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The Dawn of Analysis

f : x 7→ x2

Seventeenth century:

f ′(2) =
(2 + h)2 − 22

h
=

4h + h2

h

= 4 + h = 4

not zero
(so division is possible)

then
h = 0
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The Critic

Bishop Berkeley (1734)

“ And what are these evanescent Increments? They are neither
finite Quantities nor Quantities infinitely small, nor yet nothing.
May we not call them the Ghosts of departed Quantities?”

¿Y qué son estos incrementos evanescentes? No son ni cantidades
finitas ni cantidades infinitamente pequeñas, ni tampoco son nada.
¿No podríamos acaso llamarlos fantasmas de cantidades difuntas?
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The Remedy

Need for foundations

Weierstrass and Cauchy ε, δ method
Advantages

no infinities (neither large nor small) are used
the method is sound

Disadvantages
technically complicated mastering of order of quantifiers
“reverse” method: error on output determines input
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Infinitesimals are now banished form the mainstream mathematical
discourse.

From these earlier times, we still have powerful metaphors:

Leibniz’ concept of x being “infinitely close” to a.
Newton’s concept of x “moving” towards a.
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“arbitrarily close to”

manipulation of adverbs
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The Nonstandard answers
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The Compactness Theorem

“A set of first-order sentences has a model if and only if every finite
subset of it has a model. ”

Gödel (1930) Maltsev (1936)

Consequence
Let Sn be the sentence (for n ∈ N)

(∃x)

(
0 < x <

1
n

)
and A = {Sn | n ∈ N}
then

There is a model in which

(∃x)(∀n ∈ N)

(
0 < x <

1
n

)
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Robinson (1960) and Luxemburg

The hyperreals:

an extension containing

hyperfinite integers

Z ⊂ ∗Z

infinitely large and infinitely small rationals and reals

Q ⊂ ∗Q

R ⊂ ∗R

Every function f : R→ R has a unique extension

∗f : ∗R→ ∗R
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Standard Part

Every hyppereal which is not infinitely large is infinitely close to a
real number: its standard part, written st(x)

If h is infinitesimal,

st(4 + h) = 4

for standard x the derivative of f : x 7→ x2 at x = 2 is defined by

st
(

(2 + h)2 − 22

h

)
= st(4 + h) = 4

if this does not depend on infinitesimal h.
Problem solved?
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Difficulty 1

The existence of external functions.

The “updown” external function

f : x 7→ 2 · st(x)− x

4

4 very nasty...
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Difficulty 2

The nonstandard definition of the derivative is for standard (real)
points only.
f ′(2 + ε) is not easily determined.

Do we really need f ′(2 + ε)?

Yes, if we want f ′(x) to be a function with same kind of domain
as f .

Yes, if we want a solution to a differential equation to be infinitely
many infinitely small steps following the slope.

Yes, if we want the integral to be the sum of infinitely many
infinitely thin slices.
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Internal view

Vopěnka (1976)
Nelson (1977)

Infinitesimals are singled out from among the familiar mathematical
objects by a new property.

This distinction

standard - nonstandard

is made within the real numbers

Difficulties 1 and 2 remain.
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Many levels

Wallet and Péraire (1989)

Péraire (1992)
RIST
Extra axioms are added to ZFC.

Hrbacek (2004)
FRIST
Simplifies and extends the power of Péraire’s approach.
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Introductory Analysis

Hrbacek Lessmann O’Donovan

Adaptation of FRIST to high school teaching.

Since 2006: used in at least two Geneva Colleges by up to 10
teachers.

15 / 36



Introductory Analysis

Hrbacek Lessmann O’Donovan

Adaptation of FRIST to high school teaching.

Since 2006: used in at least two Geneva Colleges by up to 10
teachers.

15 / 36



ANALYSIS
WITH

ULTRASMALL NUMBERS
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Properties of Observability

Let x , y and z be real numbers.

1 x is as observable as x.

2 If y is not observable when x is observable, then x is
observable when y is observable..

3 If y is observable when x is observable and if z is observable
when y is observable, then z is observable when x is
observable.

The context of a property, function or set is the list of parameters
used in its definition.
When observability is mentioned in some property, it is relative to
its context.
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Closure Principle

Numbers, sets or functions, defined without reference to
observability are always observable.
If a number, set or function, satisfies a given property, then there is
an observable number satisfying that property.

f (a) is as observable as f and a
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Principle of ultrasmallness

A real number is ultrasmall if it is nonzero and smaller in absolute
value than any strictly positive observable number

This definition makes an implicit reference to a context.
Note that 0 is not ultrasmall.

Relative to any number, there exist ultrasmall real numbers.
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A real number is ultralarge if it is larger in absolute value than any
strictly positive observable number
Let a, b be real numbers. We say that a is ultraclose to b, written

a ' b,

if b − a is ultrasmall or if a = b.
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With respect to a given number
ultrasmall numbers are somewhere here

0

/ / / /

With respect to a given number
ultralarge numbers are somewhere over there

/ ///

0
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Principle of the observable neighbour

Relative to a context, any real number x which is not ultralarge can
be written in the form a + h where a is observable and h ' 0.
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Contextual Notation

The only accepted properties are those that do not refer to
observability or those that use the symbol "'", understood as
relative to the context of the property in question.

These properties are internal. Both difficulties are solved here.
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A context is extended if parameters are added to the list.

A property is not changed if the context is extended.
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Essential properties

Relative to a context containing a 6= 0 and let ε and δ be
ultrasmall, then

1 a · ε is ultrasmall.

2 ε+ δ ' 0

3 ε · δ is ultrasmall
4

a
ε
is ultralarge

Proof that a · ε ' 0:
wlog a > 0 and ε > 0

By contradiction: assume there is an observable b > 0 such that
a · ε > b > 0.
Then ε > b

a > 0
By closure b

a is observable hence ε 6' 0.
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Immediate consequence:

Relative to a context containing a and b with a ' x and b ' y ,
then

1 a + b ' x + y

2 a − b ' x − y

3 a · b ' x · y

4 If also b 6= 0,
1
b
' 1

y
.
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Derivative

A real function f defined on an interval containing a is
differentiable at a if there is an observable value D such that, for
any dx

f (a + dx)− f (a)

dx
' D

Then D = f ′(a) is the derivative of f at a.

dx ' 0 and dx 6= 0 by definition of dx , but it can be positive or
negative.
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Student’s presentation

28 / 36



Student’s presentation

28 / 36



Student’s presentation

28 / 36



chain rule: student’s presentation
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chain rule: student’s presentation
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Continuity

Let f be a real function defined around a. We say that f is
continuous at a if (for any x)

x ' a⇒ f (x) ' f (a).

Also written

f (a + dx) ' f (a)
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Continuity of sine and cosine

x

y

−∆ cos(θ)

∆ sin(θ)

θ
dθ

C

B
s

10

31 / 36



Student’s proof
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Area under a curve: student’s presentation
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Area under a curve: student’s presentation
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Observations

we do not define the derivative as the slope of the tangent at x0,
• the tangent is the line which has same value and same slope at x0

we do not define the derivative as the slope of a secant when the
secant disappears
• the derivative is the observable part of the slope of an ultrasmall
segment

we do not define continuity at x0 by the limit
• the limit of a function at x0 is the value that f should take at x0
to be continuous
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lim
x→a

f (x) = L

(∀ε > 0)(∃δ > 0)(∀x) (|x − a| ≤ δ ⇒ |f (x)− L| ≤ ε)

the left hand part of the implication has no meaning without the
right hand part.

(∀x) x ' a⇒ f (x) ' L

f and a determine the context.
x ' a is defined independently.
then f (x) ' L is verified algebraically.

35 / 36



lim
x→a

f (x) = L

(∀ε > 0)(∃δ > 0)(∀x) (|x − a| ≤ δ ⇒ |f (x)− L| ≤ ε)

the left hand part of the implication has no meaning without the
right hand part.

(∀x) x ' a⇒ f (x) ' L

f and a determine the context.
x ' a is defined independently.
then f (x) ' L is verified algebraically.

35 / 36



lim
x→a

f (x) = L

(∀ε > 0)(∃δ > 0)(∀x) (|x − a| ≤ δ ⇒ |f (x)− L| ≤ ε)

the left hand part of the implication has no meaning without the
right hand part.

(∀x) x ' a⇒ f (x) ' L

f and a determine the context.
x ' a is defined independently.
then f (x) ' L is verified algebraically.

35 / 36



lim
x→a

f (x) = L

(∀ε > 0)(∃δ > 0)(∀x) (|x − a| ≤ δ ⇒ |f (x)− L| ≤ ε)

the left hand part of the implication has no meaning without the
right hand part.

(∀x) x ' a⇒ f (x) ' L

f and a determine the context.

x ' a is defined independently.
then f (x) ' L is verified algebraically.

35 / 36



lim
x→a

f (x) = L

(∀ε > 0)(∃δ > 0)(∀x) (|x − a| ≤ δ ⇒ |f (x)− L| ≤ ε)

the left hand part of the implication has no meaning without the
right hand part.

(∀x) x ' a⇒ f (x) ' L

f and a determine the context.
x ' a is defined independently.

then f (x) ' L is verified algebraically.

35 / 36



lim
x→a

f (x) = L

(∀ε > 0)(∃δ > 0)(∀x) (|x − a| ≤ δ ⇒ |f (x)− L| ≤ ε)

the left hand part of the implication has no meaning without the
right hand part.

(∀x) x ' a⇒ f (x) ' L

f and a determine the context.
x ' a is defined independently.
then f (x) ' L is verified algebraically.

35 / 36



thank you!
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