 the standard notation and main properties that will be used in

the course of this thesis. However, a knowledge of real analysis (say, at the �rst year

graduate level) will be necessary, since tools like the Fourier transform, the Plancherel

Theorem or the Lebesgue Di�erentiation Theorem will be used without further refer-
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ence. In x1 of Chapter 3 we introduce certain properties of Sobolev spaces, including

known and less-known results, that will be used later on. Whenever possible, we give

appropriate references to the standard literature.

1 History and motivation

Wavelets, with a slightly more general de�nition than the one we will use throughout

this thesis (see De�nition 2.1 below), were introduced in 1981 by the French geophysi-

cist J. Morlet. Initially, they provided an excellent tool in engineerings for studying

and analyzing signals. One considers a signal to be a function f 2 L

2

(R) which, in

order to be analyzed in full detail, needs to be \compared" with each element,  

i

,

of an appropriate family of functions f 

i

g

i2I

. One way of doing so is by taking the

inner products (in L

2

(R)): (f;  

i

); i 2 I.

If we want a good and complete description of the signal f , each of the functions

 

i

must have support essentially concentrated in an interval I

i

� R, but in such a way

that the union of all I

i

's, i 2 I, covers the real line. In some sense, the inner products

(f;  

i

) give a \weighted" mean value of the signal f in the interval I

i

. If the family

f 

i

g

i2I

is good enough, we can approximately synthesize the original signal f by

adding, or \superimposing", the smaller signals (f;  

i

) 

i

; that is, f =

P

i2I

(f;  

i

) 

i

.

Here is an example of a family, fg

k;`

g, that gives such a reconstruction:

g

k;`

(x) = �(x� k) e

2�i`x

; k; ` 2Z; (1.1)

where � = �

[0;1]

is the characteristic function of the interval [0; 1]. Indeed, suppose

we are given the function:

f(x) =

�

cos(4�x); if 0 � x � 1

0; elsewhere,

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1
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Then, f represents a signal that \lives" in the interval [0; 1] and, consequently,

(f; g

k;`

) = 0, if k 6= 0. On the other hand, when k = 0 we have (f; g

0;`

) =

R

1

0

cos(4�x) e

2�i`x

dx =

1

2

�

2;j`j

; ` 2 Z, which in particular gives us the reconstruc-

tion formula:

f =

X

k;`

(f; g

k;`

) g

k;`

: (1.2)

For this signal, the reconstruction is \perfect", in the sense that the series above

consists of just two non-zero terms. Suppose, instead, that we stretch or contract the

signal f as in the �gures below:

20 40 60 80 100

-1

-0.5

0.5

1

Figure 1.1: Graph of signal f

1

.

-0.2 0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

Figure 1.2: Graph of signal f

2

.

Then, the analysis of these new signals obtained with the family fg

k;`

g is not so

accurate this time, the main reason being that the analyzing windows [k; k + 1] are

too \narrow" (for f

1

) or too \wide" (for f

2

) to provide us with exact information

(that is, a �nite number of non-zero terms in the series in (1.2)).

A family of functions like fg

k;`

g

k;`

in (1.1) is an example of what is called a

windowed Fourier transform. This type of technique was introduced by D. Gabor
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in 1946 to study signals that come out in the theory of communication, but for

practical purposes has still many limitations. It was not until the eighties that J.

Morlet introduced the wavelet transform to overcome the di�culties that appeared

when analyzing too small or too long signals, as in the examples above. With this

new method, the analyzing family, f 

j;k

g, is created by appropriately stretching and

contracting a single function  :  

j;k

(x) = 2

j=2

 (2

j

x � k); j; k 2 Z. In this way, if

the support of  is concentrated in the interval I = [0; 1] then, the supports of the

functions  

j;k

must lie in I

j;k

= 2

�j

(I+k) = [k2

�j

; (k+1)2

�j

], covering, therefore, the

whole real line. This allows us to obtain precise information of all possible signals,

like those in the examples above, by comparing them with the functions  

j;k

. Suppose

we want to identify the high frequencies in a given signal f (for instance, to remove

the \noise"). Then, this can be done (if we assume that the generating function  

has mean zero:

R

1

�1

 = 0) by just considering the part of the sum

P

j;k

(f;  

j;k

) 

j;k

corresponding to large values of j. Indeed, a signal f with not too high frequencies

will be almost \
at" in the small intervals I

j;k

(when j is large), and, therefore, will

give coe�cients (f;  

k;j

)

�

=

0. Functions  with these properties do exist, and are

represented by \small waves" or wavelets, like in the �gures below.

The Lemari�e-Meyer wavelet

The Franklin wavelet
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(We wish to thank Steve Xiao for his help in plotting these �gures.)

In applications, it is sometimes of interest to have \perfect" reconstructions: f =

P

j;k

(f;  

j;k

) 

j;k

, in the sense that the family f 

j;k

g forms an orthonormal basis of

L

2

(R). Some other times, instead, one will be willing to have some \redundancy"

in the family f 

j;k

g, or even allow the possibility of taking a di�erent \synthesizing"

family, f'

j;k

g, giving a reconstruction of the type:

f =

X

j;k

(f;  

j;k

)'

j;k

: (1.3)

In this thesis, the term wavelet will refer to a function  generating an orthonormal

basis as above. There is no explicit name for the pairs f'; g giving reconstructions

as in (1.3), but they include, as particular cases, the terms: biorthogonal wavelet,

frame, ('; )-transform,...

From a mathematical point of view, this type of decompositions are also of great

interest. Indeed, an orthonormal basis can always be used to study boundedness

of linear operators with a matrix representation in terms of the basis. One of the

proofs of the T1-theorem, for instance, uses the notion of wavelet to characterize

all bounded operators in L

2

(R

n

) of Calder�on-Zygmund type (see Part II in [DAV]).

Moreover, wavelets (and also pairs f'; g as above) give rise to bases for a wider

range of Banach spaces (L

p

;W

�;p

; B

�;q

p

; F

�;q

p

, etc...) and provide an excellent tool to

analyze some of their �ne properties (see [FJW] or Chapter 6 in [HW] and [MEY]).

In this thesis we will be particularly interested in the study of mathematical

properties of the set of all wavelets, as a topological subspace of L

2

(R). The reader

wishing know more about applications, history, or relations of wavelets with other

areas of mathematics, can consult any of the books: [DAUB], [DAV], [HUB], [HW],

[KAH-LEM], [MEY], ...

The structure of this work is as follows; the rest of Chapter 1 contains an account

of de�nitions, notation, and known results that will be used in the development of
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next chapters. In Chapter 2, we take up the task of identifying the pairs of functions

f'; g in L

2

(R

n

) that give reconstruction formulas as in (1.3). We prove a charac-

terization theorem in terms of two basic equations, which in many senses extends

the already known characterization theorem for wavelets in L

2

(R) of Gripenberg and

Wang (see Theorem 2.7 below). This part of the work was done in collaboration

with M. Frazier, K. Wang and G. Weiss (see [FGWW]). The rest of the chapter, and

the appendix, contain applications of this result and constructions of wavelets with

apparently unexpected properties. In Chapter 3, we specialize in a particular class

of wavelets: the �-localized ones. Those are the wavelets having a decay at in�nity

rapid enough to belong to the space L

2

((1 + jxj

2

)

�

dx). We give a detailed account

on how to construct them and what their main properties are, when considered as a

topological subspace of L

2

((1 + jxj

2

)

�

dx). In particular, we give a decomposition of

the set of all �-localized wavelets in connected components. This part of the work was

motivated in an article by A. Bonami, S. Durand and G. Weiss ([BDW]), in which

the class of wavelets with polynomial decay was studied. We extend their results to

the more general setting of �-localized wavelets and obtain some new and interesting

properties not considered by the authors of [BDW] (see x5 in Chapter 3).

2 De�nitions and examples

We start this section with a precise de�nition of what we shall call a wavelet:

DEFINITION 2.1 An orthonormal wavelet (or simply, a wavelet) is a function  2

L

2

(R) such that f  

j;k

j j 2Z; k 2 Zg is an orthonormal basis for L

2

(R) , where

 

j;k

(x) � 2

j=2

 (2

j

x� k); j; k 2Z: (2.2)

In this case we have the equality

f =

X

j;k2Z

(f;  

j;k

) 

j;k
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for each f 2 L

2

(R), where the series converges (unconditionally) in the L

2

(R)-norm

and (g; h) =

R

R

gh .

There many examples of wavelets and di�erent ways of constructing them. In

most of these constructions the Fourier transform plays an important role. In this

thesis, the Fourier transform of a function f 2 L

1

(R

n

) will be given by:

^

f (�) =

Z

R

n

f(x)e

�ix��

dx; � 2 R

n

: (2.3)

For functions f 2 L

2

(R

n

),

^

f will denote the usual extension of the densely de�ned

operator in (2.3) from L

1

(R

n

)\L

2

(R

n

) to L

2

(R

n

). The inverse of this operator acting

on a function f will be denoted by f�.

It is clear that, for any function  de�ned as in (2.2), we have:

b

 

j;k

(�) = 2

�j=2

e

�i2

�j

k�

b

 (2

�j

�); j; k 2Z; � 2 R; (2.4)

where we write

b

 

j;k

, instead of ( 

j;k

)̂ . We shall use this convention throughout this

thesis; that is, the subindices (j; k) on

b

 

j;k

will always correspond to translations and

dilations in the time domain.

Perhaps, the simplest example of a wavelet is given by the function  whose

Fourier transform is

b

 = �

I

, where the set I = [�2�;��)[ (�; 2�]. This function is

sometimes called the Shannon wavelet.

π−π−2π 2π

Figure 2.3: Fourier transform of the Shannon wavelet.

Note that, in particular,

b

 

0;k

= e

�ik�

�

I

; k 2 Z, which is an orthonormal basis

for L

2

(I), while

b

 

j;k

= e

�ik2

�j

�

2

�j=2

�

2

j

I

; k 2Z, is an orthonormal basis for L

2

(2

j

I),
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j 2 Z. Thus, since f2

j

Ig; j 2 Z, forms a partition of R n f0g, we must have that

f 

j;k

g

j;k2Z

is an orthonormal basis for L

2

(R) and, consequently, that  is a wavelet.

In general, many other examples of the type

b

 = �

K

, for K a (Lebesgue)-

measurable subset of R, can be constructed. Again, the geometry of K under trans-

lations (by 2k�) and dilations (by 2

j

) determines when  is a wavelet. Indeed, a

necessary and su�cient condition for a set K to give a wavelet  = (�

K

)� is that:

X

j2Z

�

K

(2

j

�) =

X

k2Z

�

K

(� + 2k�) = 1; a:e: � 2 R; (2.5)

or, equivalently, that there is a partition fI

`

g

`2Z

of I = (�2�;��] [ (�; 2�] and two

sequences of integers, fj

`

g; fk

`

g; ` 2Z, such that we can write the disjoint unions:

K = ]

`2Z

2

j

`

I

`

and I = ]

`2Z

f2

j

`

I

`

+ 2k

`

�g (2.6)

For a proof of this property the reader can consult [HW] (see Theorem 2.5 in chapter

7 of [HW]). Alternatively, the equivalence in (2.5) is a particular case of the following

theorem of X. Wang (Theorem 1.14 in [WAN]) and G. Gripenberg (Theorem 1 in

[GRIP]), which characterizes all wavelets in terms of equations like the ones above:

THEOREM 2.7 : G. Gripenberg, X. Wang.

Let  2 L

2

(R) be such that k k

2

� 1. Then,  is a wavelet if and only if

(i)

X

j2Z

j

b

 (2

j

�)j

2

= 1; a:e: � 2 R

(ii) t

q

(�) �

1

X

j=0

b

 (2

j

�)

b

 (2

j

(� + 2�q)) = 0; a:e: � 2 R; 8q 2 2Z+ 1:

9

>

>

>

>

=

>

>

>

>

;

(2.8)

In particular, if j

b

 j = �

K

, for some measurable set K � R,  is a wavelet if and

only if

(i)

X

j2Z

j

b

 (2

j

�)j

2

= 1; a:e: � 2 R

(ii)

X

k2Z

j

b

 (� + 2k�)j

2

= 1; a:e: � 2 R:

9

>

>

>

=

>

>

>

;

(2.9)
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In Chapter 2, we prove a more general result that includes Theorem 2.7 as a

particular case; namely, we characterize all pairs of functions '; 2 L

2

(R

n

) that give

reconstruction formulas of the type (1.3), by means of simple equations like those in

(2.8).

Wavelets  such that j

b

 j = �

K

are usually referred to as MSF, or minimally sup-

ported frequency wavelets, since the measure of the support

f1g

of

b

 = K is smallest

among all wavelets (and equals 2�). The fact that jKj = 2� is an immediate con-

sequence of the Plancherel Theorem and k k

2

= 1, while the minimality property

follows from:

2� = 2�k k

2

=

Z

supp

b

 

j

b

 j

2

� jsupp

b

 j;

with equality if and only if j

b

 j = �

supp

b

 

. Note that we have used here that j

b

 j �

1; a:e: , whenever  is a wavelet (see, e.g., (2.8) (i) above).

In the �rst part of the appendix, we present a variety of examples of MSF wavelets

satisfying very special properties, such as having their Fourier transforms discontin-

uous at 0, or with unbounded support. These examples seem to be new, and give

answers to some questions posed in the wavelet literature (see the appendix for further

references).

Finally, in the second part of the appendix we present one last example that shows

the independence of equations (2.8) and (2.9). More precisely, we �nd a function  2

L

2

(R) whose \amplitude" j

b

 j satis�es (2.9), but such that for no \phase" � : R! R,

the function (e

i�

j

b

 j)� is a wavelet. Note that, in view of Theorem 2.7, j

b

 j cannot be

the characteristic function of a set.

f1g

To motivate the termMSF, we are implicitly using in this sentence a de�nition for the \support"

of a measurable function given by supp f = fx 2Rj f(x) 6= 0g. This de�nition does not agree, in

general, with the standard one we will use throughout this thesis (that is, the closure of ff 6= 0g,

see De�nition 2.9 in [RUD2]).
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3 Multiresolution analyses

In this section we present the basics of multiresolution analyses. Their main properties

and notation will be used extensively in Chapter 3, but will be avoided in Chapter 2.

We leave to the reader the decission of skipping this section if he or she considers it

unnecessary.

There is a standard algorithm for constructing wavelets. It consists of decomposing

L

2

(R) with an increasing sequence of \resolution spaces", each corresponding to a

di�erent dilation level and generated by the integer translations of a single function.

Think, for instance, of the following subspaces of L

2

(R):

V

j

= ff 2 L

2

(R) j supp

^

f � [�2

j

�; 2

j

�]g =

= span f(�

[�2

j

�;2

j

�]

)�(� � k) j k 2Zg= span f'

j;k

j k 2Zg; j 2Z;

where

b

' = �

[��;�]

.

In this case, the orthogonal complement of V

j

in V

j+1

: W

j

= V

?

j

\V

j+1

, is generated

by the integer tranlations of the function (�

[�2

j+1

�;�2

j

�)[(2

j

�;2

j+1

�]

)�, and since [V

j

is

dense in L

2

(R), we have

L

2

(R) = �

j2Z

W

j

= �

j2Z

span f 

j;k

j k 2Zg;

where

b

 = �

[�2�;��)[(�;2�]

. In other words, f 

j;k

g

j;k2Z

forms a complete orthonormal

system and, hence,  is a wavelet. This is, in fact, the Shannon wavelet de�ned in

the previous section (see Figure 2.3).

This method of constructing wavelets by \resolving" the space L

2

(R) with dila-

tions and translations can be described in full generality. We start by de�ning what

we will call a multiresoltion analysis (for details and proofs of the formulas presented

here, we refer the reader to Chapter 2 of [HW]).

A multiresolution analysis (or MRA) for L

2

(R) is a family of closed subspaces of
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L

2

(R), fV

j

g

j2Z

, such that

(i) V

j

� V

j+1

(ii) f(x) 2 V

j

if and only if f(2x) 2 V

j+1

(iii) [

j

2

Z

V

j

= L

2

(R)

(iv) there exists a function ' 2 V

0

such that

f'(� � k) j k 2Zg is an orthonormal basis for V

0

:

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(3.1)

REMARK 3.2 Any function ' 2 L

2

(R) satifying (3.1) (iv) will be called a scaling

function for the given MRA. It is a well-known fact that if ' is a scaling function

for an MRA fV

j

g

j2Z

; all other possible scaling functions, '

]

; for the same MRA,

are given by

b

'

]

(�) = �(�)

b

'(�) , where �(�) is a 2�-periodic measurable function such

that j�(�)j = 1; a:e: � 2 R (see, e.g., [HW], Lemma 2.6 in Chapter 2).

Let us assume that fV

j

g

j2Z

is an MRA. Note that, by (3.1) (i); (ii) and (iv) ,

we must have that

1

2

'(

x

2

) 2 V

0

, which in turn implies that there exists a (unique)

sequence fc

k

g

k2Z

2 `

2

(Z) such that

1

2

'(

x

2

) =

X

k2Z

c

k

'(x� k); (3.3)

where the (unconditional) convergence of the series is in L

2

(R). By taking Fourier

transforms of both sides in (3.3), we obtain the scaling equation

b

'(2�) = m

0

(�)

b

'(�) ; a:e: � 2 R; (3.4)

where m

0

(�) =

P

k2Z

c

k

e

�ik�

; a:e: � 2 T, is a 2�-periodic function in L

2

(T) called the

low-pass �lter associated with the scaling function ', and the coe�cients c

k

are given

by

c

k

=

Z

R

1

2

'(

x

2

)'(x� k) dx; k 2Z: (3.5)

For a function ' 2 L

2

(R), it is easy to show that f'(� � k) j k 2 Zg is an

orthonormal system if and only if

X

k2Z

j

b

'(� + 2k�)j

2

= 1; a:e: � 2 R: (3.6)
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(see, e.g., Proposition 1.11, in Chapter 2 of [HW]). In particular, for every scaling

function of an MRA, (3.6) must hold. An easy consequence of (3.4) and (3.6) is that

the low-pass �lter must satisfy

jm

0

(�)j

2

+ jm

0

(� + �)j

2

= 1; a:e: � 2 T: (3.7)

It is easy to see that condition (3.7) and the 2�-periodicity of m

0

imply that

Z

�

��

jm

0

(�)j

2

d� = 2�:

Let us see now how to construct wavelets from an MRA. If we let W

j

= V

j+1

\V

?

j

,

then conditions (3.1) (i) and (iii) allow us to write L

2

(R) = �

j2Z

W

j

, where the

direct sum represents an orthogonal decomposition of the space L

2

(R). It now follows

easily from (3.1) (ii) that each function  2 W

0

such that f (� � k) j k 2 Zg is an

orthonormal basis for W

0

is a wavelet for L

2

(R). Functions  satisfying this property

are completely characterized by

b

 (�) = e

�i

�

2

�(�)m

0

(

�

2

+ �)

b

'(

�

2

); a:e: � 2 R;

where ' is a scaling function for the MRA, m

0

is its low-pass �lter and � is any 2�-

periodic measurable function such that j�(�)j = 1; a:e: � 2 R (see Proposition 2.13

in Chapter 2 of [HW]). Any such function � will be called a phase for the wavelet  .

It is a well-known fact that not all orthonormal wavelets can be constructed in

this way from an MRA. The following proposition tells us when this is possible.

PROPOSITION 3.8 Let  be an orthonormal wavelet for L

2

(R). Then, the following

�ve properties are equivalent:

(I) Let W

j

= spanf (2

j

� �k) j k 2Zg and let V

j

= �

j�1

`=�1

W

`

, for j 2 Z(the

direct sum being orthogonal). Then, the family fV

j

g

j2Z

forms an MRA.
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(II) There exists an MRA fV

j

g

j2Z

such that, if we let W

0

= V

1

\ V

?

0

, then

f (� � k) j k 2Zg is an orthonormal basis for W

0

.

(III) There exists a function ' 2 L

2

(R), scaling function of some MRA, and a

2�-periodic measurable function satisfying j�(�)j = 1; a:e: � 2 R, such that

b

 (�) = e

�i

�

2

�(�)m

0

(

�

2

+ �)

b

'(

�

2

); a:e: � 2 R (3.9)

where m

0

is the low-pass �lter associated with '.

(IV) There exists a function ' 2 L

2

(R), scaling function of some MRA, such

that

b

 (�) = e

�i

�

2

m

0

(

�

2

+ �)

b

'(

�

2

); a:e: � 2 R (3.10)

where m

0

is the low-pass �lter associated with '.

(V) D

 

(�) =

P

1

j=1

P

k2Z

j

b

 (2

j

(� + 2k�))j

2

= 1; a:e: � 2 R.

A wavelet satisfying any of the �ve equivalent conditions above is called an MRA

wavelet.

We shall not include here a complete proof for Proposition 3.8, but we will give instead

a precise reference for each of the statements made.

PROOF:

\(I))(II)" This implication is trivial.

\(II))(III)" This implication is included in the statement of Proposition 2.13

in Chapter 2 of [HW].

\(III))(IV)" This part seems to be new. For a proof of it, see Theorem A in

[WUTAM]. (See also Exercise 2.10 in Chapter 2 of [WOJ].)

\(IV))(V)" This is an easy consequence of the properties of MRAs (see

(2.18), Chapter 2 of [HW]).

\(V))(I)" This part can be found in Theorem 3.2, Chapter 7 of [HW].

2
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REMARK 3.11 It is not hard to show that under very mild conditions of smoothness

and decay at1 every wavelet must satisfy equation (V) in Proposition 3.8 above. In

fact, if  is a wavelet and if

b

 2 C(R) and j (�)j � C(1 + j�j

2

)

�

1

2

�"

; a:e: � 2 R , for

some " > 0, then D

 

(�) = 1 for all � 6= 2k�; k 2 Z(see Corollary 3.16 of Chapter

7 of [HW]). These and other su�cient conditions for a wavelet to be associated with

an MRA have been studied by P. Auscher and P. G. Lemari�e-Rieusset (see [AUS],

[LEM] or [KAH-LEM]). We shall go back to this point in x5 of Chapter 3.

One can also characterize, among the functions ' 2 L

2

(R) those that are scaling

functions for an MRA. This characterization will be useful in Chapter 3 below.

PROPOSITION 3.12 A function ' 2 L

2

(R) is a scaling function for an MRA if and

only if

(i)

P

k2Z

j

b

'(� + 2k�)j

2

= 1; a:e: � 2 R:

(ii) lim

j!1

j

b

'(2

�j

�)j = 1; a:e: � 2 R:

(iii) There exists a 2�-periodic function m

0

2 L

2

(T) such that

b

'(2�) = m

0

(�)

b

'(�); a:e: � 2 R:

For a proof of this result the reader can consult Theorem 5.2 of Chapter 7 of [HW].

Before ending this section, we introduce a special class of MRAs for which one

additional assumption is made. Suppose � >

1

2

is �xed. We say that an MRA

fV

j

g

j2Z

; is localized of degree � (or �-localized) when we can �nd a scaling function

' satisfying

Z

R

j'(x)j

2

(1 + jxj

2

)

�

dx <1: (3.13)
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Condition (3.13) can be stated in terms of Sobolev spaces; namely, a function '

satis�es (3.13) if and only if

b

' 2 H

�

(R) . Functions ' with these properties are

called �-localized scaling functions. In Chapter 3 of this thesis we will study in

detail the properties of �-localized MRAs by using Sobolev space theory. We shall

characterize the low-pass �lters associated with them and we shall show that the

set of all �-localized scaling functions is arcwise-connected in the topology given by

(3.13) above.
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Chapter 2

A Characterization of Functions

that Generate Wavelet and

Related Expansions

The �rst part of this write-up (xx1 � 4) was done in collaboration with M. Frazier,

K. Wang and G. Weiss and has recently appeared in The Journal of Fourier Analysis

and Applications (see [FGWW]).

1 Introduction

We remind the reader that an orthonormal wavelet is a function  2 L

2

(R) such that

the system:

 

j;k

(x) � 2

j=2

 (2

j

x� k); j; k 2Z;

forms an orthonormal basis for L

2

(R). In this case we have the equality

f =

X

j;k2Z

(f;  

j;k

) 

j;k

(1.1)

for each f 2 L

2

(R), where the series converges (unconditionally) in the L

2

(R)-norm.

There are several extensions of these notions that have commanded considerable in-

terest during the past decade. If R is replaced by R

n

, n-dimensional Euclidean space,

the de�nition of the family f  

j;k

j j 2Z; k 2Z

n

g is

 

j;k

(x) � 2

jn=2

 (2

j

x� k); (1.2)

17
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where j 2 Zand k = (k

1

; :::; k

n

) 2 Z

n

. This is clearly a natural extension of the

1-dimensional case since the dilations in (1.2) preserve the L

2

(R

n

)-norm of  and

the translations must involve points in R

n

. The function  is then said to be an

orthonormal wavelet in L

2

(R

n

) if the family de�ned by (1.2) is an orthonormal basis

for this space. It is well-known that many di�erent kinds of wavelets exist in L

2

(R).

In the higher dimensional case, however, the situation is more complicated. If one

imposes some \relatively mild" conditions of smoothness and decrease at in�nity on

the Fourier transform, it can be shown that a single function  2 L

2

(R

n

) cannot

generate an orthonormal basis by forming the family de�ned in (1.2) when n � 2.

In this case one needs at least L = 2

n

� 1 such generating functions  

1

;  

2

; :::;  

L

2

L

2

(R

n

) (see [AUS] p.215, [KAH-LEM] p.339, [MEY] p.93). We encounter, therefore,

orthonormal bases of the form f 

`

j;k

g , where ` = 1; 2; :::; L ; j 2 Z; k 2 Z

n

with

L � 1. Such bases produce expansions of the form

f =

L

X

`=1

X

j2Z

X

k2Z

n

(f;  

`

j;k

) 

`

j;k

(1.3)

for any f 2 L

2

(R

n

), where the multiple series converges in the norm of L

2

(R

n

).

Recently, however, several investigators have constructed examples of (single) wavelets

in L

2

(R

n

) (see [DAI-LAR-SPE], [SOA-WEI]). Thus, the case L = 1 in (1.3) is realized

in some cases

f1g

. In general, when f 

`

j;k

g is an orthonormal basis we call the family

	 = f 

1

; :::;  

L

g a family of orthonormal wavelets.

More general representations of functions in L

2

(R

n

), sharing the same dyadic dila-

tion and translation structure with these expansions, have been studied and e�ectively

applied. Frazier and Jawerth (see [FJ] and [FJW]) introduced expansions of the form

f =

X

j2Z

X

k2Z

n

(f; '

j;k

) 

j;k

(1.4)

f1g

In fact, given any L � 1, one can �nd a family of orthonormal wavelets 	 in L

2

(R

n

) consisting

of L distinct functions  

1

; : : : ;  

L

. This follows, essentially, from the arguments in [DAI-LAR-SPE],

and was pointed out to us by D. Weiland.
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where '

j;k

;  

j;k

are de�ned by equality (1.2) and ' and  is an appropriate pair of

functions in L

2

(R

n

). The convergence of the series in (1.4) is, again, in the L

2

(R

n

)-

norm. More general function spaces and di�erent types of convergence are of great

interest; however, in this work we limit our attention to the L

2

(R

n

) case.

A feature of expansions of the form given by (1.4) is that one of the functions, ' ,

provides a system of \analyzing" functions; that is, the needed information about f is

obtained by calculating the inner products (f; '

j;k

). The other function,  , provides

a \synthesizing" system which enables us to reconstruct f from this information

via the series in (1.4). We observe that this situation has much in common with

expansions involving frames and those associated with bi-orthogonal wavelets.

Our main purpose is to characterize those pairs of families � = f'

1

; :::; '

L

g and

	 = f 

1

; :::;  

L

g in L

2

(R

n

) having the property that for each f 2 L

2

(R

n

)

f =

L

X

`=1

X

j2Z

X

k2Z

n

(f; '

`

j;k

) 

`

j;k

; (1.5)

where the convergence of the series on the right is in the norm of L

2

(R

n

) or in

some weaker sense. We will show that equality (1.5) (or a variant of this repre-

sentation of f) is, in a sense, equivalent to the fact that the Fourier transforms

f

b

'

1

; :::;

b

'

L

g ; f

b

 

1

; :::;

b

 

L

g satisfy the following two equations:

(i)

L

X

`=1

X

j2Z

b

'

`

(2

j

�)

b

 

`

(2

j

�) = 1; a:e: � 2 R

n

(ii) t

q

(�) �

L

X

`=1

1

X

j=0

b

'

`

(2

j

�)

b

 

`

(2

j

(� + 2�q)) = 0; a:e: � 2 R

n

; 8q 2 O

n

9

>

>

>

>

>

=

>

>

>

>

>

;

(1.6)

where O

n

=Z

n

n (2Z)

n

= fk = (k

1

; :::; k

n

) 2Z

n

: at least one component k

j

is oddg.

We do encounter the problem of determining the meaning of the series in these

two equations. It is easy to see that t

q

is a well-de�ned function in L

1

(R

n

):

Z

R

n

jt

q

(�)j d� �

L

X

`=1

1

X

j=0

Z

R

n

j

b

'

`

(2

j

�)j j

b

 

`

(2

j

(� + 2�q))j d� =
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L

X

`=1

1

X

j=0

2

�jn

Z

R

n

j

b

'

`

(�)j j

b

 

`

(� + 2

j+1

�q)j d� � (

L

X

`=1

k

b

'

`

k

2

k

b

 

`

k

2

)(

1

X

j=0

2

�jn

) =

=

2

2n

�

n

2

n

� 1

(

L

X

`=1

k'

`

k

2

k 

`

k

2

) <1:

On the other hand, the convergence of the series in (1:6) (i) requires a further

assumption about the two families � and 	 . In order to explain this matter better

we �rst consider the case when � = 	 . In this case the two equations (1:6) (i)

and (ii) have the form

(i)

L

X

`=1

X

j2Z

j

b

 

`

(2

j

�)j

2

= 1; a:e: � 2 R

n

(ii) t

q

(�) �

L

X

`=1

1

X

j=0

b

 

`

(2

j

�)

b

 

`

(2

j

(� + 2�q)) = 0; a:e: � 2 R

n

; 8q 2 O

n

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(1.7)

Since all the summands are non-negative, the convergence of the series in equation

(i) is well de�ned (if we include the possibility that the sum is in�nity for some of

the �'s). Thus, in this case the meaning of the series appearing in the two equations

is clear.

These equations are very useful for the construction of wavelets as well as explicit,

more general solutions that lead to expansions of the form (1.1), (1.3) or (1.4) (see

[HW]). We shall also see in the development below that a considerable amount of

information is contained in these two equations.

The following simple example of a function that satis�es the two equations il-

lustrates some important features of the general solution. Let us �rst consider the

one-dimensional case for (1:7) with L = 1. We choose a non-negative even function

b supported in [��;�

�

4

] [ [

�

4

; �] such that

b

2

(�) + b

2

(

�

2

) = 1; � 2 [

�

2

; �] : (1.8)
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It is easy to see that there exist C

1

functions b with these properties. We let  be

chosen so that j

b

 j = b . Equation (1:7) (i) in this case is

P

j2Z

j

b

 

`

(2

j

�)j

2

= 1 .

Because of the assumption we made about the support of b, this sum contains at most

two non-zero terms and equality (1.8) shows that (1:7) (i) is satis�ed by

b

 . The

second equation, (1:7) (ii) , is also clearly satis�ed since the two points, 2

j

� and

2

j

(� + 2�q) , at which the products are evaluated, are at distance from each other

that is at least 2� (since j � 0 and q is odd) which is the diameter of the support of

b

 .

Thus, it follows from the results we shall prove that equality (1.1) is true for all

f 2 L

2

(R) when  is chosen so that j

b

 j = b . The family f 

j;k

g , however, is not an

orthonormal basis for L

2

(R). First of all,

k k

2

2

=

1

2�

Z

R

j

b

 (�)j

2

d� �

meas (supp

b

 )

2�

�

3

4

< 1

since, as is the case for any function

b

 satisfying (1:7) (i) , j

b

 (�)j � 1 a:e: ;

moreover, a simple re-normalization cannot convert this system to an orthonormal

basis. The discussion in the next section will clarify this matter. It is also clear that

a radial version of this example provides us with a similar example in R

n

; n > 1.

Let us now pass to the precise statement and proof of our principal result when

the families � and 	 coincide.

2 The First Theorem

We begin by making some observations about expansions of the type we are consider-

ing in a general Hilbert space H endowed with an inner product (�; �) . Let E = fe

j

g

be a family of vectors in H. For the sake of simplicity we let j range through the

natural numbers, N; however, our statements apply when the indexing set is Z�Z

n

or f1; : : : ; Lg �Z�Z

n

.
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LEMMA 2.1 Let E = fe

j

g � H ; j 2 N, then the following two properties are

equivalent:

(i) kfk

2

= (f; f) =

P

1

j=1

j(f; e

j

)j

2

holds for all f 2 H

(ii) f =

P

1

j=1

(f; e

j

)e

j

, with convergence in H, for all f 2 H.

Moreover, if ke

j

k � 1, for all j 2 N, (i) or (ii) is equivalent to the fact that E is

an orthonormal basis of H.

The proof of this lemma is elementary and can be found in chapter 7 of [HW]

(Theorems (1:7) and (1:8)). A more general version of this result, involving two sets

E = fe

j

g and F = ff

j

g in H, is stated and proved in section 4 (see Lemma 4.25).

The following result is also proved in chapter 7 of [HW] ( see Lemma (1:10)):

LEMMA 2.2 Suppose E = fe

j

g � H ; j 2 N, is a family for which equality (i) of

Lemma 2.1 holds for all f belonging to a dense subset D � H, then this equality holds

for all f 2 H.

Again, a more general version of Lemma 2.2, involving two systems E and F , is

stated and proved in section 4 (see Lemma 4.23). The following is our main result in

case � = 	:

THEOREM 2.3 Suppose 	 = f 

1

;  

2

; : : : ;  

L

g � L

2

(R

n

), then

kfk

2

L

2

(R

n

)

=

L

X

`=1

X

j2Z

X

k2Z

n

j(f;  

`

j;k

)j

2

(2.4)

for all f 2 L

2

(R

n

) if and only if the functions in 	 satisfy (1:7) (i) and (ii).

Let us make a few observations before embarking on the proof of this theorem:
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REMARK 2.5 Because of Lemma 2.1 we see that equality (2.4) for all f 2 L

2

(R

n

)

is equivalent to equality (1.3) for all f 2 L

2

(R

n

). Thus, Theorem 2.3 gives us the

desired characterization of those families 	 = f 

1

;  

2

; : : : ;  

L

g � L

2

(R

n

) for which

(1.3) holds for all f 2 L

2

(R

n

).

REMARK 2.6 The last sentence in Lemma 2.1 leads us to the characterization of

all orthonormal wavelets in L

2

(R

n

): 	 = f 

1

;  

2

; : : : ;  

L

g is a family of orthonormal

wavelets in L

2

(R

n

) if and only if k 

1

k

2

= : : : = k 

L

k

2

= 1 and this family satis�es

(1:7) (i) and (ii) (since, in this case, k 

`

j;k

k

2

= k 

`

k

2

� 1 for all ` = 1; : : : ; L; j 2Z

and k 2Z

n

). As we mentioned in Chapter 1, this characterization has been obtained

independently by Gustaf Gripenberg [GRIP] and Xihua Wang [WAN], in the case

n = 1 (see [HW] for an historical account of this matter).

REMARK 2.7 Because of Lemma 2.2 it su�ces to show that (1:7) (i) and (ii)

imply that (2.4) holds for all f belonging to a dense subset, D , of L

2

(R

n

). The

dense subset we will choose in our proof is

D =

�

f 2 L

2

(R

n

)

�

�

�

�

^

f 2 L

1

(R

n

) and supp

^

f is a compact subset of R

n

nf0g

�

: (2.8)

Unless stated otherwise, therefore, from now on, all functions f that we shall consider

will belong to D.

A basic step in the proof of Theorem 2.3 is to decompose the series I on the right

in (2.4) into two sums so that

(2�)

n

I = I

0

+ I

1

; (2.9)

where

I

0

=

L

X

`=1

X

j2Z

Z

R

n

j

^

f (�)j

2

j

b

 

`

(2

j

�)j

2

d�
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and

I

1

=

Z

R

n

^

f(�)

X

p2Z

X

q2O

n

^

f(� + 2�2

p

q)t

q

(2

�p

�) d�

This is done by �rst applying the Plancherel theorem to the inner products (f;  

`

j;k

) ,

which allows us to obtain

(2�)

2n

j(f;  

`

j;k

)j

2

= j(

^

f;

b

 

`

j;k

)j

2

= 2

�jn

�

�

�

�

Z

R

n

^

f(�)

b

 

`

(2

�j

�)e

i2

�j

k��

d�

�

�

�

�

2

=

= 2

jn

�

�

�

�

Z

R

n

^

f (2

j

�)

b

 

`

(�)e

ik��

d�

�

�

�

�

2

:

Here, we have used the fact that the Fourier transform of  

`

j;k

is

b

 

`

j;k

(�) =

2

�jn=2
b

 

`

(2

�j

�)e

�i2

�j

k��

, when j 2Z; k 2Z

n

; ` = 1; :::; L . Thus,

(2�)

2n

I =

L

X

`=1

X

j2Z

X

k2Z

n

2

jn

�

�

�

�

Z

R

n

^

f(2

j

�)

b

 

`

(�)e

ik��

d�

�

�

�

�

2

:

The decomposition (2.9) will be obtained by �rst using a periodization argument that

provides us with the identity

X

k2Z

n

j

Z

R

n

^

f (2

j

�)

b

 

`

(�)e

ik��

d�j

2

=

= (2�)

n

Z

R

n

^

f (2

j

�)

b

 

`

(�)

�

X

m2Z

n

^

f(2

j

(� + 2m�))

b

 

`

(� + 2m�)

�

d�: (2.10)

Multiplying both sides by 2

jn

and then summing over j 2 Zand ` = 1; : : : ; L we

obtain a new expression for I. In this last expression we separate the terms with

m = 0 , obtaining I

0

, and the remaining terms, obtaining I

1

. Thus, we �rst establish

(2.10); after this we manipulate the expression involving the terms with m 6= 0 and

obtain the equality that we need for the de�nition of I

1

.

Let us �x ` and j and put F (�) = F

`

j

(�) �

^

f(2

j

�)

b

 

`

(�). We remind the reader that

f 2 D; thus, F is compactly supported in R

n

n f0g and belongs to L

1

(R

n

) \ L

2

(R

n

).

Moreover,

Z

R

n

^

f(2

j

�)

b

 

`

(�)e

ik��

d� =

Z

R

n

F (�)e

ik��

d� =

^

F (�k): (2.11)
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Hence,

^

F (�k) =

X

m2Z

n

Z

T

n

+2m�

F (�)e

ik��

d� =

Z

T

n

e

ik�

f

X

m2Z

n

F (� + 2m�)g d�;

where T

n

is the n-torus, which we may identify with f� = (�

1

; : : : ; �

n

) 2 R

n

j 0 � �

`

<

2�; ` = 1; : : : ; ng. The fact that F is compactly supported implies that the series

P

m2Z

n
F (� + 2�m) involves only a �nite number of terms. This, together with the

2� periodicity of e

ik��

, justi�es the interchange of summation and integration (over

T

n

) that gives us the last equality. We see, therefore, that the numbers (2�)

�n

^

F (�k)

are the Fourier coe�cients of the periodic function

P

m2Z

n
F (� + 2�m), which is in

L

2

(T

n

) because the sum only involves a �nite number of m's when � is in T

n

. Thus,

by the Plancherel theorem for Fourier series,

1

(2�)

n

X

k2Z

n

j

^

F (�k)j

2

=

Z

T

n

(

X

m2Z

n

F (� + 2m�))(

X

p2Z

n

F (� + 2p�)) d�

=

Z

R

n

(

X

m2Z

n

F (�+ 2m�))F (�) d�:

Again, the fact that F is compactly supported and the 2�-periodicity of the series,

justi�es the interchange of summation and integration (over T

n

) that gives us the last

equality. This last equality, written in terms of f and  by using the identity

F (�)

X

m2Z

n

F (�+ 2�m) =

^

f(2

j

�)

b

 

`

(�)

X

m2Z

n

^

f(2

j

(� + 2m�))

b

 

`

(� + 2m�);

together with (2.11), gives us (2.12).

Thus,

(2�)

n

I =

L

X

`=1

X

j2Z

2

jn

Z

R

n

j

^

f (2

j

�)j

2

j

b

 

`

(�)j

2

d�+

+

L

X

`=1

X

j2Z

2

jn

Z

R

n

^

f (2

j

�)

b

 

`

(�)

�

X

m6=0

^

f (2

j

(� + 2m�))

b

 

`

(� + 2m�)

�

d�:

The �rst of these summands is I

0

(after a change of variables � = 2

j

�). In order to

justify the manipulations that show that the second summand equals I

1

, as de�ned

immediately after (2.9), we shall prove the following:
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LEMMA 2.12 For every f 2 D and  2 L

2

(R

n

), then:

X

j2Z

2

jn

Z

R

n

j

^

f(2

j

�)

b

 (�)j

X

m6=0

j

^

f (2

j

(� + 2m�))

b

 (� + 2m�)jd� <1:

REMARK 2.13 In addition to allowing us to make all the changes in the order of

summation and integration that will give us the desired expresion for I

1

, this lemma

shows that the sum of the squares of the \coe�cients" (f;  

`

j;k

) (which we denoted

by I) is �nite if and only if I

0

<1 , for each f 2 D. By varying f in D (for example,

letting

^

f = �

C

, where C is a compact subset of R

n

n f0g) we see that I

0

<1 if and

only if

P

L

`=1

P

j2Z

j

b

 

`

(2

j

�)j

2

is locally integrable in R

n

n f0g (that is, integrable over

each compact C � R

n

n f0g). This is, of course, clearly true when (1:7) (i) is valid.

As we shall see, this local integrability property will furnish us with an appropiate

condition that guarantees the convergence of the series (1:6) (i) .

In order to establish Lemma 2.12 we observe that, since

2j

b

 (�)j j

b

 (� + 2m�)j � j

b

 (�)j

2

+ j

b

 (� + 2m�)j

2

;

it su�ces to show that

Z

R

n

�

X

j2Z

X

m6=0

2

jn

j

^

f (2

j

�)j j

^

f (2

j

(� + 2m�))j

�

j

b

 (�)j

2

d� <1 (2.14)

(observe that the sum involving j

b

 (� + 2m�)j

2

reduces to (2.14) via the changes of

variable � = � + 2m� ). But (2.14) is an immediate consequence of

LEMMA 2.15 Suppose 0 < a < b <1;

^

f 2 L

1

(R

n

); supp

^

f � f� : a < j�j < bg and

� = diam(supp

^

f), then

�(�) �

X

j2Z

X

m6=0

2

jn

j

^

f(2

j

�)j j

^

f(2

j

(� + 2m�))j � C�

n

k

^

fk

2

1

for a:e: � 2 R

n

, where C = (

3

2�

)

n

(1 + log

2

b

a

):
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PROOF: If � < 2

j

2� then at most one of the points 2

j

� and 2

j

� + 2

j

2m� lies

in supp

^

f , since m is a non-zero n-tuple with integer components. Thus, in the

sum de�ning �(�) we need only consider j � j

0

, where j

0

is the greatest integer

satisfying 2

j

0

�

�

2�

. We claim that the sum of the terms, in the series de�ning

�(�), that involves each such j does not exceed (

3�

2�

)

n

k

^

fk

2

1

. To see this, we �rst

observe that 2

jn

j

^

f (2

j

�)j j

^

f (2

j

(� + 2m�))j � 2

jn

k

^

fk

2

1

. We then observe that, for j

and � �xed, the number of lattice points m 6= 0 for which

^

f(2

j

(� + 2m�)) 6= 0

is not larger than (1 +

2

�j

�

�

)

n

. To see this suppose m

0

is a lattice point such that

^

f(2

j

(�+2m

0

�)) 6= 0. Then, since � = diam(supp f) , if

^

f (2

j

(�+2m�)) 6= 0, we must

have � � j2

j

(�+2m�)� 2

j

(�+ 2m

0

�)j = 2

j

jm�m

0

j2� . Thus, m must lie within

the sphere about m

0

of radius

2

�j

�

2�

. This sphere is contained in the n-dimensional

\cube" of sidelength

2

�j

�

�

centered at m

0

. But the number of lattice points within

this cube does not exceed (1 +

�

�

2

�j

)

n

. Putting these estimates together we see that

for j � j

0

X

m6=0

2

jn

j

^

f(2

j

�)j j

^

f (2

j

(� + 2m�))j �

(1 +

�

�

2

�j

)

n

2

jn

k

^

fk

2

1

= (2

j

+

�

�

)

n

k

^

fk

2

1

� (2

j

0

+

�

�

)

n

k

^

fk

2

1

�

�

3�

2�

�

n

k

^

fk

2

1

:

Finally, we observe that for

^

f(2

j

�) to be non-zero we must have a � 2

j

j�j � b.

Thus, j must lie in the interval [log

2

a

j�j

; log

2

b

j�j

] to produce a non-zero summand in

the series de�ning �(�). But there are at most 1 + log

2

b

a

integers in this interval.

Together with the last estimate, this gives us

�(�) � (1 + log

2

b

a

)

�

3

2�

�

n

�

n

k

^

fk

2

1

:

This completes the proof of Lemmas 2.12 and 2.15.

2

We now turn our attention to showing that I

1

has the form announced after

equality (2.9). We have shown that

(2�)

n

I =
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= I

0

+

L

X

`=1

X

j2Z

2

jn

Z

R

n

^

f (2

j

�)

b

 

`

(�)

�

X

m6=0

^

f (2

j

(� + 2m�))

b

 

`

(� + 2m�)

�

d� : (2.16)

If m = (m

1

;m

2

; : : : ;m

n

) 6= (0; 0; : : : ; 0) = 0 , then there exists a unique non-negative

integer r such that m = 2

r

q with q 2 O

n

. Since, by Lemma 2.12 the integrand in

the second summand of (2.16) is absolutely convergent, the following equalities that

allow us to isolate the terms involving t

q

(�) are valid and the second term in (2.16)

equals

L

X

`=1

X

j2Z

Z

R

n

^

f(�)

b

 

`

(2

�j

�)

X

m6=0

^

f(� + 2

j

2m�)

b

 

`

(2

�j

� + 2m�)d� =

L

X

`=1

X

j2Z

Z

R

n

^

f(�)

b

 

`

(2

�j

�)

X

r�0

X

q2O

n

^

f (� + 2

j

2�2

r

q)

b

 

`

(2

�j

� + 2�2

r

q) d� =

L

X

`=1

Z

R

n

^

f(�)

X

q2O

n

X

r�0

X

j2Z

b

 

`

(2

r

(2

�r�j

�))

^

f(� + 2

j+r

2�q)

b

 

`

(2

r

(2

�r�j

� + 2q�))d� =

L

X

`=1

Z

R

n

^

f(�)

X

q2O

n

X

r�0

X

p2Z

b

 

`

(2

r

(2

�p

�))

b

 

`

(2

r

(2

�p

� + 2�q))

^

f (� + 2

p

2�q) d� =

=

Z

R

n

^

f (�)

X

q2O

n

X

p2Z

^

f (� + 2

p

2�q)t

q

(2

�p

�) d�:

This proves (2.9). It is now clear that the \if" part of Theorem 2.3 is true. Indeed,

if the system 	 satis�es (1:7) (i) and (ii) , then I

0

= k

^

fk

2

2

and I

1

= 0 . By (2.9)

we then have

L

X

`=1

X

j2Z

X

k2Z

n

j(f;  

`

j;k

)j

2

= I = (2�)

�n

(I

0

+ I

1

) = (2�)

�n

k

^

fk

2

2

+ 0 = kfk

2

2

;

which is equality (2.4) for all f 2 D. By Lemma 2.2, we then can conclude that (2.4)

holds for all f 2 L

2

(R).

We shall now prove the converse. Let us assume that (2.4) holds for all f 2 D.

As we explained in Remark 2.13, this implies that

� (�) �

L

X

`=1

X

j2Z

j

b

 

`

(2

j

�)j

2
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is locally integrable on R

n

n f0g. Thus, almost every point in R

n

is a point of

di�erentiability of the integral of � . Let us choose such a �

0

6= 0 ; that is, if 


n

is

the volume of the unit ball in R

n

,

lim

�!0+

1




n

�

n

Z

j���

0

j��

� (�) d� = � (�

0

): (2.17)

Let us �x � > 0 such that B

�

(�

0

) = f� : j���

0

j � �g � R

n

nf0g and choose f

�

2 D

by letting

^

f

�

(�) =

1

p




n

�

n

�

B

�

(�

0

)

(�):

Using the notation in (2.9), and adding the superscript � to denote the dependence

on this choice of f

�

, we have

(2�)

n

I = (2�)

n

I

�

= I

�

0

+ I

�

1

:

Thus, I

�

= kf

�

k

2

2

= (2�)

�n

k

^

f

�

k

2

2

= (2�)

�n

and we have

1 =

1




n

�

n

Z

B

�

(�

0

)

� (�) d� + I

�

1

;

for every � small enough. From this we see that if we show that I

�

1

tends to 0 as

� ! 0+, we have � (�

0

) = 1 (by (2.17)) and equality (1:7) (i) is satis�ed by the

system 	, since almost all points of R

n

are such �

0

's.

Arguing as we did when we established Lemma 2.12 we see that jI

�

1

j is dominated

by the sum of two terms:

Z

R

n

L

X

`=1

X

j2Z

X

m6=0

2

jn

j

^

f

�

(2

j

�)j j

^

f

�

(2

j

(� + 2m�))j j

b

 

`

(�)j

2

d�

and another term in which

b

 

`

(�) is replaced by

b

 

`

(�+2m�) (which, after the change

of variables � = � + 2m� , reduces to the �rst term). Letting  denote any one of

the L functions in 	 , it su�ces to show, therefore, that

I

�;]

1

=

Z

R

n

X

j2Z

X

m6=0

2

jn

j

^

f

�

(2

j

�)j j

^

f

�

(2

j

(� + 2m�))j j

b

 (�)j

2

d�
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tends to 0 as � ! 0+. The diameter of the support of

^

f

�

is 2�; hence, since m 6= 0

we must have

^

f

�

(2

j

�)

^

f

�

(2

j

(� + 2m�)) = 0

if 2

j

>

�

�

. Let j

0

be the largest integer such that 2

j

0

�

�

�

; then we need only consider

j � j

0

in the sum de�ning I

�;]

1

. Also, if

^

f

�

(2

j

�) 6= 0 we must have j2

j

� � �

0

j � �

and this, in turn, implies j�

0

j � � � 2

j

j�j . Since B

�

(�

0

) � R

n

n f0g , we must have

j�

0

j � � > 0 as well. Hence,

j�j � 2

�j

(j�

0

j � �) � 2

�j

0

(j�

0

j � �) �

�

�

(j�

0

j � �) > 0:

Thus, applying Lemma 2.15 to f

�

, with a = j�

0

j � �; b = j�

0

j+ � , we have

I

�;]

1

�

Z

j�j�(j�

0

j��)

�

�

�

�

(�) j

b

 (�)j

2

d� �

�

3

2�

�

n

�

1 + log

2

j�

0

j+ �

j�

0

j � �

�

(2�)

n

k

^

f

�

k

2

1

Z

j�j�(j�

0

j��)

�

�

j

b

 (�)j

2

d� �

� 


�1

n

�

3

�

�

n

�

1 + log

2

j�

0

j+ �

j�

0

j � �

�

Z

j�j�(j�

0

j��)

�

�

j

b

 (�)j

2

d�:

It is clear that this last expression tends to 0 as �! 0+ . We can conclude, therefore,

that equality (1:7) (i) is satis�ed by 	 . This also shows that I

1

= 0 for all f 2 D

since I

0

must, then, equal k

^

fk

2

2

= (2�)

n

kfk

2

2

and, thus, kfk

2

2

= I = (2�)

�n

(I

0

+I

1

) =

kfk

2

2

+ (2�)

�n

I

1

.That is,

0 = I

1

=

Z

R

n

^

f(�)

X

p2Z

X

q2O

n

^

f(� + 2

p

2�q)t

q

(2

�p

�) d�

for all f 2 D. An application of the polarization identity then gives us

Z

R

n

^

f (�)

X

p2Z

X

q2O

n

ĝ(� + 2

p

2�q)t

q

(2

�p

�) d� = 0 (2.18)

for all f; g 2 D.

Let us �x q

0

2 O

n

and choose a point �

0

of di�erentiability of the integral of t

q

0

such that �

0

6= 0 6= �

0

+ 2�q

0

. Since t

q

0

2 L

1

(R

n

) (see the argument that follows
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(1:6)) almost all points of R

n

have these properties. We need only consider � > 0

su�ciently small so that both B

�

(�

0

) and B

�

(�

0

+2�q

0

) lie within R

n

n f0g. Let f

�

and g

�

in D be functions such that

^

f

�

(�) =

1

p




n

�

n

�

B

�

(�

0

)

(�) and ĝ

�

(�) =

1

p




n

�

n

�

B

�

(�

0

+2�q

0

)

(�):

(observe that ĝ

�

(�) =

^

f

�

(� � 2�q

0

) ). Then

^

f

�

(�)ĝ

�

(� + 2�q

0

) =

1




n

�

n

�

B

�

(�

0

)

(�)

and this allows us to write (2.18) in the form

0 =

1




n

�

n

Z

B

�

(�

0

)

t

q

0

(�) d� +

X

(p;q)2Z�O

n

(p;q)6=(0;q

0

)

Z

R

n

^

f

�

(�)ĝ

�

(� + 2

p

2�q)t

q

(2

�p

�) d� =

=

1

jB

�

(�

0

)j

Z

B

�

(�

0

)

t

q

0

(�) d� + J

�

:

In order to show that equality (1:7) (ii) is satis�ed at �

0

(and, thus, a:e:) it

su�ces to prove that lim

�!0+

J

�

= 0 . We therefore examine the sum de�ning J

�

more closely.

If

^

f

�

(�)ĝ

�

(�+2

p

2�q) 6= 0 we must have j���

0

j < � and j�

0

+2�q

0

���2

p

2�qj <

� . Thus,

jq

0

� 2

p

qj =

1

2�

j(�

0

+ 2�q

0

)� (� + 2

p

2�q) + (� � �

0

)j <

�

�

: (2.19)

Since we are interested in lim

�!0+

J

�

we can assume

�

�

< 1 . If p > 0 we must have

jq

0

� 2

p

qj � 1 >

�

�

since q

0

2 O

n

. If p = 0 we must have jq

0

� 2

p

qj = jq

0

� qj �

1 >

�

�

when q

0

6= q . Finally, if p < 0 we must have jq

0

�2

p

qj = 2

p

j2

�p

q

0

�qj � 2

p

since q 2 O

n

. Hence, if j

0

is the largest integer such that 2

j

0

�

�

�

, we have j

0

< 0

and

J

�

=

X

p�j

0

X

q2O

n

Z

R

n

^

f

�

(�)ĝ

�

(� + 2

p

2�q)t

q

(2

�p

�) d�:
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Making the change of variables � = 2

�p

� we obtain

jJ

�

j �

X

p�j

0

X

q2O

n

2

pn

Z

R

n

j

^

f

�

(2

p

�)j jĝ

�

(2

p

(� + 2�q))j jt

q

(�)jd�:

Since

2jt

q

(�)j �

L

X

`=1

�

X

m�0

j

b

 

`

(2

m

�)j

2

+

X

m�0

j

b

 

`

(2

m

(� + 2�q))j

2

�

;

we can reduce our problem to estimating

J

1

�

=

X

p�j

0

X

q2O

n

2

pn

Z

R

n

j

^

f

�

(2

p

�)j jĝ

�

(2

p

(� + 2�q))j

�

X

m�0

j

b

 

`

(2

m

�)j

2

�

d�:

and an analogous term,J

2

�

, in which

b

 

`

(2

m

�) is replaced by

b

 

`

(2

m

(� + 2�q)) (this

is the same argument we used prior to our introduction of I

�; ]

1

). Once we have shown

that lim

�!0+

J

1

�

= 0 , it will be easy to see how we can modify the argument to obtain

lim

�!0+

J

2

�

= 0 . J

1

�

(and J

2

�

) depends on `; we do not indicate this dependence in

the sequel since there are only a �nite number of these terms.

Let T (�) =

P

m�0

j

b

 

`

(2

m

�)j

2

. The argument in the �rst section that showed that

t

q

2 L

1

(R

n

) applies here to show T 2 L

1

(R

n

). Furthermore, since jB

�

(�

0

)j

1=2

^

f

�

=

�

B

�

(�

0

)

(�) we have

J

1

�

=

X

p�j

0

X

q2O

n

2

pn

p




n

�

n

Z

j2

p

���

0

j<�

T (�) jĝ

�

(2

p

(� + 2�q))jd�:

If ĝ

�

(2

p

(� + 2�q)) 6= 0 we must have j2

p

(� + 2�q) � (�

0

+ 2�q

0

)j � � and this

inequality, together with j2

p

� � �

0

j < � , implies (as in the case (2.19))

jq

0

� 2

p

qj =

1

2�

j2

p

(� + 2�q)� (�

0

+ 2�q

0

) + (�

0

� 2

p

�)j �

�

�

: (2.20)

In our case p � j

0

< 0 ; hence, from (2.20) we have j2

�p

q

0

� qj �

2

�p

�

�

and 2

�p

q

0

is a lattice point. The number of lattice points q satisfying this inequality cannot

exceed (1 +

2

�p

2�

�

)

n

since they must lie within the n-dimensional cube centered at

2

�p

q

0

of side length at most

2

�p

2�

�

. Consequently,

X

q2O

n

jĝ

�

(2

p

(� + 2�q))j � (1 +

2

�p

2�

�

)

n

kĝ

�

k

1

:
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Using this estimate together with kĝ

�

k

1

=

1

p




n

�

n

in the above expression for J

1

�

we

obtain

J

1

�

�

X

p�j

0

�

2

p

+

2�

�

�

n

1




n

�

n

Z

j2

p

���

0

j<�

T (�) d�

�

X

p�j

0

�

2

j

0

+

2�

�

�

n

1




n

�

n

Z

j2

p

���

0

j<�

T (�) d�

�

X

p�j

0

�

3

�

�

n

1




n

Z

j2

p

���

0

j<�

T (�) d�:

But, f� : j2

p

� � �

0

j < �g � f� : 2

�p

(j�

0

j � �) < j�j < 2

�p

(j�

0

j + �)g � A

p

. If

3� < j�

0

j the sets A

p

; p = j

0

; j

0

� 1; j

0

� 2; : : :, are mutually disjoint. Thus,

J

1

�

�

1




n

�

3

�

�

n

X

p�j

0

Z

A

p

T (�) d� =

1




n

�

3

�

�

n

Z

[

p�j

0

A

p

T (�) d�

�

1




n

�

3

�

�

n

Z

2

�j

0

(j�

0

j��)<j�j

T (�) d� �

1




n

�

3

�

�

n

Z

�

�

(j�

0

j��)<j�j

T (�) d�:

But the last integral tends to 0 as � ! 0+ since T 2 L

1

(R

n

). Thus, J

1

�

! 0 as

�! 0+ . As mentioned before, a similar argument shows lim

�!0+

J

2

�

= 0 . In fact, the

change of variables � = �+2�q in the integrals de�ning J

2

�

convert this quantity to,

essentially, J

1

�

except that the roles of f

�

and g

�

are interchanged. Because of this we

can let the point �

0

+2�q

0

play the role of �

0

in the argument we just gave in order

to show that lim

�!0+

J

2

�

= 0 . We thus obtain the desired result lim

�!0+

J

�

= 0 and,

therefore, equation (1:7) (ii) is satis�ed by the system 	 almost everywhere. This

establishes Theorem 2.3.

2

3 The Second Theorem

We now consider the case when the \analyzing" family � = f'

1

; '

2

; : : : ; '

L

g di�ers

from the \synthesizing" system	 = f 

1

;  

2

; : : : ;  

L

g. As indicated in the �rst section
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the result we shall establish \essentially" asserts that equation (1.5) is satis�ed for

all f 2 L

2

(R

n

) if and only if equations (1:6) (i) and (ii) are satis�ed a:e: by �

and 	. There are some basic di�erences between the general case, however, and

the one we just presented in section x2. The local integrability in R

n

n f0g of the

expressions

P

j2Z

j

b

 

`

(2

j

�)j

2

, �rst discussed in Remark 2.13, played an important

role in our arguments and arose in a natural way from our arguments. We did

not, however, need to assume this property for the system 	 when we announced

Theorem 2.3, the principal result in x2. If we do assume that this property holds

for both systems � and 	, the proof that the two equations (1:6) (i) and (ii) are

equivalent to the equality

kfk

2

L

2

(R

n

)

=

L

X

`=1

X

j2Z

X

k2Z

n

(f; '

`

j;k

)( 

`

j;k

; f) (3.1)

for all f 2 D is essentially the same as the proof we presented for Theorem 2.3. We

will be more precise about this below. From this we do obtain a \weak version" of

the representation (1.5) for all such f . This is a consequence of the fact that, by

polarization, (3.1) implies

(f; g) =

L

X

`=1

X

j2Z

X

k2Z

n

(f; '

`

j;k

)( 

`

j;k

; g) (3.2)

for all f and g in D. We cannot, however, establish the L

2

(R

n

)-convergence of the

series (1.5).

If we do not make the local integrability assumptions for each of the two series

X

j2Z

j

b

 

`

(2

j

�)j

2

and

X

j2Z

j

b

'

`

(2

j

�)j

2

; ` = 1; 2; : : : ; L (3.3)

we can still establish the equivalence of (1.6) and some form of (3.1). We will present

the arguments for this result in the fourth section. It is also clear from our presentation

that the case L > 1 o�ers no more complications than the case L = 1; hence, we will

not use the upper index ` from now on.
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We begin by presenting an example that illustrates some of the assertions we have

made. Let I = [�2�;��)[ (�; 2�] and � be the function satisfying

^

� = �

I

. Thus,

� is the Shannon orthonormal wavelet (see Chapter 1 of this thesis). We then de�ne

 by

b

 (�) =

^

�(2�) = �

[��;�

�

2

)[(

�

2

;�]

(�) or, equivalently, by  (x) = 2

�1

�(2

�1

x) . Let

' be the scaling function associated with the Shannon wavelet; that is,

b

' = �

[��;�]

.

PROPOSITION 3.4 The pair ('; ) satisfy equalities (1:6) (i) and (ii) ; that is,

(i)

X

j2Z

b

'(2

j

�)

b

 (2

j

�) = 1 for all � 6= 0;

(ii) t

q

(�) =

1

X

m=0

b

'(2

m

�)

b

 (2

m

(� + 2�q)) = 0 for a:e: � 2 R; 8q 2 2Z+ 1:

PROOF: Since supp

b

 � supp

b

' we have

b

'

b

 =

b

 (because

b

 = �
1

2

I

is real-valued)

and (i) is an immediate consequence of the fact that f2

j

Ig; j 2 Z, is partition of

R n f0g . Equality (ii) follows from the fact that the supports of

b

' and

b

 (�+ 2�q)

are disjoint (except for a set of Lebesgue measure zero) since q is an odd integer and,

thus, jqj � 1.

2

PROPOSITION 3.5 f

p

2 

j;2`

g and f

p

2 

j;2`+1

g; j; ` 2 Z, are, each, an orthonor-

mal basis for L

2

(R).

PROOF: The identity

p

2 

j;2`

= �

j�1;`

; j; ` 2 Z; and the fact that � is an or-

thonormal wavelet show that f

p

2 

j;2`

g; j; ` 2Z; is an orthonormal basis for L

2

(R).

To see that the family f

p

2 

j;2`+1

g; j; ` 2 Z, is an orthonormal family we �rst

observe that, since  satis�es (1:7) (i) and (ii)

f2g

, equality (2.4) is true for all

f 2 L

2

(R); that is,

kfk

2

L

2

(R)

=

X

j2Z

X

k2Z

j(f;  

j;k

)j

2

(3.6)

f2g

The function  we are considering now is a particular case of the class of functions  satisfying

�

�
b

 

�

�

= b , where b is as in (1.8). Proposition 3.5 clearly shows that a \simple re-normalization"

cannot convert the system

�

 

j;k

	

to an orthonormal basis, as we indicated at the end of x1.
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for all f 2 L

2

(R). Breaking up the sum on the right into even and odd k's, and using

the fact that f

p

2 

j;2`

g j; ` 2 Z is an orthonormal basis we obtain, by (3.6),

kfk

2

2

=

X

j2Z

X

`2Z

fj(f;  

j;2`

)j

2

+ j(f;  

j;2`+1

)j

2

g

=

1

2

kfk

2

2

+

X

j2Z

X

`2Z

j(f;  

j;2`+1

)j

2

:

Hence,

kfk

2

2

=

X

j2Z

X

`2Z

j(f;

p

2 

j;2`+1

)j

2

(3.7)

for all f 2 L

2

(R). Since k

p

2 

j;2`+1

k

2

= 1 for all j; ` 2Z , it follows from Lemma 2.1

and (3.7) that the system f

p

2 

j;2`+1

g; j; ` 2Z, is an orthonormal basis for L

2

(R).

2

This example illustrates why the unconditional L

2

(R

n

)-convergence of the series

(1.5) is not true in general when the two equations in Proposition 3.4 are satis�ed. Let

us be more precise. We continue using the functions ' and  we just introduced. We

observed that

P

j2Z

j

b

 (2

j

�)j

2

= 1 for all � 2 R n f0g ; however,

P

j2Z

j

b

'(2

j

�)j

2

=1

for all � 2 R (in particular this last sum does not de�ne a locally integrable function

in R n f0g ). Thus, we are in the situation described in (3.3) and we shall show that

a \weak version" of (1.5) is, indeed, true. The L

2

(R)-convergence of the series (1.5),

however, is not unconditional. To see some of the di�culties we encounter in this

case let us choose a function f 2 V

0

, the space generated by the integral translates

of the scaling function '. In fact, let us choose f = '. Since V

0

� V

j

for j � 0 we

have

' =

X

k2Z

(';'

j;k

)'

j;k

for each j � 0. Since f'

j;k

g

k2Z

is an orthonormal basis for V

j

k'k

2

2

=

X

k2Z

j(';'

j;k

)j

2

(3.8)
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for j � 0.

Consider the series

P

k2Z

(';'

j;k

) 

j;k

for each j. Because of Proposition 3.5, this

series is the sum of two orthogonal expansions

u

j

+ v

j

=

X

`2Z

(';'

j;2`

) 

j;2`

+

X

`2Z

(';'

j;2`+1

) 

j;2`+1

and, from (3.8) we have

ku

j

k

2

2

+ kv

j

k

2

2

=

1

2

X

`2Z

j(';'

j;2`

)j

2

+

1

2

X

`2Z

j(';'

j;2`+1

)j

2

=

1

2

k'k

2

2

for each j � 0. Hence, for in�nitelymany j either ku

j

k

2

2

or kv

j

k

2

2

exceeds

1

4

k'k

2

2

=

1

4

.

Thus, if, say, ku

j

k

2

2

�

1

4

in�nitely often, then













X

j�0

X

`2Z

(';'

j;2`

) 

j;2`













2

2

=

X

j�0

ku

j

k

2

2

=1

(since u

j

? u

j

0

if 0 � j < j

0

). Clearly, then, the series

P

j2Z

P

k2Z

(';'

j;k

) 

j;k

cannot

converge unconditionally to ' in the L

2

(R)-norm.

We now turn our attention to the extension of Theorem 2.3 to the case of a pair

'; of \generating functions". We �rst establish the following

THEOREM 3.9 Suppose that '; 2 L

2

(R

n

) are such that the functions de�ned by

the series in (3.3) are locally integrable in R

n

n f0g. Then ' and  satisfy the

equations

(i)

X

j2Z

b

'(2

j

�)

b

 (2

j

�) = 1; for a:e: � 2 R

n

;

(ii) t

q

(�) =

1

X

m=0

b

'(2

m

�)

b

 (2

m

(� + 2�q)) = 0; for a:e: � 2 R

n

; when q 2 O

n

;

if and only if

kfk

2

L

2

(R

n

)

=

X

j2Z

X

k2Z

n

(f; '

j;k

)( 

j;k

; f) (3.10)

for all f 2 D. The convergence of all these series is absolute and, thus, unconditional.
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Since j(f;  

j;k

)j j('

j;k

; f)j � j(f;  

j;k

)j

2

+ j(f; '

j;k

)j

2

, the decomposition (2.9) applied

to  and ' separately (with f 2 D), and the observations made in Remark 2.13, give

us the absolute (and unconditional) convergence of the series appearing in Theorem

(3.9) (we use, of course, the local integrability of the series in (3.3)).

Let us now indicate which modi�cations in the argument we presented in x2 are

needed to provide a proof of this theorem. Here I denotes the sum on the right in

(3.10). We begin by establishing the analog of the decomposition (2.9):

(2�)

n

I = I

0

+ I

1

; (3.11)

where

I

0

=

X

j2Z

2

jn

Z

R

n

j

^

f(2

j

�)j

2

b

'(�)

b

 (�) d�

=

X

j2Z

Z

R

n

j

^

f (�)j

2

b

'(2

�j

�)

b

 (2

�j

�) d�

and

I

1

=

X

j2Z

2

jn

Z

R

n

^

f (2

j

�)

b

'(�)

X

k6=0

^

f(2

j

(� + 2k�))

b

 (� + 2k�) d�

=

Z

R

n

^

f(�)

X

p2Z

X

q2O

n

^

f(� + 2�2

p

q)t

q

(2

�p

�) d�

9

>

>

>

=

>

>

>

;

(3.12)

where t

q

is de�ned by (ii) in the statement of Theorem 3.9 and involves both ' and

 .

The proof of the decomposition (3.11) follows the same line as the one we gave

for (2.9). The changes that are needed are obvious: the Plancherel theorem gives us

the product

�

Z

R

n

^

f (2

j

�)

b

 (�)e

ik�

d�

��

Z

R

n

^

f (2

j

�)

b

'(�)e

ik�

d�

�

instead of the absolute value squared of the �rst factor. This leads us to the intro-

duction of the function G

j

(�) =

^

f(2

j

�)

b

'(�) along with F

j

(�) =

^

f(2

j

�)

b

 (�) . We
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then \periodize" both F

j

and G

j

to obtain the equality

(2�)

�n

X

k2Z

n

^

F

j

(k)

^

G

j

(k) =

Z

R

n

�

X

m2Z

n

F

j

(� + 2m�)

�

G

j

(�) d�

which leads us to the �rst expression for I

1

in (3.12) (see the argument preceding

Lemma 2.12).

In order to prove that I

1

equals the second expression for I

1

in (3.12) we need to

establish the analogs of Lemmas 2.12 and 2.15. This last estimate, of course, does

not involve the functions ' and  and no change is needed. For the analog of Lemma

2.12 the problem can clearly be reduced to establishing the inequality (2.14).

Having established the decomposition (3.11) it is then immediate that equalities

(i) and (ii) of Theorem 3.9 imply (3.10) for all f 2 D. We must, therefore, show

that the converse is true. Again, the argument we gave in x2 for the corresponding

part in (2.4) applies here if we make some simple and natural modi�cations. In (2.17)

we now must choose � (�) =

P

j2Z

b

'(2

j

�)

b

 (2

j

�) . Then, the same choice of f

�

2 D

and the inequality

2j

b

 (�)j j

b

'(� + 2m�)j � j

b

 (�)j

2

+ j

b

'(� + 2m�)j

2

;

leads us to the equality 1 =

1




n

�

n

R

B

�

(�

0

)

� (�) d� + I

�

1

, where lim

�!0+

I

�

1

= 0 . When

�

0

is a point of di�erentiability of the integral of � we obtain equality (i) in Theorem

3.9 at �

0

. As in x2, this also gives us the equality (2.18) with t

q

(�) as de�ned in (ii)

of Theorem 3.9. Again, we choose f

�

and g

�

as before. The rest of proof given at

the end of x2 applies here and this establishes Theorem 3.9.

2

4 Some other results

In the last section we obtained the equivalence between equality (3.10) and the two

equations (i) and (ii) announced in Theorem 3.9 provided the two series in (3.3)
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are locally integrable in R

n

n f0g. We also gave an example of two functions '; 2

L

2

(R

n

) that satisfy (i) and (ii) but

P

j2Z

j

b

'(2

j

�)j

2

is not locally integrable in Rnf0g.

We left open the question of the validity of (3.10) in this case but did observe that

(1.5) cannot be interpreted in terms of unconditional convergence in L

2

(R) (which

clearly implies (3.10)). In this section we examine other interpretations of (3.10) and

its connection with equalities (i) and (ii) without assuming local integrability of the

series in (3.3).

Let us �rst examine the convergence of the series in (3.10) when ' and  are

functions in L

2

(R

n

). Toward this end we establish the following result:

LEMMA 4.1 Let J be a �xed integer, then the series

S

J

= S

J

(f) =

X

j�J

X

k2Z

n

(f;  

j;k

)('

j;k

; f)

converges absolutely for each f 2 D when '; 2 L

2

(R

n

).

PROOF: By Schwarz's inequality it su�ces to show that

X

j�J

X

k2Z

n

j(f;  

j;k

)j

2

<1

for f 2 D. We argue as we did in the proof of the decomposition of (2.9) to obtain

(2�)

n

X

j�J

X

k2Z

n

j(f;  

j;k

)j

2

=

X

j�J

Z

R

n

j

^

f(�)j

2

j

b

 (2

�j

�)j

2

d�+

X

j�J

2

jn

Z

R

n

^

f(2

j

�)

b

 (�)

X

m6=0

^

f(2

j

(� + 2m�))

b

 (� + 2m�)d�:

Lemma 2.12 assures us that the second summand represents an absolutely convergent

series that is integrable. Moreover,

X

j�J

2

jn

Z

R

n

j

^

f(2

j

�)j j

b

 (�)j

X

m6=0

j

^

f (2

j

(� + 2m�))j j

b

 (� + 2m�)jd� � C <1
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where C is independent of J . In order to estimate the �rst summand we use the fact

that f 2 D and, thus, supp

^

f lies in an annular region of the form f� 2 R

n

j 2

�L

� �

j�j � 2

L

�g . Hence, we can estimate this �rst summand as follows:

Z

2

�L

��j�j�2

L

�

j

^

f(�)j

2

X

j�J

j

b

 (2

�j

�)j

2

d� � k

^

fk

2

1

L�1

X

`=�L

Z

2

`

��j�j�2

`+1

�

X

j�J

j

b

 (2

�j

�)j

2

d� =

k

^

fk

2

1

L�1

X

`=�L

X

j�J

2

jn

Z

2

`�j

��j�j�2

(`�j)+1

�

j

b

 (�)j

2

d� � 2

nJ

k

^

fk

2

1

L�1

X

`=�L

Z

2

`�J

��j�j

j

b

 (�)j

2

d�

� 2

nJ

2Lk

^

fk

2

1

k

b

 k

2

2

<1

and Lemma 4.1 is proved.

2

The double sum on the right of (3.10) corresponds to the expression I in x2. In

analogy with (2.9) we shall consider a similar decomposition for the partial sums S

J

of this double series:

(2�)

n

S

J

= I

J

0

+ I

J

1

; J 2Z; (4.2)

where

I

J

0

=

Z

R

n

j

^

f(�)j

2

X

j�J

b

'(2

�j

�)

b

 (2

�j

�) d�

and

I

J

1

=

X

j�J

2

jn

Z

R

n

^

f(2

j

�)

b

'(�)

X

k6=0

^

f(2

j

(� + 2k�))

b

 (� + 2k�)d�:

The observations we made that showed how to obtain (3.11) and the �rst equality

in (3.12) are valid here and provide us with (4.2). The argument we made in the proof

of Lemma 4.1 shows that

P

j�J

j

b

'(2

�j

�)j j

b

 (2

�j

�)j is locally integrable in R

n

n f0g .

Hence, I

J

0

is well-de�ned for each f 2 D. Reasoning as we did at the end of x3,

we shall show that I

J

1

has an expression involving the functions t

q

(as in the term
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following the second equality in (3.12)); in fact, for J su�ciently large , we have, as

in (3.12),

I

J

1

=

Z

R

n

^

f(�)

X

p2Z

X

q2O

n

^

f (� + 2�2

p

q)t

q

(2

�p

�) d� = I

1

(4.3)

(the size of J for this to be true depends on the diameter of the support of

^

f , where

f 2 D). To see this we repeat the arguments we gave before, but need to take into

account that the sum in the index j is limited by J :

I

J

1

=

X

j�J

Z

R

n

^

f(�)

b

'(2

�j

�)

X

m6=0

^

f (� + 2

j

2m�)

b

 (2

�j

� + 2m�)d�

=

X

j�J

Z

R

n

^

f(�)

b

'(2

�j

�)

X

r�0

X

q2O

n

^

f (� + 2

j+r

2�q)

b

 (2

�j

� + 2�2

r

q) d�

=

Z

R

n

^

f(�)

X

q2O

n

X

r�0

X

j�J

b

'(2

r

(2

�(r+j)

�))

^

f (� + 2

j+r

2�q)

b

 (2

r

(2

�(r+j)

� + 2q�)) d�

=

Z

R

n

^

f(�)

X

q2O

n

X

r�0

X

p�J+r

b

'(2

r

2

�p

�)

b

 (2

r

(2

�p

� + 2�q))

^

f(� + 2

p

2�q) d�

=

Z

R

n

^

f(�)

X

q2O

n

X

p�J

X

r�0

b

'(2

r

2

�p

�)

b

 (2

r

(2

�p

� + 2�q))

^

f(� + 2

p

2�q) d�

+

Z

R

n

^

f(�)

X

q2O

n

X

p>J

X

r�p�J

b

'(2

r

2

�p

�)

b

 (2

r

(2

�p

� + 2�q))

^

f (� + 2

p

2�q) d�:

The �rst summand equals

Z

R

n

^

f(�)

X

q2O

n

X

p�J

^

f(� + 2

p

2�q)t

q

(2

�p

�) d�:

If the diameter of the support of

^

f does not exceed 2

J+1

2� , then either � or �+2

p

2�q

must lie outside supp

^

f if p > J (since q 2 O

n

). Thus,

^

f (�)

^

f(� + 2

p

2�q) = 0 and

the second term is 0. But, in this case we also have

Z

R

n

^

f(�)

X

q2O

n

X

p>J

^

f(� + 2

p

2�q)t

q

(2

�p

�) d� = 0:

We have shown, therefore, that (4.3) is true if J + 2 � log

2

�

diam(supp

^

f)

�

�

.

Thus, together with (4.2), this gives us the equivalence lim

J!1

S

J

exists if and only

if lim

J!1

I

J

0

exists.
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In the present context we have not yet considered the two equations, (i) and (ii),

in (3.9); however, these observations can be used to obtain the following version of

Theorem 3.9 when we do not assume the local integrability of the series (3.3) in

R

n

n f0g:

THEOREM 4.4 Suppose '; 2 L

2

(R

n

). Then

lim

J!1

S

J

= lim

J!1

X

j�J

X

k2Z

n

(f;  

j;k

)('

j;k

; f) = kfk

2

2

(4.5)

for every f 2 D if and only if

(i) lim

J!1

X

j�J

b

'(2

�j

�)

b

 (2

�j

�) = 1

weakly in L

1

(K) whenever K is a compact subset of R

n

n f0g;

where 1 is the constant function that equals 1 on R

n

;

(ii) t

q

(�) =

1

X

r=0

b

'(2

r

�)

b

 (2

r

(� + 2�q)) = 0; for a:e: � 2 R

n

; 8q 2 O

n

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

(4.6)

PROOF: We �rst show that (4.6) implies (4.5). Since t

q

(�) = 0 for a:e: � , (4.2)

and (4.3) imply

S

J

(f) = S

J

= (2�)

�n

I

J

0

= (2�)

�n

Z

R

n

j

^

f(�)j

2

X

j�J

b

'(2

�j

�)

b

 (2

�j

�) d�:

But, by (i) and the fact that K = supp

^

f is a compact subset of R

n

n f0g we have

lim

J!1

S

J

= (2�)

�n

Z

R

n

j

^

f(�)j

2

d� = kfk

2

2

and, thus, (4.5) is true.

To establish the converse we �rst show that (4.6) (ii) is a consequence of (4.5).

The argument is much like the one we gave for Theorem 2.3. We select a point �

0

of

di�erentiability of the integral of t

q

0

such that neither �

0

nor �

0

+ 2�q

0

is 0, and

� > 0 such that B

�

(�

0

) ; B

�

(�

0

+ 2�q

0

) are disjoint balls in R

n

n f0g . Again we

choose f

�

and g

�

such that

^

f

�

=

1

p




n

�

n

�

B

�

(�

0

)

and ĝ

�

=

1

p




n

�

n

�

B

�

(�

0

+2�q

0

)

. From
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(4.2) and polarization we have, for large J (see the discussion before Theorem 4.4),

(2�)

n

X

j�J

X

k2Z

n

(f

�

;  

j;k

)('

j;k

; g

�

)

=

Z

R

n

^

f

�

(�)ĝ

�

(�)

X

j�J

b

'(2

�j

�)

b

 (2

�j

�) d�

+

Z

R

n

ĝ

�

(�)

X

p2Z

X

q2O

n

^

f

�

(� + 2�2

p

q)t

q

(2

�p

�) d�

=

Z

R

n

ĝ

�

(�)

X

p2Z

X

q2O

n

^

f

�

(� + 2�2

p

q)t

q

(2

�p

�) d�:

since

^

f

�

ĝ

�

= 0 because B

�

(�

0

) \ B

�

(�

0

+ 2�q

0

) = ; (we observe that it su�ces to

choose J so that 2

J+2

� > diam(supp (

^

f

�

+ ĝ

�

))) . On the other hand, by polarization

and (4.5) we have

lim

J!1

X

j�J

X

k2Z

n

(f

�

;  

j;k

)('

j;k

; g

�

) = (f

�

; g

�

) = 0

(using, again,

^

f

�

ĝ

�

= 0 and the Plancherel theorem). But we have just shown that

for J large enough

(2�)

n

X

j�J

X

k2Z

n

(f

�

;  

j;k

)('

j;k

; g

�

) =

=

Z

R

n

ĝ

�

(�)

X

p2Z

X

q2O

n

^

f

�

(� + 2�2

p

q)t

q

(2

�p

�) d� � A

�

and the last expression is independent of J . It follows that A

�

= 0.

But the argument that was presented at the end of x2, that showed lim

�!0+

A

�

=

t

q

0

(�

0

) , applies here. Consequently t

q

0

(�

0

) = 0 and (4.6) (ii) is established since

almost every point in R

n

is such �

0

, a point of di�erentiability of the integral of t

q

0

.

It is now particularly easy to show that (4.6) (i) is also a consequence of (4.5). In

fact, if we use (4.2), (4.3) and (4.6) (ii) we have

S

J

= (2�)

�n

I

J

0

= (2�)

�n

Z

R

n

j

^

f (�)j

2

X

j�J

b

'(2

�j

�)

b

 (2

�j

�) d�:
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Thus, by (4.5) we have

lim

J!1

(2�)

�n

Z

K

g(�)

X

j�J

b

'(2

�j

�)

b

 (2

�j

�) d� = (2�)

�n

Z

K

g(�) d�

for every g � 0; g 2 L

1

(R

n

) with supp g a compact subset K of R

n

n f0g . Writing

g = g

1

+ ig

2

= g

+

1

� g

�

1

+ i(g

+

2

� g

�

2

) for the general g 2 L

1

(K) we obtain (4.6) (i).

2

REMARK 4.7 The weak convergence of the sequence in (4.6)(i) can be also ex-

pressed as

lim

J!1

X

j�J

b

'(2

�j

�)

b

 (2

�j

�) = 1 in �(L

1

loc

(R

n

n f0g); L

1

c

(R

n

n f0g));

the weak topology of the Fr�echet space L

1

loc

(R

n

n f0g) with respect to its dual

L

1

c

(R

n

n f0g). We can also interpret (4.5) as a weak convergence in the \sense of the

distributions". More precisely, D can be considered as a space of test functions with

the topology: f

m

! f in D, if and only if, there exists a compact set K � R

n

n f0g

such that supp

^

f

m

; supp f � K, 8m � 1, and f

m

! f in L

1

(K). Then, for f 2 D,

we can look at u

J

(f) =

P

j�J

P

k2Z

n
(f;  

j;k

)'

j;k

as a \distribution" de�ned by

(u

J

(f); g) =

X

j�J

X

k2Z

n

(f;  

j;k

)('

j;k

; g); when g 2 D:

Indeed, it is easy to check that, by the considerations right before Theorem 4.4, u

J

is a continuous (conjugate)-linear functional in D. If we denote by D

�

the space of

such distributions and by �(D

�

;D) the !

�

-topology de�ned in D

�

, then (4.5) can be

written as

f = lim

J!1

u

J

(f) = lim

J!1

X

j�J

X

k2Z

n

(f;  

j;k

)'

j;k

in �(D

�

;D) (4.8)

whenever f 2 D.

This result, Theorem 4.4, applies to the example of the pair of functions, ' and

 , we introduced in x3. In fact, Proposition 3.4 tells us that, in particular, (4.6)(i)
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and (ii) are satis�ed by this pair of functions. Moreover, if K is a compact set of

R

n

n f0g, then (4.6)(i) is a �nite sum (in j) when � 2 K. Thus, the pair ' and  

satisfy (4.5) which, by polarization, is equivalent to

lim

J!1

X

j�J

X

k2Z

n

(f;  

j;k

)('

j;k

; g) = (f; g)

for all f; g 2 D (in this case the series above is again a �nite sum over j). This is a

weak form of the representation

f =

X

j2Z

X

k2Z

n

(f;  

j;k

)'

j;k

(4.9)

for f; g 2 D, as we indicated in (4.8). We have already discussed why we cannot

expect (4.9) to be true in L

2

(R

n

) as an unconditionally convergent series. Another

inconvenient feature of our results is that we have established them only for f 2 D.

Of course, we assumed very little about ' and  besides the equations (4.6)(i) and

(ii) . We shall end this section with a result that involves the L

2

(R

n

)-convergence

of the series in (4.9) based on a \natural" hypothesis about the systems f'

j;k

g and

f 

j;k

g; j 2Z; k 2Z

n

.

THEOREM 4.10 Suppose '; 2 L

2

(R

n

). Then

f =

X

j2Z;k2Z

n

(f;  

j;k

)'

j;k

=

X

j2Z;k2Z

n

(f; '

j;k

) 

j;k

(4.11)

for all f 2 L

2

(R

n

) with both series converging unconditionally in L

2

(R

n

), is equivalent

to the following three properties. There exists a constant C > 0 such that

X

j2Z;k2Z

n

j(f;  

j;k

)j

2

� Ckfk

2

2

X

j2Z;k2Z

n

j(f; '

j;k

)j

2

� Ckfk

2

2

9

>

>

=

>

>

;

for all f 2 L

2

(R

n

); (4.12)

X

j2Z

b

 (2

j

�)

b

'(2

j

�) = 1 for a:e: � 2 R

n

; (4.13)

t

q

(�) =

1

X

m=0

b

'(2

m

�)

b

 (2

m

(� + 2�q)) = 0 for a:e: � 2 R

n

; 8q 2 O

n

; (4.14)

where the series in (4.13) and (4.14) are absolutely convergent for a:e: � 2 R

n

.



47

REMARK 4.15 A system fe

j

g of vectors in a Hilbert space H such that

X

j

j(f; e

j

)j

2

� Ckfk

2

2

; for all f 2 H (4.16)

is called a Bessel sequence, while the best constant C in (4.16) is said to be the Bessel

bound of the system. Thus, condition (4.12) asserts that f'

j;k

g and f 

j;k

g; j 2

Z; k 2 Z

n

are each a Bessel sequence. A simple condition that guarantees that  

generates a Bessel sequence f 

j;k

g; j 2 Z; k 2 Z

n

, (see [CHU-SHI]) is the follow-

ing: Let � be any non-negative function on [0;1) that is increasing on [0; 1) and

decreasing on [1;1) ; suppose, in addition, that

Z

1

0

�(w)

�

1 +

1

w

�

dw <1:

Then, if  2 L

2

(R) satis�es j

b

 (w)j � �(jwj) for w 2 R , f 

j;k

(x)g = fa

j=2

 (a

j

x�

bk)g; j 2 Z; k 2 Z, is a Bessel sequence whenever a > 1 and b > 0 . An n-

dimensional version of this result is easy to obtain. We cite the result in [CHU-SHI]

to show that (4.12) is not very restrictive; the couples '; introduced by Frazier and

Jawerth (see [FJ], [FJW]) satisfy these conditions.

REMARK 4.17 It will be shown in the course of the proof of Theorem 4.10 that if

(4.12) holds then, there exists a positive constant C such that

X

j2Z

j

b

'(2

j

�)j

2

� C and

X

j2Z

j

b

 (2

j

�)j

2

� C a:e: � 2 R

n

(4.18)

In particular, the series in (4.13) is absolutely convergent for a:e: �.

REMARK 4.19 Each of the systems f'

j;k

g and f 

j;k

g ; j 2 Z;k 2 Z

n

, is a frame.

In fact, suppose the �rst inequality in (4.12) is satis�ed and

kfk

2

2

=

X

j2Z

X

k2Z

n

(f;  

j;k

)('

j;k

; f)
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for all f 2 L

2

(R

n

) (which follows from (4.11)). Then

kfk

2

2

=

X

j2Z

X

k2Z

n

(f;  

j;k

)('

j;k

; f)

�

�

X

j2Z;k2Z

n

j(f;  

j;k

)j

2

�

1=2

�

X

j2Z;k2Z

n

j(f; '

j;k

)j

2

�

1=2

�

p

C kfk

2

�

X

j2Z;k2Z

n

j(f; '

j;k

)j

2

�

1=2

:

Dividing by

p

Ckfk

2

we obtain

1

C

kfk

2

2

�

X

j2Z;k2Z

n

j(f; '

j;k

)j

2

:

Thus, together with the second inequality in (4.12) shows that f'

j;k

g ; j 2Z;k 2Z

n

,

is a frame.

PROOF: We �rst show that (4.11) implies (4.12), (4.13) and (4.14). We will use

the following result for a general Hilbert space H (see [SIN], Vol I, Lemma (14.9)(b)

on page 425):

LEMMA 4.20 Let fx

i

g

1

i=1

be a system of vectors in H. If

P

1

i=1

x

i

converges uncon-

ditionally in H, then

1

X

i=1

kx

i

k

2

� C = C(fx

i

g) <1:

We apply this lemma to the sequence f(f; '

j;k

) 

j;k

g ; j 2Z;k 2Z

n

:

P

j;k

(f; '

j;k

) 

j;k

converges unconditionally by (4.11); thus, since ' and  are �xed and non-zero in

this discussion,

X

j2Z;k2Z

n

j(f; '

j;k

)j

2

= k k

�2

2

X

j2Z;k2Z

n

k(f; '

j;k

) 

j;k

k

2

2

� C k k

�2

2

= C

f

: (4.21)

Consider the linear operator de�ned on L

2

(R

n

) by

Tf = f(f; '

j;k

)g; (j;k) 2Z�Z

n



49

Inequality (4.21) shows that it maps L

2

(R

n

) into `

2

(Z�Z

n

). Suppose the pair (f; `) ,

with ` = f`

j;k

g , is a limit point of its graph. Then there exists a sequence ff

m

g; m 2

N , such that (f

m

; T f

m

) ! (f; `) in the graph norm as m ! 1 . In particular,

lim

m!1

P

j2Z

P

k2Z

n
j(f

m

; '

j;k

) � `

j;k

j

2

= 0 showing that `

j;k

= lim

m!1

(f

m

; '

j;k

) =

(f; '

j;k

) for each (j;k) 2 Z�Z

n

. Thus, the graph of T is closed and, as a conse-

quence, T is bounded: there exists a constant C > 0, independent of f 2 L

2

(R

n

),

such that

X

j2Z

X

k2Z

n

j(f; '

j;k

)j

2

� Ckfk

2

2

:

The same argument shows that

X

j2Z

X

k2Z

n

j(f;  

j;k

)j

2

� Ckfk

2

2

for all f 2 L

2

(R

n

), and this establishes (4.12).

Let � denote either ' or  and let us apply the decomposition (2.9) for f 2 D

and t

q

(�) =

P

1

m=0

�̂(2

m

�)�̂(2

m

(� + 2�q)) :

(2�)

n

X

(j;k)2Z�Z

n

j(f; �

j;k

)j

2

=

Z

R

n

j

^

f(�)j

2

X

j2Z

j�̂(2

j

�)j

2

d�

+

Z

R

n

^

f(�)

X

p2Z

X

q2O

n

^

f (� + 2�2

p

q)t

q

(2

�p

�) d�:

By the observation we made in Remark 2.13 and (4.12), we see that

P

j2Z

j�̂(2

j

�)j

2

=

� (�) is locally integrable in R

n

nf0g . We choose �

0

to be a point of di�erentiability

of the integral of � (�) and f

�

so that

^

f

�

=

1

p




n

�

n

�

B

�

(�

0

)

(see (2.17) and the sentence

that follows). Applying the argument we presented after (2.17) we have

1




n

�

n

Z

B

�

(�

0

)

� (�) d� + I

�

1

=

Z

R

n

j

^

f

�

(�)j

2

� (�) d� + I

�

1

= (2�)

n

I

�

= (2�)

n

X

(j;k)2Z�Z

n

j(f

�

; �

j;k

)j

2

� (2�)

n

Ckf

�

k

2

2

= C;

where the inequality follows from (4.12). Letting �! 0+ , since lim

�!0+

I

�

1

= 0 , we

obtain � (�

0

) � C . That is (4.18) is satis�ed and the series in (4.13) is absolutely
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convergent for a:e: �. The equality part of (4.13) and equality (4.14) are consequences

of Theorem 3.9.

We now turn to the converse. We begin by proving the two extensions of Lemmas

2.1 and 2.2 that involve two systems E = fe

j

g , F = ff

j

g; j 2 N , of vectors in a

Hilbert space H. These are general versions of the systems f'

j;k

g and f 

j;k

g; j 2

Z;k 2 Z

n

, which, for simplicity, we index by the natural numbers N. In this context

(4.12) becomes

(i)

X

i2N

j(h; e

i

)j

2

� Ckhk

2

(ii)

X

i2N

j(h; f

i

)j

2

� Ckhk

2

(4.22)

for all h 2 H.

LEMMA 4.23 Suppose E = fe

j

g and F = ff

j

g satisfy (4.22) and, for all h in a

dense subset D of H

khk

2

=

X

i2N

(h; e

i

)(f

i

; h): (4.24)

Then equality (4.24) is valid for all h 2 H.

PROOF: Let h 2 H; (4.22) implies that the series in (4.24) is absolutely convergent.

Let fh

n

g � D be a sequence such that kh

n

�hk ! 0 as n!1 . Then, by Schwarz's

inequality and (4.22),

�

�

�

�

X

j2N

(h; e

j

)(f

j

; h)� khk

2

�

�

�

�

�

�

�

�

�

X

j2N

(h� h

n

; e

j

)(f

j

; h) + (h

n

; e

j

)(f

j

; h� h

n

)

�

�

�

�

+

�

�

�

�

kh

n

k

2

� khk

2

�

�

�

�

� Ckh� h

n

k khk + Ckh

n

k kh� h

n

k+

�

�

�

�

kh

n

k

2

� khk

2

�

�

�

�

which goes to 0 as n!1.

2
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LEMMA 4.25 Suppose E = fe

j

g and F = ff

j

g satisfy (4.22). Then the following

two properties are equivalent

(i) khk

2

=

X

j2N

(h; e

j

)(f

j

; h) for all f 2 H

(ii) h =

X

j2N

(h; e

j

)f

j

=

X

j2N

(h; f

j

)e

j

for all f 2 H with convergence in H:

In this case, the convergence of all the series is unconditional.

PROOF: That (ii) implies (i) is trivial. Let us, then, assume (i). By polarization

we have

(g; h) =

X

j2N

(g; e

j

)(f

j

; h) for all g; h 2 H: (4.26)

If we can show that the partial sums of

P

1

j=1

(h; e

j

)f

j

(or the second series in (ii)) form

a Cauchy sequence, it follows that (ii) must be true. Indeed, if u =

P

1

j=1

(h; e

j

)f

j

then, using (4.26), we must have

(u; g) =

1

X

j=1

(h; e

j

)(f

j

; g) = (h; g)

for all g 2 H and, thus, u = h . But

k

N

X

j=M

(h; e

j

)f

j

k = sup

kgk=1

j

N

X

j=M

(h; e

j

)(f

j

; g)j �

sup

kgk=1

(

N

X

j=M

j(h; e

j

)j

2

)

1=2

(

N

X

j=M

j(g; f

j

)j

2

)

1=2

�

sup

kgk=1

(

N

X

j=M

j(h; e

j

)j

2

)

1=2

C

1=2

kgk = C

1=2

(

N

X

j=M

j(h; e

j

)j

2

)

1=2

;

where the last inequality is a consequence of (4.22) (ii). Since the series

P

1

j=1

j(h; e

j

)j

2

is convergent (by (4.22) (i)) we see that the partial sums in question do form a Cauchy

sequence.

2
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We can now easily �nish the proof of Theorem 4.10. Equalities (4.13), (4.14) and

inequality (4.12) (which as we indicated implies (4.18)) permit us to apply Theorem

3.9 to obtain (3.10) for all f 2 D. An application of Lemma 4.23 then gives us the

equality

X

j2Z

X

k2Z

n

(f;  

j;k

)('

j;k

; f) = kfk

2

2

for all f 2 L

2

(R

n

) and, then, by Lemma 4.25 the desired equalities (4.11).

2
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5 Notes and concluding remarks

We devote this section to present some examples and further results related to our

our theory.

REMARK 5.1 Theorem 2.3 can be extended to hold in a somewhat more general

setting; namely, one can replace the \dyadic" dilations and \integer" translations by

\matrix dilations" and \lattice translations". Let � be a lattice in R

n

; that is, � =

AZ

n

, where A is a real (non-singular) n�n-matrix. Let us denote by �

�

= 2�(A

�

)

�1

Z

n

the dual lattice of �. Suppose that S is an n�n-matrix with all its eigenvalues having

absolute value strictly larger than 1 such that preserves the lattice points; that is,

S(�) � �. Let us write, for  2 L

2

(R

n

),

 

j;


(x) = det(S)

j=2

 (S

j

x+ 
); j 2Z;
 2 �:

Then, Theorem 2.3 holds in this setting when  

j;k

is replaced by  

j;


and (1.7) by

L

X

`=1

X

j2Z

j

b

 

`

((S

�

)

j

�)j

2

= det(A)

t




�

(�) =

L

X

`=1

1

X

j=0

b

 

`

((S

�

)

j

�)

b

 

`

((S

�

)

j

(� + 


�

)) = 0; 


�

2 O

�

= �

�

n S

�

�

�

:

A detailed proof of this fact was recently presented to us by A. Calogero (see [CAL])

and consists of an appropriate (and careful!) modi�cation of the arguments we intro-

duced above. Besides, [CAL] contains some interesting examples on how this situation

can be applied.

In a somewhat less general case, A. Ron and Z. Shen obtained a completely dif-

ferent proof of Theorem 2.3 (see, Corollary 5.8 in [RON-SHEN]). Their assumptions

include matrix dilations and lattice translations as above, but in their proof a restric-

tion on the function  of the type

b

 (�) = O((1+ j�j)

�(

n

2

+")

), when j�j ! 1, for some

" > 0, is required. For further details, we refer the reader to [RON-SHEN].
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REMARK 5.2 Theorems 3.9 and 4.10 are independent of each other. To illustrate

this fact we present the following example, covered by the former but not by the

latter. For simplicity, we restrict ourselves to the case n = 1. Let � be a �xed real

number, 0 < � <

1

2

, and let us de�ne ' and  in L

2

(R) by

b

'(�) = j� � �j

�

�

(�;2�]

(�) + j� + �j

�

�

[�2�;��)

(�)

b

 (�) =

1

j� � �j

�

�

(�;2�]

(�) +

1

j� + �j

�

�

[�2�;��)

(�):

It is easy to see that with this de�nition identities (4.13) and (4.14) hold for a:e: real

number �. We claim that the series in (3.3) de�ne both locally integrable functions in

R n f0g and, hence, we are under the assumptions of Theorem 3.9. Indeed, if ` 2 Z,

then

X

j2Z

j

b

 (2

j

�)j

2

=

1

j2

`

j�j � �j

2�

and

X

j2Z

j

b

'(2

j

�)j

2

= j2

`

j�j � �j

2�

; (5.3)

whenever 2

�`

� < j�j � 2

�`+1

�, which clearly establishes our claim.

However, f 

j;k

g cannot be a Bessel system, since otherwise (4.18) would imply

that the series

P

j2Z

j

b

 (2

j

�)j

2

is a bounded function in R, which clearly is not the

case. Thus, we are not under the assumptions of Theorem 4.10 and, consequently,

one can �nd functions f 2 L

2

(R) such that the series

P

j;k

(f;  

j;k

)'

j;k

do not converge

unconditionally to f in L

2

(R).

This example also shows that the \weak" convergence for functions f 2 D obtained

in Theorem 3.9 cannot be improved to unconditional convergence in L

2

(R

n

). In

Remark 5.12 below, we show how to modify the proof of Theorem 3.9 to obtain

convergence for functions in a larger dense set, but still in the weak sense. In Remark

5.15 we show that \weak convergence in L

2

(R)" does not hold in general, even under

stronger assumptions than those in Theorem 3.9.
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REMARK 5.4 The families f'

j;k

g, f 

j;k

g in the example above satisfy the stronger

condition of being a pair of biorthogonal systems in L

2

(R). By this we mean that

('

j;k

;  

j

0

;k

0

) = �

j;j

0

�

k;k

0

; j; j

0

; k; k

0

2Z: (5.5)

This is easily seen by just noticing that, �̂

j;k

(�) = 2

�j=2

�̂(2

�j

�) e

�i2

�j

k�

(here � stands

for either ' or  ) and, therefore,

('

j;k

;  

j

0

;k

0

) =

1

2�

(

b

'

j;k

;

b

 

j

0

;k

0

) = 0; if j 6= j

0

; while

('

j;k

;  

j;k

0

) =

1

2�

Z

R

b

'(�)

b

 (�) e

i(k

0

�k)�

d� =

1

2�

Z

�

��

e

i(k

0

�k)�

d� = �

k;k

0

:

X. Wang characterized biorthogonal systems of this type in terms of \simple equa-

tions" involving ' and  (see Lemma 5.12 in [WAN]). More precisely, (5.5) holds if

and only if, for a:e: � 2 R, and j � 1,

X

k2Z

b

'(� + 2k�)

b

 (� + 2k�) = 1

X

k2Z

b

'(2

j

(� + 2k�))

b

 (� + 2k�) = 0

X

k2Z

b

 (2

j

(� + 2k�))

b

'(� + 2k�) = 0

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(5.6)

In his work, Wang was trying to �nd a characterization of pairs of biorthogonal Riesz

wavelets

f3g

by means of \simple equations" involving ' and  . He proved that equa-

tions (5.6) and (1.6) are necessary conditions and raised the question of whether the

converse was also true (see Remark 5-2 in p.104 of [WAN]). Our example above shows

that this is not case, the main reason being that the unconditionality of the expan-

sions in (4.11) is more closely related to the fact that f'

j;k

g and f 

j;k

g are Bessel

sequences, than to the biorthogonality or completeness of the systems.

f3g

A function  2 L

2

(R) is said to be a Riesz wavelet if f 

j;k

g

j;k2Z

is an unconditional basis for

L

2

(R). This notion is a little more general than the term orthonormal wavelet.
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REMARK 5.7 Continuing along with the work of X. Wang, it would be desirable

to express the Bessel sequence conditions in (4.12), which a priori are just abstract

Hilbert space assumptions, in terms of \simple equations" involving ' and  . One

such characterization was given by A. Ron and Z. Shen in their excellent paper [RON-

SHEN], although the equations in this case turn out not to be so \simple" as one

might have expected. More precisely, what they do is the following: given a function

 2 L

2

(R

n

), for every �xed � 2 R

n

they de�ne the dual gramian matrix associated to

 , G

 

(�) in `

2

(Z

n

), by

G

 

(�)(`;k) =

r

X

j=0

b

 (2

�j

(� + 2�`))

b

 (2

�j

(� + 2�k)); for `;k 2Z

n

;

where the integer r = r(`;k) � 0 is given by the (unique) decomposition ` � k =

2

r

q; q 2 O

n

, when ` � k 6= 0, and r = 1, when ` = k. Then, they prove the

following equivalence:

PROPOSITION 5.8 The system f 

j;k

j j 2 Z;k 2 Z

n

g is a Bessel sequence in

L

2

(R

n

) if and only if G

 

(�) is a bounded operator in `

2

(Z

n

) for a:e: � 2 T

n

, and

C

 

= ess- sup

�2T

n

kG

 

(�)k

2

`

2

!`

2

< 1. When this is the case, C

 

is the best Bessel

bound for f 

j;k

g (as in (4.16)).

Using this result and Theorem 4.10 we obtain the following characterization of

biorthogonal Riesz wavelets:

COROLLARY 5.9 Let '; 2 L

2

(R). Then, ('; ) is a pair of biorthogonal Riesz

wavelets if and only if kG

'

(�)k

`

2

!`

2
; kG

 

(�)k

`

2

!`

2
2 L

1

(T) and equations (1.6), (5.6)

hold.

Note that the same characterization holds in R

n

after taking the n-dimensional analog

of (5.6), in which k 2Zis replaced by k 2Z

n

.
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REMARK 5.10 Theorem 4.10 can be restated using the language from the theory of

frames. We recall the reader that a frame in a Hilbert space H is a system of vectors

fe

j

g for which there exist two constants 0 < A � B <1 such that

Akxk

2

�

X

j

j(x; e

j

)j

2

� Bkxk

2

; 8x 2 H

(see, e.g., [DAUB], [HW], or [HAN-LAR]). The main feature of frames is that they

provide a \reconstruction formula" of the type

x =

X

j

(x; e

�

j

)e

j

; unconditionally for all x 2 H; (5.11)

when the system fe

�

j

g is taken to be the dual frame of fe

j

g. However, for a given frame

fe

j

g, there are many other systems, f~e

j

g, that give the same reconstruction formula

as in (5.11) when e

�

j

is replaced by ~e

j

. These systems have been called alternate dual

frames by D. Han and D. Larson and an extensive study of their properties is given

in [HAN-LAR].

Theorem 4.10 above provides a characterization of all the alternate dual frames of

the type f'

j;k

g associated to a given frame f 

j;k

g in L

2

(R

n

)

f4g

. In fact, by using the

equations in the theorem one can construct many examples of such situations. We

include one here that is a variation of the example presented at the begining of x3.

Let '; 2 L

2

(R) be given by:

b

' = �

[��;�

�

4

)[(

�

4

;�]

;

b

 = �

[��;�

�

2

)[(

�

2

;�]

:

It is easy to check that these functions satisfy the assumptions of Theorem 4.10

f5g

,

so that f'

j;k

g and f 

j;k

g are frames and

f =

X

j;k

(f; '

j;k

) 

j;k

; unconditionally for all f 2 L

2

(R):

f4g

After the write-up of this manuscript we found a similar characterization of pairs of dual frames

of the type described above in a new article by A. Ron and Z. Shen. Although their approach is

di�erent (following the line of their previous articles), they are led to quite interesting conclusions.

For more information we refer the reader to [RON-SHEN2].

f5g

To show that f'

j;k

g,f 

j;k

g are Bessel sequences use, e.g., Remark 4.15 or Proposition 3.5.



58

Thus, f'

j;k

g is an alternate dual frame for f 

j;k

g, but distinct from the dual frame of

f 

j;k

g. In fact, (3.6) above implies that f 

j;k

g is a tight frame, so the dual is itself.

REMARK 5.12 In the results presented in xx2; 3 and 4, the dense space D played

an important role and arose naturally from our considerations (see Remark 2.13 in

x2). It is possible, however, to replace D by a somewhat larger dense set, S, in such a

way that the \delicate steps" in our proofs (mainly, (2.10), Lemma 2.12 and Lemma

4.1) hold in this new setting. One such a choice for a dense set would come after

replacing the condition \compact support in R

n

n f0g" by \appropriate decay at 0

and 1". For example, we let f 2 S if f 2 L

2

(R

n

) and there exist "; "

0

> 0 and

C = C("; "

0

; f) <1 such that

j

^

f(�)j � C j�j

"

; when j�j � 1

j

^

f(�)j �

C

j�j

n+"

0

; when j�j � 1:

9

>

>

>

=

>

>

>

;

(5.13)

If we denote the smallest of the constants C("; "

0

; f) by kfk

";"

0

, one can consider

S as a space of \test functions" by introducing the topology: f

m

! f in S i�

9 "; "

0

> 0 j kf

m

� fk

";"

0

! 0. Then, the statements of Theorems 3.9 and 4.4 can

be modi�ed to hold in this new setting. One needs to give an appropriate meaning

to the expression

P

j

b

'(2

j

�)

b

 (2

j

�), which in general will involve a stronger type of

convergence. More precisely, one has the following:

THEOREM 3.9' Let '; 2 L

2

(R

n

) be such that

Z

R

n

j

^

f(�)j

2

X

j2Z

fj

b

'(2

j

�)j

2

+ j

b

 (2

j

�)j

2

g d� <1; for all f 2 S: (5.14)

Then, the pair ('; ) satis�es equations (i) and (ii) in Theorem 3.9 if and only if

kfk

2

L

2

(R

n

)

=

X

j2Z

X

k2Z

n

(f; '

j;k

)( 

j;k

; f); for all f 2 S;

where the series above converges absolutely.
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THEOREM 4.4' Suppose '; 2 L

2

(R

n

). Then,

1. For each J 2Zand f; g 2 S, the series S

J

(f; g) =

P

j�J

P

k2Z

n
(f; '

j;k

)( 

j;k

; f)

converges absolutely. Moreover, u

J

(f) =

P

j�J

P

k2Z

n
(f; '

j;k

) 

j;k

is a distribu-

tion in S

�

when de�ned by (u

J

(f); g) = S

J

(f; g).

2. The following statements are equivalent:

(i) For f 2 S; u

J

(f)! f; in S

�

:

(ii) For f 2 S; lim

J!1

P

j�J

P

k2Z

n
(f; '

j;k

)( 

j;k

; f) = kfk

2

2

:

(iii)

8

>

>

>

<

>

>

>

:

lim

J!1

Z

R

n

j

^

f(�)j

2

X

j�J

b

'(2

�j

�)

b

 (2

�j

�) d� = k

^

fk

2

2

; 8 f 2 S

t

q

(�) = 0; a:e: � 2 R

n

; q 2 O

n

:

The proof of these results is left to be veri�ed by the interested reader.

REMARK 5.15 In the �nal comment in Remark 5.2 we mentioned the sharpness

of Theorem 3.9, in the sense that one cannot replace the (absolute) convergence of

P

j2Z

P

k2Z

(f; '

j;k

)( 

j;k

; g), for functions f; g 2 D (or S), by general functions f; g 2

L

2

(R). Indeed, we present an example below in which even under the assumptions

that

b

';

b

 are compactly supported (so that

P

j

b

'(2

j

�)

b

 (2

j

�) is a �nite series) and

(1.6) holds, one can �nd two functions f; g 2 L

2

(R) such that

P

k2Z

(f; '

j;k

)( 

j;k

; g) is

not an absolutely convergent series.

To be more precise, we �nd functions f; g; ';  2 L

2

(R) so that

supp �̂ � [�2�;��][ [�; 2�] � I;

when � 2 ff; g; ';  g,

b

'(�)

b

 (�) = 1 on I, and

P

k2Z

j(f;  

0;k

)('

0;k

; g)j =1. It is easy

to check that, with this choice, (1.6) holds. Note that a straightforward application
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of Plancherel theorem gives us

(f;  

0;k

) =

1

2�

Z

R

^

f(�)

b

 (�)e

ik�

d�; k 2Z:

Now, let F (�) be a 2�-periodic function in L

1

(I) so that F (�) � 1 and has Fourier

coe�cients c

k

(F ) =

1

log jkj

, when jkj � 2

f6g

. Then, we can de�ne our functions f; g; ';  

by

b

 =

^

f = F

1=2

�

I

;

b

' = F

�1=2

�

I

and ĝ = F

1=2

�

[�;2�]

:

Note that all of them belong to L

2

(R). Moreover,

(f;  

0;k

) =

1

2�

Z

I

F (�)e

ik�

d� =

1

log jkj

; when jkj � 2;

and

(g; '

0;k

) =

1

2�

Z

2�

�

e

ik�

d� =

8

>

<

>

:

0; if k 6= 0 is even

1=2; if k = 0

1

�ik

; if k is odd.

It clearly follows from here that

P

k2Z

j(f;  

0;k

)('

0;k

; g)j =1.

f6g

That such a function exists follows, e.g., from Theorem 4.1, in Chapter I of [KATZ].
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6 One example: tensor product of wavelets in R

2

We conclude this chapter by applying once again Theorem 2.3 to prove that certain

functions are wavelets, providing, for instance, an elementary approach to the tensor

product of MRA's in R

2

.

Suppose fV

j

g

j2Z

is an MRA and let ' 2 L

2

(R) be a scaling function with as-

sociated low-pass �lter m

0

2 L

2

(T). In particular, the following equations hold for

a:e: � 2 R (see x3 in Chapter 1):

b

'(2�) = m

0

(�)

b

'(�) (6.1)

jm

0

(�)j

2

+ jm

0

(� + �)j

2

= 1 (6.2)

lim

n!1

j

b

'(2

�n

�)j = 1 (6.3)

X

k2Z

j

b

'(� + 2k�)j

2

= 1: (6.4)

De�ne a function  2 L

2

(R) by

b

 (�) = e

i

�

2

m

0

(�=2 + �)

b

'(�=2); a:e: � 2 R: (6.5)

Then, it is a well-known fact from the theory of MRA's that  constructed as above is

an orthonormal wavelet for L

2

(R). Alternatively, this property can be easily proved by

using the results presented in x2 of this chapter. Indeed, by Theorem 2.3, everything

reduces to check that equations (1.7) (i) and (ii) hold and k k

2

= 1. In fact, we show

something a little more general, namely, that (6.1), (6.2) and (6.3) imply that f 

j;k

g

is a tight frame in L

2

(R). Indeed, from the �rst two equations and the de�nition of

 we obtain

j

b

'(2�)j

2

+ j

b

 (2�)j

2

= j

b

'(�)j

2

; a:e: � 2 R:

Iterating, and using that, for ' 2 L

2

(R), lim

n!1

j

b

'(2

n

�)j = 0; a:e: � 2 R (see, e.g.,

p. 61 of [HW]), we have the well-known equation:

j

b

'(�)j

2

=

1

X

j=1

j

b

 (2

j

�)j

2

; a:e: 2 R: (6.6)
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Then, using (6.3), we obtain:

X

j2Z

j

b

 (2

j

�)j

2

= lim

n!1

1

X

j=�n

j

b

 (2

j

�)j

2

= lim

n!1

1

X

j=1

j

b

 (2

j

(2

�(n+1)

�))j

2

= lim

n!1

j

b

'(2

�(n+1)

�)j

2

= 1;

and (1.7) (i) holds.

On the other hand, using (6.1), (6.2) and (6.3), we have that, for every q 2 2Z+1:

n

X

j=0

b

 (2

j

�)

b

 (2

j

(� + 2q�)) = �m

0

(�=2 + �)m

0

(�=2)

b

'(�=2)

b

'(�=2 + q�)

+

n

X

j=1

m

0

(2

j�1

� + �)

b

'(2

j�1

�)m

0

(2

j�1

� + �)

b

'(2

j�1

(� + 2q�))

= �

b

'(�)

b

'(� + 2q�) +

n

X

j=1

f1� jm

0

(2

j�1

�)j

2

g

b

'(2

j�1

�)

b

'(2

j�1

� + 2

j

q�)

=

n

X

j=2

b

'(2

j�1

�)

b

'(2

j�1

� + 2

j

q�) �

n

X

j=1

b

'(2

j

�)

b

'(2

j

� + 2

j+1

q�)

= �

b

'(2

n

�)

b

'(2

n

(� + 2q�))! 0; as n!1;

which shows that f 

j;k

g is a tight frame. Note that orthonormality of the system

would follow if we assume, in addition, that (6.4) holds (see Remark 2.6). Indeed,

Z

R

j

b

 (2�)j

2

d� =

X

k2Z

Z

T

jm

0

(� + �)j

2

j

b

'(� + 2k�)j

2

d�

=

Z

�

0

fjm

0

(� + �)j

2

+ jm

0

(�)j

2

g d� = �;

and, hence, k k

L

2

(R)

= 1.

We consider now a somewhat more di�cult problem: with the same conditions as

above, we shall show that the collection f'
  ; 
 '; 
  g is a wavelet family in

L

2

(R

2

), where the tensor product (f 
 g)(x; y) = f(x) g(y); (x; y) 2 R

2

. One way of

proving this is by appropriately constructing the MRA fV

j


 V

j

g

j2Z

in L

2

(R

2

) given

by the tensor product of fV

j

g with itself (see, e.g., x3:2 in [MEY]). However, one can
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proceed as well by justifying that (1.7) holds in this setting. Indeed, for the �rst

equation, using (6.6) and the 1-dimensional case above, we have:

X

j2Z

j

b

'(2

j

�

1

)j

2

j

b

 (2

j

�

2

)j

2

+

X

j2Z

j

b

 (2

j

�

1

)j

2

j

b

'(2

j

�

2

)j

2

+

X

j2Z

j

b

 (2

j

�

1

)j

2

j

b

 (2

j

�

2

)j

2

=

=

X

j2Z

f

1

X

k=1

j

b

 (2

j+k

�

1

)j

2

g j

b

 (2

j

�

2

)j

2

+

X

j2Z

j

b

 (2

j

�

1

)j

2

f

1

X

k=1

j

b

 (2

j+k

�

2

)j

2

g+

+

X

j2Z

j

b

 (2

j

�

1

)j

2

j

b

 (2

j

�

2

)j

2

=

1

X

k=1

X

j2Z

j

b

 (2

j

�

1

)j

2

j

b

 (2

j�k

�

2

)j

2

+

X

j2Z

j

b

 (2

j

�

1

)j

2

f

1

X

k=1

j

b

 (2

j+k

�

2

)j

2

g+

+

X

j2Z

j

b

 (2

j

�

1

)j

2

j

b

 (2

j

�

2

)j

2

=

X

j2Z

j

b

 (2

j

�

1

)j

2

f

1

X

k=1

[j

b

 (2

j�k

�

2

)j

2

+ j

b

 (2

j+k

�

2

)j

2

] + j

b

 (2

j

�

2

)j

2

g

=

X

j2Z

j

b

 (2

j

�

1

)j

2

f

X

`2Z

j

b

 (2

`

�

2

)j

2

g = 1; a:e:� = (�

1

; �

2

) 2 R

2

:

To show that (1.7) (ii) holds in this case, let q = (q

1

; q

2

) 2 O

2

; without loss of

generality, we assume that q

2

2 2Z+ 1. Then, for a:e:� = (�

1

; �

2

) 2 R

2

, we have:

t

q

(�) =

1

X

j=0

b

 (2

j

�

1

)

b

 (2

j

�

2

)

b

 (2

j

(�

1

+ 2q

1

�))

b

 (2

j

(�

2

+ 2q

2

�)) +

1

X

j=0

b

 (2

j

�

1

)

b

'(2

j

�

2

)

b

 (2

j

(�

1

+ 2q

1

�))

b

'(2

j

(�

2

+ 2q

2

�)) +

1

X

j=0

b

'(2

j

�

1

)

b

 (2

j

�

2

)

b

'(2

j

(�

1

+ 2q

1

�))

b

 (2

j

(�

2

+ 2q

2

�))

=

1

X

j=0

fI + II + IIIg:

Now,

I+II =

b

 (2

j

�

1

)

b

 (2

j

(�

1

+2q

1

�)) fe

i2

j�1

�

2

m

0

(2

j�1

�

2

+�)

b

'(2

j�1

�

2

) e

�i2

j�1

�

2

e

�i2

j

q

2

�

�

�m

0

(2

j�1

�

2

+ 2

j

q

2

� + �)

b

'(2

j�1

�

2

+ 2

j

q

2

�)

+m

0

(2

j�1

�

2

)

b

'(2

j�1

�

2

)m

0

(2

j�1

�

2

+ 2

j

q

2

�)

b

'(2

j�1

�

2

+ 2

j

q

2

�) g
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=

b

 (2

j

�

1

)

b

 (2

j

(�

1

+ 2q

1

�))

b

'(2

j�1

�

2

)

b

'(2

j�1

�

2

+ 2

j

q

2

�)�

�

�

0 ; if j = 0 (since q

2

2 2Z+ 1)

jm

0

(2

j�1

�

2

+ �)j

2

+ jm

0

(2

j�1

�

2

)j

2

= 1; if j � 1.

To simplify our expressions, let us denote, for j � 0,

�

j

=

b

'(2

j

�

1

)

b

'(2

j

(�

1

+ 2q

1

�))

b

'(2

j

�

2

)

b

'(2

j

(�

2

+ 2q

2

�)):

Then, using (6.5) in the equation above, we have:

I + II =

�

0; if j = 0

jm

0

(2

j�1

�

1

+ �)j

2

�

j�1

; if j � 1.

Thus, we can write t

q

(�) as follows:

t

q

(�) =

1

X

j=1

jm

0

(2

j�1

�

1

+ �)j

2

�

j�1

+

1

X

j=0

fIIIg

=

1

X

j=1

jm

0

(2

j�1

�

1

+ �)j

2

�

j�1

�

b

'(�

1

)

b

'(�

1

+ 2q

1

�)m

0

(�

2

=2 + �)

b

'(�

2

=2)m

0

(�

2

=2)

b

'(�

2

=2 + q

2

�)

+

1

X

j=1

jm

0

(2

j�1

�

1

)j

2

b

'(2

j�1

�

1

)

b

'(2

j�1

(�

1

+ 2q

1

�)) �

� jm

0

(2

j�1

�

2

+ �)j

2

b

'(2

j�1

�

2

)

b

'(2

j�1

(�

2

+ 2q

2

�))

=

1

X

j=1

jm

0

(2

j�1

�

1

+ �)j

2

�

j�1

� �

0

+

1

X

j=1

jm

0

(2

j�1

�

1

)j

2

jm

0

(2

j�1

�

2

+ �)j

2

�

j�1

= ��

0

+

1

X

j=1

fjm

0

(2

j�1

�

1

+ �)j

2

+ jm

0

(2

j�1

�

1

)j

2

jm

0

(2

j�1

�

2

+ �)j

2

g�

j�1

= ��

0

+

1

X

j=1

f1� jm

0

(2

j�1

�

1

)j

2

jm

0

(2

j�1

�

2

)j

2

g�

j�1

:

Since

jm

0

(2

j�1

�

1

)j

2

jm

0

(2

j�1

�

2

)j

2

�

j�1

= �

j

; for j � 1;

we have:

t

q

(�) = ��

0

+

1

X

j=1

(�

j�1

� �

j

)

= lim

j!1

�

j

= 0;
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because lim

j!1

b

'(2

j

�) = 0; a:e: � 2 R.
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Chapter 3

On the Connectivity of the Set of

�-Localized Wavelets

Let � be a real number greater than 1=2. A function ' is localized of degree � (or �-

localized) if ' 2 L

2

((1 + jxj

2

)

�

dx). In this chapter we study �-localized wavelets and

scaling functions. We show that, with the topology induced by L

2

((1 + jxj

2

)

�

dx), the

topological space of all �-localized scaling functions is homeomorphic to the (topo-

logical) subspace of H

�

(T) consisting of all the low-pass �lters associated with those

scaling functions. Moreover, we shall show that this set of low-pass �lters is an

arcwise-connected in�nite dimensional manifold. In x5, we turn to the study of �-

localized wavelets. By a theorem of Lemari�e-Rieusset, each of these wavelets sat-

isfying an additional but \mild" smoothness condition (say,  2 H

"

(R), for some

" > 0) arises from an MRA with a scaling function having the same localization and

smoothness properties. We shall use this theorem, together with our results in xx2�4

to �nd a decomposition of the space of �-localized wavelets in connected components.

It turns out that two wavelets belong to the same connected component if and only

if their \phases" have the same homotopy degree. In x5:3 we solve the functional

equation that determines the phase of an �-localized wavelet and give a formula for

the homotopy degree of each phase in terms of the \center of mass" of  .

67



68

1 Some Properties of Sobolev Spaces

The material we include in this section is a compilation of some known results from

Sobolev space theory. More general statements and proofs than the ones we present

here can be found in di�erent articles of the classical literature (see, e.g., [ADAM],

[STRI] or [TAIB]). Two references that contain the basics properties of Sobolev spaces

(either as theorems, or as exercises) are: x6 in Chapter 8 of [FOL], and Chapter V

of [STE]. We give complete proofs of the not so well-known results we will use in the

sequel.

1.1 Sobolev spaces in R

Let � > 0 be �xed. We de�ne the Sobolev space of degree � by:

H

�

(R) =

�

f 2 L

2

(R) j kfk

2

H

�

(R)

=

Z

R

j

^

f(�)j

2

(1 + j�j

2

)

�

d� <1

�

(1.1)

Then, H

�

(R) is a Hilbert space with the inner product

< f; g >

H

�

(R)

=

Z

R

^

f (�) ĝ(�) (1 + j�j

2

)

�

d�;

and associated norm k � k

H

�

(R)

as de�ned above. We shall denote this norm by kfk

�

,

whenever there is no confusion with kfk

2

= kfk

L

2

(R)

.

These spaces can also be de�ned as the range of certain Bessel potential operators.

Let � > 0 and let G

�

be the tempered distribution given by

b

G

�

(�) = (1 + j�j

2

)

�

�

2

.

Then, it can be shown that G

�

2 L

1

(R) (see Proposition 2 of x3, in Chapter V of

[STE]). We de�ne the Bessel potential operator of order � > 0 by

J

�

(f) = G

�

� f; f 2 L

2

(R): (1.2)

Taking Fourier transforms of both sides, this operator can be written as

d

(J

�

f)(�) = (1 + j�j

2

)

�

�

2

^

f(�); f 2 L

2

(R): (1.3)
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Now it is easy to see that f 2 H

�

(R) if and only if there exists a function g 2 L

2

(R)

such that f = J

�

g , and kfk

H

�

(R)

= kgk

L

2

(R)

. If this is the case, then ĝ(�) =

(1 + j�j

2

)

�

2

^

f (�) . With this identi�cation, J

�

becomes an (isometric) isomorphism of

Hilbert spaces

J

�

: L

2

(R)�! H

�

(R)

g 7! J

�

g = G

�

� g

In the same way one can show that J

�

is also an (isometric) isomorphism between

H

�

(R) and H

�+�

(R) (see x3:3 of Chapter V of [STE]).

It is possible to de�ne an equivalent norm

f1g

in H

�

(R). Suppose that � = n 2Z

+

,

where here Z

+

denotes the set of all positive integers. Then f 2 H

�

(R) if and only

if f; f

0

; : : : ; f

(n)

2 L

2

(R) , where f

0

; : : : ; f

(n)

denote the derivatives in the sense of

distributions of f . Moreover,

kfk

H

�

(R)

�

n

X

k=0

kf

(k)

k

L

2

(R)

� kfk

L

2

(R)

+ kf

(n)

k

L

2

(R)

: (1.4)

where the symbol \�" means that the two norms are equivalent. This equivalence

follows easily from the fact that (f

(n)

)̂ (�) = (i�)

n

^

f(�) (in L

2

(R) and in the sense

of distributions). For the non-integer case, if � = n + " , where n 2 Z

+

[ f0g and

0 < " < 1, we have that f 2 H

�

(R) if and only if f; f

0

; : : : ; f

(n)

2 L

2

(R) , and

!

"

(f

(n)

) =

�

Z

R

Z

R

jf

(n)

(x+ h)� f

(n)

(x)j

2

dx

dh

jhj

1+2"

�

1

2

<1 (1.5)

where f

0

; : : : ; f

(n)

denote the distributional derivatives of f and, again,

kfk

H

�

(R)

� kfk

L

2

(R)

+ kf

(n)

k

L

2

(R)

+ !

"

(f

(n)

): (1.6)

A proof for these norm equivalences can be found in x3.5 of Chapter V of [STE] (see

Theorem 3, Lemma 3 and Proposition 4 there).

f1g

We say that two norms k � k

1

and k � k

2

in a normed space X are equivalent if there exist two

constants 0 < C

1

� C

2

<1 such that C

1

kxk

1

� kxk

2

� C

2

kxk

1

; for allx 2 X.
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We shall denote the space of bounded continuous functions on R by C

b

(R) and

its norm by kfk

1

= sup

x2R

jf(x)j . Then, for 0 < � < 1, we say that a function

f 2 C

b

(R) belongs to �

�

(R) whenever

kfk

�

�

(R)

= kfk

1

+ sup

x2R ;h6=0

jf(x+ h) � f(x)j

jhj

�

<1: (1.7)

The spaces �

�

(R) are sometimes called Lipschitz spaces (or spaces of H�older contin-

uous functions), and are related to the Sobolev spaces by the following theorem.

THEOREM 1.8 : Sobolev Imbedding Theorem

(I) Let 0 < � < � < 1. Then, H

�

(R) � H

�

(R) and there exists a constant

C = C(�; �) such that

kfk

H

�

(R)

� C kfk

H

�

(R)

; for all f 2 H

�

(R): (1.9)

(II) Let � > 1. Then f 2 H

�

(R) if and only if f 2 L

2

(R) and f

0

2 H

��1

(R) .

Moreover,

kfk

H

�

(R)

� kfk

L

2

(R)

+ kf

0

k

H

��1

(R)

: (1.10)

(III) Let

1

2

< � <

3

2

. Then, H

�

(R) � �

��

1

2

(R) and there exists a constant

C = C(�) such that

kfk

�

��

1

2

(R)

� C kfk

H

�

(R)

; for all f 2 H

�

(R): (1.11)

PROOF: The �rst statement is a simple consequence of the boundedness of the

inverse of the Bessel potential (J

���

)

�1

: H

�

(R) ! H

�

(R) . The second statement

follows from the de�nition of norm given in (1.4) and (1.6). A proof for the third

part can be found in [STE] (see x 6.7, in Chapter V) or, in a more general context,

in [TAIB] (see Theorem 9).

2
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REMARK 1.12 Note that, in particular, if � >

1

2

, part (III) of the theorem above

tells us that each function f 2 H

�

(R) is bounded and continuous inR. More generally,

if � > k +

1

2

, where k = 0; 1; 2; : : :, then f and all its derivatives up to order k are

bounded and continuous in R (after, maybe, a modi�cation on a set of measure zero).

In most of what follows we restrict ourselves to the case � >

1

2

and, therefore, our

functions f are considered to be continuously de�ned everywhere in R.

Let us now prove a lemma that we shall use later and that gives us another

equivalent norm in H

�

(R).

LEMMA 1.13 : Uniform localization lemma.

Let � > 0 be �xed, and let w 2 C

1

c

(�2�; 2�) (meaning that the support of w is a

compact subset of (�2�; 2�)). Then, there exists a constant C = C(�;w) such that

X

k2Z

kf(�)w(� + 2k�)k

2

�

� C kfk

2

�

; for all f 2 H

�

(R): (1.14)

PROOF:

Case 1: � = n 2Z

+

.

By the Leibnitz rule, we can write the (distributional) derivatives of f(�)w(�+2k�)

as

D

(h)

[f(�)w(�+ 2k�)] =

h

X

m=0

 

h

m

!

f

(m)

w

(h�m)

(�+ 2k�); for 0 � h � n:

Thus,

X

k2Z

kD

(h)

[f(�)w(�+ 2k�)] k

2

L

2

(R)

�

� 2

h+1

h

X

m=0

 

h

m

!

2

X

k2Z

Z

R

jf

(m)

(x)j

2

jw

(h�m)

(x+ 2k�)j

2

dx

= 2

h+1

h

X

m=0

 

h

m

!

2

Z

R

jf

(m)

(x)j

2

[

X

k2Z

jw

(h�m)

(x+ 2k�)j

2

] dx

� 2

h+1

h

X

m=0

 

h

m

!

2

2 kw

(h�m)

k

2

1

kf

(m)

k

2

2

� C kfk

2

H

n

(R)

;



72

where the last two inequalities follow from (1.4) and from the fact that the series

P

k2Z

jw

(h�m)

(x + 2k�)j

2

has at most two non-zero terms. Thus, summing over h,

when 0 � h � n, and using (1.4) again, we obtain

X

k2Z

kf(�)w(�+ 2k�)k

2

H

n

(R)

� C

n

X

h=0

X

k2Z

kD

(h)

[f(�)w(�+ 2k�)] k

2

L

2

(R)

� C kfk

2

H

n

(R)

;

and this completes the proof of case 1.

Case 2: � = n+ " , where n 2Zand 0 < " < 1.

By using the same reasoning as above we have, when 0 � h � n,

X

k2Z

kD

(h)

[f(�)w(�+ 2k�)] k

2

2

� C kfk

2

H

n

(R)

� C kfk

2

H

�

(R)

: (1.15)

Therefore, it is enough to estimate the last term in the de�nition of the norm given

in (1.6), which in this case is

X

k2Z

!

"

(D

(n)

[f(�)w(�+ 2k�)] )

2

� 2

n+1

X

k2Z

n

X

h=0

 

n

h

!

2

!

"

(f

(h)

(�)w

(n�h)

(�+ 2k�) )

2

:

Given a �xed 0 � h � n, for the terms on the right hand side of the inequality above,

we have

X

k2Z

!

"

(f

(h)

(�)w

(n�h)

(�+ 2k�) )

2

=

=

X

k2Z

Z

R

Z

R

jf

(h)

(x+ y)w

(n�h)

(x+ y + 2k�)� f

(h)

(x)w

(n�h)

(x+ 2k�)j

2

dx dy

jyj

1+2"

� 2

Z

R

Z

R

jf

(h)

(x+ y)j

2

[

X

k2Z

jw

(n�h)

(x+ y + 2k�)� w

(n�h)

(x+ 2k�)j

2

]

dx dy

jyj

1+2"

+2

Z

R

Z

R

[

X

k2Z

jw

(n�h)

(x+ 2k�)j

2

] jf

(h)

(x+ y)� f

(h)

(x)j

2

dx dy

jyj

1+2"

= A+B:

Now, B is easy to estimate because at most two terms in

P

k2Z

jw

(n�h)

(x + 2k�)j

2

can be non-zero. Thus,

B � 2 kw

(n�h)

k

2

1

!

"

(f

(h)

)

2

� C kfk

2

�

:
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To estimate A, we write it as

A = 2

Z

R

jf

(h)

(x)j

2

�

Z

R

X

k2Z

jw

(n�h)

(x+ 2k�)� w

(n�h)

(x+ y + 2k�)j

2

dy

jyj

1+2"

�

dx:

We can now consider separately, for each �xed x 2 R, the integral inside the brackets

in the expression above

I

x

=

Z

jyj>2�

+

Z

jyj�2�

= I

1

x

+ I

2

x

;

and we obtain

I

1

x

�

Z

jyj>2�

16 kw

(n�h)

k

2

1

dy

jyj

1+2"

= C <1;

because only four terms of

P

k2Z

jw

(n�h)

(x+2k�)j

2

+

P

k2Z

jw

(n�h)

(x+y+2k�)j

2

can

be non-zero. Finally,

I

2

x

�

Z

jyj�2�

X

k2Z

�

�

�

�

Z

x+2k�+y

x+2k�

w

(n�h+1)

(t) dt

�

�

�

�

2

dy

jyj

1+2"

�

Z

jyj�2�

�

X

k2Z

sup

t2[x+2k�;x+2k�+y]

jw

(n�h+1)

(t)j

2

�

jyj

2

dy

jyj

1+2"

� 3 kw

(n�h+1)

k

2

1

Z

jyj�2�

jyj

1�2"

dy = C <1; for all x 2 R;

where the last inequality follows from the fact that, for �xed x 2 R and y 2 [�2�; 2�],

for, at most, three of the k's, the intervals [x+2k�; x+2k�+y] intersect the support

of w. Thus, combining the two inequalities for I

1

x

and I

2

x

we can estimate A by

A = 2

Z

R

jf

(h)

(x)j

2

I

x

dx � C kf

(h)

k

2

2

� C kfk

2

�

:

This implies that

P

k2Z

!

"

(D

(n)

[f(�)w(�+2k�)] )

2

� A+B � C kfk

2

�

; which together

with (1.15) gives us (1.14) and completes the proof of case 2.

2

REMARK 1.16 This lemma, stated for the case when � 2 Z

+

, can be found in

[MEY] (see Lemma 6 in Chapter 2). For a more general statement and proof see
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Theorem 3.1 in Chapter I of [STRI]. If we assume, further, that 0 � w � 1, and

wj

[��;�]

� 1, then it can be shown that the norms involved are equivalent; that is,

1

C

kfk

2

�

�

X

k2Z

kf(�)w(�+ 2k�)k

2

�

� C kfk

2

�

:

COROLLARY 1.17 Let � >

1

2

, and let f 2 H

�

(R). Then,

P

k2Z

jf(x + 2k�)j

2

converges uniformly in [��; �] and

k

X

k2Z

jf(�+ 2k�)j

2

k

1

� C kfk

2

�

;

where the constant C depends only on �.

PROOF: Let us take a function w 2 C

1

c

(�2�; 2�) such that 0 � w � 1, and

wj

[��;�]

� 1. Then, for every two positive integers N;M , and for every x 2 [��; �],

we have

X

N�jkj�N+M

jf(x+ 2k�)j

2

�

X

N�jkj�N+M

kf(�)w(� + 2k�)k

2

1

� C

X

N�jkj�N+M

kf(�)w(� + 2k�)k

2

�

� C kfk

2

�

;

where the last two inequatilies follow from (1.11) and (1.14). Thus, we have a uniform

Cauchy condition in our series, which implies the desired uniform convergence.

2

As an application to the theory of MRAs that we introduced in Chapter 1, we

have the following corollary:

COROLLARY 1.18 Suppose that ' is a scaling function for an �-localized MRA (as

de�ned in (3.1) and (3.13) of Chapter 1), where � >

1

2

. Then,

X

k2Z

j

b

'(� + 2k�)j

2

= 1; for all � 2 R:

PROOF: Note that (3.13) of Chapter 1, together with (1.1) above, implies that

b

' 2 H

�

(R) and, since � >

1

2

, Corollary 1.17 tells us that

P

k2Z

j

b

'(� + 2k�)j

2

converges uniformly in [��; �] to a continuous 2�-periodic function S(�). But by

equality (3.6) of Chapter 1 we know that this series converges a:e: to 1. Thus,

S(�) = 1 for every � 2 R, and this establishes the corollary.

2
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1.2 Sobolev spaces in T

Similar de�nitions and properties hold in the periodic case. We shall say that a

2�-periodic measurable function f belongs to L

2

(T) when

kfk

2

L

2

(T)

=

Z

�

��

jf(x)j

2

dx <1

Here we identify the 1-dimensional torus with T = R=(2�Z)

�

=

[��; �) . We know

that every function f 2 L

2

(T) can be expressed in terms of its Fourier series,

f(x) =

X

k2Z

c

k

e

ikx

; a:e: x 2 T; where c

k

=

1

2�

Z

�

��

f(x)e

�ikx

dx ; k 2Z: (1.19)

Moreover, the sequence fc

k

g

k2Z

must satisfy

P

k2Z

jc

k

j

2

< 1 . With this in mind,

we de�ne the Sobolev space in T of degree � > 0 as

H

�

(T) =

�

f 2 L

2

(T) j kfk

2

H

�

(T)

=

X

k2Z

jc

k

j

2

(1 + jkj

2

)

�

<1

�

; (1.20)

where c

k

= c

k

(f) are the Fourier coe�cients of f de�ned by (1.19). As in the non-

periodic case, the spaces H

�

(T) are Hilbert spaces, and equivalent norms of the type

(1.4) and (1.6) can be found. Indeed, suppose that � = n 2 Z

+

, then f 2 H

�

(T)

if and only if f; f

0

; : : : ; f

(n)

2 L

2

(T) , where f

0

; : : : ; f

(n)

denote the distributional

derivatives (in T) of f . Moreover,

kfk

H

�

(T)

�

n

X

k=0

kf

(k)

k

L

2

(T)

� kfk

L

2

(T)

+ kf

(n)

k

L

2

(T)

: (1.21)

In a similar fashion one deals with the case � = n + " , where n 2 Z

+

[ f0g and

0 < " < 1. Now we have f 2 H

�

(T) if and only if f; f

0

; : : : ; f

(n)

2 L

2

(T) , and

!

"

(f

(n)

) =

�

Z

T

Z

T

jf

(n)

(x+ h)� f

(n)

(x)j

2

dx

dh

jhj

1+2"

�

1

2

<1: (1.22)

As before, we have the equivalence of the norms

kfk

H

�

(T)

� kfk

L

2

(T)

+ kf

(n)

k

L

2

(T)

+ !

"

(f

(n)

): (1.23)
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The proof for these norm equivalences follows essentially from the same arguments

as in the real line case. For a more detailed discussion on this, the reader can consult

Chapter VII of [TAIB]. If we denote by C(T) the space of continuous 2�-periodic

functions in R, and by kfk

1

= sup

x2T

jf(x)j its norm, we can de�ne, in a similar

way to (1.7), the 2�-periodic Lipschitz spaces. More precisely, if 0 < � < 1, we say

that a function f 2 C(T) belongs to �

�

(T) whenever

kfk

�

�

(T)

= kfk

1

+ sup

x;h2T

h6=0

jf(x+ h)� f(x)j

jhj

�

<1: (1.24)

We now state the periodic version of the Sobolev Imbedding Theorem (Theorem 3.8).

THEOREM 1.25 : Sobolev Imbedding Theorem for T.

(I) Let 0 < � < � < 1. Then, H

�

(T) � H

�

(T) and there exists a constant

C = C(�; �) such that

kfk

H

�

(T)

� C kfk

H

�

(T)

; for all f 2 H

�

(T): (1.26)

(II) Let � > 1. Then f 2 H

�

(T) if and only if f 2 L

2

(T) and f

0

2 H

��1

(T) .

Moreover,

kfk

H

�

(T)

� kfk

L

2

(T)

+ kf

0

k

H

��1

(T)

: (1.27)

(III) Let

1

2

< � <

3

2

. Then, H

�

(T) � �

��

1

2

(T) and there exists a constant

C = C(�) such that

kfk

�

��

1

2

(T)

� C kfk

H

�

(T)

; for all f 2 H

�

(T): (1.28)
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REMARK 1.29 The same conclusion as in Remark 1.12 applies here. When � >

1

2

,

each function f 2 H

�

(T) is automatically 2�-periodic and continuous in R (after,

maybe, a modi�cation on a null set). Note that, in particular, this implies that f is

uniformly continuous. When � > k +

1

2

, f can be extended 2�-periodically to R in

such a way that f 2 C

k

(R).

It is not hard to show that H

�

(R) is an algebra under pointwise multiplication

whenever � >

1

2

. That is, if f; g 2 H

�

(R) then f � g 2 H

�

(R) (see Exercise 6.11

of Chapter V in [STE] or the proof of Lemma 1.30 below). In the periodic case, the

space H

�

(T) has the stronger property of being a Banach algebra

f2g

. In particular,

the constant function 1 belongs to it. This special feature is due to the fact that T

is compact, while R is not, and has important consequences. We present in the next

lemmas a more precise description of what we are saying.

LEMMA 1.30 Let � >

1

2

. Then, the Sobolev spaces H

�

(T) are commutative Banach

algebras under pointwise multiplication. That is, we can �nd a norm k � k

�

in H

�

(T)

such that, for every f; g 2 H

�

(T) then f � g 2 H

�

(T) . Moreover,

kf � gk

�

� kfk

�

kgk

�

and k1k

�

= 1 : (1.31)

PROOF:

It is clear that 1 2 H

�

(T) for all � >

1

2

. Then, it is enough to show that there

exists a constant C = C(�) > 0 such that if f; g 2 H

�

(T) then f � g 2 H

�

(T) and

kf � gk

�

� C kfk

�

kgk

�

: Indeed, once we establish this, the following proposition tells

us that we can �nd an equivalent norm in H

�

(T) such that (1.31) holds.

PROPOSITION 1.32 : see Theorem 10.2 of [RUD1]. Assume that A is a Banach

space as well as a complex algebra with unit element 1 6= 0, in which multiplication is

left-continuous and right-continuous. Then, there is a norm on A which induces the

same topology as the given one and which makes A into a Banach algebra.

f2g

We say that a Banach space X is a Banach algebra if it is an algebra with a unit element 1 and

if there is a norm k � k in X such that k1k = 1 and kf � gk � kfk kgk; 8 f; g 2 X.



78

Note that if f; g 2 H

�

(T) then f � g 2 L

2

(T) and kf � gk

2

� kfk

1

kgk

2

. If we use the

de�ntion of norm given in (1.21) (or (1.23)), we just need to estimate k(f � g)

(n)

k

2

(or !

"

((f � g)

(n)

) ). We shall �rst show the case in which � is a positive integer.

Case 1: � = n 2Z

+

.

k(f � g)

(n)

k

2

�

n

X

k=0

 

n

k

!

kf

(k)

g

(n�k)

k

2

�

n�1

X

k=1

 

n

k

!

kf

(k)

k

1

kg

(n�k)

k

2

+ kfk

1

kg

(n)

k

2

+ kf

(n)

k

2

kgk

1

� C kfk

�

kgk

�

;

the last inequality following from the Sobolev Imbedding Theorem 1.25.

Case 2: � = ";

1

2

< " < 1:

!

"

(fg) � kfk

1

!

"

(g) + !

"

(f) kgk

1

� C kfk

�

kgk

�

;

the last inequality following from (1.28).

Case 3: � = n+ "; where n 2Z

+

; 0 < " < 1.

!

"

((fg)

(n)

) �

n�1

X

k=1

 

n

k

!

!

"

(f

(k)

g

(n�k)

) + !

"

(f

(n)

g) + !

"

(fg

(n)

) = A+B + C:

We can now easily estimate A since for each term for which 1 � k � n, Sobolev's

Theorem 1.25 implies that

!

"

(f

(k)

g

(n�k)

) � kf

(k)

k

1

!

"

(g

(n�k)

) + kg

(n�k)

k

1

!

"

(f

(k)

) � C kfk

�

kgk

�

:

In order to estimate B (or C), suppose that n � 2 or that

1

2

< " < 1 (that is, � >

3

2

).

Then we have

B = !

"

(f

(n)

g) � kgk

1

!

"

(f

(n)

) +

�

Z

T

Z

T

jf

(n)

(x)j

2

jg(x)� g(x+ y)j

2

dx dy

jyj

1+2"

�

1

2

� kgk

1

!

"

(f

(n)

) + kg

0

k

1

�

Z

T

jf

(n)

(x)j

2

dx

�

1

2

�

Z

�

��

jyj

2

dy

jyj

1+2"

�

1

2

� C kfk

�

kgk

�

:
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Note that in the last inequality we have used that g

0

2 H

��1

� H

"

� �

"�

1

2

, by the

Sobolev Imbedding Theorem 1.25.

When n = 1 and 0 < " �

1

2

we cannot use this fact and the following re�nement of

the Sobolev Imbedding Theorem 1.25 is needed. (See Chapter V of [STE] or Theorem

9' in Chapter VII of [TAIB].)

PROPOSITION 1.33 Let � > 0 and 1 � p � 1. Then if � >

1

2

�

1

p

we have that

H

�

(T)� L

p

(T) and there exists a constant C = C(�; p) > 0 such that

kfk

L

p

(T)

� C kfk

H

�

(T)

; for all f 2 H

�

(T):

In our case, let us choose any p such that

1

1�"

< p <

1

1

2

�"

(note that this is always

possible when 0 < " �

1

2

). Then, we have that " >

1

2

�

1

p

and, therefore,

jg(x+ y)� g(x)j �

Z

x+y

x

jg

0

(t)j dt � kg

0

k

p

jyj

1�

1

p

� C kgk

�

jyj

1�

1

p

;

because, by Proposition 1.33 and (1.27), kg

0

k

p

� Ckg

0

k

H

"

� Ckgk

H

�

. If we go back

to the estimation of B above we have

B � kgk

1

!

"

(f

0

) + C kgk

�

�

Z

T

jf

0

(x)j

2

dx

�

1

2

�

Z

�

��

jyj

2�

2

p

dy

jyj

1+2"

�

1

2

� C kfk

�

kgk

�

;

because

R

�

��

jyj

1�

2

p

�2"

dy <1 since, by assumption, p was taken so that p >

1

1�"

and,

therefore, 1 � 2" �

2

p

> �1.

2

REMARK 1.34 The proof of Lemma 1.30 can be adapted to show that H

�

(R) is

also a Banach algebra (with no unit this time). These are particular cases of a more

general result in the context of multipliers: see Theorem 2.1 in Chapter III of [STRI].

The following result tells us that H

�

(R) is an H

�

(T)-module.

LEMMA 1.35 Let � >

1

2

. Then, for m 2 H

�

(T) and f 2 H

�

(R) we have that

m � f 2 H

�

(R). Moreover, there exists a constant C = C(�) > 0 such that

km � fk

H

�

(R)

� C kmk

H

�

(T)

kfk

H

�

(R)

:
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PROOF:

First of all notice that

�

Z

R

jm(x) � f(x)j

2

dx

�

1

2

� kmk

1

kfk

L

2

(R)

� C kmk

H

�

(T)

kfk

L

2

(R)

; (1.36)

by the Sobolev Imbedding Theorem 1.25 (III). Now, let us consider di�erent cases to

show the rest of the lemma.

Case 1: � = n 2Z

+

.

In this case, by the Leibnitz rule, the distributional derivative of order n of m � f

can be written as

d

n

dx

n

(m � f) =

n

X

h=0

 

n

h

!

m

(h)

f

(n�h)

and therefore,

Z

R

�

�

�

�

d

n

dx

n

(m � f)(x)

�

�

�

�

2

dx � 2

n

n�1

X

h=0

 

n

h

!

2

km

(h)

k

2

1

Z

R

jf

(n�h)

(x)j

2

dx+

2

Z

T

jm

(n)

(x)j

2

k

X

k2Z

jf(�+ 2k�)j

2

k

1

dx � C kmk

2

H

�

(T)

kfk

2

H

�

(R)

;

where in the last inequality we have used Corollary 1.17. This, together with (1.36),

gives us the desired result for � = n.

Case 2: � = n+ ", where 0 < " < 1.

By the de�nition of norm given in (1.6) and case 1 above, it is enough to show

that

!

"

((m � f)

(n)

) � C kfk

H

�

(R)

kmk

H

�

(T)

: (1.37)

Once more, Leibnitz's rule and the triangle inequality tell us that

!

"

((m � f)

(n)

) �

n

X

h=0

 

n

h

!

!

"

(m

(h)

f

(n�h)

):

Therefore, it is enough to estimate each of the terms !

"

(m

(h)

f

(n�h)

) separately, when

0 � h � n. Fix one such h. As in the proof of Lemma 1.13 we have

!

"

(m

(h)

f

(n�h)

)

2

=
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=

Z

R

Z

R

jm

(h)

(x+ y) f

(n�h)

(x+ y)�m

(h)

(x) f

(n�h)

(x)j

2

dx dy

jyj

1+2"

� 2

Z

R

Z

R

jm

(h)

(x+ y)j

2

jf

(n�h)

(x+ y)� f

(n�h)

(x)j

2

dx dy

jyj

1+2"

+2

Z

R

Z

R

jf

(n�h)

(x)j

2

jm

(h)

(x+ y)�m

(h)

(x)j

2

dx dy

jyj

1+2"

= 2A+ 2B:

To estimate B we proceed as follows. If 1 � h � n or if h = 0 and

1

2

< " < 1, the

Sobolev Imbedding Theorem 1.25 and Corollary 1.17 imply that

B � k

X

k2Z

jf

(n�h)

(�+ 2k�)j

2

k

1

Z

R

Z

T

jm

(h)

(x+ y)�m

(h)

(x)j

2

dx dy

jyj

1+2"

� C kfk

2

H

�

(R)

kmk

2

H

�

(T)

:

In the case when h = 0 and 0 < " �

1

2

(note that in this case n � 1) we have that

B � 2

Z

jyj�1

kmk

2

1

dy

jyj

1+2"

kf

(n)

k

2

L

2

(R)

+

+

�

Z

R

jf

(n)

(x)j

2

dx

� �

Z

jyj<1

kmk

2

�

1+"

2

(T)

jyj

1+"

dy

jyj

1+2"

�

� C kfk

2

H

�

(R)

kmk

2

H

�

(T)

;

because H

�

(T)� H

1+

"

2

(T)� �

1+"

2

(T) (by (1.28)) and the integral

R

jyj<1

dy

jyj

"

is �nite.

To estimate A we proceed similarly. Suppose that 0 � h � n � 1 or that h = n

and

1

2

< " < 1. Then, the Sobolev Imbedding Theorem 1.25 tells us that

A � km

(h)

k

2

1

!

"

(f

(n�h)

) � Ckmk

2

H

�

(T)

kfk

2

H

�

(R)

:

We have left the case h = n when 0 < " �

1

2

(and, again, necessarily, n � 1). If this

is the case

A =

Z

R

Z

R

jm

(n)

(x+ y)j

2

jf(x+ y)� f(x)j

2

dx dy

jyj

1+2"

=

=

Z

R

Z

T

jm

(n)

(x)j

2

X

k2Z

jf(x+ y + 2k�)� f(x+ 2k�)j

2

dx dy

jyj

1+2"

�

Z

jyj�1

km

(n)

k

2

L

2

(T)

4k

X

k2Z

jf(�+ 2k�)j

2

k

1

dy

jyj

1+2"

+

Z

jyj<1

�

Z

T

jm

(n)

(x)j

2

dx

� �

X

k2Z

jf(x+ y + 2k�)� f(x+ 2k�)j

2

�

dy

jyj

1+2"

= A

1

+A

2

:
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Then, A

1

� C kmk

2

H

�

(T)

kfk

2

H

�

(R)

; by Corollary 1.17. To estimate A

2

we will use

the same kind of argument as in Lemma 1.13. Let w 2 C

1

c

(�2�; 2�) be such that

0 � w � 1, and wj

[��;�]

� 1. Then, for every x 2 T

X

k2Z

jf(x+ y + 2k�)� f(x+ 2k�)j

2

=

X

k2Z

jf(x+ y + 2k�)w(x)� f(x+ 2k�)w(x)j

2

�

2

X

k2Z

fjf(x+y+2k�)w(x+y)�f(x+2k�)w(x)j

2

+jf(x+y+2k�)j

2

jw(x)�w(x+y)j

2

g:

If we multiply both sides of the inequality by

1

2jyj

1+"

, where 0 < jyj < 1, we have

1

2jyj

1+"

X

k2Z

jf(x+ y + 2k�)� f(x+ 2k�)j

2

�

X

k2Z

sup

z2R

y 6=0

�

�

�

�

f(z + y)w(z + y + 2k�)� f(z)w(z + 2k�)

jyj

1+"

2

�

�

�

�

2

+

+ k

X

k2Z

jf(�+ 2k�)j

2

k

1

jyj

2

jyj

1+"

kw

0

k

2

1

� C

X

k2Z

kf(�)w(� + 2k�)k

2

�

1+"

2

(R)

+C k

X

k2Z

jf(�+ 2k�)j

2

k

1

� C kfk

2

H

�

(R)

;

where the last inequality follows from H

�

(R) � H

1+

"

2

(R) � �

1+"

2

(R) , Lemma 1.13

and Corollary 1.17. Now, A

2

becomes:

A

2

� C

Z

T

jm

(n)

(x)j

2

dx kfk

2

H

�

(R)

Z

jyj<1

dy

jyj

"

� C kmk

2

H

�

(T)

kfk

2

H

�

(R)

:

This shows (1.37) and completes the proof of the lemma.

2

Note that in the last part of the proof of the previous lemma we have shown the

following useful result:

COROLLARY 1.38 Let 0 < 
 < 2. Then, there exists a constant C = C(
) > 0

such that for every f 2 H

1+


2

(R) we have that

sup

x2R

y 6=0

1

jyj




X

k2Z

jf(x+ y + 2k�)� f(x+ 2k�)j

2

� C kfk

2

H

1+


2

(R)

:



83

1.3 A brief review in Banach algebras

Before listing some of the consequences of Lemma 1.30 over H

�

(T), we recall a

few general facts and de�nitions about Banach algebras. Suppose that A is a Banach

algebra with unit 1. We say that an element a 2 A is invertible if there exist a

(unique) element in A, denoted by a

�1

, such that a � a

�1

= a

�1

� a = 1 . We de�ne

the spectrum of a 2 A as

�(a) = f� 2 C j �1� a is not invertible in Ag: (1.39)

It is a well-known fact that �(a) is a non-empty compact set of C .

The holomorphic functional calculus in the theory of Banach algebras tells us how

to de�ne new elements in A of the type

p

a or e

a

or, more generally, f(a), from

a given element a 2 A. Here f is a holomorphic function

f3g

in a suitable domain


 � C . We state below the main theorem concerning the holomorphic functional

calculus of Banach algebras. We shall apply this theorem later to the particular case

of A = H

�

(T). We refer the reader to Chapter 10 of [RUD1] for proofs and a more

careful treatment on this theory.

THEOREM 1.40 Let A be a Banach algebra and let 
 � C be an open set on the

complex plane. Then,

(i) A




= fa 2 A j �(a) � 
g is an open set of A.

(ii) For every holomorphic function F 2 H(
) we can de�ne a continuous map

e

F :A




�! A , mapping a 7!

e

F (a) , such that

e

F (�1) = F (�) � 1; 8� 2 
 and,

when we take the functions F

1

(�) � 1; F

2

(�) � �; (� 2 
) , then

e

F

1

(a) = 1

and

e

F

2

(a) = a , for all a 2 A




. Moreover, F 2 H(
) 7!

e

F is a homomorphism

of algebras.

f3g

We shall denote by H(
) the space of holomorphic functions in an open set 
, endowed with its

usual locally uniform topology. That is, f

n

! f in H(
) means that f

n

! f uniformly in compact

sets of 
.
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(iii) If (F

n

)

1

n=1

� H(
) is such that F

n

! F in H(
), then

e

F

n

(a)!

e

F (a) in the

topology of A , for every a 2 A




.

(iv) Suppose a 2 A




; F 2 H(
); 


1

� C is an open set containing F (�(a)) =

�(

e

F (a)) and G 2 H(


1

) . Let H(�) � G(F (�)) be de�ned in 


0

= F

�1

(


1

).

Then,

e

F (a) 2 A




1

and

f

H(a) =

e

G(

e

F (a)) .

REMARK 1.41 In fact,

e

F (a) in (ii) is given by

e

F (a) =

1

2�i

R




F (z) � (z1� a)

�1

dz

where 
 is a contour surrounding �(a) in 
. (Note that we are taking a vector-

valued integral in this case.) When A is commutative, we can write

e

F (a) as a power

series as well. More precisely, if F 2 H(
); �

0

2 
 and if � > 0 is such that

F (�

0

+ �) =

P

1

k=0

F

(k)

(�

0

)

k!

�

k

when j�j < � , then for every a

0

2 A




there exists an

" > 0 such that when h 2 A; khk < " , we have

e

F (a

0

+ h) =

1

X

k=0

e

F

(k)

(a

0

)

k!

h

k

; with convergence in the norm of A: (1.42)

For a proof of these assertions see Theorems 10.27, 10.29 and 10.36 of [RUD1].

Let us go back to the case A = H

�

(T). The following lemma tells us which ones

are the invertible elements in H

�

(T) .

LEMMA 1.43 Let � >

1

2

. Then, f 2 H

�

(T) is invertible (in the sense of Banach

algebras) if and only if f(x) 6= 0; 8x 2 T. In this case, f

�1

= 1=f .

PROOF:

Suppose that f 2 H

�

(T) is invertible. Then, there must exist some element

g 2 H

�

(T) such that f � g = 1 , that is, f(x)g(x) = 1; 8x 2 T. This implies that

f(x) 6= 0; 8x 2 T and, therefore, that g(x) = 1=f(x) .

Conversely, suppose that f 2 H

�

(T) and f(x) 6= 0; 8x 2 T. Then, since f 2

C(T) , we must have that inf

x2T

jf(x)j = m > 0. It follows that 1=f 2 C(T)� L

2

(T).

In order to show that 1=f 2 H

�

(T) we shall consider di�erent cases.
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Case 1:

1

2

< � < 1.

In this case,

!

�

(1=f)

2

=

Z

T

Z

T

�

�

�

�

1

f

(x+ h)�

1

f

(x)

�

�

�

�

2

dx dh

jhj

1+2�

�

1

m

2

Z

T

Z

T

jf(x+ h)� f(x)j

2

dx dh

jhj

1+2�

<1

which implies (by (1.23)) that

1

f

2 H

�

(T).

Case 2: � = 1.

Now we know, by (1.21), that f; f

0

2 L

2

(T) . Thus, the function g =

�f

0

f

2

2 L

2

(T) .

Then, it is enough to see that g is the derivative in the L

2

(T)-sense (and therefore in

the sense of the distributions) of

1

f

. Indeed, for h > 0

Z

T

�

�

�

�

1

f

(x+ h)�

1

f

(x)

h

� g(x)

�

�

�

�

2

dx =

Z

T

�

�

�

�

f(x) � f(x+ h) + hf

0

(x)

hf(x)f(x+ h)

+

f

0

(x)(f(x+ h)� f(x))

f(x)

2

f(x+ h)

�

�

�

�

2

dx �

2

m

2

Z

T

�

�

�

�

f(x + h)� f(x)

h

� f

0

(x)

�

�

�

�

2

dx +

2

m

3

kf

0

k

2

sup

x2T

jf(x+ h)� f(x)j:

But the last part of the inequality converges to zero by the (uniform) continuity of f

in T and the de�nition of L

2

(T)-derivative. Thus, (

1

f

)

0

= g 2 L

2

(T) and, therefore,

1=f 2 H

1

(T) . To show the remaining case we �rst claim the following:

CLAIM Suppose f 2 H

�

(T), where � � n, for some n = 1; 2; : : :. Then, the

distributional derivatives of

1

f

can be written as:

d

p

dx

p

(

1

f

) =

p

X

m=1

g

m

f

m+1

; where g

m

2 H

��p

(T); (for p = 1; 2; : : : ; n): (1.44)

Proof of claim:

We proceed by induction on p. For p = 1 we saw in case 2 above that the claim

holds. In fact, (

1

f

)

0

=

�f

0

f

2

and g

1

= �f

0

2 H

��1

(T)

f4g

. Suppose, therefore, that the

f4g

For convenience, we consider H

0

(T) = L

2

(T).



86

claim holds for some p � n� 1. Then we must have, by the Leibnitz rule and case 2

above, that the distributional derivative of order p+ 1 can be written as:

d

p+1

dx

p+1

(

1

f

) =

p

X

m=1

�

g

0

m

f

m+1

�

(m+ 1)g

m

f

0

f

m+2

�

=

p+1

X

m=1

h

m

f

m+1

;

where, using (1.27) and Lemma 1.30, we see that h

1

= g

0

1

2 H

��p�1

(T); h

m

=

g

0

m

�mg

m�1

f

0

2 H

��p�1

(T); for 2 � m � p and h

p+1

= �(p + 1)g

p

f

0

2 H

��p

(T) �

H

��p�1

(T). This completes the induction process and the proof of the claim.

2

Let us now continue with the proof of the lemma.

Case 3: � > 1.

Suppose that � = n+ ", where 0 < " � 1; n � 1. Then, by (1.44), we can write

d

n

dx

n

(

1

f

) =

n

X

m=1

g

m

f

m+1

; where g

m

2 H

��n

(T) = H

"

(T) for 1 � m � n: (1.45)

Since, by cases 1 and 2,

1

f

2 H

"

(T), then Lemma 1.30 and (1.45) imply that

d

n

dx

n

(

1

f

) 2

H

"

(T) . Thus, by (1.27) we have that

1

f

2 H

�

(T).

2

As a corollary, we give a simple characterization of the spectrum of an element in

H

�

(T).

COROLLARY 1.46 If � >

1

2

and f 2 H

�

(T) , then �(f) = ff(x) j x 2 Tg � C .

PROOF:

The proof is an easy consequence of the de�nition of the spectrum (1.39) and

Lemma 1.43. Indeed,

� 2 �(f), �1� f is not invertible, 9x 2 T j �� f(x) = 0, � 2 f(T):

2
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Once we have identi�ed the spectra of elements inH

�

(T), we can use the functional

calculus de�ned in Theorem 1.40 with some particular examples. For instance, let

F (�) = e

�

; � 2 C . Then, we can consider, for f 2 H

�

(T), the \symbol"

e

F (f) =

e

f

2 H

�

(T) . It is clear, by Remark 1.41, that

(e

f

)(x) = e

f(x)

; when x 2 T:

When we consider the case in which F (�) =

p

�; � 2 
 (where 
 is any simply

connected subset of C that does not contain 0, e.g., 
 = C n (�1; 0] ), we can say

that

e

F (f) =

p

f belongs to 2 H

�

(T) only when �(f) = f(T) � 
 , in which case

we have (

p

f)(x) =

q

f(x) . The following example shows that this is not the case if

we take f 2 H

�

(T) such that 0 2 �(f).

EXAMPLE 1

Consider f(x) = sinx; x 2 R . Then, f is 2�-periodic and C

1

and, therefore,

f 2 H

�

(T) for all � > 0 (in fact, its Fourier coe�cients are c

�1

= �

1

2

and 0

otherwise). But notice that

p

f cannot be in any Lipschitz space �

�

(T) , for any

� >

1

2

, because

sup

x;h2T

h6=0

j

q

f(x+ h)�

q

f(x)j

jhj

�

�

p

sin h

jhj

�

�

2

�

jhj

1

2

��

!1; as h! 0:

Thus, by Theorem 3.23 (III),

q

f(x) =2 H

�

(T), for any � > 1.

EXAMPLE 2

In this example we show that the assumption �(f) � 
, where 
 is simply

connected (and does not contain 0), cannot be dropped either. Indeed, consider

f(x) = e

ix

; x 2 R . Clearly, f 2 H

�

(T) for all � > 0 and �(f) = fz 2 C j jzj = 1g.

But now,

q

f(x) = e

i

x

2

cannot be in any of the H

�

(T) spaces because it is not a

2�-periodic function.

To conclude this section, we show a general result about H

�

(T) that we shall need

later.
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LEMMA 1.47 Let � > 0. Then, for every f 2 H

�

(T) its Fourier series (as de�ned

in (1.19)) converges to f in the H

�

(T)-norm. That is,

kf �

N

X

k=�N

c

k

e

ikx

k

�

! 0; as N !1: (1.48)

As a consequence the set T = f

P

N

k=�M

c

k

e

ikx

jM;N � 0; c

k

2 C g of trigonometric

polynomials is dense in H

�

(T).

PROOF:

By the de�ntion of the H

�

(T)-norm given in (1.20), we can write (1.48) as

kf �

N

X

k=�N

c

k

e

ikx

k

2

�

=

X

jkj�N+1

jc

k

j

2

(1 + jkj

2

)

�

! 0; as N !1;

because kfk

2

H

�

(T)

=

P

k2Z

jc

k

j

2

(1 + jkj

2

)

�

<1 .

2

1.4 The locally integrable case

We say that f : R ! C belongs to L

2

loc

(R) if for any compact set K � R we

have that

R

K

jf(x)j

2

dx < 1 . For n = 1; 2; : : :, we say that f 2 H

n

loc

(R) when

f; f

0

; : : : ; f

(n)

2 L

2

loc

(R). Given a compact set K � R we will use the following

notation

kfk

H

n

loc

;K

= kfk

L

2

(K)

+ : : :+ kf

(n)

k

L

2

(K)

: (1.49)

When � = n + " > 0, where 0 < " < 1, we say that f 2 H

�

loc

(R) whenever

f; f

0

; : : : ; f

(n)

2 L

2

loc

(R) and, for every compact set K � R, we have

!

";K

(f

(n)

) =

�

Z

K

Z

K

jf

(n)

(x+ h)� f

(n)

(x)j

2

dx

dh

jhj

1+2"

�

1

2

<1:

As before, we let

kfk

H

�

loc

;K

= kfk

L

2

(K)

+ : : :+ kf

(n)

k

L

2

(K)

+ !

";K

(f

(n)

): (1.50)
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Note that H

�

(R)� H

�

loc

(R) . In fact, if we take an increasing sequence of compact

sets fK

n

g

1

n=1

such that [

1

n=1

K

n

= R then, by the Monotone Convergence Theorem,

we have

kfk

�

= lim

n!1

kfk

H

�

loc

;K

n

; 8f 2 H

�

(R); (1.51)

where the norm on the left hand side is the one de�ned in (1.4) (or (1.6)). This

implies that H

�

loc

(R), � > 0, are Fr�echet spaces with the seminorms de�ned in (1.49)

and (1.50).

The following proposition gives us a more precise relation between H

�

(R) and

H

�

loc

(R).

PROPOSITION 1.52 Let � > 0. Suppose that f 2 H

�

loc

(R) and w 2 C

1

c

(R), with

supp w � [�R;R]. Let K = [�2R; 2R], then f � w 2 H

�

(R) and we can �nd a

constant C = C(w;R;�) > 0 such that

kf � wk

H

�

(R)

� C kfk

H

�

loc

;K

:

PROOF:

It is clear that

kf � wk

L

2

(R)

=

�

Z

R

jf(x)w(x)j

2

dx

�

1

2

� kwk

1

kfk

L

2

(�R;R)

:

As usual, we divide the rest of the proof into two di�erent cases:

Case 1: � = k 2Z

+

.

In order to estimate k(f � w)

(k)

k

L

2

(R)

, it is enough to consider each of the terms

kf

(k�`)

� w

(`)

k

L

2

(R)

; separately, where 0 � ` � k. But for any of these terms we have

kf

(k�`)

� w

(`)

k

L

2

(R)

� kw

(`)

k

1

kf

(k�`)

k

L

2

(�R;R)

� C kfk

H

k

loc

;K

:

Case 2: � = k + "; 0 < " < 1.

In this case we need to estimate !

"

((f � w)

(k)

). By using Leibnitz's rule it is

enough to consider the terms !

"

(f

(k�`)

�w

(`)

); 0 � ` � k. We compute !

"

(f �w). The
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estimation for the other terms follows from this if we replace f by f

(k�`)

and w by

w

(`)

.

!

"

(f � w)

2

�

Z

R

Z

R

jf(x+ y)w(x+ y)� f(x)w(x)j

2

dx dy

jyj

1+2"

=

Z

jyj>R

Z

R

+

Z

jyj�R

Z

R

= I + II:

The �rst integral is easily bounded by

I � 4

�

Z

jyj>R

dy

jyj

1+2"

��

Z

R

jf(x)w(x)j

2

dx

�

� C kfk

H

�

loc

;K

:

For the second term, we use the fact that when jyj � R and jxj � 2R, then jx+yj � R

and, therefore, w(x+ y) = w(x) = 0. Then, II is bounded by

II � 2

Z

jyj�R

Z

jxj<2R

jf(x)j

2

jw(x+ y)� w(x)j

2

dx dy

jyj

1+2"

+2

Z

jyj�R

Z

jxj�R

jw(x)j

2

jf(x+ y)� f(x)j

2

dx dy

jyj

1+2"

� 2 kw

0

k

2

1

�

Z

jyj�R

jyj

2

jyj

1+2"

dy

�

kfk

2

L

2

(�2R;2R)

+ 2 kwk

2

1

!

";[�R;R]

(f)

2

� C kfk

2

H

�

loc

;K

:

2

Let � >

1

2

and let 0 < R

1

< R

2

< 1. Suppose that w 2 C

1

c

(�R

2

; R

2

) is such

that wj

[�R

1

;R

1

]

� 1 . Let us denote by K the compact set [�2R

2

; 2R

2

]. Then, for all

f 2 H

�

loc

(R), we have that f 2 C([�R

1

; R

1

]) and

kfk

C([�R

1

;R

1

])

� C kfk

H

�

loc

;K

: (1.53)

This is a consequence of the Sobolev Imbedding Theorem 1.8 and the proposition

above. Moreover, if we assume that � > k+

1

2

, where k = 1; 2; : : :, then, by induction,

one can easily see that

kfk

C

k

(�R

1

;R

1

)

� C kfk

H

�

loc

;K

: (1.54)

We can write all this in a proposition:
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PROPOSITION 1.55 Let � > k +

1

2

, where k = 0; 1; : : :, and suppose that f

n

; f 2

H

�

loc

(R) and f

n

! f in the topology of H

�

loc

(R). Then, f

n

; f 2 C

k

(R) and, for any

0 � h � k,

D

(h)

f

n

! D

(h)

f uniformly in compact sets of R:

This concludes our review about Sobolev spaces.
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2 The set S

�

of �-localized scaling functions

In this section we present the main properties of the set of �-localized scaling func-

tions and its close relation with the set of associated low-pass �lters. We introduce

the notation and de�nitions that will lead, in x3, to show that these two sets are

homeomorphic topological spaces.

Fix � >

1

2

. Suppose that fV

j

g

j2Z

is an �-localized MRA as de�ned in (3.13) of

Chapter 1. That is, fV

j

g

j2Z

is an MRA for which we can �nd a scaling function '

such that

b

' 2 H

�

(R). Since we are considering only cases in which � >

1

2

, by Remark

1.12 we may assume that

b

' 2 C(R). It is a well-known fact that in an MRA fV

j

g

j2Z

,

any scaling function ' such that j

b

'j is continuous at 0 must satisfy that j

b

'(0)j = 1

(see Theorem 1.7 in Chapter 2 of [HW]). Unless otherwise speci�ed, from now on, we

will assume that all scaling functions from �-localized MRAs satisfy the additional

assumption

b

'(0) = 1: (2.1)

(Note that we can always do this by multiplying our arbitrary �-localized scaling

function ' by the unimodular constant

b

'(0), the associated low-pass �lter being the

same in this case.)

In particular, when this is the case, the low-pass �lter associated with ' must

satisfy

m

0

(0) = 1

jm

0

(�)j

2

+ jm

0

(� + �)j

2

= 1; a:e: � 2 R

9

=

;

(2.2)

as a consequence of equalities (3.4) and (3.7) in Chapter 1. Moreover, if

b

' 2 H

�

(R),

the just mentioned scaling relation (3.4) suggests that the low-pass �lter m

0

will

satisfy some sort of \smoothness" condition. We shall show in the next lemma that

in fact m

0

2 H

�

(T).

LEMMA 2.3 Let � >

1

2

. If ' is an �-localized scaling function and if m

0

is its
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low-pass �lter, then m

0

2 H

�

(T) and

km

0

k

H

�

(T)

� C k

b

'k

2

H

�

(R)

; (2.4)

for a constant C = C(�) > 0.

The proof of this lemma is essentially taken from a result by Lemari�e-Rieusset

(see Lemma 2 in Chapter 3 of [KAH-LEM]).

PROOF:

Let m

0

(�) =

P

k2Z

c

k

e

�ik�

2 L

2

(T) be the low-pass �lter associated with ', where

the sequence of coe�cients fc

k

g 2 `

2

(Z) is given by (3.5) of Chapter 1. In order to

show that m

0

2 H

�

(T) we use the de�nition of the Sobolev space given in (1.20).

Then, inequality (2.4) is equivalent to

X

k2Z

jc

k

j

2

(1 + jkj

2

)

�

� C k

b

'k

4

H

�

(R)

: (2.5)

To show (2.5) we proceed as follows

X

k2Z

jc

k

j

2

(1 + jkj

2

)

�

=

1

4

X

k2Z

j

Z

R

'(

x

2

)'(x� k) dxj

2

(1 + jkj

2

)

�

�

�

1

2

X

k2Z

�

j

Z

jxj>

jkj

10

j

2

+ j

Z

jxj�

jkj

10

j

2

�

(1 + jkj

2

)

�

�

1

2

X

k2Z

� �

Z

jxj>

jkj

10

j'(

x

2

)j

2

(1 + jkj

2

)

�

(1 + jx� kj

2

)

�

dx

� �

Z

R

j'(x� k)j

2

(1 + jx� kj

2

)

�

dx

�

+

�

Z

jx�kj�

9

10

jkj

j'(x� k)j

2

(1 + jkj

2

)

�

(1 + jxj

2

)

�

dx

� �

Z

R

j'(

x

2

)j

2

(1 + jxj

2

)

�

dx

��

;

where in the last step we have used Schwarz's inequality. Now, if we take into account

the fact that whenever jxj >

jkj

10

then 1+ jkj

2

� 1+100jxj

2

, and whenever jx� kj �

9

10

jkj then 1 + jkj

2

� 1 +

100

81

jx� kj

2

, we have

X

k2Z

jc

k

j

2

(1 + jkj

2

)

�

�

1

2

k

b

'k

2

H

�

(R)

X

k2Z

Z

R

j'(

x

2

)j

2

(1 + 100jxj

2

)

�

(1 + jx� kj

2

)

�

dx+

2

2�

k

b

'k

2

H

�

(R)

X

k2Z

Z

R

j'(x� k)j

2

(1 +

100

81

jx� kj

2

)

�

(1 + jxj

2

)

�

dx �
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k

b

'k

2

H

�

(R)

�

sup

x2R

X

k2Z

1

(1 + jx� kj

2

)

�

�

400

�

Z

R

j'(x)j

2

(1 + jxj

2

)

�

dx+

�

400

81

�

�

k

b

'k

2

H

�

(R)

�

sup

x2R

X

k2Z

1

(1 + jx+ kj

2

)

�

�

Z

R

j'(x)j

2

(1 + jxj

2

)

�

dx � C k

b

'k

4

H

�

(R)

:

This shows (2.5) and establishes the lemma.

2

DEFINITION 2.6 Let � >

1

2

. We say that a function

b

' belongs to the set S

�

if

b

' 2 H

�

(R) and ' is a scaling function satisfying (2.1). That is, S

�

is the space

of Fourier transforms of all �-localized scaling functions. We will consider S

�

as a

topological subspace of H

�

(R). Therefore, when we say that

b

'

n

!

b

'; in S

�

, we mean

that

b

'

n

;

b

' 2 S

�

; n = 1; 2; : : : , and

b

'

n

!

b

'; in H

�

(R).

Now, we can write a stronger version of Lemma 2.3.

LEMMA 2.7 Let � >

1

2

. The mapping M : S

�

�! H

�

(T) that maps every function

b

' 2 S

�

into its corresponding low-pass �lter, is continuous.

PROOF:

We need to show that if

b

'

n

2 S

�

; n = 0; 1; 2; : : : and

b

'

n

!

b

'

0

in S

�

, then

m

n

! m

0

in H

�

(T), where for each n = 0; 1; 2; : : :, m

n

= M(

b

'

n

) is the low-pass

�lter corresponding to

b

'

n

. The proof follows the same line as in Lemma 2.3, once we

notice the following:

CLAIM If

b

'

1

;

b

'

2

2 S

�

then,

kM(

b

'

1

)�M(

b

'

2

)k

H

�

(T)

� C k

b

'

1

�

b

'

2

k

H

�

(R)

(k

b

'

1

k

H

�

(R)

+ k

b

'

2

k

H

�

(R)

): (2.8)

Proof of CLAIM:

Suppose that the Fourier coe�cients of m

1

= M(

b

'

1

) and m

2

= M(

b

'

2

) are given

by fc

1

k

g and fc

2

k

g, respectively. Then, by formula (3.5) in Chapter 1, they can be

written as

c

j

k

=

Z

R

1

2

'

j

(

x

2

)'

j

(x� k) dx; k 2Z; j = 1; 2:
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It follows that

2 (

X

k2Z

jc

1

k

� c

2

k

j

2

(1 + jkj

2

)

�

)

1

2

�

�

X

k2Z

j

Z

R

'

1

(

x

2

)('

1

� '

2

)(x� k) dxj

2

(1 + jkj

2

)

�

�

1

2

+

�

X

k2Z

j

Z

R

('

1

� '

2

)(

x

2

)'

2

(x� k) dxj

2

(1 + jkj

2

)

�

�

1

2

:

Now, by using Schwarz's inequality we can separate each of the integrals above into

the product of two new integrals, each of them involving now only one of the functions

'

j

. For the rest of the proof, the same estimations given immediately after (2.5) above

show:

(

X

k2Z

jc

1

k

� c

2

k

j

2

(1 + jkj

2

)

�

)

1

2

� C k

b

'

1

k

H

�

(R)

k

b

'

1

�

b

'

2

k

H

�

(R)

+

C k

b

'

1

�

b

'

2

k

H

�

(R)

k

b

'

2

k

H

�

(R)

= C k

b

'

1

�

b

'

2

k

H

�

(R)

(k

b

'

1

k

H

�

(R)

+ k

b

'

2

k

H

�

(R)

)

and this establishes the claim.

2

In particular, when we use the claim with

b

'

n

and

b

'

0

, we have

km

n

�m

0

k

H

�

(T)

� C k

b

'

n

�

b

'

0

k

H

�

(R)

(k

b

'

n

k

H

�

(R)

+ k

b

'

0

k

H

�

(R)

) �

� C (sup

n�1

k

b

'

n

k

H

�

(R)

) k

b

'

n

�

b

'

0

k

H

�

(R)

! 0; as n!1:

This shows that M(

b

'

n

)!M(

b

'

0

) and completes the proof of the lemma.

2

Let us show now a somewhat interesting property of the topological space S

�

.

LEMMA 2.9 Let � >

1

2

. Then, S

�

is closed in H

�

(R).

PROOF:

Suppose that f

b

'

n

g

1

n=1

is a sequence contained in S

�

such that

b

'

n

!

b

' for some

b

' 2 H

�

(R) (where the convergence is in H

�

(R)). In order to show that

b

' 2 S

�

,

it is enough to see that ' is a scaling function and that

b

'(0) = 1. The latter is a
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consequence of Sobolev's Theorem 1.8 (III), since 1 =

b

'

n

(0)!

b

'(0) and, therefore,

b

'(0) = 1. To show the former, we use Proposition 3.12 in Chapter 1. We have

already seen that (ii) in the proposition holds. It remains to show equalities (i) and

(iii) from the same proposition. Let us establish (i) �rst. Note that, by Corollary

1.17, for every � 2 T,

�

�

�

�

(

X

k2Z

j

b

'

n

(� + 2k�)j

2

)

1

2

� (

X

k2Z

j

b

'(� + 2k�)j

2

)

1

2

�

�

�

�

�

(

X

k2Z

j(

b

'

n

�

b

')(� + 2k�)j

2

)

1

2

� C k

b

'

n

�

b

'k

H

�

(R)

! 0; as n!1:

But since

b

'

n

2 S

�

and, therefore,

P

k2Z

j

b

'

n

(� + 2k�)j

2

� 1, it follows that (i) in

Proposition 3.12 must hold. Finally, consider the low-pass �lters m

n

associated with

'

n

. As a consequence of (2.8) in the proof of the previous lemma, it follows that

fm

n

g

1

n=1

is a Cauchy sequence in H

�

(T). This implies that there exists a 2�-periodic

function m

0

2 H

�

(T) such that m

n

! m

0

in H

�

(T). Then, for each �xed � 2 R,

Sobolev Embedding Theorems 1.8 and 1.25 imply that

b

'(2�) = lim

n!1

b

'

n

(2�) = lim

n!1

b

'

n

(�)m

n

(�) =

b

'(�)m(�):

This shows that (iii) in Proposition 3.12 of Chapter 1 holds, and completes the proof

of the lemma.

2

We turn now to the matter of identifying the range of the map M in Lemma 2.7;

that is, we seek the necessary and su�cient conditions on a function m

0

2 H

�

(T)

for it to be the low-pass �lter of an �-localized scaling function. This question was

succesfully answered by A. Cohen in the case � = 1 and extended to � >

1

2

by P.

G. Lemari�e-Rieusset. During the rest of this section we present the main ideas of

Cohen's construction as well as a detailed proof of Lemari�e's result.

Suppose we are given a scaling function ' with associated low-pass �lter m

0

.

There is then an easy way of expressing

b

' in terms of m

0

. Indeed, by iterating the
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scaling equation (3.4) in Chapter 1, we obtain that, for a:e: � 2 R,

b

'(�) = m

0

(

�

2

)

b

'(

�

2

) =

n

Y

j=1

m

0

(

�

2

j

)

b

'(

�

2

n

); n = 1; 2; : : : (2.10)

If we assume further that lim

n!1

b

'(2

�n

�) = 1 , we arrive at the expression

b

'(�) =

1

Y

j=1

m

0

(

�

2

j

): (2.11)

In the general case, however, the in�nite product in (2.11) does not always make

sense. The following example, taken from [PSK], shows that one can �nd two distinct

scaling functions (corresponding to two distinct MRAs) having the same low-pass

�lter. Then, both cannot be written simultaneously as in (2.11).

EXAMPLE 1

Let ' be any scaling function for an MRA, with low-pass �lter m

0

and with the

property that supp

b

' = R (e.g., ' = �

[�1;0]

, the Haar scaling function, see Example

B in Chapter 2 of [HW]). Let

b

'

]

(�) = �(�)

b

'(�) , where

�(�) =

�

1 if � � 0

�1 if � < 0:

Then,

b

'

]

(2�) = m

0

(�)

b

'

]

(�); a:e: � 2 R. In particular, Proposition 3.12 of Chapter 1

implies that '

]

is also a scaling function for some MRA with low-pass �lter m

0

. But

since supp

b

' = R and � is not 2�-periodic, by Remark 3.2 in Chapter 1, ' and '

]

cannot be both scaling functions of the same MRA.

In the case of �-localized MRAs, the continuity at 0 of

b

' (and the assumption

b

'(0) = 1) is enough to give a precise meaning to the in�nite product in (2.11). In

fact, the next lemma shows that this product converges uniformly on compact sets of

R.

LEMMA 2.12 Let � >

1

2

. Suppose that m

0

2 H

�

(T) and m

0

(0) = 1. Then, the

in�nite product

Q

1

j=1

m

0

(

�

2

j

) converges uniformly on compact sets of R to a contin-

uous function

b

'(�). Moreover,

b

'(�) = 0 if and only if there exists a j � 1 such
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that m

0

(2

�j

�) = 0. In particular, if m

0

is the low-pass �lter of an �-localized scaling

function ', the formula (2.11) holds for every � 2 R.

PROOF:

This lemma is an easy consequence of the following general fact about in�nite

products:

PROPOSITION 2.13 : See Theorem 15.4 of [RUD2].

Let ff

n

g

1

n=1

be a sequence of bounded complex-valued functions on a set S such

that

P

1

n=1

j1 � f

n

j converges uniformly in the set S. Then,

Q

1

n=1

f

n

� f converges

uniformly in S. Moreover,

(i) For x 2 S; f(x) = 0 () f

n

(x) = 0 for some n � 1.

(ii) For every permutation fn

1

; n

2

; : : :g of Z

+

, f =

Q

1

k=1

f

n

k

.

In order to prove Lemma 2.12 we just need to verify that

P

1

k=1

j1 � m

0

(2

�j

�)j

converges uniformly in compact sets of R. Indeed, take a compact set [�K;K] of R,

and take j

0

2 Z

+

such that K � 2

j

0

�. Let " 2 (0; 1) be such that 0 < " � � �

1

2

.

Then, by Sobolev's Theorem 1.25, we have that H

�

(T) � H

"+

1

2

(T) � �

"

(T). Thus,

when j � j

0

and � 2 [�K;K], we have

j1�m

0

(2

�j

�)j = jm

0

(0)�m

0

(2

�j

�)j � (2

�j

j�j)

"

km

0

k

�

"

(T)

� C 2

�j"

km

0

k

H

�

(T)

:

Now, it follows from the Weierstrass M-test that

P

1

k=1

j1 � m

0

(2

�j

�)j converges

uniformly in [�K;K], and the lemma is proved.

2

We already know that a necessary condition for a 2�-periodic function m

0

to be

a low-pass �lter for some MRA is that (2.2) holds. Unfortunately, this condition is

not su�cient, even in the smooth case, as the following well-known example shows:
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EXAMPLE 2

Let m

0

(�) =

1+e

i3�

2

; � 2 R. Then, m

0

(�) = m

H

(3�), where m

H

(�) =

1+e

i�

2

is the

Haar low-pass �lter (see Example B in Chapter 2 of [HW]). It is then clear that m

0

satis�es (2.2). Moreover,

b

'(�) =

1

Y

j=1

m

0

(

�

2

j

) =

b

'

H

(3�) = e

i3�=2

sin(3�=2)

3�=2

; � 2 R;

and, consequently, '(x) =

1

3

'

H

(

x

3

) =

1

3

�

[�3;0]

(x) . But then, f'(� � k) j k 2 Zg is

not an orthonormal system in L

2

(R).

Albert Cohen studied in [COH] the necessary and su�cient conditions for a func-

tion m

0

2 C

1

(T) to be the low-pass �lter of a scaling function with polynomial decay.

That is, a scaling function ' of an MRA such that

Z

R

j'(x)j

2

(1 + jxj

2

)

N

dx = c

N

<1; 8N = 1; 2; : : : (2.14)

In order to avoid pathological behaviors as in the previous example, Cohen introduces

an assumption in m

0

that guarantees that

P

k2Z

j

b

'(� + 2k�)j

2

6= 0 (for

b

' given by

(2.11)) and, then, uses (2.2) to show that this series has to be identically 1. The

additional premise required is commonly known as Cohen's condition and can be

written as follows:

There exists a compact set K � R such that 0 2

�

K

;

X

k2Z

�

K

(� + 2k�) = 1; a:e: � 2 T; and m

0

(2

�j

�) 6= 0; j � 1; � 2 K:

9

>

=

>

;

(2.15)

REMARK 2.16 For a measurable setK � R, the property that

P

k2Z

�

K

(�+2k�) =

1; a:e: � 2 T; is often called 2�-translation congruency to the torus T, and denoted

by K �

2�

T. In general, two measurable sets K;J � R are said to be 2�-translation

congruent, K �

2�

J , if there is a partition fK

`

g

`2Z

of K, and a sequence of integers

fk

`

g

`2Z

, such that fK

`

+ 2k

`

�g

`2Z

forms a partition of J . We already encountered

this relation in (2.5) of Chapter 1.
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After this motivation, we can state a precise version of Cohen's Theorem.

THEOREM 2.17 : A. Cohen.

A function m

0

is the low-pass �lter of a scaling function with polynomial decay if

and only if m

0

2 C

1

(T) and satis�es (2.2) and (2.15). Moreover, if this is the case,

the scaling function ' is given by the in�nite product formula (2.11).

A proof of this theorem can be found in [COH] (Theorem 2.1) or [HW] (Theorem

4.23, in Chapter 7).

Some variations of Cohen's Theorem exist in the literature. A more general re-

sult, where the polynomial decay condition in ' is replaced by a less restrictive �-

localization (

R

R

j'(x)j

2

(1 + jxj

2

)

�

dx < 1; for � >

1

2

) was shown by P. G. Lemari�e-

Rieusset (see Theorem 1 in Chapter 4 of [KAH-LEM]). We give a detailed and slightly

di�erent proof of this result because it is crucial for what we will be doing during the

rest of this thesis.

THEOREM 2.18 A function m

0

is the low-pass �lter of an �-localized scaling func-

tion if and only if m

0

2 H

�

(T) and satis�es (2.2) and (2.15). Moreover, if this is the

case, the scaling function ' is given by the in�nite product formula (2.11).

PROOF:

Suppose that m

0

is the low-pass �lter of an �-localized scaling function '. Then,

Lemma 2.3 tells us that m

0

2 H

�

(T), while (2.2) is trivially satis�ed. We only

need to show that Cohen's condition (2.15) holds. Here we follow the original proof

by Cohen. Since

b

' 2 H

�

(R) (and � >

1

2

), by Corollary 1.18, we must have that

P

k2Z

j

b

'(� + 2k�)j

2

= 1; for all � 2 [��; �] . Thus, for each � 2 [��; �] there exists

an integer k = k(�) such that

b

'(� + 2k(�)�) 6= 0. Observe that, since

b

'(0) = 1, we

must have k(0) = 0. The continuity of

b

' implies the existence of an open (bounded)

interval V

�

, containing �, and a constant C

�

> 0, such that

j

b

'(� + 2k(�)�)j

2

� C

�

; 8� 2 V

�

: (2.19)
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Then, [��; �] � [

�2T

V

�

, and there exists a �nite number of points �

0

; �

1

; : : : ; �

n

2

[��; �] such that [��; �] � [

n

j=0

V

�

j

. We may assume that 0 2 V

�

0

. De�ne now

R

0

= V

�

0

\ [��; �] and R

j

= (V

�

j

\ [��; �]) n ([

j�1

`=0

R

`

); j = 1; : : : ; n

and take

K = [

n

j=0

(R

j

+ 2k(�

j

)�):

Then, K is a �nite union of compact intervals and 0 2

�

R

0

�

�

K

. Since for every � 2

[��; �) = T there exists a unique j 2 f0; 1; : : : ; ng such that � 2 R

j

, we must have

X

k2Z

�

K

(� + 2k�) =

n

X

j=0

�

R

j

+2k(�

j

)�

(� + 2k(�

j

)�) =

n

X

j=0

�

R

j

(�) = 1; a:e: � 2 T:

Finally, for all � 2 K, and j � 1, (2.11) and (2.19) above give us that

jm

0

(2

�j

�)j � j

b

'(�)j � minfC

�

0

; : : : ; C

�

n

g = C > 0;

and (2.15) holds.

The converse is more elaborate. Suppose that m

0

2 H

�

(T) and that (2.2) and

(2.15) hold. Then, by Lemma 2.12, the in�nite product

Q

1

j=1

m

0

(

�

2

j

) converges uni-

formly on compact sets and, therefore, the function

b

'(�) �

1

Y

j=1

m

0

(

�

2

j

); a:e: � 2 R: (2.20)

is well-de�ned and continuous in R. In particular, the scaling equation (3.4) in Chap-

ter 1 is satis�ed and, since m

0

(0) = 1, we also have

b

'(0) = 1. It is a well-known

fact, and not very di�cult to prove, that whenever

b

' is de�ned as in (2.20) (pro-

vided the in�nite product converges, at least, for a:e: � 2 R), then

b

' 2 L

2

(R) and

k

b

'k

L

2

(R)

�

p

2�

f5g

. Thus, we can assert that ' exists and belongs to L

2

(R).

We claim that ' is a scaling function of some MRA. To prove this we only need

to check that

P

k2Z

j

b

'(� + 2k�)j

2

= 1; a:e: � 2 R ; or, equivalently (as we pointed out

f5g

This essentially follows by Fatou's lemma and an iteration of condition (3.7) in Chapter 1 on

m

0

(see, e.g., Lemma 6.2.1 in [DAUB] or Proposition 3.9 in Chapter 2 of [HW]).
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right before (3.6) of Chapter 1), that f'(� � k) j k 2 Zg is an orthonormal system

in L

2

(R). It is here where we need to use condition (2.15). Following Cohen's proof,

let K be the compact set in (2.15) and de�ne the \truncated product"

^

f

n

(�) = �

2

n

K

(�)

n

Y

j=1

m

0

(2

�j

�); � 2 R; n = 1; 2; : : :

Note that f

n

2 L

2

(R); n = 1; 2; : : :, and

^

f

n

(�)!

b

'(�); 8� 2 R, becauseK is compact

and 0 2

�

K

. It is not di�cult to show (see, e.g., the proof of (2.13) in [COH] or (4.11) in

Chapter 7 of [HW]) that conditions (3.7) and K �

2�

T imply that ff

n

(�� `) j ` 2Zg

is an orthonormal system for L

2

(R) or, equivalently, that

Z

R

j

^

f

n

(�)j

2

e

i`�

d� = 2� �

0;`

; ` 2Z:

Since

b

' 2 L

2

(R), if we could prove the majorization

j

^

f

n

(�)j � C j

b

'(�)j; a:e: � 2 R; (2.21)

then, the Dominated Convergence Theorem will let us conclude that

Z

R

j

b

'(�)j

2

e

i`�

d� = lim

n!1

Z

R

j

^

f

n

(�)j

2

e

i`�

d� = 2� �

0;`

; ` 2Z;

and, using Proposition 3.12 in Chapter 1, our claim would be established. Now, to

show (2.21) note that, by Cohen's condition, and as a consequence of Lemma 2.12,

b

'

is continuous and non-zero in K. Therefore, we can �nd a positive constant C such

that j

b

'(�)j � C; for all � 2 K. Then, given n = 1; 2; : : :

j

^

f

n

(�)j = �

2

n

K

(�)

n

Y

j=1

jm

0

(2

�j

�)j �

j

b

'(2

�n

�)j

C

n

Y

j=1

jm

0

(2

�j

�)j =

1

C

j

b

'(�)j; 8� 2 R:

This establishes (2.21) and proves our claim.

We are now left with the most technical part of the theorem, namely, to show

that

b

' 2 H

�

(R). To do this, we adapt an argument that can be found in Lemari�e's

book (cf. Theorem 1 in Chapter 4 of [KAH-LEM]), that provides the proof of the

following lemma. We point out to the reader that Cohen's condition does not play

any role here.
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LEMMA 2.22 If m

0

2 H

�

(T) satis�es (2.2), then

b

' de�ned as in (2.20) belongs to

H

�

(R). Moreover, there exists a constant C = C(�) > 0 such that

k

b

'k

H

�

(R)

� C km

0

k

3+�

H

�

(T)

: (2.23)

PROOF:

We already know that

b

' 2 L

2

(R) and k

b

'k

L

2

(R)

�

p

2� = km

0

k

L

2

(T)

. In order to

show that

b

' 2 H

�

(R) we use the de�nition of Sobolev space given in (1.4) (or (1.6)).

Let us �x a function w 2 C

1

c

(�2�; 2�) such that 0 � w � 1 and wj

[��;�]

� 1, and

de�ne the truncated product

P

n

w(�) = w(2

�n

�)

n

Y

j=1

m

0

(2

�j

�); � 2 R; n = 1; 2; : : : (2.24)

Note that P

n

w 2 C(R) and P

n

w(�) !

b

'(�) , for all � 2 R. One can consider P

as an operator that maps functions f , in an appropriate domain, into P (f)(�) =

m

0

(�=2)f(�=2); � 2 R . This notation is going to be extremely useful as the following

lemma shows:

LEMMA 2.25 Let H be the normed space de�ned by

H = f f :R! C measurable j kfk

2

�

= ess- sup

�2R

X

k2Z

jf(� + 2k�)j

2

<1g: (2.26)

Let � be a 2�-periodic measurable function and let P = P

�

be the operator de�ned

at f 2 H by

(Pf)(�) = � (�=2)f(�=2); � 2 R: (2.27)

Then,

(I) For every f 2 H

kPfk

�

� ess- sup

�2T

[ j� (�)j

2

+ j� (� + �)j

2

]

1

2

kfk

�

: (2.28)
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(II) If � 2 L

2

(T), then P maps H into L

2

(R), and for every f 2 H

kPfk

L

2

(R)

�

p

2 k�k

L

2

(T)

kfk

�

: (2.29)

(III) If � 2 L

1

(T), then P maps L

2

(R) into L

2

(R), and for every f 2 L

2

(R)

kPfk

L

2

(R)

�

p

2 k�k

L

1

(T)

kfk

L

2

(R)

: (2.30)

PROOF:

The proof of this lemma is easy. Let us �rst establish (I). For a:e: � 2 R we have

X

k2Z

j(Pf)(� + 2k�)j

2

=

X

k2Z

j� (

�

2

+ k�)j

2

jf(

�

2

+ k�)j

2

=

(

X

k2Z

jf(

�

2

+ 2k�)j

2

) j� (

�

2

)j

2

+ (

X

k2Z

jf(

�

2

+ � + 2k�)j

2

) j� (

�

2

+ �)j

2

�

kfk

2

�

( j� (

�

2

)j

2

+ j� (

�

2

+ �)j

2

) � kfk

2

�

ess- sup

�2T

( j� (�)j

2

+ j� (� + �)j

2

):

This shows (2.28). To obtain the second inequality, note that

Z

R

j(Pf)(�)j

2

d� =

X

k2Z

Z

T

j� (

�

2

+ k�)j

2

jf(

�

2

+ k�)j

2

d�

=

X

k2Z

Z

T

j� (

�

2

)j

2

jf(

�

2

+ 2k�)j

2

d� +

X

k2Z

Z

T

j� (

�

2

+ �)j

2

jf(

�

2

+ � + 2k�)j

2

d�

� 2 k�k

2

L

2

(T)

kfk

2

�

;

which is (2.29), Finally, (III) is even simpler because

Z

R

j(Pf)(�)j

2

d� =

Z

R

j� (

�

2

)j

2

jf(

�

2

)j

2

d� � 2 k�k

2

L

1

(T)

kfk

2

L

2

(R)

:

This proves (2.30) and establishes Lemma 2.25.

2



105

We return to the proof of Lemma 2.22. We shall consider di�erent cases.

Case 1:

1

2

< � < 1.

We need to show that

!

�

(

b

') =

�

Z

R

Z

R

j

b

'(� + �)�

b

'(�)j

2

d� d�

j�j

1+2�

�

1

2

� C km

0

k

H

�

(T)

:

By Fatou's Lemma and the fact that P

n

w(�) !

b

'(�) , for all � 2 R, it is enough to

see that

sup

n�1

!

�

(P

n

w) = sup

n�1

�

Z

R

Z

R

jP

n

w(�)�P

n

w(� + �)j

2

d� d�

j�j

1+2�

�

1

2

� C km

0

k

H

�

(T)

: (2.31)

Let n � 1, then:

!

�

(P

n

w) �

n

X

j=1

�

Z

R

Z

R

j�1

Y

`=1

jm

0

(

� + �

2

`

)j

2

jm

0

(

�

2

j

)�m

0

(

� + �

2

j

)j

2

n

Y

`=j+1

jm

0

(

�

2

`

)j

2

jw(

�

2

n

)j

2

d� d�

j�j

1+2�

�

1

2

+

�

Z

R

Z

R

n

Y

`=1

jm

0

(

� + �

2

`

)j

2

jw(

�

2

n

)� w(

� + �

2

n

)j

2

d� d�

j�j

1+2�

�

1

2

=

n

X

j=1

A

j

+B:

The products

Q

jm

0

(

�+�

2

`

)j

2

can all be majorized by 1 in both A

j

and B. To deal with

the rest of the integrands we treat each case separately. After a change of variables,

B becomes

B � 2

�n(��

1

2

)

�

Z

R

Z

R

jw(�) � w(� + �)j

2

d� d�

j�j

1+2�

�

1

2

� 2

�n(��

1

2

)

kwk

H

�

(R)

;

which is bounded because w is a C

1

function with compact support (and, therefore,

belongs to all the Sobolev spaces H

�

(R)). To estimate the A

j

's, we change variables

�rst and, then, periodize the integral with respect to �. Thus

A

j

� 2

�j(��

1

2

)

�

Z

R

Z

R

jm

0

(�)�m

0

(� + �)j

2

n�j

Y

`=1

jm

0

(

�

2

`

)j

2

jw(

�

2

n�j

)j

2

d� d�

j�j

1+2�

�

1

2

=

2

�j(��

1

2

)

�

Z

R

Z

T

jm

0

(�) �m

0

(� + �)j

2

(

X

k2Z

jP

n�j

w(� + 2k�)j

2

)

d� d�

j�j

1+2�

�

1

2

�
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2

�j(��

1

2

)

kP

n�j

(w)k

�

�

!

�

(m

0

)

2

+ 4 km

0

k

2

L

2

(T)

Z

j�j��

d�

j�j

1+2�

�

1

2

�

� C 2

�j(��

1

2

)

km

0

k

H

�

(T)

;

since, by (2.28) and (2.2), kP

n�j

(w)k

�

� kwk

�

, for any 0 � j � n < 1, and

kwk

2

�

= k

P

k2Z

jw(�+2k�)j

2

k

1

� 2 because the series has at most two non-vanishing

terms.

Now, using that � >

1

2

, and summing up the A

j

's, we obtain

!

�

(P

n

w) � C

n

X

j=1

2

�j(��

1

2

)

km

0

k

H

�

(T)

+ kwk

H

�

(R)

2

�n(��

1

2

)

� C

0

km

0

k

H

�

(T)

;

as long as we take the constant C

0

on the right hand side large enough (so that

kwk

H

�

(R)

�

p

2

C

0

p

2

= km

0

k

L

2

(T)

C

0

p

2

). This establishes (2.31) and completes the proof

of case 1.

Case 2: � = k 2Z

+

.

We need to show that D

(k)

(

b

') 2 L

2

(R) and that

kD

(k)

(

b

')k

L

2

(R)

� C km

0

k

k+1

H

k

(T)

: (2.32)

In order to do so, we will �rst �nd a formula for D

(k)

(

b

'). Given 0 � h � k , we

introduce the following notation:

m

h

(�) =

�

d

h

m

0

d�

h

�

(�); a:e: � 2 R; (2.33)

where the derivatives are taken in the sense of distributions. Note that the m

h

's are

2�-periodic functions (a:e: in R) and that, when 0 � h � k � 1, they are actually in

C

k�h

(T) (see Remark 1.29, after Theorem 1.25).

LEMMA 2.34 Let k 2Z

+

. If m

0

2 H

k

(T) satis�es (2.2) and

b

' is de�ned by (2.20),

we can write the k

th

distributional derivative of

b

', D

(k)

(

b

'), as:

D

(k)

(

b

')(�) =

1

X

L=1

X

`2(Z

+

)

k

sup

1�i�k

`

i

=L

�

1

2

�

P

k

i=1

`

i

L

Y

j=1

m

P

k

i=1

�

j;`

i

(2

�j

�)

b

'(2

�L

�); (2.35)

where the series converges absolutely for a:e: � 2 R.
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PROOF: We brie
y explain the notation in (2.35) for the k

th

-derivative of the in�nite

product

Q

j�1

m

0

(2

�j

�). For a �xed L � 1 and a given multi-index ` = (`

1

; : : : ; `

k

) we

spread the k derivatives among the L �rst terms of the in�nite product, where each `

i

indicates that the `

th

i

-term is di�erentiated one time. The condition sup

1�i�k

`

i

= L

guarantees that the L

th

-term is always considered and, therefore, that there are no

repetitions in the process. However, and since all the derivatives are taken in the

sense of distributions, a more rigorous proof is required. We �rst show that the series

in (2.35) converges absolutely a:e: Take a compact set [�K;K] of R, where K > 0.

First, we shall show that

1

X

L=1

X

`2(Z

+

)

k

sup

1�i�k

`

i

=L

�

1

2

�

P

k

i=1

`

i

Z

[�K;K]

�

�

�

�

L

Y

j=1

m

P

k

i=1

�

j;`

i

(2

�j

�)

�

�

�

�

j

b

'(2

�L

�)j d� <1: (2.36)

This would imply, by Tonelli's Theorem, that the series in (2.35) converges absolutely

for a:e: � 2 [�K;K] (and also in L

1

([�K;K])) to a function in L

1

([�K;K]). Given

a multi-index ` = (`

1

; : : : ; `

k

) 2 (Z

+

)

k

, and j � 1, we denote

"

j

= "

j

(`) =

k

X

i=1

�

j;`

i

: (2.37)

Fix L � 1 and consider a multi-index ` 2 (Z

+

)

k

such that sup

1�i�k

`

i

= L, but

` 6= (L; : : : ; L). In particular, we have that "

j

< k, and at most k of the "

j

's are

non-zero, for j = 1; : : : ; L (that is, the k derivatives of the in�nite product are not

all concentrated in just one of the terms m

0

(2

�j

�)). Then, using jm

0

j; j

b

'j � 1 and

km

h

k

1

� C km

0

k

H

k

(T)

; 1 � h � k � 1, we obtain that

�

�

�

�

L

Y

j=1

m

"

j

(2

�j

�)

�

�

�

�

j

b

'(2

�L

�)j � C km

0

k

k

H

k

(T)

:

If, on the contrary, we choose ` = (L; : : : ; L) (that is, all the derivatives are concen-

trated in the term m

0

(2

�L

�)), then, the obvious estimates jm

0

j; j

b

'j � 1 and H�older's

inequality give us:

Z

[�K;K]

�

�

�

�

L�1

Y

j=1

m

0

(2

�j

�)

�

�

�

�

jm

k

(2

�L

�)j j

b

'(2

�L

�)j d� �

Z

[�K;K]

jm

k

(2

�L

�)j d� �
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(2K)

1

2

�

Z

[�K;K]

jm

k

(2

�L

�)j

2

d�

�

1

2

� (2K)

1

2

2

L=2

�

Z

[�K;K]

jm

k

(�)j

2

d�

�

1

2

�

� (2K)

1

2

2

L=2

(K + 2)

1

2

km

k

k

L

2

(T)

= C

K

km

0

k

H

k

(T)

2

L=2

:

Now, (2.36) becomes

1

X

L=1

X

sup `

i

=L

�

1

2

�

P

k

i=1

`

i

Z

[�K;K]

�

�

�

�

L

Y

j=1

m

"

j

(2

�j

�)

�

�

�

�

j

b

'(2

�L

�)j d� � C

1

X

L=1

L

k

2

L=2

<1:

This shows that the series in (2.35) converges absolutely, for a:e: � 2 R, (and also in

L

1

loc

(R)) to a locally integrable function.

Now, take w 2 C

1

c

(�2�; 2�) such that 0 � w � 1 and wj

[��;�]

� 1, and consider

P

n

w(�) as in (2.24). Note that P

n

w(�) !

b

'(�) uniformly in compact sets of R.

Indeed, if [�K;K] � R and n

0

is large enough, so that 2

n

0

� > K, then for all n � n

0

and � 2 [�K;K] we have that

P

n

w(�) = w(2

�n

�)

n

Y

j=1

m

0

(2

�j

�) =

n

Y

j=1

m

0

(2

�j

�);

and we know from Lemma 2.12 that

Q

n

j=1

m

0

(2

�j

�) converges uniformly to

b

' in

[�K;K]. In particular, we have that P

n

w !

b

' converges in the sense of distri-

butions. Thus, we must also have that D

(k)

(P

n

w) converges to D

(k)

(

b

') in the

sense of distributions. Therefore, to complete the proof of the lemma it is enough

to see that for every compact set [�K;K] � R, the sequence D

(k)

(P

n

w) converges

in L

1

([�K;K]) to the series in (2.35) (which we showed above was a function in

L

1

([�K;K])). So, �x such a compact set and take n

0

large enough, so that 2

n

0

� > K.

Then, for all n � n

0

and � 2 [�K;K] we have that 2

�n

� < � and, therefore,

D

(k)

(P

n

w)(�) =

n

X

L=1

X

`2(Z

+

)

k

sup `

i

=L

�

1

2

�

P

k

i=1

`

i

n

Y

j=1

m

"

j

(2

�j

�)w(2

�n

�) + 0

=

n

X

L=1

X

`2(Z

+

)

k

sup `

i

=L

�

1

2

�

P

k

i=1

`

i

L

Y

j=1

m

"

j

(2

�j

�)

n

Y

j=L+1

m

0

(2

�j

�):
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On the other hand, let us denote the partial sums of the series in (2.35) by

T

n

(�) =

n

X

L=1

X

`2(Z

+

)

k

sup `

i

=L

�

1

2

�

P

k

i=1

`

i

L

Y

j=1

m

"

j

(2

�j

�)

b

'(2

�L

�); n � n

0

; � 2 R:

Let " > 0. Then, there exists a positive integer n

1

� n

0

such that for every n � n

1

,

sup

�2[�K;K]

�

�

�

�

n

Y

j=1

m

0

(2

�j

�) �

b

'(�)

�

�

�

�

< ":

Let n

2

� n

1

be such that

P

M

L=N

L

k

2

L=2

< " , for every M � N � n

2

. We claim that

Z

[�K;K]

jD

(k)

(P

n

w)(�)� T

n

(�)j d� < C

K

"; for all n � 2n

2

; (2.38)

where C

K

is a constant that does not depend on n or ". Indeed,

Z

[�K;K]

jD

(k)

(P

n

w)(�) � T

n

(�)j d� �

�

n

X

L=1

1

2

L

�

Z

[�K;K]

jm

k

(2

�L

�)j

�

�

�

�

n

Y

j=L+1

m

0

(2

�j

�) �

b

'(2

�L

�)

�

�

�

�

d�+

+

X

`6=(L;:::;L)

sup `

i

=L

Z

[�K;K]

C km

0

k

k

H

k

(T)

�

�

�

�

n

Y

j=L+1

m

0

(2

�j

�)�

b

'(2

�L

�)

�

�

�

�

d�

�

� C

n

X

L=1

1

2

L

�

2

L

Z

[�2

�L

K;2

�L

K]

jm

k

(�)j

�

�

�

�

n�L

Y

j=1

m

0

(2

�j

�)�

b

'(�)

�

�

�

�

d�+

+L

k

2

L

Z

[�2

�L

K;2

�L

K]

�

�

�

�

n�L

Y

j=1

m

0

(2

�j

�)�

b

'(�)

�

�

�

�

d�

�

= C

�

n=2

X

L=1

+

n

X

L=n=2

�

� C

n=2

X

L=1

�

" (2K2

�L

)

1

2

�

Z

[�K;K]

jm

k

(�)j

2

d�

�

1

2

+ L

k

" 2K 2

�L

�

+C

n

X

L=n=2

�

2 (2K2

�L

)

1

2

�

Z

[�K;K]

jm

k

(�)j

2

d�

�

+2L

k

2K 2

�L

��

� C

K

�

1

X

L=1

L

k

2

L=2

�

"+ C

K

n

X

L=n=2

L

k

2

L=2

< C

K

":

This shows (2.38) and since T

n

converges in L

1

([�K;K]) to the series in (2.35), we

have completed the proof of Lemma 2.34. 2
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Now, (2.32) will follow right away from Lemma 2.34. Suppose we are given a

multi-index ` 2 (Z

+

)

k

, and a positive integer j � 1, and let "

j

= "

j

(`) denote the

same number as in (2.37). We de�ne the operators P

"

j

= P

m

"

j

as in (2.27). Note

that, by case 1 above,

b

' belongs, say, to H

3

4

(R) . Thus, by Corollary 1.17,

b

' also

belongs to the space H de�ned in (2.26). Moreover,

k

b

'k

�

� C k

b

'k

H

3

4

(R)

� C km

0

k

H

3

4

(T)

� C km

0

k

H

k

(T)

:

We can use Lemma 2.25 (II) and (III) to obtain:

kD

(k)

(

b

')k

L

2

(R)

�

1

X

L=1

X

`2(Z

+

)

k

sup `

i

=L

�

1

2

�

P

k

i=1

`

i

kP

"

1

� � �P

"

L

b

'k

L

2

(R)

�

1

X

L=1

1

2

L

�

kP

0

� � �P

0

P

k

b

'k

L

2

(R)

+

X

`6=(L;:::;L)

sup `

i

=L

kP

"

1

� � �P

"

L

b

'k

L

2

(R)

�

�

1

X

L=1

1

2

L

�

2

L=2

p

2 km

k

k

L

2

(T)

k

b

'k

�

+ L

k

2

L=2

C km

0

k

k

H

�

(T)

k

b

'k

L

2

(R)

�

� C

�

1

X

L=1

L

k

2

L=2

�

km

0

k

k+1

H

�

(T)

:

This shows (2.32) and completes the proof of case 2.

Case 3: � = k + "; 0 < " < 1; k 2Z

+

.

We have to show that

!

"

(D

(k)

b

') =

�

Z

R

Z

R

jD

(k)

b

'(� + �)�D

(k)

b

'(�)j

2

d� d�

j�j

1+2"

�

1

2

� C km

0

k

�+3

H

�

(T)

: (2.39)

First of all, note that by using (2.35) we can write

D

(k)

b

'(�) �D

(k)

b

'(� + �) =

1

X

L=1

X

`2(Z

+

)

k

sup `

i

=L

�

1

2

�

P

k

i=1

`

i

�

L

X

h=1

�

h�1

Y

j=1

m

"

j

(2

�j

(� + �)) (m

"

h

(2

�h

�)�m

"

h

(2

�h

(� + �)))�

�

L

Y

j=h+1

m

"

j

(2

�j

�)

b

'(2

�L

�)

�

+
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+

L

Y

j=1

m

"

j

(2

�j

(� + �)) (

b

'(2

�L

�) �

b

'(2

�L

(� + �)))

�

:

Now we repeat the argument in case 1 with some minor modi�cations to obtain:

!

"

(D

(k)

b

') �

1

X

L=1

1

2

L

�

L

X

h=1

�

2

�h"

2

L=2

�

Z

R

Z

R

jm

0

(2

L�h

�)�m

0

(2

L�h

�+�)j

2

jm

k

(�)j

2

j

b

'(�)j

2

d� d�

j�j

1+2"

�

1

2

+L

k

2

�h("�

1

2

)

�

Z

R

Z

R

h�1

Y

j=1

km

"

j

k

2

1

jm

"

h

(�)�m

"

h

(� + �)j

2

jP

"

h+1

� � �P

"

L

b

'(�)j

2

d� d�

j�j

1+2"

�

1

2

�

+2

�L("�

1

2

)

�

Z

R

Z

R

jm

k

(�)j

2

j

b

'(�)�

b

'(�+�)j

2

d� d�

j�j

1+2"

�

1

2

+L

k

2

�L("�

1

2

)

�

Z

R

Z

R

L

Y

j=1

km

"

1

k

2

1

j

b

'(�)�

b

'(�+ �)j

2

d� d�

j�j

1+2"

�

1

2

�

�

1

X

L=1

1

2

L

�

L

X

h=1

2

�h"

�

2

L=2

�

Z

j�j>1

4

d�

j�j

1+2"

+ km

0

k

2

�

1

2

+

"

2

(T)

Z

j�j�1

j�j

1+"

d�

j�j

1+2"

�

1

2

�

�

�

Z

T

jm

k

(�)j

2

d�

�

1

2

k

b

'k

�

+C L

k

2

�h("�

1

2

)

2

k=2

km

0

k

k

H

k

(T)

k

b

'k

�

�

!

"

(m

"

h

) +

Z

j�j>�

d�

j�j

1+2"

� �

+2

�L("�

1

2

)

�

Z

T

jm

k

(�)j

2

d�

�

1

2

�

4 k

b

'k

2

�

Z

j�j>1

d�

j�j

1+2"

+

Z

j�j<1

k

b

'(�+�)�

b

'(�)k

2

�

d�

j�j

1+2"

�

1

2

+C L

k

2

�L("�

1

2

)

km

0

k

k

H

k

(T)

�

4 k

b

'k

2

�

Z

j�j>1

d�

j�j

1+2"

+

Z

j�j<1

k

b

'(�+�)�

b

'(�)k

2

�

d�

j�j

1+2"

�

1

2

�

� C km

0

k

k+2

�

1

X

L=1

L

k

2

L=2

+ C km

0

k

k

�

�

1

X

L=1

L

k

2

L=2

��

Z

j�j<1

k

b

'(�+ �)�

b

'(�)k

2

�

d�

j�j

1+2"

�

1

2

:

We only need to estimate

Z

j�j<1

k

b

'(�+ �)�

b

'(�)k

2

�

d�

j�j

1+2"

: (2.40)

Suppose that 0 < " <

1

2

. Then, by Corollary 1.38 with 
 = 1, we have that

k

b

'(�+ �)�

b

'(�)k

2

�

� C j�j k

b

'k

2

H

1

(R)

:
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Introducing this last estimation in (2.40), we obtain

Z

j�j<1

k

b

'(�+ �)�

b

'(�)k

2

�

d�

j�j

1+2"

� C k

b

'k

2

H

1

(R)

Z

j�j<1

d�

j�j

2"

� C km

0

k

4

H

�

(T)

:

This shows (2.39) when 0 < " <

1

2

.

Suppose now that

1

2

� " < 1. Then, we can use Corollary 1.38 with 
 such that

2" < 
 < 2. This gives us

Z

j�j<1

k

b

'(�+ �)�

b

'(�)k

2

�

d�

j�j

1+2"

� C k

b

'k

2

H

1+


2

(R)

Z

j�j<1

d�

j�j

1�(
�2")

� C km

0

k

6

H

�

(T)

;

because 1 <

1+


2

<

3

2

and we may use the case above. This shows (2.39) when

1

2

� " < 1 and completes the proof of Lemma 2.22 and, with this, the proof of

Theorem 2.18.

2 2

Theorem 2.18 completely characterizes the set of functions in H

�

(T) that are

low-pass �lters of �-localized scaling functions for L

2

(R). That is, we have found

the range of the mapping M of Lemma 2.7. For convenience, we use the following

notation:

DEFINITION 2.41 Let � >

1

2

. We say that a 2�-periodic function m

0

belongs to

the set E

�

if m

0

2 H

�

(T) and satis�es (2.2) and Cohen's condition (2.15). We will

consider E

�

as a topological subspace of H

�

(T). That is, when we say that m

n

! m

0

in E

�

, we mean that m

n

;m

0

2 E

�

; n = 1; 2; : : : , and m

n

! m

0

in H

�

(T).

Now, we can restate Theorem 2.18 in the following way.

COROLLARY 2.42 Let � >

1

2

. The mapping M :S

�

! E

�

de�ned in Lemma 2.7 is

a bijection with inverse N : E

�

! S

�

given by

N(m

0

)(�) =

1

Y

j=1

m

0

(2

�j

�); � 2 R: (2.43)
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We proved in Lemma 2.7 that M is continuous. Moreover, by (2.4) and (2.23), M

and N are also boundedmappings. That is, they map bounded sets in S

�

into bounded

sets in E

�

, and conversely. The main question is the following: Can we conclude that

N is also continuous or, equivalently, that M is open? Is M a homeomorphism of

topological spaces? The answer is yes, although the proof is not obvious, as we show

it in the next section (see Corollary 3.32 below). The most important consequence

of this property is that the topology of the set of �-localized scaling functions is

completely described by the topology of the much simpler topological space E

�

. In

particular, in x4 we shall show that E

�

satis�es a manifold-like condition and, further,

that it is an arcwise connected topological space.
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3 Convergence in the sets of �lters F

�

and E

�

In this section we prove one of the main results of this dissertation; namely, that the

map M :S

�

! E

�

, de�ned in Lemma 2.7, is a homeomorphism of topological spaces.

For this, we study how the convergence of a sequence of �lters in E

�

will give us

convergence in the sequence of scaling functions they generate in the space S

�

. We

start with a new de�nition.

DEFINITION 3.1 Let � >

1

2

. We say that a 2�-periodic function F belongs to the

set F

�

if F 2 H

�

(T) and satis�es (2.2). As before, F

�

is considered a topological

subspace of H

�

(T).

Note that, in particular, F

�

is a closed subset of H

�

(T). This is just a consequence

of Sobolev's Imbedding Theorem 1.25. Note, further, that E

�

� F

�

, and the functions

in F

�

do not necessarily satisfy Cohen's condition (2.15). Indeed, Example 2 in x4

shows that F (�) =

1+e

i3�

2

2 F

�

, but F =2 E

�

. In fact, one can see that the set E

�

is

not closed in F

�

. The following example, taken from [BDW] clari�es this point.

EXAMPLE 1

Consider the family of functions

m

(a;c)

(�) =

1 + e

i�

2

(a+ be

i�

+ ce

i2�

); � 2 R; (3.2)

where a; b; c are real numbers such that

b = 1� a� c and a

2

+ c

2

= a+ c: (3.3)

This last condition can be interpreted as (a; c) being in a circle C = f(a; c) 2 R

2

j

(a�

1

2

)

2

+ (c�

1

2

)

2

=

1

2

g (see Figure 3.1, below).

An easy computation shows that (2.2) holds for any of the �lters m

(a;c)

, when

(a; b; c) is taken as in (3.3), and, therefore, that m

(a;c)

2 F

�

for all such pairs (a; c).
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a

c

(0,0)

(1,1)(0,1)

(1,0)

Figure 3.1: Circle C of low-pass �lters in Example 1.

Note that when (a; c) = (1; 1) we have

m

(1;1)

(�) =

1 + e

i3�

2

CLAIM : m

(a;c)

2 E

�

; for all (a; c) 2 C nf(1; 1)g: (3.4)

PROOF:

We need to show that Cohen's condition (2.15) holds for each of the m

(a;c)

's, when

(a; c) 2 C n f(1; 1)g. Take the compact set K = [��; �]. It is enough to show that

a+ be

i�

+ ce

i2�

6= 0; for � 2 [�

�

2

;

�

2

] ;

when b = 1� a� c and (a; c) 2 C n f(1; 1)g. First of all note that, if a = 0 , then c

is either 0 or 1, but in both cases be

i�

+ ce

i2�

6= 0; � 2 R. Therefore, we need only

consider the case when a 6= 0 . Suppose that there exists a � 2 [�

�

2

;

�

2

] such that

a + be

i�

+ ce

i2�

= 0 . Then, � 6= 0 (otherwise, it would contradict a + b + c = 1 ).

Thus, the roots of the polynomial a + bx + cx

2

must be e

i�

and e

�i�

, given by the

formulas:

�b+

p

b

2

� 4ac

2a

and

�b�

p

b

2

� 4ac

2a

;
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respectively. But then we have

1 = e

i�

� e

�i�

=

�

�b+

p

b

2

� 4ac

2a

��

�b�

p

b

2

� 4ac

2a

�

=

4ac

4a

2

=

c

a

;

which implies that a = c . Since (a; c) 2 C n f(1; 1)g , necessarily a = c = 0 , and

this contradicts our assumption and shows the claim.

2

Note that m

(a;c)

! m

(1;1)

in F

�

, when (a; c) ! (1; 1); (a; c) 2 C . Indeed,

since m

(a;c)

are all trigonometric polynomials, the convergence in H

�

(T) (with the

norm de�ned in (1.20)) follows from the convergence of each of the non-zero Fourier

coe�cients of m

(a;c)

to the corresponding coe�cient of m

(1;1)

, or, equivalently, from

(a; c)! (1; 1) in R

2

. This shows that E

�

is not closed in F

�

.

On the other hand, one can show that E

�

is an open subset of F

�

. This actually

follows from the next lemma.

LEMMA 3.5 Let � >

1

2

and choose any � 2 (0; 1) such that � � � �

1

2

. Suppose

that m

0

2 F

�

and that K is a compact set on R, and let " > 0. Then, there exists a

� = �(�; ";K) > 0 such that for every F 2 F

�

with kF �m

0

k

�

�

(T)

< � , then

�

�

�

�

1

Y

j=1

F (2

�j

�) �

1

Y

j=1

m

0

(2

�j

�)

�

�

�

�

< "; for all � 2 K:

In particular, if F

n

! m

0

in F

�

, then

Q

1

j=1

F

n

(2

�j

�) !

Q

1

j=1

m

0

(2

�j

�) uniformly

on compact sets of R.

PROOF:

Let us denote by

b

'

F

(�) =

1

Y

j=1

F (2

�j

�) and

b

'(�) =

1

Y

j=1

m

0

(2

�j

�); � 2 R: (3.6)

By Lemma 2.12, both in�nite products converge uniformly on compact sets and rep-

resent continuous functions in R. Note that, for every � 2 R,

b

'

F

(�) �

b

'(�) =

1

X

`=1

[

`�1

Y

j=1

m

0

(2

�j

�) ] (F (2

�`

�)�m

0

(2

�`

�))

b

'

F

(2

�`

�); (3.7)
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where the series converges uniformly and absolutely. Indeed, the partial sums of the

series satisfy

N

X

`=1

[

`�1

Y

j=1

m

0

(2

�j

�) ] (F (2

�`

�) �m

0

(2

�`

�))

b

'

F

(2

�`

�) =

=

b

'

F

(�) � [

N

Y

j=1

m

0

(2

�j

�) ]

b

'

F

(2

�N

�)!

b

'

F

(�) �

b

'(�); as N !1;

the convergence in the last step following from Lemma 2.12 and the continuity of

b

'

F

at � = 0. Suppose now that the compact set K � [�M;M ], for some M > 0, and

take an integer j

0

� 0 such that 2

�j

0

M 2 [��; �] . Then, for all � 2 K, and since

F (0) = m

0

(0) = 1

j

b

'

F

(�) �

b

'(�)j �

1

X

`=1

jF (2

�`

�) �m

0

(2

�`

�)j

�

j

0

X

`=1

kF �m

0

k

1

+

1

X

`=j

0

+1

j2

�`

�j

�

kF �m

0

k

�

�

(T)

:

Then, if we take � <

"

2j

0

and � <

"(2

�

�1)

2(2M)

�

, we have j

b

'

F

(�) �

b

'(�)j < ".

2

THEOREM 3.8 Let � >

1

2

. Then, E

�

is an open subset of F

�

.

PROOF:

Suppose that m

0

2 E

�

and let K be a compact set as in (2.15). Then, by Lemma

2.12,

b

'(�) =

Q

1

j=1

m

0

(2

�j

�) 6= 0 , when � 2 K and, therefore, there exists a positive

number " > 0 such that min

�2K

j

b

'(�)j > 2" . Given such K and ", the previous

lemma and Sobolev's Imbedding Theorem 1.25 tell us that we can �nd a � > 0 such

that, whenever F 2 F

�

and kF �m

0

k

H

�

(T)

< � , then,

�

�

�

�

b

'(�) �

1

Y

j=1

F (2

�j

�)

�

�

�

�

< "; for all � 2 K:

In particular, for each such function F , j

Q

1

j=1

F (2

�j

�)j > " , when � 2 K and,

therefore, F satis�es Cohen's condition (2.15) (with the same compact set K as m

0

)

and F 2 E

�

. 2
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From Lemma 3.5 we deduced that if F

n

! m

0

in F

�

, then

Q

1

j=1

F

n

(2

�j

�) !

Q

1

j=1

m

0

(2

�j

�) uniformly on compact sets of R. This local convergence on compacta

can actually be improved as the next theorem shows. The appropriate spaces in this

case are the local Sobolev spaces H

�

loc

(R) de�ned in x1:4.

THEOREM 3.9 Let � >

1

2

. Suppose that F

n

;m

0

2 F

�

; n = 1; 2; : : :, and that

b

'

n

(�) =

1

Y

j=1

F

n

(2

�j

�) and

b

'(�) =

1

Y

j=1

m

0

(2

�j

�); � 2 R: (3.10)

Then, if F

n

! m

0

in F

�

, we have that

b

'

n

!

b

' in H

�

loc

(R).

REMARK 3.11 Note that in this case we cannot expect to have

b

'

n

!

b

' in H

�

(R).

Indeed, we can take a sequence fF

n

g � E

�

such that F

n

! m

0

in F

�

, but m

0

=2 E

�

(like in Example 1 above). In this case,

b

' cannot be in S

�

and, since S

�

is closed

(Lemma 2.9),

b

'

n

cannot converge to

b

' in H

�

(R).

REMARK 3.12 Note that Theorem 3.9, together with Proposition 1.55, imply that,

if � > k +

1

2

(for some k 2Z

+

[ f0g), we have

D

(h)

b

'

n

! D

(h)

b

'; for 0 � h � k;

where the convergence is uniform in compact sets of R. In particular, if we allow the

case � = 1 (by replacing H

�

(T) by the Fr�echet space C

1

(T)), then the uniform

convergence on compact sets mentioned above holds for all the derivatives (h =

0; 1; 2; : : :). This particular case, with a di�erent proof, was �rst shown by A. Bonami,

S. Durand and G. Weiss (see Proposition 2.4 of [BDW]).

PROOF: First of all, notice that, by Lemmas 2.12 and 2.22, the in�nite products

in (3.10) converge uniformly and represent functions in H

�

(R). Therefore,

b

'

n

;

b

' 2

H

�

loc

(R). Let K now be a compact set in R. We need to show that

b

'

n

!

b

' in

k�k

H

�

loc

;K

. Without loss of generality we will assume that K = [�M;M ], for some

M > �. By Lemma 3.5 we know that

b

'

n

!

b

' uniformly in K. Then,

k

b

'

n

�

b

'k

L

2

(K)

! 0; as n!1: (3.13)
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We divide the rest of the proof into the usual three cases.

Case 1:

1

2

< � < 1.

We shall show that

!

�;K

(

b

'

n

�

b

') =

�

Z

K

Z

K

j(

b

'

n

�

b

')(�)� (

b

'

n

�

b

')(� + �)j

2

d� d�

j�j

1+2�

�

1

2

! 0; (3.14)

as n approaches in�nity.

In the same way as in (3.7) we can write, for �; � 2 R:

b

'(�)�

b
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b

'(2
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where the series converges absolutely.

By using (3.15) with

b

'

n

and

b

' and subtracting both quantities, we obtain
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Using this decomposition, our estimation reduces to:
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b

'

n

�

b

') � !

�;K

(A) + !

�;K

(B) + !

�;K

(C):

Consider �rst !

�;K

(A). By using the notation in Lemma 2.25 we have
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Now,
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� �
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n
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For the second term we obtain
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Finally, the third term is bounded by
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where the convergence to 0 follows from Lemma 3.5. This shows (3.14) and completes

the proof of case 1.

Case 2: � = k 2Z

+

.

We need to show that:

kD

(k)

b

'

n

�D
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b
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L
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! 0; as n!1: (3.17)

By using Lemma 2.34 and the notation in (2.37), we can write
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�

�

�
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Then, if we estimate the L

2

(K)-norm of each of these terms separately, we obtain
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as n approaches 1. The second term is treated similarly,
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where the convergence to 0 follows from (3.13). For the other three terms there is a

minor modi�cation in which we introduce the notation in Lemma 2.25
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b
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This shows (3.17) and completes the proof of case 2.

Case 3: � = k + "; k 2Z

+

; 0 < " < 1.

This case is a little more tedious to write, mainly because of the cumbersome

notation needed; however, all the estimations follow from the same type of arguments

that we used previously. We have to show that
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By using (2.35), the notation in (2.37), and the same kind of decomposition as in

(3.15), we can write:
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Now, using this representation with

b

' and

b

'

n

and subtracting both quantities, we
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(3.20)

The estimates needed to show that !

";K

(A) ! 0 , when n ! 1, are essentially

the same as in the previous cases: we isolate the factor that contains the di�erence

kF

n

�m

0

k

1

(or, more generally, kF

n

� m

0

k

H

�

(T)

), while we show that the rest of

the double integral

R

K

R

K

d� d�
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is bounded (by dealing with any of the increments

G(� + �) � G(�) , where G = F
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j

;m

"

j

;

b

';

b

'

n

). The calculations for !

";K

(B) ! 0

follow the same pattern, the main di�erence with A being that the D

(k)

G's have to

be treated with k � k

L

2

(T)

-norms rather than k � k

1

. The cases B

1

; B

5

; and B

6

contain

the essential features of these modi�cations. For completeness, we include the proof
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of all the cases, but we encourage the reader to convince him or herself of the validity

of these arguments by just checking the non-obvious ones.
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where here we have used that, by (2.23), !
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where the last convergence to 0 follows from (3.14), in case 1 above. This shows that
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To treat the double integral we use a Lipschitz condition on F
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and, then, periodize
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Suppose, on the contrary, that 0 < " <

1

2

. Then, F

n

2 H

1+"

(T)� �

1

2

+"

(T) and

jF

n

(�) � F

n

(� + �)j

2

� C kF

n

k

2

�

j�j

1+2"

:
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The double integral, then, becomes
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as n approaches 1. In a similar way, we deal with B

2

; B

3

and B

4

. Observe that

(3.21) is crucial in these three estimations.
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To estimate the double integrals above we need to use this time a Lipschitz condition
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For the second integral we proceed as follows. Let
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As in the last part of the proof of Lemma 2.22, we consider two cases. When 0 < " <
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by Corollary 1.38 and Proposition 1.52 we have
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Here the double integral is estimated in the same way as for B

5

. We split the integral

with respect to � in two parts, one when j�j � 1 and the other when j�j > 1. The

last case is always the easiest one:
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where the convergence to 0 follows from (3.17), in case 2 above. This shows that
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Then, since
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Hence, !
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) also goes to 0 in the case � = k+", when
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� " < 1. This concludes

the proof of case 3 and establishes Theorem 3.9.
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If we extend the domain of the mapping N de�ned in (2.43) from E
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to F

�

then,

as we pointed out in Remark 3.11, N is not necessarily continuous (when it takes

values in H
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(R)). The most we are able to say is the local convergence shown in
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pass from local to global convergence (in H
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Consider the compact set K = [�(2k
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�2T

X

k2Z

j

b

'

n

(� + 2k�)�

b

'(� + 2k�)j

2

! 0; as n!1;

which completes the proof of the lemma.

2

We are now ready to state our main result.

THEOREM 3.27 Let � >

1

2

. Suppose that F

n

;m

0

2 E

�

; n = 1; 2; : : :, and that

F

n

! m

0

in E

�

. Then,

b

'

n

!

b

' in H

�

(R), where

b

'

n

;

b

' are de�ned as in (3.10).
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PROOF:

The idea of the proof is the same as for Theorem 3.9. Now, we have to replace

the compact set K by the real line R, and make use of Lemma 3.23 whenever we

need to pass from local to global convergence (that is, from k(

b

'

n

�

b

') ��

K

k

�

! 0 , to

k

b

'

n

�

b

'k

�

! 0 ). For completeness, we inlude some of the estimations here, leaving

the obvious ones to the reader. First of all note that

lim

n!1

k

b

'

n

�

b

'k

2

L

2

(R)

= lim

n!1

Z

T

X

k2Z

j(

b

'

n

�

b

')(� + 2k�)j

2

d� = 0: (3.28)

To show that k

b

'

n

�

b

'k

H

�

(R)

! 0; as n!1, we use, as in Theorem 3.9, the de�nition

of norm for H

�

(R) given in (1.4) (or (1.6)).

Case 1:

1

2

< � < 1.

We shall show that

!

�

(

b

'

n

�

b

') =

�

Z

R

Z

R

j(

b

'

n

�

b

')(�)� (

b

'

n

�

b

')(� + �)j

2

d� d�

j�j

1+2�

�

1

2

! 0; as n!1: (3.29)

We proceed as when we showed (3.14), replacing K by R. Using the decomposition

(

b

'

n

�

b

')(�) � (

b

'

n

�

b

')(� + �) = A+B + C;

given in (3.16), we obtain

!

�

(

b

'

n

�

b

') � !

�

(A) + !

�

(B) + !

�

(C):

Then, if we repeat the estimations right after (3.16) above, we obtain

!

�

(A) �

1

X

`=1

`�1

X

h=1

kF

n

�m

0

k

1

2

�`(��

1

2

)

k

b

'

n

k

�

�

Z

R

Z

T

jF

n

(�)� F

n

(� + �)j

2

d� d�

j�j

1+2�

�

1

2

�

� C kF

n

�m

0

k

H

�

(T)

! 0; as n!1:

One deals similarly with B. For C, we have

!

�

(C) �

1

X

`=1

2

�`(��

1

2

)

k

b

'

n

�

b

'k

�

�

Z

j�j>�

4

d�

j�j

1+2�

+ !

�

(m

0

)

2

�

1

2
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� C k

b

'

n

�

b

'k

�

! 0; as n!1;

where the convergence to 0 follows from Lemma 3.23. This shows (3.29) and, together

with (3.28), completes the proof of case 1.

Case 2: � = k 2Z

+

.

Here, we need to show that:

kD

(k)

b

'

n

�D

(k)

b

'k

L

2

(R)

! 0; as n!1: (3.30)

As when we proved (3.17), we use the decomposition

D

(k)

b

'

n

(�)�D

(k)

b

'(�) = I + II + III + IV + V;

given in (3.18). Note that the same arguments right after (3.18) imply that

kIk

L

2

(R)

; kIIIk

L

2

(R)

; kIV k

L

2

(R)

� C kF

n

�m

0

k

H

�

(T)

! 0; as n!1:

For the other two cases we have:

kIIk

L

2

(R)

� C k

b

'

n

�

b

'k

L

2

(R)

! 0; as n!1;

and

kV k

L

2

(R)

� C k

b

'

n

�

b

'k

�

! 0; as n!1;

the �rst limit following from (3.28) and last one from Lemma 3.23. This shows (3.30)

and completes the proof of the second case.

Case 3: � = k + "; k 2Z

+

; 0 < " < 1.

In this last case we need to show that

!

"

(D

(k)

b

'

n

�D

(k)

b

') =

�

Z

R

Z

R

jD

(k)

(

b

'

n

�

b

')(�) �D

(k)

(

b

'

n

�

b

')(� + �)j

2

d� d�

j�j

1+2"

�

1

2

! 0; as n!1: (3.31)
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By using the decomposition

D

(k)

(

b

'

n

�

b

')(�)�D

(k)

(

b

'

n

�

b

')(� + �) = [A

1

+ : : :+A

6

] + [B

1

+ : : :+B

6

];

given in (3.20), it is enough to estimate each of the terms !

"

(A

j

) and !

"

(B

j

); j =

1; : : : ; 6 , separately. By following exactly the same arguments as right after (3.20),

we can easily see that, when j = 1; 2; 3; 5, we have

!

"

(A

j

) � C kF

n

�m

0

k

H

�

(T)

! 0; as n!1:

In the case A

4

, we use Lemma 3.23 to obtain

!

"

(A

4

) � C k

b

'

n

�

b

'k

�

! 0; as n!1;

while for A

6

we have

!

"

(A

6

) � C !

"

(

b

'

n

�

b

')! 0; as n!1;

the convergence to 0 following now from (3.29) in case 1 above. To estimate the

B

j

's, one proceeds similarly. Note that B

1

; B

2

; B

3

and B

4

are treated by using (3.21),

giving us

!

"

(B

j

) � C kF

n

�m

0

k

H

�

(T)

! 0; as n!1; j = 1; 2; 3;

while

!

"

(B

4

) � C k

b

'

n

�

b

'k

�

! 0; as n!1:

To deal with B

5

, the only di�erence with the local method of Theorem 3.9 is that the

estimation in (3.22) should be replaced (by Corollary 1.38) by

k

b

'

n

(�)�

b

'

n

(�+ �)k

2

�

�

8

<

:

C j�j k

b

'

n

k

2

H

1

(R)

; when 0 < " <

1

2

C j�j




k

b

'

n

k

2

H

1+


2

(R)

; when

1

2

� " < 1,

for a suitable 
 2 (2"; 2). In both cases, this implies

!

"

(B

5

) � C kF

n

�m

0

k

H

�

(T)

! 0; as n!1:
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Finally, for B

6

, Corollary 1.38 tells us once more that

k(

b

'

n

�

b

')(�)� (

b

'

n

�

b

')(�+ �)k

2

�

�

8

<

:

C j�j k

b

'

n

�

b

'k

2

H

1

(R)

; when 0 < " <

1

2

C j�j




k

b

'

n

�

b

'k

2

H

1+


2

(R)

; when

1

2

� " < 1.

When 0 < " <

1

2

, this gives us

!

"

(B

6

) � C k

b

'

n

�

b

'k

H

1

(R)

! 0; as n!1;

the convergence to 0 following from case 2 above. This would complete the proof of

(3.31) when 0 < " <

1

2

. When

1

2

� " < 1, we have

!

"

(B

6

) � C k

b

'

n

�

b

'k

H

1+


2

(R)

! 0; as n!1;

where the convergence to 0 now follows from the fact that 1 <

1+


2

<

3

2

and the

previous case. This completes the proof of (3.31) and, with it, establishes Theorem

3.27.

2

COROLLARY 3.32 Let � >

1

2

. Then N : E

�

! S

�

, given by (2.43), is a homeomor-

phism of topological spaces with inverse N

�1

=M , de�ned as in Lemma 2.7.

The homeomorphism between S

�

and E

�

has some other important consequences,

besides showing the interplay between scaling functions and low-pass �lters. For in-

stance, it allows us to work with the somewhat simpler (and better described) space

E

�

of 2�-periodic functions whenever we want to �nd topological properties satis�ed

by S

�

. In the next section we shall show that E

�

is a connected in�nite dimensional

manifold. Corollary 3.32 tells us that the same condition will automatically be satis-

�ed by S

�

. This will lead, in x5 below, to similar properties for the set of �-localized

wavelets.
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4 E

�

is a connected in�nite dimensional manifold

In this section we study some topological properties of E

�

and F

�

. The limiting case

when � = 1, in which E

1

and F

1

have the topology of the Fr�echet space C

1

(T),

was studied by A. Bonami, S. Durand and G. Weiss in [BDW]. They showed that

both E

1

and F

1

are connected in�nite dimensional manifolds (see Theorems 2.1 and

3.2 in [BDW]). We adapt their proofs to show similar properties for the spaces E

�

and

F

�

, when � >

1

2

. In most of what follows we will work with the latter instead of the

former. This assumption is not too general since, as we proved in Theorem 3.8, E

�

is

open in F

�

. Our �rst theoremwill show that F

�

is an in�nite dimensional submanifold

of the Hilbert space H

�

(T). Formally, this comes from the fact that, for m

0

2 F

�

,

jm

0

j is completely determined by its values in

T

2

� [

��

2

;

�

2

) (by (2.2)), while arg(m

0

)

can be any arbitrary real-valued function

f6g

in H

�

(T). Roughly speaking, this gives

us a local homeomorphism m

0

7! (jm

0

j; arg(m

0

)) between F

�

and H

�

(T=2)�H

�

R

(T),

this product space being itself homeomorphic to H

�

(T). The assumption m

0

(0) = 1

in (2.2), for m

0

2 F

�

, has also to be taken into consideration, and will tell us that

F

�

actually lives in a \hyperplane" (and therefore a submanifold) of H

�

(T). Let us

now give a more precise meaning to what we are saying.

Suppose that � >

1

2

and consider, then, the following subset of H

�

(T)

H

�

= f f 2 H

�

(T) j f(0) = f(�) = 0 g: (4.1)

Note that H

�

is a closed subspace of the Hilbert space H

�

(T) and, therefore, H

�

and

H

�

(T) are isomorphic. Geometrically, H

�

represents a hyperplane of codimension 2

of H

�

(T).

THEOREM 4.2 Let � >

1

2

. Then, F

�

is an in�nite dimensional submanifold of

H

�

(T), in the sense that for every m

0

2 F

�

, there exists a neighborhood of m

0

,

f6g

When z 2 C , by arg z we denote a real number such that z = jzje

iarg z

. Unless otherwise

speci�ed, we will consider only the main branch of the argument, that is, arg z 2 [��; �[ .
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U � F

�

, a neighborhood of 0, V � H

�

, and a homeomorphism

� : U ! V; such that �(m

0

) = 0:

PROOF:

Let m

0

2 F

�

be �xed and de�ne

m

1

(�) = e

i�

m

0

(� + �); � 2 R:

Then, m

1

2 H

�

(T). Now, for every � 2 T consider the unitary matrix

U(�) =

�

m

0

(�) m

0

(� + �)

m

1

(�) m

1

(� + �)

�

: (4.3)

We use U to �nd a particular isomorphism between the Hilbert spaces

f7g

H

�

(T) and

H

�

(T=2)�H

�

(T=2).

LEMMA 4.4 Let � >

1

2

and m

0

2 F

�

be �xed. Let U be the unitary matrix de�ned

in (4.3) above. Then, the operator associated with the matrix:

U :H

�

(T=2)�H

�

(T=2)! H

�

(T)

(G;H) 7! U(G;H) = G �m

0

+H �m

1

is an isomorphism of Hilbert spaces with inverse U

�1

given by

F 2 H

�

(T) 7! U

�1

(F ) = (G;H);

where

G(�) = F (�)m

0

(�) + F (� + �)m

0

(� + �); � 2

T

2

H(�) = F (�)m

1

(�) + F (� + �)m

1

(� + �); � 2

T

2

9

>

>

>

>

=

>

>

>

>

;

(4.5)

f7g

Here, we say that f 2 H

�

(T=2) if f 2 H

�

(T) and f is �-periodic; in this case, we de�ne the norm







f







H

�

(T=2)

=







f







H

�

(T)

. Equivalently, one can consider H

�

(T=2) as the Hilbert space of �-periodic

functions that satisfy (1.20) (or (1.21) and (1.23)) when T is replaced by

T

2

. In H

�

(T=2)�H

�

(T=2)

we will consider the product norm







(f; g)







H

�

(T=2)�H

�

(T=2)

=







f







H

�

(T=2)

+







g







H

�

(T=2)

, for all (f; g) 2

H

�

(T=2)�H

�

(T=2).
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PROOF:

The proof of this lemma is easy. It is clear that both U and U

�1

are linear and well-

de�ned (by Lemma 1.30). Moreover, U

�

U

�1

(F ) = F and U

�1

�

U(G;H) = (G;H) .

We show that U and U

�1

are bounded. Let F 2 H

�

(T) and (G;H) 2 H

�

(T=2) �

H

�

(T=2). Then, by using Lemma 1.30, we obtain

kU(G;H)k

H

�

(T)

= kGm

0

+Hm

1

k

H

�

(T)

� kGk

H

�

(T)

km

0

k

H

�

(T)

+ kHk

H

�

(T)

km

1

k

H

�

(T)

� (km

0

k

H

�

(T)

+ km

1

k

H

�

(T)

) k(G;H)k

H

�

(T=2)�H

�

(T=2)

;

and

kU

�1

(F )k

H

�

(T=2)�H

�

(T=2)

= kF m

0

+ F (�+ �)m

0

(�+ �)k

H

�

(T=2)

+

kF m

1

+ F (�+ �)m

1

(�+ �)k

H

�

(T=2)

� 2 (km

0

k

H

�

(T)

+ km

1

k

H

�

(T)

) kFk

H

�

(T)

:

This shows that U and U

�1

are bounded and completes the proof of the lemma.

2

Before embarking on the proof of Theorem 4.2 we need to consider one more

technical detail. Let � >

1

2

be �xed and consider the following notation:

I � ff 2 H

�

(T=2) j f(0) = 0g and I

R

� ff 2 I j f is real-valued g:

Note that I and I

R

are both closed subspaces of the real Hilbert space H

�

(T=2) (say,

with the symmetric inner product <f; g>�

1

2

f (f; g)+(g; f) g). Thus, it follows from

classical Hilbert space theory that there is an isomorphism between them (in fact,

they are isometrically isomorphic to `

2

R

). For the sake of completeness, we present

here the construction of one such isomorphism. Let

J

1

: I

R

� I

R

! I

(F;G) 7! (F + iG):

This is clearly an isomorphism of real Hilbert spaces.
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On the other hand, we de�ne J

2

: I

R

! I

R

�I

R

as follows; if f(�) =

P

k2Z

c

k

e

ik(2�)

is a function in I

R

then, we let

(J

2

(f))(�) � (F (�) ; G(�) ) =

0

@

X

k2Z

a

k

e

ik(2�)

;

X

k2Z

b

k

e

ik(2�)

1

A

;

where

a

k

=

8

>

<

>

:

c

2k

+ c

2k�1

; k � 1

c

0

; k = 0

c

2k

+ c

2k+1

; k � �1

and b

k

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

c

2k

� c

2k�1

; k � 1

X

`2Z

c

2`+1

�

X

`2Z

`6=0

c

2`

; k = 0

c

2k

� c

2k+1

; k � �1.

Note that, if f is real valued and f(0) = 0, then, c

�k

= c

k

and

P

k2Z

c

k

= 0. In

particular, this implies that a

�k

= a

k

and b

�k

= b

k

; k 2Z, and

P

k2Z

a

k

=

P

k2Z

b

k

=

0. Thus, J

2

is a well-de�ned linear operator (between real Hilbert spaces). Moreover,

its inverse J

�1

2

(F;G); for F (�) =

P

k2Z

a

k

e

ik(2�)

; G(�) =

P

k2Z

b

k

e

ik(2�)

2 I

R

, is given

by:

(J

�1

2

(F;G))(�) =

X

k2Z

c

k

e

ik(2�)

;

where

c

0

= a

0

and

8

>

>

<

>

>

:

c

2k

=

a

k

+ b

k

2

; k 6= 0

c

2k�1

=

a

k

� b

k

2

; c

�(2k�1)

=

a

�k

� b

�k

2

; k � 1.

We leave to the reader the veri�cation that J

2

�

J

�1

2

(F;G) = (F;G), J

�1

2

�

J

2

(f) = f ,

and both J

2

; J

�1

2

are bounded. Then, J � J

1

�

J

2

: I

R

! I is one of the isomorphisms

seeked.

We can now continue with the proof of Theorem 4.2. We are looking for a home-

omorphism � between a neigborhood of m

0

2 F

�

and a neighborhood of 0 2 H

�

. In

order to do so, we proceed via H

�

(T=2)�H

�

(T=2), as in the following diagram:
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�

F

�

�������������! H

�

j "

# j

e

�

U

�1

(F

�

) ����������! U

�1

(H

�

)

U

�1

U (�)

Note that U

�1

(m

0

) = (1;0) and U

�1

(0) = (0;0) . Then, by Lemma 4.4, it is

enough to �nd a neighborhood

e

U

of (1;0) in

U

�1

(F

�

) = f (G;H) 2 H

�

(T=2)�H

�

(T=2) j jGj

2

+jHj

2

= 1 and (G;H)(0) = (1; 0) g;

a neighborhood

e

V of (0;0) in

U

�1

(H

�

) = f (G;H) 2 H

�

(T=2)�H

�

(T=2) j (G;H)(0) = (0; 0) g;

and a homeomorphism

e

�

:

e

U

!

e

V such that

e

�

(1;0) = (0; 0):

Indeed, if we do this, we can de�ne U = U(

e

U

); V = U(

e

V ) and � = U

�

e

�

�

U

�1

, and

this would complete the proof of our theorem. Consider the following domain of the

complex plane


 =

(

z 2 C j

p

3

2

< jzj < 2; j arg zj <

�

6

)

:

(See Figure 4.2 below.)

We de�ne

e

U

= f (G;H) 2 H

�

(T=2)�H

�

(T=2) j G(T)� 
 and kHk

1

< 1=2 g \ U

�1

(F

�

):

By Sobolev's Imbedding Theorem 1.25,

e

U

is an open neighborhood of (1;0) in

U

�1

(F

�

). On the other hand, de�ne

V

]

= f (A;H) 2 H

�

R

(T=2)�H

�

(T=2) j kAk

1

< �=6; kHk

1

< 1=2 g \ U

�1

(H

�

);



141

Ω

1 23/2

Figure 4.2: Sketch of the region 
.

which is an open neighborhood of (0;0) in U

�1

(H

�

) \ [H

�

R

(T=2)�H

�

(T=2)]. Then,

we de�ne the homeomorphism �

]

:

e

U

! V

]

by

�

]

(G;H) = (A;H); where A = arg(G) =

1

i

log

G

jGj

; for (G;H) 2

e

U

:

We claim that �

]

is well-de�ned and continuous. Indeed, by using the results in x1:3

about Banach algebras, we see that G 7! G=jGj is continuous (into H

�

(T=2)) when

�(G) � 
 (this is because jGj =

p

G �G and the square root is well-de�ned since

�(G � G) = jGj

2

(T=2) � ]

3

4

; 4[, which is simply connected and does not contain 0).

Moreover, since

�(G=jGj) �

�

jzj = 1; j arg zj <

�

6

�

;

we can use the holomorphic functional calculus of Theorem 1.40 to conclude that

G 7! log (G=jGj) is continuous in H

�

(T=2) and (A;H) 2 V

]

. On the other hand, the

candidate for inverse, (�

]

)

�1

, is given by

(A;H) 7! (e

iA(�)

q

1 � jH(�)j

2

;H); (A;H) 2 V

]

:

Another use of the holomorphic functional calculus in H

�

(T=2) shows that (�

]

)

�1

is continuous and (�

]

)

�1

(A;H) 2

e

U

. Moreover, since �

]

�

(�

]

)

�1

(A;H) = (A;H) ,
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and (�

]

)

�1

�

�

]

(G;H) = (G;H) , for all (A;H) 2 V

]

and (G;H) 2

e

U

, we have that

�

]

:

e

U

! V

]

is a homeomorphism.

Now, the mapping

(A;H) 7! J

]

(A;H) � (J(A);H )

gives an isomorphism between V

]

= f(A;H) 2 I

R

� I j kAk

1

<�=6; kHk

1

<1=2 g

and the open set J

]

(V

]

) �

e

V � I � I = U

�1

(H

�

). Hence, if we de�ne

e

�

= J

]

�

�

]

:

e

U

!

e

V � U

�1

(H

�

)

we obtain a homeomorphism that completes the diagram (

*

) above (with the map-

pings restricted to appropriate open sets). This establishes Theorem 4.2.

2

REMARK 4.6 We have not considered here any \di�erential structure" in the man-

ifold F

�

. One can do so by noticing that for any pair (�

1

; U

1

); (�

2

; U

2

), as in the

previous theorem, such that U

1

\ U

2

6= ;, we have that

�

1

�

�

�1

2

: �

2

(U

1

\ U

2

) �! �

1

(U

1

\ U

2

)

is a C

1

-di�eomorphism between open sets in the real Hilbert space H

�

. This actually

follows from the construction of � above and from elementary properties of H

�

(T)

(of the type of what we said in Remark 1.41). In the terminology of in�nite dimen-

sional geometry (see, e.g., Chapter II of [LAN]), F

�

becomes a Hilbert manifold (or

a manifold modeled in the Hilbert space H

�

' H

�

(T)). We restrict the investigation

of this thesis to show the connectivity of F

�

, but stronger properties arising from the

di�erential structure might be true. We postpone this study to a future occasion.

Theorem 4.2 is also valid if we replace F

�

by E

�

. This is just a consequence of the

openess of this last set in the �rst one, which we proved in Theorem 3.8 above. From

these considerations we deduce the following result:
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COROLLARY 4.7 Let � >

1

2

. Then, E

�

and F

�

are locally connected topological

spaces.

PROOF: This follows from the fact that H

�

is connected and E

�

and F

�

are locally

homeomorphic to H

�

.

2

In order to show that F

�

is \globally" connected, given a pair of functions (m

0

;m

1

)

in F

�

, we �nd a continuous path (in F

�

) that joins one with the other. One candidate

for such a path is t 7! m

t

�

q

(1 � t)jm

0

j

2

+ tjm

1

j

2

(note m

t

satis�es (2.2)). Unfor-

tunately, taking the square root does not preserve the smoothness of the functions

m

0

and m

1

(although m

t

still belongs to L

2

(T)). It turns out that one can overcome

this di�culty when m

0

and m

1

are trigonometric polynomials. Indeed, under these

conditions, the Fej�er-Riesz Lemma tells us that we may choose a trigonometric poly-

nomial m

t

so that jm

t

j

2

= (1 � t)jm

0

j

2

+ tjm

1

j

2

. The assumption that m

0

;m

1

2 T

is not too general, and can be justi�ed from the local connectivity of F

�

(Corollary

4.7) and the following density result (see also Lemma 1.47):

THEOREM 4.8 Let � >

1

2

and F 2 F

�

. Then, there exists a sequence of trigono-

metric polynomials fP

n

g

1

n=1

such that P

n

(0) = 1 and P

n

(�) = 0; n = 1; 2; : : : and

P

n

q

jP

n

j

2

+ jP

n

(�+ �)j

2

! F in F

�

; as n!1: (4.9)

In particular, the set

8

<

:

P

q

jP j

2

+ jP (�+ �)j

2

�

�

�

�

P 2 T ; P (0) = 1; P (�) = 0; jP j

2

+ jP (�+ �)j

2

6= 0

9

=

;

is a dense subset of F

�

.

PROOF:

We showed in Lemma 1.47 that the set T of trigonometric polynomials is dense in

H

�

(T). Let fQ

n

g

1

n=1

� T be a sequence such that Q

n

! F in H

�

(T) (e.g., take the
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n

th

-symmetric partial sum of the Fourier series of F ). Then, by Sobolev's Imbedding

Theorem 1.25,

lim

n!1

Q

n

(0) = F (0) = 1 and lim

n!1

Q

n

(�) = F (�) = 0:

Therefore, for large n we have jQ

n

(0)�Q

n

(�)j >

1

2

. De�ne for each such n

P

n

(�) =

Q

n

(�)�Q

n

(�)

Q

n

(0) �Q

n

(�)

; � 2 R:

Then, P

n

2 T and P

n

! F in H

�

(T). Moreover, P

n

(0) = 1 and P

n

(�) = 0. Once

again, Sobolev's Theorem 1.25 tells us that

q

jP

n

(�)j

2

+ jP

n

(� + �)j

2

! 1 uniformly

in T. Therefore, for n large enough, we must have that

jP

n

(�)j

2

+ jP

n

(� + �)j

2

>

1

2

; for all � 2 T:

From the properties in x1:3 about Banach algebras we see that

(jP

n

(�)j

2

+ jP

n

(�+ �)j

2

)

�1=2

2 H

�

(T)

and (4.9) holds. This completes the proof of the theorem.

2

REMARK 4.10 Note that if F 2 E

�

, the trigonometric polynomials fP

n

g in the

previous theorem can be taken to satisfy Cohen's condition (2.15). This follows from

the fact that E

�

is an open subset of F

�

.

THEOREM 4.11 Let � >

1

2

. Then F

�

and E

�

are arcwise connected topological

spaces.

PROOF:

Let us choose, as a �xed element of F

�

, the Haar �lter: m

H

(�) =

1+e

i�

2

; � 2 T.

Let m

0

be an arbitrary element of F

�

. We will construct a continuous path in F

�

that joins m

0

with m

H

. Moreover, we will see that this path can be chosen within E

�

if m

0

2 E

�

.

We borrow the following result from [BDW].
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PROPOSITION 4.12 : see Lemma 3.6 in [BDW]

Given a polynomial Q(z) =

P

N

n=0

a

n

z

n

such that Q(1) = 1, there exists an integer

k; 0 � k � N , and a continuous map

[0; 1] �! C

1

(C ) (4.13)

t 7�! Q

t

such that

(i) Q

0

(z) = z

k

and Q

1

= Q:

(ii) Q

t

are all polynomials of degree � N; t 2 [0; 1]:

(iii) jQ

t

(z)j

2

= (1 � t) + tjQ(z)j

2

; when jzj = 1; for all 0 � t � 1:

REMARK 4.14 We are considering the usual Fr�echet topology in the space C

1

(C ) =

C

1

(R

2

) in (4.13) above. That is, if f

n

; f 2 C

1

(R

2

), we say that f

n

! f in C

1

(R

2

) if,

and only if, D

k

f

n

! D

k

f uniformly in compact sets of R

2

and for every multi-index

k = (k

1

; k

2

) such that k

i

� 0; i = 1; 2.

REMARK 4.15 We will not prove Proposition 4.12 here, but a sketch of the proof

is as follows. When jzj = 1, consider the positive trigonometric polynomial (1 �

t) + tjQ(z)j

2

given in (iii) above. Then, an argument of the type used to establish

the Fej�er-Riesz Lemma (see, e.g., Lemma 3.16 in Chapter 2 of [HW]) allows us to

construct a trigonometric polynomial Q

t

such that jQ

t

(z)j

2

= (1�t)+tjQ(z)j

2

, when

jzj = 1. The selection of the Q

t

's is not unique in general, but with some care in the

process of construction we can make the coe�cients of Q

t

depend continuously on t.

The integer k in (i) appears when passing from jzj = 1 to z 2 C , and is related to

the multiplicity of the zeros of Q. For more details see [BDW].

Continuing with the proof of Theorem 4.11, let m

0

be a �xed element in F

�

,

and let P be a trigonometric polynomial (as in Theorem 4.8) such that m

0

and

P (jP j

2

+ jP (�+�)j

2

)

�

1

2

can be joined by a continuous path in F

�

(we can do this by
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Corollary 4.7). We may assume that jP (�)j

2

+ jP (�+�)j

2

>

1

2

, when � 2 T. Suppose

that P (�) =

P

N

n=�N

a

n

e

in�

has degree N . Then, since P (�) = 0, we can write P as

P (�) = e

�iN�

�

1 + e

i�

2

�

Q(e

i�

); � 2 R;

where Q is a polynomial (in C ) of degree � 2N � 1. Applying Proposition 4.12

to Q we obtain a continuous map t 7! Q

t

; t 2 [0; 1] , as in (4.13), and an integer k,

0 � k � 2N�1, such that properties (i); (ii) and (iii) of the proposition are satis�ed.

Let us de�ne

P

t

(�) = e

�iN�

�

1 + e

i�

2

�

Q

t

(e

i�

); � 2 R; t 2 [0; 1]: (4.16)

Then, the map

[0; 1] �! C

1

(T)

t 7�! P

t

is continuous

f8g

. Moreover,

(i) P

0

(�) = e

ip�

1 + e

i�

2

for some p 2Z; and P

1

= P:

(ii) the trigonometric polynomials P

t

; t 2 [0; 1]; have all degree � N:

(iii) jP

t

(�)j

2

= (1 � t)

�

�

�

�

1 + e

i�

2

�

�

�

�

2

+ tjP (�)j

2

; � 2 T; t 2 [0; 1]: (4.17)

In particular, note that (4.17) above implies that

jP

t

(�)j

2

+ jP

t

(�+�)j

2

= (1� t)+ t (jP (�)j

2

+ jP (�+�)j

2

); � 2 T; t 2 [0; 1]: (4.18)

By our assumption on P , this last expression must always be greater than

1

2

. There-

fore, we can de�ne

�

t

(�) =

P

t

(�)

q

jP

t

(�)j

2

+ jP

t

(� + �)j

2

; � 2 R; t 2 [0; 1]; (4.19)

which is an element in F

�

for every t 2 [0; 1]. Now, since we have the continuous

inclusion C

1

(T) ,! H

�

(T) , for all � >

1

2

, we see that the map

f8g

Here, the Fr�echet space C

1

(T) is considered to have the topology of the uniform convergence

in all the derivatives. That is, for f

n

; f 2 C

1

(T); f

n

! f in C

1

(T) if and only if D

(k)

f

n

! D

(k)

f

uniformly in T, for every integer k � 0.
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[0; 1] �! F

�

t 7�! �

t

is continuous and

(i) �

0

(�) = e

ip�

1 + e

i�

2

for some p 2Z; �N � p � N � 1:

(ii) �

1

(�) = P (�) (jP (�)j

2

+ jP (� + �)j

2

)

�

1

2

; � 2 R:

Note that �

0

6= m

H

unless p = 0. To complete the proof of the theorem we need to

join m

H

(�) =

1+e

i�

2

and e

i�

1+e

i�

2

with a continuous arc in E

�

. When p = 1 we saw how

to do this in example 1 of x3 (just connect the \pairs" (1; 0) and (0; 0) continuously

within the punctured circle C n (1; 1)). Iterating this process, we can connect, within

E

�

, the �lters

1+e

i�

2

and e

ip�

1+e

i�

2

, for any p 2Z. This, together with the map �

t

above

and the local connectivity of Corollary 4.7, shows that F

�

is an arcwise connected

topological space.

Suppose now that the original function m

0

belongs to E

�

. Then, by Remark 4.10,

we can take P as in Theorem 4.8 in such a way that P 2 E

�

. In particular, we can

�nd a compact set K as in (2.15) such that P (2

�j

�) 6= 0; � 2 K; j = 1; 2; : : : Then,

the trigonometric polynomials P

t

de�ned in (4.16) must satisfy, by (4.17), the same

condition; that is, P

t

(2

�j

�) 6= 0; � 2 K; j = 1; 2; : : : ; t 2 (0; 1]. Therefore, the path

t 2 [0; 1] 7! �

t

de�ned in (4.19) lies within E

�

and, by the same argument as before,

we conclude that E

�

is connected by arcs.

2

REMARK 4.20 Note that, if m

0

is a trigonometric polynomial in F

�

of degree � N ,

then, the path t 7! �

t

constructed above consists of trigonometric polinomials in E

�

of degree � N , for every t 2 [0; 1). In particular, the set of trigonometric polynomials

of degree � N in F

�

is connected. The same holds for the set of trigonometric

polynomials of degree � N in E

�

.
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5 Connectivity in the set of �-localized wavelets

In this section we introduce our main results related to the theory of �-localized

wavelets. The close link existing between these objects and the �-localized MRA's

of xx 2,3 and 4 (provided by a theorem of Lemari�e) will move us along these lines to

obtain some interesting properties, such as a complete decomposition of the set W

�

of �-localized wavelets into its connected components. It turns out that a wavelet

belongs to one connected component or another depending on the homotopy degree

of its \phase" �(�), that is, the unimodular, 2�-periodic function necessary to re-

construct the wavelet from an MRA as in (3.9) of Chapter 1. In x5:3 we study the

functional equation that determines when a \simple phase" can be chosen (such as

�(�) = 1 or e

ik�

), and we give a complete solution to it. We conclude the section

by presenting two theorems on connectivity of more general sets of wavelets, due to

di�erent authors, in which no topological restriction such as the \homotopy degree"

appears.

5.1 De�nition and properties of �-localized wavelets

DEFINITION 5.1 Let � >

1

2

. We say that a function  2 L

2

(R) belongs to W

�

when

(i)  is an orthonormal wavelet (see De�nition (2.1) in Chapter 1).

(ii)

b

 2 H

�

(R).

(iii) There exists an " > 0 such that  2 H

"

(R).

We consider W

�

as a topological space with the topology of L

2

((1 + jxj

2

)

�

dx); that

is,  

n

!  in W

�

if and only if

b

 

n

!

b

 in H

�

(R).

We say that  2 L

2

(R) belongs to W

1

when  2 W

�

for all � >

1

2

. In W

1

we

consider the topology generated by the seminorms L

2

((1 + jxj

2

)

N

dx); N = 1; 2; : : :,

meaning that  

n

!  in W

1

if and only if

b

 

n

!

b

 in H

N

(R) for all N � 1.
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EXAMPLE 1

The Haar wavelet

 

H

(x) = �

[�1;0)

(2x� 1)� �

[�1;0)

(2x� 2) =

(

1 ; when 0 � x <

1

2

�1 ; when

1

2

� x < 1.

It is not hard to see that  

H

is an orthonormal wavelet. In fact,  

H

arises from an

MRA as in (3.10) of Chapter 1:

b

 

H

(2�) = e

�i�

m

H

(� + �)

b

'

H

(�); � 2 R;

where m

H

(�) =

1+e

i�

2

; � 2 T, is the Haar �lter and '

H

= �

[�1;0]

is the Haar

scaling function (see Example B in Chapter 2 in [HW]). It is clear that  

H

2

L

2

((1 + jxj

2

)

�

dx), for all � >

1

2

. To see that (iii) in De�nition 5.1 holds note that

b

 

H

(�) = 2i e

�i

�

2

1 � cos

�

2

�

; � 2 R;

and, therefore,

b

 

H

2 L

2

((1 + j�j

2

)

"

d�) when 0 < " <

1

2

. This shows that the Haar

wavelet is in W

1

.

The Haar wavelet is just a particular instance of a more general case; namely, all

wavelets arising from �-localized MRAs are also in W

�

.

THEOREM 5.2 Let � >

1

2

and suppose that fV

j

g

j2Z

is an �-localized MRA, and let

' be any �-localized scaling function

f9g

with its corresponding low-pass �lter m

0

. Let

� be any unimodular 2�-periodic function in H

�

(T). Then,  de�ned by

b

 (�) = e

�i

�

2

�(�)m

0

(�=2 + �)

b

'(�=2); � 2 R; (5.3)

is a wavelet in the class W

�

.

The previous theorem tells us that the class W

�

is naturally associated with the

class of �-localized MRAs. It turns out that the converse is also true:

f9g

We remind the reader that an �-localized scaling function must satisfy (3.13) of Chapter 1 and

(2.1) of x2 in this chapter.
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THEOREM 5.4 Let � >

1

2

and  2 W

�

. Then,  is a wavelet arising from an

�-localized MRA. More precisely, there exists an �-localized scaling function ', with

low-pass �lter m

0

, and a 2�-periodic unimodular function � 2 H

�

(T) such that  can

be written in terms of ';m

0

and � as in (5.3).

Moreover, suppose that ~' is another �-localized scaling function, with low-pass

�lter ~m

0

,and ~� 2 H

�

(T) is unimodular, and suppose that one can also write  as:

b

 (�) = e

�i

�

2

~�(�) ~m

0

(�=2 + �)

^

~'(�=2); � 2 R: (5.5)

Then, there exists a unimodular � 2 H

�

(T) such that

b

'(�) = �(�)

^

~'(�); � 2 R, and

� and ~� are homotopically equivalent.

The two previous theorems are essentially due to P. G. Lemari�e-Rieusset and

their proofs are far away from being trivial. We give a sketch of them, but for more

details we refer the reader to the original paper of Lemari�e, [LEM], or to Chapter 3

of [KAH-LEM].

Sketch of Proof of Theorem 5.2

The �rst part of this theorem is not di�cult. Suppose that fV

j

g

j2Z

is an �-

localized MRA with scaling function ' and low-pass �lter m

0

. Then, by Lemma

2.3 we have that

b

' 2 H

�

(R) and m

0

2 H

�

(T). In this case, for any unimodular

� 2 H

�

(T), the considerations in x3 of Chapter 1 and Lemma 1.35 tell us that  

de�ned as in (5.3) is a wavelet with

b

 2 H

�

(R). In order to show that  2 W

�

,

one needs to verify that (iii) in De�nition 5.1 holds. This last part follows from the

following theorem of L. Herv�e, whose proof we do not include here (see, e.g., Theorem

2 in Chapter 4 of [KAH-LEM], or the original work by Herv�e in Chapter II of [HER]).

THEOREM 5.6 Let � >

1

2

and

b

' 2 S

�

(as in De�nition 2.6). Then, there exists a

real number " > 0 such that ' 2 H

"

(R).

To conclude the proof of Theorem 5.2 note that, by the theorem just stated,

b

' 2 L

2

((1 + j�j

2

)

"

d�) and, since m

0

and � are bounded, we must have that also



151

b

 2 L

2

((1 + j�j

2

)

"

d�). This shows that (iii) in De�nition 5.1 holds and establishes

Theorem 5.2.

2

Sketch of Proof of Theorem 5.4

Suppose that  2 W

�

. To show that  arises from an �-localized MRA one follows

the steps listed below:

1. Since

b

 2 H

�

(R) and  2 H

"

(R), by using complex interpolation, it is possible

to �nd two numbers �

0

>

1

2

and "

0

> 0 such that j�j

"

0

b

 (�) 2 H

�

0

(R) (see

Lemma 2 in Chapter 2 of [KAH-LEM]).

2. If this is the case, the dimension function, de�ned by the series:

D

 

(�) =

1

X

j=1

X

k2Z

j

b

 (2

j

(� + 2k�))j

2

; � 2 R; (5.7)

converges uniformly on compact sets of R n 2�Z. Indeed, by Corollary 1.17 we

know that

P

k2Z

j�+2k�j

2"

0

j

b

 (�+2k�)j

2

converges uniformly in [��; �]. Then,

for all j � 1 and 0 < � � j�j � �,

X

k2Z

j

b

 (2

j

(� + 2k�))j

2

�

1

(2

j

�)

2"

0

X

k2Z

j2

j

(� + 2k�)j

2"

0

j

b

 (2

j

(� + 2k�))j

2

�

1

(2

j

�)

2"

0

sup

�2T

X

k2Z

j� + 2k�j

2"

0

j

b

 (� + 2k�)j

2

�

C

(2

j

�)

2"

0

k j�j

"

0

b

 (�)k

2

H

�

0

(R)

:

Summing over j � 1 we obtain the uniform convergence in [��; �] n (��; �) of

the series in (5.7).

3. Since the function D

 

is integer-valued a:e: and

R

�

��

D

 

(�) d� = 2� (see (3.8)

in Chapter 7 and Lemma 4.16 in Chapter 3, respectively, of [HW]), we must

have that D

 

(�) = 1; a:e: � 2 R. Thus, Proposition 3.8, part (V), implies that

 arises from an MRA.
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4. Formally, step 3 establishes the theorem, except for the fact that the MRA

might not be localized. The construction of a scaling function ' such that

b

' 2 H

�

(R) requires a more delicate analysis. For the interested reader, we

present here the main ideas, but we strongly recommend a consultation of the

original reference (Theorem 2 in Chapter 3 of [KAH-LEM]) for further details.

Consider the orthogonal projection operator onto V

0

, P

0

:L

2

(R)! V

0

, given by

the kernel

p

0

(x; y) =

X

j<0

q

j

(x; y) = �(x� y)�

X

j�0

q

j

(x; y);

where each q

j

(x; y) =

P

k2Z

2

j

 (2

j

x � k) (2

j

y � k) is the kernel of the or-

thogonal projection Q

j

:L

2

(R) ! W

j

; for j 2 Z. The steps involved in the

construction of ' are the following:

(i) One can show that P

0

commutes with translation by integers and that the

kernel p

0

(x; y) satis�es some \nice" decay conditions away from the diagonal;

more precisely, p

0

(x; y) 2 L

1

loc

(R�R) and

Z

x2[0;1]

Z

y2R

jp

0

(x; y)j

2

(1 + jx� yj)

2�

dy dx <1;

this coming from  2 H

"

(R)\ L

2

((1 + jxj

2

)

�

dx).

(ii) For each � 2 T, one \periodizes" P

0

into P

�

0

:L

2

([0; 1])! V

�

0

, by consid-

ering the kernel p

�

0

(x; y) =

P

k2Z

p

0

(x; y� k)e

�i�(x�y+k)

. One can show that P

�

0

is an orthogonal projection and that V

�

0

consists exactly of the periodization of

all the \nice" functions in V

0

. That is,

V

�

0

= ff

�

(x) =

X

k2Z

e

�i�(x�k)

f(x� k) j f 2 V

0

\ L

2

((1 + jxj

2

)

�

dx)g:

(iii) It is not hard to see now that P

�

0

is a compact operator and, therefore,

that V

�

0

is �nite-dimensional. Moreover, dimV

�

0

= 1, for all � 2 T.
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(iv) One carefully constructs a function g 2 V

0

\L

2

((1 + jxj

2

)

�

dx) such that

g

�

is a \basis" for the 1-dimensional space V

�

0

, for each � 2 T. Note that this

happens if and only if

(g

�

; g

�

)

L

2

([0;1])

=

X

k2Z

jĝ(� + 2k�)j

2

6= 0; � 2 T:

Therefore, fg(� � k)g

k2Z

is a Riesz basis for V

0

, and one can de�ne ' by

b

'(�) =

ĝ(�)

q

P

k2Z

jĝ(� + 2k�)j

2

; � 2 R;

which would satisfy the required conditions.

5. Once we have found our �-localized scaling function, the original wavelet  

can now be recovered from ' and m

0

by formula (5.3), for some unimodular

� 2 L

2

(T). To show that � 2 H

�

(T) note that, if we write � in terms of its

Fourier series, �(�) =

P

k2Z

c

k

e

�ik�

, (5.3) implies that

c

k

=

Z

R

 (x) 

]

(x� k) dx; k 2Z;

where

b

 

]

(�) = e

�i

�

2

m

0

(

�

2

+ �)

b

'(

�

2

) 2 H

�

(R). Then, the same type of argu-

ment as the one following (2.5) gives us that

P

k2Z

jc

k

j

2

(1 + jkj

2

)

�

< 1 . This

completes the proof of the existence part of the theorem.

6. Finally, we turn to the \uniqueness" of the choice (�; ';m

0

). Let (~�; ~'; ~m

0

) be

as in (5.5). Then, by the remark after (3.1), there exists a unimodular function

� 2 L

2

(T) such that

b

'(�) = �(�)

^

~'(�); � 2 R. The same argument as in 5 above

gives us that � 2 H

�

(T). Moreover, we have

b

'(2�) = m

0

(�)

b

'(�) = �(2�)�(�) ~m

0

(�)

b

'(�); � 2 R:

Thus, the uniqueness of the coe�cients in the orthogonal expansion of

1

2

'(

�

2

) in

terms of f'(� � k)g

k2Z

implies that

m

0

(�) = �(2�)�(�) ~m

0

(�); � 2 R:
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On the other hand, (5.3) and (5.5) imply that

b

 (�) = e

�i

�

2

�(�)m

0

(�=2 + �)

b

'(�=2) =

= e

�i

�

2

~�(�) �(�=2 + �)�(�)m

0

(�=2 + �)�(�=2)

b

'(�=2); � 2 R;

Again, the uniqueness of the coe�cients in the orthogonal expansion of  in

terms of f 

]

(� � k)g

k2Z

(where  

]

is de�ned as in step 5 above) gives us

�(�) = ~�(�)�(

�

2

+ �)�(�) �(

�

2

); � 2 T: (5.8)

Now, suppose that ~� is homotopic to e

ik�

and that � is homotopic to e

i`�

, for

two integers k; ` 2Z. That is, there exist two continuous paths

[0; 1]� [0; 2�]! S

1

= fz 2 C j jzj = 1g

(t; �) 7�! H

t

(�)

(t; �) 7�! I

t

(�)

such that H

0

(�) = ~�(�); H

1

(�) = e

ik�

and I

0

(�) = �(�); I

1

(�) = e

i`�

. Then, the

path

(t; �) 7! J

t

(�) = H

t

(�) I

t

(�=2 + �) I

t

(�) I

t

(�=2)

is a homotopy starting at J

0

(�) = �(�) and ending at J

1

(�) = (�1)

`

e

ik�

. This

implies that � has homotopy degree k and, hence, that � and ~� are homotopically

equivalent.

2

REMARK 5.9 Theorems 5.2 and 5.4 also hold in the limiting case � = 1, after

replacing the sets W

�

and H

�

(T) by W

1

and C

1

(T), respectively, and the object

\�-localized scaling function" by \scaling function with polynomial decay", as de�ned

in (2.14).
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DEFINITION 5.10 We shall denote by E

1

the set of low-pass �lters corresponding

to scaling functions with polynomial decay; that is, E

1

= \

�>

1

2

E

�

= E

�

\ C

1

(T), for

any � >

1

2

. In this context, E

1

is endowed with the topology of the Fr�echet space

C

1

(T). For convenience, sometimes we will denote C

1

(T) by H

1

(T).

DEFINITION 5.11 Let

1

2

< � � 1. We say that a 2�-periodic function � belongs

to the set M

�

if � 2 H

�

(T) and j�j = 1. Note that M

�

is a closed subset of H

�

(T).

With this new notation in mind one can restate Theorems 5.2 and 5.4 jointly as

follows.

COROLLARY 5.12 Let

1

2

< � � 1. Then,

T : M

�

� E

�

�!W

�

(�;m

0

) 7�! T (�;m

0

) =  ;

where  is de�ned in terms of (�;m

0

) by

b

 (�) = e

�i

�

2

�(�)m

0

(�=2 + �)

1

Y

j=2

m

0

(2

�j

�); � 2 R;

is a continuous map onto W

�

.

5.2 Connectivity inW

�

and the homotopy degree of a wavelet

Note that part 6 in the proof of Theorem 5.4 shows that \(III))(IV)" in Propo-

sition 3.8 of Chapter 1 does not necessarily hold in the �-localized case, unless � has

homotopy degree 0. One can ask whether in this last case the \phase" � = 1 is attain-

able. The answer turns out to be \no", as the examples in x5:3 show. However, the

importance of the homotopy degree of the phase has to be taken into consideration

and motivates the following de�nition.

DEFINITION 5.13 We say that a wavelet  2 W

�

,

1

2

< � � 1, has homotopy

degree k 2Zif the function � of Theorem 5.4 is homotopically equivalent to e

ik�

. The

set of all such wavelets will be denoted by W

(k)

�

.
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Note that  2 W

�

has degree k if and only if  (�+ k) has degree 0. In fact, the

shifting map  7!  (�+k) is a homeomorphism fromW

(k)

�

ontoW

(0)

�

. In applications,

the wavelets  and  (�+k), although distinct as functions, represent the same object,

and do not require a separate study. The reason for this is that the wavelet coe�cients

of a given function f 2 L

2

(R) coincide except from a shift by k:

<f; ( (�+ k))

j;`

>=<f; 

j;`�k

>; j; ` 2Z;

where < f; g >=

R

R

fg denotes the inner product in L

2

(R). We will see in (5.19)

below how the degree k of a wavelet is associated to the \center of mass" of j j

2

.

This relation will be decisive in the study of the connectivity of the space W

�

. One

can see this already from the following remarkable fact: within the same MRA, it is

not possible to join a wavelet  2 W

�

with its shift  (�+k) by means of a continuous

path in L

2

((1 + jxj

2

)

�

dx), unless k = 0. Indeed, an informal argument for this

assertion is as follows. Suppose there is a path of wavelets t 7!  

t

, continuous in

L

2

((1 + jxj

2

)

�

dx), with  

0

=  and  

1

=  (�+ k), and such that, for each t 2 [0; 1],

the wavelet  

t

arises from the same MRA as  . Then, there must exist a 2�-periodic,

unimodular function �

t

in H

�

(T) such that

b

 

t

(�) = �

t

(�)

b

 (�):

Now,

b

 6= 0 in a compact set K �

2�

T (this follows from

P

k2Z

j

b

 (� + 2k�)j

2

= 1,

and the same arguments as in the proof of Cohen's condition, in Lemma 2.18). From

here we can conclude that the map t 7! �

t

=

b

 

t

=

b

 de�nes a continuous path of

2�-periodic, unimodular functions joining 1 with e

ik�

(in H

�

(K) = H

�

(T)). This is

clearly a contradiction (unless k = 0).

In Theorem 5.34 below, we will prove (in detail) a more general statement; namely,

that  and  (� + k) cannot be joined at all with a continuous path in W

�

. These

results contrast strongly with the fact that, if one only considers the L

2

(R)-topology

in the the setW

�

, then, it is possible to connect these two wavelets with a continuous
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arc of wavelets, all of them belonging to the sameMRA (see Remark 5.41 below). This

kind of results on connectivity of sets of wavelets with the L

2

(R)-topology have been

obtained recently by the group of researchers known as \The WUTAM Consortium".

It still remains open whether the set of all wavelets is connected in the L

2

(R)-topology.

We give an account of the existing partial results in x5:4.

THEOREM 5.14 Let � >

1

2

. Suppose that  is a wavelet in W

�

with homotopy

degree k 2Z. Then, there exists a continuous path

[0; 1] �!W

(k)

�

t 7�!  

t

such that  

0

=  and  

1

=  

H

(� � k), where  

H

is the Haar wavelet. In particular,

the topological space W

(k)

�

is arcwise connected for each k 2Z.

PROOF:

By Theorem 5.4 we know that there exists an �-localized scaling function ' with

associated low-pass �lter m

0

, and a unimodular function � 2 H

�

(T) homotopically

equivalent to e

ik�

such that  can written in terms of (';m

0

; �) as in (5.3). Now,

Theorem 4.11 and Corollary 3.32 tell us that we can join (

b

';m

0

) to (

b

'

H

;m

H

) with a

continuous path (in S

�

� E

�

) of the form t 7! (

b

'

t

;m

t

) = (N(m

t

);m

t

); t 2 [0; 1]. It

su�ces to show that we can �nd a continuous path t 7! �

t

in H

�

(T) joining �(�) to

e

ik�

. Indeed, if this is the case, the arc t 7!  

t

, where  

t

is given by

b

 

t

(�) = e

�i

�

2

�

t

(�)m

t

(

�

2

+ �)

b

'

t

(

�

2

); � 2 R;

will do the job. The construction of �

t

is just a consequence of the homotopical

equivalence between � and e

ik�

, as we show in the following lemma.

LEMMA 5.15 Let � >

1

2

and suppose that �: [0; 2�]! S

1

is a unimodular function

in H

�

(T) homotopically equivalent to e

ik�

. Then, there exists a continuous map

H : [0; 1] �! H

�

(T)
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such that H(0) = �; H(1) = e

ik�

, and H(t) 2 M

�

; 8t 2 [0; 1].

PROOF: We may assume that k = 0. If not, consider ~�(�) = e

�ik�

�(�) to �nd a map

f

H as in the statement of the lemma. Then, H(t) = e

ik�

f

H(t) will do for �. Suppose,

therefore, that � is homotopic to the constant function 1. Without loss of generality,

we may also assume that �(0) = 1.

CLAIM

There exists � 2 H

�

(T), real-valued, such that �(�) = e

i�(�)

; � 2 T.

If we show the claim, the lemma follows by taking H(t) = e

i(1�t)�(�)

; t 2 [0; 1].

Proof of CLAIM

To prove the claim we use the principle of analytic continuation

f10g

. Let us denote

the disk centered at z = 1, with radius

1

3

, by �

0

= D (1;

1

3

), and let

g

0

(z) � log z 2 H(�

0

) = ff : �

0

! C j f is holomorphic in �

0

g;

where we take the branch of the log de�ned in C n ] �1; 0] � �

0

. We may continue

analytically (g

0

;�

0

) along the curve � to �nd disks �

1

; : : : ;�

n

, a partition of [0; 2�]:

0 = s

0

< s

1

< : : : < s

n+1

= 2� such that �([s

i

; s

i+1

]) � �

i

; i = 0; 1; : : : ; n, and

holomorphic functions g

i

2 H(�

i

) such that

g

i

(z) = g

i+1

(z); z 2 �

i

\�

i+1

6= ;; i = 0; 1; : : : ; n� 1:

By the monodromy principle (see, e.g., Theorem 2 in Chapter 8 of [AHL]), and since

� is homotopic to 1, we must have that g

n

(z) = g

0

(z); z 2 �

n

\�

0

. Thus, we have

found an analytic continuation of the log along �. De�ne now

�(�) = g

i

(�(�)); � 2 [s

i

; s

i+1

] = I

i

; i = 0; 1; : : : ; n:

f10g

For the de�nition of analytic continuation and related theory see Chapter 16 of [RUD2], or

Chapter 8 of [AHL].
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Since the range of �

jI

i

is a subset of �

i

and g

i

is holomorphic in that disk, the

results about Banach algebras in x1:3 apply here and, after appropriate glueing of the

extremes of the intervals I

i

, one obtains that �(�) belongs to H

�

(T). Moreover, since

the g

i

's are continuations of the log z, we have e

�(�)

= �(�). Then, �(�) =

1

i

�(�) will

do the job.

2 2

REMARK 5.16 Note that the proof of Theorem 5.14 also works for � = 1. This

particular case was previously shown by A. Bonami, S. Durand and G. Weiss using

similar techniques, although the concept of homotopy degree was not considered there

(see Proposition 3.4 in [BDW]).

The matter of whether one can choose a \simple" phase �(�) to write the wavelets

inW

�

as in (5.3) is not yet very clear. If we do not require any localization condition,

Proposition 3.8 in Chapter 1 shows that � can be taken to be 1 (after an appropriate

choice of the scaling function '). However, in the �-localized case, � has to keep the

same degree of homotopy regardless of the scaling function that we take. A natural

question would be if � can be taken to be the \simplest" function with degree k, that

is, �(�) = e

ik�

. In the case � = 1 this can certainly be done, as we will show in

the next Proposition. For

1

2

< � < 1, the answer is no. The role played by phases

in the study of the connectivity of W

�

is extremely important, since they force the

homotopical constraints that isolate each of the W

(k)

�

from one another. A more

careful treatment of the possible choices of phases when

1

2

< � < 1 is postponed

until x5:3, although the main ideas on how to choose them is given in Proposition

5.17.

PROPOSITION 5.17 : see Th�eor�eme 4 in [LEM]
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Suppose that  2 W

1

, that is,  is a wavelet satisfying (2.14) and such that

for some positive ",  2 H

"

(R). Then, there exists a scaling function

f11g

' with

polynomial decay and with low-pass �lter m

0

2 C

1

(T), and an integer k 2 Z such

that

b

 (�) = e

�i

�

2

e

�ik�

m

0

(

�

2

+ �)

b

'(

�

2

); � 2 R: (5.18)

The number k is uniquely determined by

k +

1

2

=

Z

R

xj (x)j

2

dx; (5.19)

while the function

b

' is unique up to a factor (�1)

M

e

iM�

, for some M 2Z.

PROOF: We already sketched in Theorem 5.4 how to �nd a scaling function ~'

with polynomial decay and low-pass �lter ~m

0

2 C

1

(T), and a unimodular function

~� 2 C

1

(T) such that (5.5) holds (see [LEM] for more details). Suposse that ~� has

homotopy degree k 2 Z. We �rst prove the uniqueness part of the proposition.

Suppose there is a scaling function ', with polynomial decay and low-pass �lter m

0

2

C

1

(T), such that (5.18) above holds. Then,

b

' must be given by

b

'(�) = �(�)

^

~'(�), for

a unimodular � 2 C

1

(T) and, therefore, its low-pass �lter must satisfy

m

0

(�) = �(2�)�(�) ~m

0

(�):

As in (5.8), this implies that ~� can be written as:

~�(�) = e

ik�

�(�)�(�=2) �(�=2 + �) ; � 2 T: (5.20)

Assume for the moment that � has homotopy degree 0 (if deg(�) =M , we can replace

� by (�1)

M

e

�iM�

�, which is also a solution to (5.20)). By studying equation (5.20) we

will �nd an expression for � in terms of ~� that will lead to our uniqueness statement.

f11g

In this proposition, the scaling function ' is not supposed to satisfy condition (2.1) (that is,

b'(0) might not be equal to 1). We can still de�ne the �lter m

0

uniquely in terms of ', but the

converse is not true; the in�nite product formula (2.11) determines b' up to a unimodular constant.

That is, b'(�) = b'(0)

Q

1

j=1

m

0

(2

�j

�); � 2R.
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Now, since ~� has homotopy degree k, we can write ~�(�) = e

i�(�)

, where

�(�) = k� +

X

`2Z

�

`

e

�i`�

; � 2 T; (5.21)

the series on the right representing a real-valued C

1

(T) function (this decomposition

actually follows from the proof of Lemma 5.15 we presented above). Similarly, we

can write �(�) = e

i
(�)

, where 
 2 C

1

(T) is real-valued and can be expressed as:


(�) =

X

`2Z




`

e

�i`�

; � 2 T: (5.22)

Since the two series in (5.21) and (5.22) represent functions in C

1

(T), the Fourier

coe�cients must have polynomial decay, in the sense that, for any N � 1,

sup

`2Z

j�

`

j j`j

N

= C

N

<1 and sup

`2Z

j


`

j j`j

N

= C

0

N

<1: (5.23)

Equation (5.20) can be written in terms of (5.21) and (5.22) as:

�(2�) + 2K� = 
(2�) � 
(�) � 
(� + �); � 2 T; (5.24)

for some constant K 2Z. Expressing (5.24) in terms of Fourier coe�cients, and since

all the series involved converge absolutelly, we have

�

`

= 


`

� 2


2`

; ` 2Zn f0g;

and, therefore,




0

= ��

0

� 2K� and 


`

=

n

X

j=0

2

j

�

2

j

`

+ 2

n+1




2

n+1

`

!

1

X

j=0

2

j

�

2

j

`

; (5.25)

the convergence of the limit on the right following from the decay of the 


`

's in

(5.23). This implies that if a solution (';m

0

) for (5.18) exists, ' has to be given by

b

'(�) = e

i
(�)

^

~'(�) or, more generally, by

b

'(�) = (�1)

M

e

iM�

e

i
(�)

^

~'(�), where M 2 Z

and 
 has its Fourier coe�cients as in (5.25). To complete the proof of the uniqueness,

if ('

]

;m

]

0

; k

]

) is another triad satisfying

b

 (�) = e

�i

�

2

e

�ik

]

�

m

]

0

(

�

2

+ �)

b

'

]

(

�

2

); � 2 R; (5.26)
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by Theorem 5.4 we must have k

]

= k, while by the reasoning above there exists an

integer M

]

such that

b

'

]

(�) = (�1)

M

]

e

iM

]

�

e

i
(�)

^

~'(�). Then,

b

'

]

(�) = (�1)

M

]

�M

e

i(M

]

�M)�

b

'(�) and m

]

0

(�) = e

i(M

]

�M)�

m

0

(�); � 2 R:

This completes the proof of the uniqueness.

For the existence, if one de�nes 
 by its Fourier series (as in (5.22)) with coe�cients




`

given by (5.25) (we may take K = 0), then 
 2 C

1

(T) and (5.24) holds. Here, the

smoothness of 
 follows from the decay of f


`

g

`2Z

:

j


`

j �

1

X

j=0

2

j

j�

2

j

`

j �

1

X

j=0

2

j

C

N

2

jN

j`j

N

� 4C

N

1

j`j

N

; 8N � 2:

Now, let �(�) = e

i
(�)

2 C

1

(T) and

b

' = �

b

~', and let m

0

be low-pass �lter associated

to '. Then, (5.24) implies (5.20) and, therefore, the triad (';m

0

; k) satis�es (5.18).

This establishes the existence part of the proposition.

Finally, we show the validity of the formula (5.19) that uniquely determines the

integer k in terms of  . Because of its own interest and simple proof, we state it

separately as a lemma. For a di�erent proof of this formula, in a more restricted case,

see, e.g., Proposition 10.1 in [VILL].

LEMMA 5.27 Suppose  is a wavelet that can be written as in (5.18) above, where

k 2Z, ' is a scaling function with polynomial decay, and m

0

2 C

1

(T) is its low-pass

�lter. Then,

k +

1

2

=

Z

R

xj (x)j

2

dx:

PROOF:

Suppose that  can be written as in (5.18), then, using the Plancherel's theorem

and the fact that (x (x))̂ (�) = i

b

 

0

(�), we have

I

 

�

Z

R

xj (x)j

2

dx =

1

2�

Z

R

(x (x))̂ (�)

b

 (�) d�

=

i

2�

Z

R

b

 

0

(�)

b

 (�) d�:
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Note that all the integrals above are absolutely convergent under the assumption that

' (and, hence,  ) has polynomial decay. By taking derivatives in (5.18) we obtain

b

 

0

(�)

b

 (�) = �i(

1

2

+ k)j

b

 (�)j

2

+

1

2

j

b

'(�=2)j

2

m

0

(�=2 + �)m

0

0

(�=2 + �)+

+

1

2

jm

0

(�=2 + �)j

2

b

'

0

(�=2)

b

'(�=2)

where again all the summands are integrable functions in R. Thus,

I

 

= (k +

1

2

)

1

2�

k

b

 k

2

L

2

(R)

+

i

2�

(A+B);

where, after a change of variables, A and B can be written as:

8

>

>

>

>

<

>

>

>

>

:

A =

Z

R

j

b

'(�)j

2

m

0

(� + �)m

0

0

(� + �)d�

B =

Z

R

jm

0

(� + �)j

2

b

'

0

(�)

b

'(�) d�:

We will show that A = B and this will establish our result (because, by de�nition,

I

 

is a real number). Indeed, by a periodization argument, we can write:

A =

X

`2Z

Z

T

j

b

'(� + 2`�)j

2

m

0

(� + �)m

0

0

(� + �) d�

=

Z

T

m

0

(� + �)m

0

0

(� + �)d� =

Z

T

m

0

(�)m

0

0

(�) d�

= : : : =

Z

R

j

b

'(�)j

2

m

0

(�)m

0

0

(�) d�;

where in the second and fourth equalities we have used

P

`2Z

j

b

'(� + 2`�)j

2

= 1. On

the other hand, using jm

0

(�)j

2

+ jm

0

(� + �)j

2

= 1, we have:

B =

Z

R

jm

0

(� + �)j

2

b

'

0

(�)

b

'(�) d� =

=

Z

R

b

'

0

(�)

b

'(�) d� �

Z

R

jm

0

(�)j

2

b

'

0

(�)

b

'(�) d�:

Now, by di�erentiating in the scaling equation (3.4) of Chapter 1, and changing

variables, we obtain

Z

R

b

'

0

(�)

b

'(�) d� =

Z

R

m

0

0

(�)m

0

(�) j

b

'(�)j

2

d� +

Z

R

jm

0

(�)j

2

b

'

0

(�)

b

'(�) d�:
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Thus, we can write B as:

B =

Z

R

m

0

0

(�)m

0

(�) j

b

'(�)j

2

d� = A:

This shows that I

 

= k +

1

2

, and establishes the lemma, and with it, the theorem.

2 2

As we pointed out in the statement of the proposition, the scaling function ' does

not necessarily satisfy (2.1). It is true, however, that j

b

'(0)j = 1. By considering the

unimodular constant

b

'(0) apart, we can restate Proposition 5.17 as follows:

COROLLARY 5.28 Let  2 W

1

. Then, there exists a function m

0

2 E

1

, an integer

k 2Zand a unimodular constant c 2 C such that

b

 (�) = c e

�i

�

2

e

�ik�

m

0

(�=2 + �)

1

Y

j=2

m

0

(2

�j

�); � 2 R: (5.29)

If (m

]

0

; k

]

; c

]

) 2 E

1

�Z� S

1

is another solution to (5.29), then k

]

= k and there

exists an integer M 2 Zsuch that c

]

= (�1)

M

c and m

]

0

(�) = e

iM�

m

0

(�); � 2 T.

PROOF: For the existence, use the solution in Proposition 5.17 with c =

b

'(0). For

the uniqueness, by Proposition 5.17 again, any other solution (m

]

0

; k

]

; c

]

) to (5.29)

must satisfy m

]

0

(�) = e

iM�

m

0

(�) and

b

'

]

(�) = c

]

Q

1

j=1

m

]

0

(2

�j

�) = (�1)

M

e

iM�

b

'(�) =

(�1)

M

e

iM�

b

'(0)

Q

1

j=1

m

0

(2

�j

�), for some integer M 2 Zand all � 2 R. Solving for c

]

we have c

]

= (�1)

M

b

'(0) = (�1)

M

c.

2

As a consequence of Corollary 5.28 we obtain the following characterization of the

space W

�

in terms of E

�

:

COROLLARY 5.30 Let k 2Zand let

T

k

: S

1

� E

1

�!W

(k)

1

(c;m

0

) 7�! T

k

(c;m

0

) =  
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where

b

 is given by (5.29). Then, T

k

is continuous and onto and every element

 2 W

(k)

1

has a discrete �ber T

�1

k

 .

In particular, if we let the equivalence relation \�" in S

1

� E

1

:

(c;m

0

) � (c

]

;m

]

0

) () 9M 2Zj c = (�1)

M

c

]

; m

0

(�) = e

iM�

m

]

0

(�)

and we introduce the quotient topology in (S

1

� E

1

)= �, then:

T

k

: (S

1

� E

1

)= ��!W

(k)

1

[(c;m

0

)] 7�! T

k

(c;m

0

) =  

is a continuous bijection of topological spaces.

REMARK 5.31 Note that, although T

k

is a continuous bijection from (S

1

�E

1

)= �

onto W

(k)

1

, it might not be a homeomorphism. In order to obtain a complete topo-

logical identi�cation of W

(k)

1

it seems that one must consider as well the topology of

the spaces H

"

(R) in the time domain of  , as we assumed this property to hold in

De�nition 5.1 (iii). However, since it goes out of the scope of this work to deal with

�ner topologies, we shall take up this matter somewhere else.

As an example, we illustrate how the equivalence relation of the previous corollary

deforms the �gure given at the beginning of x3, of the subset of �lters in E

�

which

are trigonometric polynomials of degree � 3, to convert it from a punctured circle

into something resembling a ribbon

f12g

. Indeed, after identifying the three points

(0; 0); (1; 0); (0; 1), corresponding to the Haar �lter (and noting that all the other

points belong to di�erent equivalence classes), we obtain:

f12g

We wish to thank Aline Bonami for pointing this out to us.
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(1,1)

Haar filter

Figure 5.3: Figure 3.1 after identi�cation with quotient map in Corollary 5.30.

We proceed now with a closer study of the of phases M

�

. From here, we will

extend formula (5.19) to the case

1

2

< � < 1, and show that the sets W

(k)

�

; k 2 Z,

are disjoint connected components in W

�

.

DEFINITION 5.32 Let

1

2

< � � 1 and k 2 Z. We say that � 2 M

(k)

�

if � 2 M

�

and � is homotopically equivalent to e

ik�

.

Note that, for each k 2 Z, M

(k)

�

is a closed and open subset of M

�

. This is a

consequence of the following general result:

LEMMA 5.33 If fh

n

g

1

n=0

� C(T); jh

n

j = 1; for n � 0, and h

n

! h

0

uniformly in

T, then there exists a positive integer n

0

such that, for all n � n

0

, deg(h

n

) = deg(h

0

).

PROOF: The proof is easy. Suppose �rst that h

0

= 1. Then, if we take n

0

large

enough so that kh

n

� 1k

1

<

1

2

; n � n

0

, we must have deg(h

n

) = deg(1) = 0.

For a general h

0

, if h

n

! h

0

, then h

n

h

0

! 1. Thus, there exists a positive integer

n

0

such that deg(h

n

h

0

) = 0, for n � n

0

. Now for a �xed n � n

0

, let t 2 [0; 1] 7! H

t

be a homotopy map such that H

0

= h

n

h

0

and H

1

= 1. Then, the map t 7! h

0

H

t

is a

homotopy starting at h

n

and ending at h

0

, which implies that deg(h

n

) = deg(h

0

).

2
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We collect these and other properties of M

(k)

�

in the following theorem.

THEOREM 5.34 Let

1

2

< � � 1 and let �(�) =

P

`2Z

c

`

e

i`�

2 M

�

. Then:

(i)

X

`2Z

` jc

`

j

2

2Z: (5.35)

(ii) For k 2Z; � 2 M

(k)

�

if and only if k =

X

`2Z

` jc

`

j

2

:

Moreover, for every k 2Z; M

(k)

�

is a closed and open subset of M

�

and M

�

can

be decomposed in connected components by M

�

= [fM

(k)

�

j k 2Zg.

PROOF:

Suppose �rst that � 2 C

1

(T). Then, by Parseval's equality

1

2�i

Z

�

dz

z

=

1

2�i

Z

2�

0

�

0

(t)

�(t)

dt =

1

2�i

Z

2�

0

�

0

(t)�(t) dt

=

1

i

X

`2Z

i`c

`

c

`

=

X

`2Z

`jc

`

j

2

:

But the integral on the left represents the winding number

f13g

of the curve �, which

is always an integer. Moreover, � is homotopically equivalent to e

ik�

if and only if the

winding number is k. This shows (i) and (ii) for the case � =1.

Suppose now that

1

2

< � <1. Then, the series in (5.35) is absolutelly convergent

(by (1.20)). If we consider the symmetric partial sums of the Fourier series of �,

s

N

(�) =

P

j`j�N

c

`

e

i�`

, for N � 1, we have that s

N

2 C

1

(T) and, by Lemma 1.47,

that js

N

j >

1

2

for N large enough. Now, the Banach algebra convergence properties

of x1:3 and Lemma 1.47 again, imply that

�

N

�

s

N

js

N

j

! � in H

�

(T):

Thus,

j

X

`2Z

` ( jc

`

(�

N

) j

2

� jc

`

(�) j

2

) j = j

X

`2Z

` ( jc

`

(�

N

) j+ jc

`

(�) j ) ( jc

`

(�

N

) j � jc

`

(�) j ) j

f13g

For a de�nition of winding number and properties see, e.g., Chapter 10 of [RUD2].



168

�

�

X

`2Z

j`j ( jc

`

(�

N

) j+ jc

`

(�) j )

2

�

1

2

�

X

`2Z

j`j j c

`

(�

N

)� c

`

(�) j

2

�

1

2

� C k�

N

� �k

�

:

But this last expression goes to 0 as N approaches in�nity, which implies that

lim

N!1

X

`2Z

` jc

`

(�

N

) j

2

=

X

`2Z

` jc

`

(�) j

2

<1: (5.36)

Since every term on the left hand side of the above equality is an integer (because

�

N

2 C

1

(T)), there must exist a k 2 Zand an N

0

� 1 such that for every N � N

0

,

P

`2Z

` jc

`

(�

N

) j

2

= k and �

N

2 M

(k)

1

� M

(k)

�

. Now, by using that M

(k)

�

is closed

we conclude that

P

`2Z

` jc

`

(�) j

2

= k and � 2 M

(k)

�

. For the converse of (ii) note

that, since M

(k)

�

is open, if we knew that � 2 M

(k)

�

, for some k 2 Z, then for N

large enough also �

N

2 M

(k)

�

. This and the considerations right after De�nition 5.32

complete the proof of the theorem.

2

REMARK 5.37 Note that the set M

�

,

1

2

< � � 1, is not connected even if we

endow it with the (weaker) relative topology of C(T). In this case we still have the

homotopical constraint that keeps us from joining the functions 1 and e

i�

. However,

if we considerM

�

with the (even weaker) topology of L

2

(T) we do obtain an arcwise

connected space. It is not hard to construct a continuous path within (M

1

; k�k

L

2

(T)

)

starting at e

i�

and ending at 1. Indeed, let b 2 C

1

(T) be such that 0 � b � 1,

bj

[�

1

2

;

1

2

]

� 0 and bj

fj�j�1g

� 1. Then, for t 2 (0; 1], de�ne the function

�

t

(�) =

�

� b(�=t); � 2 [0; �]

� b((2� � �)=t); � 2 [�; 2�]

and extend it 2�-periodically to R, that is, �

t

(�) = �

t

(��2k�), if � 2 [2k�; 2(k+1)�]

(see Figure 5.4 below).

Note that �

t

2 C

1

(T), 0 � �

t

� 2� and if t

0

2 (0; 1], then �

t

! �

t

0

in C

1

(T), as

t! t

0

. Let us de�ne �

t

(�) = e

i�

t

(�)

. Then, clearly, �

t

2 M

1

and �

t

! �

t

0

in C

1

(T)

(and hence in L

2

(T)) whenever t

0

2 (0; 1] and t! t

0

. We show that if t! 0

+

, then
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Figure 5.4: The function �

t

for t = 1=6; 1:

R

2�

0

j�

t

(�) � e

i�

j

2

d� ! 0. Indeed,

Z

2�

0

j�

t

(�) � e

i�

j

2

d� =

Z

2�

0

je

i(�

t

(�)��)

� 1j

2

d� =

=

Z

t

0

je

i�(b(

�

t

)�1)

� 1j

2

d� +

Z

2�

2��t

je

i�(b(

2���

t

)�1)

� 1j

2

d� � 8t! 0; as t! 0

+

:

Hence, t 7! �

t

is a continuous path from [0; 1] into (M

1

; k�k

L

2

(T)

) and connects

e

i�

with �

1

(�) = e

i�

t

(�)

2 M

(0)

1

. By using Lemma 5.15 we can extend this path

(continuously) to end at 1 and, from here, the connectivity of (M

1

; k�k

L

2

(T)

) follows

easily.

We turn now to the continuous analogue of Theorem 5.34 in terms of the space

W

�

, which clari�es to a large extent the role played by the \homotopy degree" k of

De�nition 5.13, while it gives a decomposition of W

�

in connected components.

THEOREM 5.38 Let

1

2

< � � 1 and  2 W

�

, then:

(i)

Z

R

xj (x)j

2

dx 2

1

2

+Z:

(ii) For k 2Z;  2 W

(k)

�

if and only if

Z

R

xj (x)j

2

dx = k +

1

2

:

Moreover, for every k 2 Z, W

(k)

�

is a closed and open subset of W

�

and W

�

can be

decomposed in connected components by W

�

= [fW

(k)

�

j k 2Zg.
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PROOF:

The proof depends in the following simple lemma, continuous version of (5.36).

LEMMA 5.39 Suppose that

b

 

n

2 H

1

2

(R), for n = 0; 1; 2; : : : and that

b

 

n

!

b

 

0

in

H

1

2

(R). Then,

lim

n!1

Z

R

xj 

n

(x)j

2

dx =

Z

R

xj 

0

(x)j

2

dx: (5.40)

Proof of Lemma 5.39

The proof is exactly the same as in the discrete case. Note that all the integrals

involved are absolutely convergent. Then, we have:

�

�

�

�

Z

R

x ( j 

n

(x)j

2

� j 

0

(x)j

2

) dx

�

�

�

�

=

=

�

�

�

�

Z

R

x ( j 

n

(x)j+ j 

0

(x)j ) ( j 

n

(x)j � j 

0

(x)j )dx

�

�

�

�

�

�

�

Z

R

jxj ( j 

n

(x)j+ j 

0

(x)j )

2

dx

�

1

2

�

Z

R

jxj j 

n

(x)�  

0

(x)j

2

dx

�

1

2

� C k

b

 

n

�

b

 

0

k

H

1

2

(R)

! 0; as n!1;

and this proves (5.40).

2

To show Theorem 5.38, it is enough to establish (i) and (ii) in the statement of the

theorem, since the property that W

(k)

�

is open and closed for every k 2 Zwill follow

then from this and Lemma 5.39, while the connectivity ofW

(k)

�

was shown in Theorem

5.14 above. For the case � =1, the validity of (i) and (ii) was proven in Proposition

5.17. Let us consider then the case

1

2

< � <1. By Theorem 5.4, we can write  as:

b

 (�) = e

�i

�

2

�(�)m

0

(�=2 + �)

b

'(�=2);

where � 2 M

�

, m

0

2 E

�

and

b

'(�) =

Q

1

j=1

m

0

(2

�j

�) 2 S

�

. Suppose that � is

homotopically equivalent to e

ik�

, that is, � 2 M

(k)

�

. Then, in the same way as in the

proof of Theorem 5.34, we can �nd a sequence f�

N

g

1

N=1

� M

(k)

1

such that �

N

! �
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in H

�

(T). By Remark 4.10, we can �nd another sequence fm

N

g

1

N=1

� E

1

such that

m

N

! m

0

in H

�

(T). Then, by Theorem 5.2 and Corollary 5.12, the functions  

N

de�ned by

b

 

N

(�) = e

�i

�

2

�

N

(�)m

N

(�=2 + �)

1

Y

j=2

m

N

(2

�j

�); � 2 R; N � 1;

are wavelets in W

(k)

1

and

b

 

N

!

b

 in H

�

(R). Another application of Lemma 5.39

gives us that

Z

R

xj (x)j

2

dx = lim

N!1

Z

R

xj 

N

(x)j

2

dx = k +

1

2

;

and completes the proof of (i) and the \only if" part of (ii). The remaining implication

follows from these two and the fact that the family fW

(k)

�

g

k2Z

forms a partition of

W

�

.

2

REMARK 5.41 Theorem 5.38 asserts that, in particular, there is no way to join

continuously a wavelet  with its shift  (� + k) within the topological space W

�

,

while by the considerations in Remark 5.37, such a path would exist (and can be

taken to consist of wavelets from the same MRA as  ) if we endow W

�

with the

weaker topology of L

2

(R). This answers the question we rose right before Theorem

5.14 above.

5.3 The problem of the phase in W

�

In this subsection we go back to the problem posed right after Remark 5.16 of

�nding a \simple phase" for wavelets in W

�

, when

1

2

< � < 1. Unfortunately,

di�culties appear very soon, since the counterpart of Proposition 5.17 is not true in

the �-localized case. In general, for a given  2 W

�

,

1

2

< � < 1, it is not always

possible to express

b

 in terms of (~�; ~m

0

; ~') (as in (5.5)) with a simple choice of the

phase ~� (such as e

ik�

) if we still want to keep

b

~' 2 H

�

(R). We will present an example
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below to illustrate what we are saying. As we saw in the proof of Propostion 5.17,

the existence of a nice phase for  is very closely related to the functional equation

~�(2�) = �(2�)�(�)�(� + �); � 2 T; (5.42)

where ~� 2 M

(0)

�

is given, and � is the unknown, to be in the spaceM

(0)

�

0

, for the largest

possible �

0

. Indeed, if we could write  as in (5.18), for a scaling function ', with

associated low-pass �lter m

0

and such that

b

' 2 H

�

0

(R), then, for some unimodular

� 2 H

�

0

(T), we must have

b

'(�) = �(�)

^

~'(�) and the same argument as in the proof of

Proposition 5.17 would imply that (5.42) must hold

f14g

. Now, if we write ~�(�) = e

i�(�)

and �(�) = e

i
(�)

, where � and 
 are de�ned in terms of their Fourier series by

�(�) =

X

`2Z

�

`

e

�i`�

and 
(�) =

X

`2Z




`

e

�i`�

; � 2 T; (5.43)

then, (5.42) implies that the di�erence equation

�

�

`

= 


`

� 2


2`

; ` 6= 0

�

0

= �


0

+ 2K�;

(5.44)

holds, for some �xed constant K 2 Z, and conversely. Thus, all wavelets  that can

be represented in terms of a simple phase as in (5.18), are associated with a sequence

f


`

g, solution to the di�erence equation (5.44), and conversely. In our example, we

consider a particular choice of � 2 H

�

(T) for which there is no possible solution 
 to

(5.44) that belongs to H

�

(T).

EXAMPLE 2

Suppose that � � 1 and let us �x a number

1

2

< � � 1. We de�ne the following

lacunary series f�

`

g

`2Z

2 H

�

(T) :

�

`

=

(

1

2

�2

j

j

�

; if ` = 2

2

j

; j � 1

0; otherwise.

f14g

For simplicity, and without loss of generality, we will assume that the homotopy degrees of ~�

and � are both 0. The general case follows immediately from here after multiplication by e

ik�

when

necessary.



173

Note that

P

`2Z

j�

`

j

2

j`j

2�

=

P

j�1

1

j

2�

<1 if � >

1

2

. On the other hand, if we expect

f


`

g

`2Z

to be a function in H

�

(T) we must have that

lim

n!1

(2

n+1

jkj)

�

j


2

n+1

k

j = 0; for all k 2Z:

In addition, if 
 is a solution to (5.44), then the equalities in (5.25) must hold. In

the case � = 1 this is already a contradiction since we would have 


1

=

P

1

j=0

2

j

�

2

j
=

P

1

r=1

1

r

�

=1, when � � 1. For the cases � > 1, we have

X

`2Z

j


`

j

2

j`j

2�

=

1

X

m=1

2

2m�

j


2

m

j

2

=

1

X

m=1

2

2m�

j

1

X

j=0

2

j

�

2

j+mj

2

=

1

X

m=1

2

2(��1)m

j

1

X

j=m

2

j

�

2

j
j

2

�

1

X

m=2

2

2(��1)m

�

�

�

�

1

X

r=[log

2

m]+1

2

2

r
1

2

�2

r

r

�

�

�

�

�

2

� C

1

X

m=2

2

2(��1)m

�

�

�

�

2

m

2

�m

(log

2

m)

�

�

�

�

�

2

= C

1

X

m=2

1

(log

2

m)

2�

=1;

which is also a contradiction.

However, by modifying slightly the argument given in the proof of Proposition

5.17 we can still �nd solutions to the di�erence equation (5.44) with a minimal loss

of smoothness.

THEOREM 5.45 Let 1 < � <1 and f�

`

g

`2Z

2 H

�

(T). Then, there exists a unique

solution f


`

g

`2Z

to the di�erence equation (5.44) in H

1

(T). Moreover, in this case,

f


`

g 2 H

�

0

(T) for all �

0

< �.

PROOF:

Following the same ideas as in the proof of Proposition 5.17, let us de�ne f


`

g by:




0

= ��

0

+ 2K� and 


`

=

1

X

j=0

2

j

�

2

j

`

; ` 2Zn f0g:

We claim that

P

`2Z

(1 + j`j

2

)

�

0

j


`

j

2

<1, for all �

0

< �. Indeed,

X

`6=0

j


`

j

2

j`j

2�

0

�

X

`6=0

(

1

X

j=0

2

j

j�

2

j

`

j)

2

j`j

2�

0

�

X

`6=0

(

1

X

j=0

1

2

2j(��1)

) (

1

X

j=0

2

2j�

j�

2

j

`

j

2

) j`j

2�

0
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=

2

2(��1)

2

2(��1)

� 1

1

X

p=0

X

m22Z+1

1

X

j=0

(2

j+p

jmj)

2�

j�

2

j+p

m

j

2

j2

p

mj

2(�

0

��)

�

4

��1

4

��1

� 1

1

X

p=0

(

X

s2Z

jsj

2�

j�

s

j

2

)

1

2

2(���

0

)p

� C(�;�

0

)

X

s2Z

jsj

2�

j�

s

j

2

:

Thus, f


`

g 2 \

�

0

<�

H

�

0

(T) and this shows the existence part of the theorem. For

the uniqueness note that if we assume f~


`

g 2 H

1

(T) then an estimation of the type




`

= o(j`j), as j`j ! 1, must hold, and iterating the di�erence equation we obtain,

for ` 6= 0,

~


`

=

n

X

j=0

2

j

�

2

j

`

+ 2

n+1

~


2

n+1

`

!

1

X

j=0

2

j

�

2

j

`

= 


`

:

This completes the proof of the theorem.

2

REMARK 5.46 We point out that the choice of �

0

= 1 for the \uniqueness" in

Theorem 5.45 is optimal. Indeed, the lacunary series




`

=

�

2

�j

; if ` = 2

j

; j � 0

0; otherwise

satis�es

P

`2Z

j


`

j

2

(1 + j`j

2

)

�

0

< 1, for all �

0

< 1, and 


`

= 2


2`

; ` 6= 0, 


0

= 0, so is

a non-trivial solution to the di�erence equation (5.44) with �

`

� 0 (and K = 0). In

fact, multiplying f


`

g by any constant we obtain in�nitely many other solutions.

With respect to the existence, we have left aside in the previous theorem the cases

when

1

2

< � � 1. It is still possible to �nd a solution f


`

g 2 \

�

0

<�

H

�

0

(T) to the

di�erence equation (5.44), when f�

`

g is a given element in H

�

(T), in spite of the

fact that the series

P

1

j=0

2

j

�

2

j
might be divergent (as happens, for instance, with the

sequence f�

`

g

`2Z

of Example 2). To construct such a solution we iterate the di�erence

equation (5.44) \backwards", assuming a priori that 


2`+1

= 0; ` 2Z. Then, we can

de�ne the coe�cients 


`

by:




`

=

8

>

<

>

:

��

0

; if ` = 0

0; if ` 2 2Z+ 1

�

P

n

j=1

2

�j

�

2

n�j

p

; if ` = 2

n

p; n � 1; p 2 2Z+ 1.

(5.47)
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An easy computation shows that 


`

= �

`

+ 2


2`

, ` 2 Z. We claim, further, that

f


`

g

`2Z

2 \

�

0

<�

H

�

0

(T). Indeed, let �

0

< � � 1; then

X

`6=0

j`j

2�

0

j


`

j

2

=

1

X

n=1

X

p22Z+1

j2

n

pj

2�

0

j

n

X

j=1

2

�j

�

2

n�j

p

j

2

�

1

X

n=1

X

p22Z+1

j2

n

pj

2�

0

0

@

n

X

j=1

2

2j(��1)

1

A

0

@

n

X

j=1

2

�2j�

j�

2

n�j

p

j

2

1

A

�

1

X

n=1

X

p22Z+1

n

X

j=1

2

2n�

0

jpj

2�

0

n 2

�2j�

j�

2

n�j

p

j

2

=

1

X

n=1

X

p22Z+1

n

X

j=1

j2

n�j

pj

2�

j�

2

n�j

p

j

2

1

jpj

2(���

0

)

n

2

2n(���

0

)

�

1

X

n=1

X

p22Z+1

n�1

X

s=0

j2

s

pj

2�

j�

2

s

p

j

2

n

2

2n(���

0

)

=

1

X

s=0

X

p22Z+1

j2

s

pj

2�

j�

2

s

p

j

2

1

X

n=s+1

n

2

2n(���

0

)

� C

�;�

0

X

r2Z

jrj

2�

j�

r

j

2

<1:

The non-uniqueness of solutions to the di�erence equation (5.44) is again clearly seen

in this construction from the freedom we have to choose the odd coe�cients of 
.

The statement we just made about existence is also sharp, in the sense that we

cannot improve \

�

0

<�

H

�

0

(T) with the space H

�

(T) for a general solution f


`

g to

(5.44). Indeed, when f�

`

g

`2Z

is taken as in Example 2 (now for

1

2

< � < 1), the same

solution f


`

g

`2Z

to (5.44) we have just found cannot be in H

�

(T) since

X

`6=0

j`j

2�

j


`

j

2

=

1

X

n=1

2

2n�

j

n

X

j=1

2

�j

�

2

n�j
j

2

=

1

X

n=3

2

2n(��1)

�

�

�

�

�

�

[log

2

(n�1)]

X

r=1

2

2

r
1

2

�2

r

r

�

�

�

�

�

�

�

2

� C

1

X

n=3

2

2n(��1)

�

�

�

�

�

2

(1��)n

1

(log

2

n)

�

�

�

�

�

�

2

= C

1

X

n=3

1

(log

2

n)

2�

=1:

Furthermore, no other solution f


`

g

`2Z

to the di�erence equation (5.44) will belong

to H

�

(T), for if it did, and since by iteration we always have that 


2

n

=

1

2

n




1

�

P

n

j=1

1

2

j

�

2

n�j , n � 1, then

1 >

1

X

n=3

2

2n�

j


2

n

j

2

=

1

X

n=3

2

2n(��1)

j


1

�

n

X

j=1

2

n�j

�

2

n�j
j

2

�
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1

X

n=3

2

2n(��1)

8

<

:

j


1

j

2

+ j

n

X

j=1

2

n�j

�

2

n�j j

2

� 2 j


1

j j

n

X

j=1

2

n�j

�

2

n�j j

9

=

;

�

j


1

j

2

1

X

n=3

2

2n(��1)

+ C

1

X

n=3

1

(log

2

n)

2�

� 2j


1

j

e

C

1

X

n=3

2

n(��1)

(log

2

n)

�

= +1;

which is a contradiction.

This, together with what was said in Proposition 5.17, gives a complete description

of the solutions to the functional equation (5.42), that can be compiled in the following

theorem:

THEOREM 5.48 Let

1

2

< � � 1 and ~� 2 M

(0)

�

and write ~�(�) = e

i�(�)

, for some

real-valued �(�) =

P

`2Z

�

`

e

�i`�

2 H

�

(T). Consider the functional equation (5.42).

Then,

(i) If 1 < � � 1, (5.42) has a unique solution �(�) = e

i
(�)

2 M

(0)

1

given

by 
(�) =

P

`2Z




`

e

�i`�

, where 


0

= ��

0

and 


`

=

P

1

j=0

2

j

�

2

j

`

, ` 6= 0. Moreover, in

this case � 2 \

�

0

<�

H

�

0

(T). If � 6= 1, there are examples for which the solution

� =2 H

�

(T).

(ii) If

1

2

< � � 1, (5.42) has in�nitely many solutions � 2 \

�

0

<�

M

(0)

�

0

. There

are examples for which none of the solutions belongs to H

�

(T).

We can rewrite this result in terms of �-localized wavelets and its associated low-

pass �lters as we did in Corollary 5.28. Its proof is a repetition of the one given for

Proposition 5.17 and is left to the reader.

COROLLARY 5.49 Let

1

2

< � � 1, k 2 Zand  2 W

(k)

�

. Then, there exists a

low-pass �lter m

0

2 \

�

0

<�

E

�

0

such that (5.29) holds for some unimodular constant

c 2 C . Furthermore, if (m

0

; c) and (m

]

0

; c

]

) are two solutions to (5.29) such that

m

0

;m

]

0

2 H

1

(T), then, there exists an integer M 2 Z such that c

]

= (�1)

M

c and

m

]

0

(�) = e

iM�

m

0

(�).
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5.4 Some results in connectivity for other sets of wavelets

We have already pointed out that when W

�

is regarded as a topological subspace

of L

2

(R), then it is arcwise-connected (see Remark 5.41). In fact, as long as we use

the topology of L

2

(R), much more general sets of wavelets, where no localization or

smoothness are assumed, can be shown to be connected. This matter has been treated

by di�erent authors in the series of papers: [DAI-LIA], [HAN-LU], [ION-LAR-PEA],

[SPEE], ... The article [WUTAM] compiles most of the results in the others and gives

appropriate credit to each author, stating some of the open questions that still remain

in the subject. It is not known, for instance, whether the set W of all wavelets is

connected in the topology of L

2

(R). For completeness, we include here the two main

results known in this direction:

THEOREM 5.50 : [DAI-LIA], [HAN-LU], [WUTAM].

Let W

MRA

denote the set of all MRA wavelets with the topology of L

2

(R). Then,

for any pair  

0

;  

1

2 W

MRA

there exists a continuous path

[0; 1] �!W

MRA

t 7�!  

t

starting at  

0

and ending at  

1

. Moreover, each wavelet in the path can be taken so

that

b

 

t

2 C(R) and

b

 

t

� 0 in a neighborhood of � = 0, provided t 2 ]0; 1[.

THEOREM 5.51 : [SPEE], [ION-LAR-PEA].

Let W

MSF

denote the set of orthonormal wavelets  such that

b

 = �

K

, for some

measurable set K � R, endowed with the topology of L

2

(R). Then, W

MSF

is arcwise

connected; that is, for any pair  

0

;  

1

2 W

MSF

, such that

b

 

j

= �

K

j

; j = 0; 1, there

exists a family of measurable sets K

t

� R, 0 < t < 1, such that  

t

= (�

K

t

)� is a

wavelet, for every t 2 [0; 1], and the map

[0; 1] �!W

MSF

t 7�!  

t

= (�

K

t

)�
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is continuous into L

2

(R).

REMARK 5.52 This version of Theorem 5.51 was proved by D. Speegle in [SPEE].

In [ION-LAR-PEA] it is proved a similar theorem, but with an additional, non-trivial,

assumption on the sets K

0

; K

1

. This assumption, satis�ed by most MSF-wavelets

(but not by all of them), allows the authors of this paper to construct their family of

sets K

t

in such a way that K

t

� K

0

[K

1

, for all t 2 [0; 1].



Appendix A

Examples and counter-examples

Equations (2.8) and (2.9) in Chapter 1 can be used, among other things, to construct

a variety of examples and counterexamples in wavelet theory. In this appendix we

present some of these, trying to answer questions related to the behavior of the Fourier

transform of a wavelet at the point � = 0.

1 A band-limited wavelet with Fourier transform

discontinuous at 0

Let us point out to the reader that, from equation (2.8) (i) in Chapter 1, it follows

that if  is a wavelet whose Fourier transform is continuous at 0, then it must have

b

 (0) = 0 (this is a version of what we said in x1 that  must have \mean" zero:

b

 (0) =

R

R

 = 0). In fact, something stronger is true if we assume, in addition, that

 is band-limited, that is, that supp

b

 � [�M;M ] for some M > 0. In this case, it

can be shown (see Theorem 2.7 in [BSW], or the same theorem in chapter 3 of [HW])

that

b

 must vanish in a neighborhood of 0. One can ask whether it is really necessary

to assume that

b

 is continuous at 0 in order to obtain this result. A partial answer

was given in [HWW] for wavelets with supp

b

 � [�8�=3; 8�=3] (or, more generally,

with supp

b

 � [�4� + 4�=3; 8�=3], for some 0 < � � �). Indeed, when this is the

case, it can be shown that

b

 is continuous at the origin and, moreover, vanishes on

[�2�=3; 2�=3] (respectively, on [�2�+4�=3; 2�=3]). It was not known to the authors

179
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of [HWW] whether this property could be true for larger domains. We will start by

proving the following:

PROPOSITION 1.1 There is a wavelet  whose Fourier transform has support con-

tained in � [�4�; �] but does not vanish in any neighborhood of 0.

REMARK 1.2 At the time we discovered it, this example seemed to be the only one

in the literature with these characteristics. However, some time afterwards, we found

an example of W. Madych of a scaling function with similar properties (see 3.1.2 in

[MAD]). After carrying out some computations one obtains from it an MRA wavelet

 with supp

b

 � [�3�=2; 4�] and

b

 discontinuous at 0 on the left.

PROOF:

The wavelet we construct to prove Proposition 1.1 will be an MSF wavelet. That

is,

b

 = �

K

, for an appropriate set K � R. To construct K, we �nd a partition of

I = [�2�;��)[ (�; 2�] satisfying (2.6) of Chapter 1.

The partition of (�; 2�] is obtained as follows: divide (�; 2�] in two halves and

keep the right-hand one; do the same with the left-hand part. Continue this process

a countable number of times. The intervals obtained are:

I

n

=

�

(2

n

+ 1)�

2

n

;

(2

n�1

+ 1)�

2

n�1

�

; n = 1; 2; 3; : : :

...

II I
123

π 2π3π/2

FIGURE 1
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A partition of (�2�;��] is obtained by translating by �2� a partition of (0; �].

The points

(2

n

+1)�

2

2n+1

, n = 1; 2; : : :, satisfy:

�

2

n+1

<

(2

n

+ 1)�

2

2n+1

<

�

2

n

:

Let

e

G

n

=

�

(2

n

+ 1)�

2

2n+1

;

�

2

n

�

; n = 1; 2; 3; : : : and

f

H

n

=

�

�

2

n+1

;

(2

n

+ 1)�

2

2n+1

�

; n = 0; 1; 2; : : :

(See Figures 2 and 3 below.)

...

π/2π/4π/8

G̃G̃
12

π/16

...

π/2π/4π/8

˜˜
1

π/16

HH 0

π

FIGURE 2 FIGURE 3

Then, f

e

G

n

g

1

n=1

[ f

f

H

n

g

1

n=0

forms a partition of (0; �] and, hence,

G

n

=

e

G

n

� 2�; n = 1; 2; 3; : : :

H

n

=

f

H

n

� 2�; n = 0; 1; 2; : : :

forms a partition of (�2�;��]. Now, we appropriately dilate these intervals to form

a partition of our set K as in (2.6) of Chapter 1:

K = f[

1

n=1

2

�n

I

n

g [ f[

1

n=1

G

n

g [ f[

1

n=0

2H

n

g:

(See Figure 4 below.)
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...

π/2π/4π/8-π-2π-3π-4π

...

I /2/4 I12

...

G G2 G132H
012 2H2H

π

FIGURE 4

Finally, we show that this new family of intervals can be translated back to form

another partition of I. Indeed, the set

2H

0

+ 4� = 2[H

0

+ 2�] = 2

f

H

0

= (�; 2�]

is a partition of (�; 2�]. Appropriate translations of the remaining intervals form a

partition of (�2�;��]:

f2H

n

+ 2�g

1

n=1

; f2

�n

I

n

� 2�g

1

n=1

; fG

n

g

1

n=1

:

This can be seen by showing that

2H

n

+ 4� = 2

f

H

n

=

�

�

2

n

;

(2

n

+ 1)�

2

2n

�

; n = 1; 2; : : :

2

�n

I

n

=

�

(2

n

+ 1)�

2

2n

;

(2

n�1

+ 1)�

2

2n�1

�

; n = 1; 2; : : :

and

G

n�1

+ 2� =

e

G

n�1

=

�

(2

n�1

+ 1)�

2

2n�1

;

�

2

n�1

�

; n = 2; 3; : : :

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

(1.3)

form a partition of (0; �]. Note that the right-end point of 2H

n

+4� coincides with the

left-end point of 2

�n

I

n

, and the right-end point of 2

�n

I

n

coincides with the left-end

point of G

n�1

+ 2�.

Thus,  = (�

K

)�, is a band-limited wavelet, with supp

b

 = K � [�4�;��][[0; �],

and such that j

b

 j is discontinuous at 0 from the right.

2
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REMARK 1.4 This method of constructing MSF wavelets via the characterization

in (2.6) of Chapter 1 leads tipically to non-MRA wavelets (see, for instance, [FAN-

WAN], [DAI-LAR-SPE] or [SOA-WEI]). It is a remarkable fact that the wavelet  

constructed above does arise from an MRA, although none of the MRA conditions

have been used in the process. As a consequence, one obtains as well the existence of

band-limited scaling functions whose Fourier transform is discontinuous at the origin.

To show that  comes from an MRA it is enough to check that

D

 

(�) =

1

X

j=1

X

k2Z

j

b

 (2

j

(� + 2k�))j

2

= 1; a:e: � 2 (��; �] (1.5)

(see Proposition 3.8 in Chapter 1 of this thesis). Now, if � 2 (��; 0), the sum in (1.5)

reduces to

D

 

(�) =

1

X

j=1

j

b

 (2

j

�)j

2

= 1;

the last equality following from (2.5) of Chapter 1 (see also Figure 4). On the other

hand, if � 2 (0; �] and j � 1 is �xed, the only k's that contribute to the series in (1.5)

are k = 0;�1:

D

 

(�) =

1

X

j=1

f j

b

 (2

j

�)j

2

+ j

b

 (2

j

(� � 2�))j

2

g

=

1

X

j=1

j

b

 (2

j

�)j

2

+ j

b

 (2(� � 2�))j

2

= A+B:

Now,

B = 1 () 2(� � 2�) 2 [

1

n=0

2H

n

() � 2 [

1

n=0

fH

n

+ 2�g = [

1

n=0

f

H

n

()

1

X

j=1

j

b

 (2

j

�)j

2

= 0 () A = 0;

the previous to the last equivalence because, by (1.3), 2

f

H

n

�

f

H

n�1

n 2

�n

I

n

(see also

Figures 2, 3 and 4).
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2 More wavelets with Fourier transform discontin-

uous at 0

The construction in the previous example might seem a little mysterious

f1g

, however,

more intuitive constructions can be performed by using the method of the MRA's. We

present below one such example, solution to a di�erent but closely related problem.

We already mentioned at the beginning of x1 of the appendix that if j

b

 j is con-

tinuous at 0, there must be an interval around it in which

b

 vanishes identically.

In fact, for wavelets with supp

b

 � [�4� + 4�=3; 8�=3], 0 < � � �, this interval

(= [�2� + 4�=3; 2�=3]) has length, at least, 4�=3 (see [HWW]). At �rst, this sug-

gested to the authors of [HWW] that a lower bound for the length of the \gap"

in which

b

 vanishes identically might exist. However, they proved later that there

are band-limited wavelets for which the length of the \gap" can be made arbitrarily

small (see Remark 1 in x3:2 of [HW]). Wavelets satisfying this property can be easily

constructed from their low-pass �lters. A graphic idea is as follows. Let a; b be two

positive �xed numbers such that a

2

+ b

2

= 1 and de�ne m

0

2�-periodically as in

Figure 5:

π-π
I-I-I-π I-π π-I π+I

π/2-π/2

m
0

a

b

a

b bb

1

FIGURE 5

Here, the interval I can be chosen as close to 0 as we wish (with the only requirement

f1g

A careful reader will realize that there is a pattern in the way of choosing the intervals

e

H

n

and

e

G

n

that explains why (2

n

+ 1)�=2

2n+1

is the most suited extreme point between them.
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that (I=2) \ I = ;); one easily shows, then, that m

0

is a low-pass �lter and that  

given by

b

 (�) = e

i

�

2

m

0

(�=2 + �)

1

Y

j=2

m

0

(2

�j

�); (2.6)

is a band-limited wavelet for which

b

 is an even function not vanishing on 2I (for

more details, see [HW]).

A natural question would be if one could somehow modify the construction of the

�lters above to obtain a wavelet with \gap" of length exactly 0. The answer is yes,

but under certain restrictions. By taking a �lter m

0

as in Figure 6 below, one obtains

a wavelet  for which

b

 is an even function not vanishing identically in any symmetric

interval around 0. Thus, the \gap" disappears! However, this construction has the

incovenience that  is no longer band-limited. At this point we do not know whether

there are wavelets  with Fourier transform even and discontinuous at 0, but still

having compact support.

π-π π/2-π/2

m
0

a a

b

1

b

... ...

... ...

FIGURE 6

We say a few more words about the example in Figure 6 before going into details. By

taking a = 0, we obtain a non-band-limited MSF wavelet that arises from an MRA.

This example seemed also to be new at its time

f2g

, when the only non-band-limited

f2g

We learned later, in a wavelet conference held in North Carolina, that X. Dai and R. Liang

found similar examples while studying connectivity properties of wavelets.



186

MSF wavelets known did not arise from an MRA (see [FAN-WAN] or [DAI-LAR-

SPE]). For completeness, and its own interest, we present here a little more detailed

discussion of this example.

Divide the interval (�=4; �=2] in halves and call the right hand subinterval obtained

J

1

. Divide, then, the left one in halves and call the right hand subinterval obtained

J

2

. Continue this process a countable number of times to obtain:

J

n

=

 

(2

n

+ 1)�

2

n+2

;

(2

n�1

+ 1)�

2

n+1

#

; n = 1; 2; 3; : : :

(See Figure 1 above for a \dilated" picture of this partition.)

Then, de�ne the sets

I

n

= 2

�n

J

n

; n = 1; 2; 3; : : : and I = [

1

n=1

I

n

; (2.7)

and the function

m

0

(�) = �

(0;�=2]nI

(�) +

1

X

n=1

f a�

I

n

(�) + b�

��I

n

(�) g; � 2 (0; �];

where a; b > 0 are such that a

2

+ b

2

= 1. Extend m

0

evenly to [��; 0) and 2�-

periodically to R. Then, by construction we have that:

(i) jm

0

(�)j

2

+ jm

0

(� + �)j

2

= 1; a:e: � 2 R:

(ii) For every � 6= 0; 9n

0

= n

0

(�) 2Zj 8n > n

0

=) m

0

(2

�n

�) = 1:

Moreover, if we de�ne

b

'(�) =

Q

1

n=1

m

0

(2

�n

�); � 6= 0, then,

b

' 2 L

2

(R) and

(iii) lim

n!1

b

'(2

�n

�) = 1; � 6= 0:

(iv) For a:e: � 2 K = (��; �]; have

b

'(�) � a:

It follows from this and a standard argument

f3g

that ' satis�es the hypotheses of

Proposition 3.12 in Chapter 1 and, therefore, is a scaling function of an MRA (see

f3g

The \standard argument" we refer to is the following. De�ne

^

f

n

= �

2

n

K

Q

n

j=1

m

0

(2

�j

�). Then,

ff

n

(�+k)g

k2Z

is an orthonormal system in L

2

(R) for each n � 1. Since 0 � f

n

�

1

a

b', the Dominated

Convergence Theorem implies that f'(�+ k)g must be an orthonormal system as well and, hence,

(3.6) of Chapter 1 holds. For more details, see Theorem 4.8 in chapter 7 of [HW].
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Chapter 7 of [HW]). In particular, if a function  is de�ned as in (2.6), then, it

will be a wavelet for which, clearly,

b

 is even and

b

 (�) � ab; � 2 2I: It is easy

to see that

b

' (and, therefore,

b

 ) does not have compact support (try, for instance,

� 2 2

n

(��I

n�1

), for n large). Hence, we have constructed a non-band-limited wavelet

with even Fourier transform discontinuous at 0.

We claimed above that by letting a = 0 in this example, one obtains a non-band-

limited MSF wavelet arising from an MRA. This is true but the proof requires some

modi�cations. Note that, when a = 0, condition (iv) above is vacuous and we cannot

use the \standard argument" to show that ' is a scaling function. Thus, condition (i)

in Proposition 3.12 needs to be veri�ed directly this time. However, in this case, m

0

and

b

' are characteristic functions of measurable sets in R, say E and S, respectively,

and this condition is equivalent to:

X

k2Z

�

S

(� + 2k�) = 1; a:e: � 2 (��; �]: (2.8)

In fact, it is enough to show the inequality \�" in (2.8), because \�" always holds

when S = \

1

n=1

2

�n

E and E = E+2�; E\(E+�) = ; (see Lemma 2.21 in [HWW2]).

For this example we take I

2

; I

3

; : : : de�ned as in (2.7) above, but assuming this

time that I

1

is empty (in the course of the proof we will see why this assumption is

required). The same de�nition of m

0

and

b

' applies as well. Consider the following

sets:

K

+

p

= 2

p

([

1

j=p

I

j�1

); for p � 1 and K

+

= [

1

p=1

K

+

p

:

(For consistency with the notation we assume also I

0

= ;.) Note that, by construction,

K

+

� (0; �] and, for � 2 (0; �],

b

'(�) = 0 if and only if � 2 K

+

.

Now, we translate each of the K

+

p

's to obtain new sets where

b

' � 1. Let

S

+

p

= K

+

p

� 2

p

�; p � 1:

We claim that

b

'(�) = 1; a:e: � 2 S

+

p

. Equivalently, we need to show that m

0

(2

�j

�) =

1, for all j � 1; a:e: � 2 S

+

p

. We have three cases:
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1. Suppose 1 � j � p � 1 (this condition is empty if p = 1). Then,

m

0

(2

�j

�) = m

0

(2

�j

� + 2

p�j

�) = m

0

(2

�j

(� + 2

p

�)) = 1;

because � + 2

p

� 2 K

+

p

= 2

p

[

1

n=p

I

n�1

and j 6= p.

2. If j = p, then 2

�p

� 2 2

�p

K

+

p

� � � I � �, so that m

0

(2

�j

�) = 1 (= b).

3. If j = p + k; k � 1. Then,

2

�j

� 2 2

�k

(2

�p

K

+

p

� �) � 2

�k

(I � �) � 2

�k

�

��;�

3�

4

�

;

but this is a dilation of the interval \I

1

" de�ned in (2.7) that we removed this

time from the set I. Hence, m

0

(2

�j

�) = 1.

This establishes our claim. Repeating this process symmetrically with K

�

=

�K

+

, we obtain that

S = (��; �] n (K

+

\K

�

) [ ([

1

p=1

S

+

p

) [ ([

1

p=1

S

�

p

)

and (2.8) holds.

3 One last example

Our last example in this section is of a di�erent nature, but still related to MSF

wavelets. We already mentioned that the equations:

� (�) �

X

k2Z

j

b

 (� + 2k�)j

2

= 1; a:e: � 2 (��; �] (3.9)

�(�) �

X

j2Z

j

b

 (2

j

�)j

2

= 1; a:e: � 2 (��;�

�

2

] [ (

�

2

; �] (3.10)

are necessary and su�cient conditions for a function  such that j

b

 j = �

K

to be

a wavelet. In particular, MSF wavelets are characterized in terms of their \ampli-

tude", j

b

 j, and admit arbitrary \phases", meaning that (e

i�

j

b

 j)� is a wavelet for any

(measurable) real-valued function � on R.
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This is not the case when  is a non-MSF wavelet. In fact, if a wavelet has

b

 � 0

then it must be an MSF wavelet. Indeed, if

b

 � 0 and, for a �xed � 2 R,

b

 (�) 6= 0, the

orthogonality relations in (5.6) of Chapter 2 imply that

b

 (2

j

�) = 0; 8j � 1. Then,

if

b

 (�) < 1, there must be a j

0

< 0 such that

b

 (2

j

0

�) 6= 0 (by (3.10)) but, again,

the orthogonality relations (5.6) would imply that

b

 (2

j

0

+k

�) = 0; 8k � 1, which is

contradiction. Thus,

b

 (�) = 1 and

b

 is the characteristic function of a set.

Therefore, the two equations above do not imply, in general, that  = (j

b

 j)� is

a wavelet, unless an appropriate phase is chosen. Something stronger is true: these

two equations do not imply, in general, that such a phase exists. That is, there are

functions

b

 satisfying (3.9) and (3.10) for which no real-valued function � = �(�)

makes (e

i�

j

b

 j)� into a wavelet. The following simple example illustrates what we are

saying. Let

b

 (�) =

8

>

<

>

:

1

p

2

; if � 2 (��;�

�

4

] [ (�;

7�

4

] [ (2�; 3�] [ (6�; 7�]

1; if � 2 (

7�

4

; 2�]

0; elsewhere

-π 2π 3π 4ππ 6π 7π5π− −
ππ

42

3π 7π

2 4

FIGURE 7

It is easy to see (by just looking at the graph) that

b

 satis�es (3.9) and (3.10).

However, (e

i�

j

b

 j)� can never be a wavelet because

t

�1

(�) =

1

2

e

i(�(�)��(��2�))

6= 0; if � 2

�

�;

3�

2

�

;

and this would contradict Theorem 2.7 in Chapter 1.
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The question of what phases are attainable for a given wavelet is still not very well

understood, especially in the case of non-MRA wavelets. A more detailed discussion,

and other properties of phases can be found in [BSW], [WUTAM] or x5 in Chapter 3

of this thesis.
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