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Abstract

We analyze a private and independent valuation first-price auction un-
der the assumption that one of the bidders’ valuations is common knowl-
edge. We show that no pure strategy equilibrium exists and we charac-
terize a mixed strategy equilibrium in which the bidder whose valuation
is common knowledge randomizes her bid while the other bidders play
pure strategies. In an example with the uniform distribution, we compare
the expected profits of seller and buyers in this auction with those in a
standard symmetric private valuation model.
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1 Introduction
In this paper we study a first-price private-value auction in which the valuation
of one of the bidders is common knowledge. There are many situations in which
some or all of the players in a game may have information about the private
valuation of other player(s). For example, an auction may be held in order to
renew a license to run a business (from university cafeterias to radio licenses).
Information about the current incumbent (sometimes himself a winner of a
previous auction) may be available to his rivals and/or to the seller. Actually,
sequential auctions are a source of information revelation: in first-price auctions,
the seller can learn information about the buyers’ preferences through the losing
bids. On the other hand, when the buyers have multi-unit demand, the first
auction winner’s bid may reveal information about his preferences for the rest
of the objects. Of course, the use of this information in subsequent stages of a
game will affect the strategic behavior of the players in the first stage. While it
is outside the scope of this paper to analyze these multi-stage games, we think
that studying this auction may be useful to understand the costs and/or possible
advantages of this information release.
∗I am indebted to Roberto Burguet for his numerous comments in successive versions of

this paper. I also wish to thank Martin Hellwig, Moritz Meyer-ter-Vehn, Benny Moldovanu,
Jörg Nikutta, Ma Carmen Sánchez, and two anonymous referees for very helpful comments.
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In his 1961 seminal paper, Vickrey compared first-price and second-price
auctions of a single object and stated an early version of the revenue equivalence
theorem. To give an example of an asymmetric case, he also studied an auction
where two asymmetric bidders competed for an object. One of the bidders’
valuations was fixed, while the other one was uniformly distributed. Vickrey
solved for the first-price and second-price sealed-bid auctions and compared the
seller’s expected revenue.
While in the second-price auction a dominant strategy is (as usual) to bid

one’s own valuation, the equilibrium in the first-price auction is more involved.
The bidder with known valuation must randomize her bid, while her rival uses a
strictly increasing bidding function. The difference in the seller’s revenue across
auctions depends on the value of the fixed valuation: while for low valuations
the second-price auction is superior, for high valuations the converse holds.
Already in 2000, Kaplan and Zamir (henceforth, KZ) analyze a two-bidder

model in which the seller has information about the bidders’ valuations, and can
exploit it or not depending on his capacity to commit himself to some specific
revelation policy. In this framework they analyze Vickrey’s two-bidder problem
for a general distribution of the unknown valuation.
We generalize Vickrey’s analysis of the asymmetric first-price auction to an

arbitrary number of bidders and a general distribution function. We will see
that extending the equilibrium analysis is not trivial: while our equilibrium
shares some features with the two-bidder equilibrium, most of the techniques
used to compute the latter are not useful when more players are involved. We
show that no pure strategy equilibrium exists in the auction we analyze and
we characterize an equilibrium in which the bidder whose valuation is common
knowledge plays a mixed strategy and the other bidders play pure strategies.
Our equilibrium shares these features with the one described in Vickrey’s exam-
ple (and in KZ’s), and the outcome of the auction is, like in theirs, inefficient,
as is usual in asymmetric first-price auctions. In our auction, the random bid
of one of the bidders operates as a random reserve price from the point of view
of the other bidders.
The expected profit of the bidder whose valuation is known is lower than

in a standard auction, while the effect on the other players’ expected profits
is ambiguous: on the one hand they benefit from an informational advantage,
but on the other hand they face a bidder (the one whose valuation is common
knowledge) who may bid more aggressively than she would in a standard private-
value auction. This may force all of her rivals to bid more aggressively too, but
this will not always be the case. The bidders will bid more or less aggressively
depending on the valuation which has been revealed. If it is low, they will bid
less than in the standard auction: it is easy to see that in the limit, when the
valuation which is revealed is zero, the rival bidders will bid as in a standard
auction with one less bidder, that is, less than if all valuations were private
knowledge. By contrast, if the valuation which has been revealed is high, all
bidders may bid more aggressively than they would in a standard auction.1

1Actually, we will see that in equilibrium the low-valuation bidders bid more in our auction
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Regarding the question of the seller’s (and buyers’) expected revenues, we
would like to know if the seller has incentives to announce one of the bidders’
valuations when he has this information. Because the answer to this question is
ambiguous, we analyze an example with the uniform distribution. The analysis
we undertake differs slightly from those of Vickrey and KZ. Vickrey focuses
on seller’s revenue comparisons between first-price and second-price auctions
when the valuation of one of the bidders is fixed. KZ assume that the seller
knows either both valuations or their rankings and explore the seller’s best
strategy given restrictions on his capacity to convey informative signals and on
his commitment power. In that framework, they analyze the case in which the
seller reveals the highest of the two valuations, and compute the seller’s and
the buyers’ expected profits for the case in which both valuations are uniformly
distributed.
In our example we assume that, while ex-ante all valuations are identically

and uniformly distributed, the seller can commit himself to announce one of
them (which is not necessarily the highest one). We compute the seller’s ex-
pected revenue for the case of two and three bidders and we find out that in both
cases the seller’s expected revenue is higher if he follows the policy of announc-
ing one of the bidders’ valuations. Note that if we drop the ex-ante symmetry
assumption, and assume that it is likely that the valuation which is revealed
is high, the seller will have more incentives to find out and announce that val-
uation. This could be the case, for example, if an authority holds an auction
to renew a licence to run some business, and the current incumbent is taking
part in it (the incumbent could be supposed to have a high valuation because
of know-how, no entry costs, etc.) The authority could order an auditing of the
firm and make the results public.
With this analysis, this paper contributes to the recent literature on asym-

metric first-price auctions under the private-value assumption. Indeed, after
Vickrey’s analysis in the early sixties and Griesmer, Levitan, and Shubik’s
(1967) generalization to asymmetric uniform distributions (i.e. different sup-
ports), little work had been published before the nineties, when asymmetric
auctions have received renewed attention.2 Plum (1992) characterizes Nash
equilibria in a particular asymmetric sealed-bid auction. Marshall, Meurer,
Richard, and Stromquist (1994) propose an algorithm to solve some class of
asymmetric auctions and provide some numerical analysis. Lebrun (1996, 1999,
and 2002) studies asymmetric first-price auctions with an arbitrary number of
bidders, proves existence and uniqueness of equilibrium when the distributions
of the valuations have the same support, and studies the continuity of equilibria.
A more recent paper, Lebrun (2004), proves uniqueness of equilibrium allow-
ing for different supports in the valuations’ distributions.3 Maskin and Riley’s
(2000a, 2000b, and 2003) study, respectively, the optimal bidding strategies and

than they bid in a standard auction. However, they win with probability zero, so their bids
are not relevant in order to discuss the seller’s expected revenue.

2Although we only refer here to private-value auctions, there have been also numerous
works on asymmetric auctions under the affiliated values assumption over the last years.

3His model does not allow, however, for a degenerated distribution of valuations.
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the seller’s expected revenues for several two-asymmetric-bidder examples, the
existence of equilibrium in asymmetric first-price auctions, and its uniqueness.
Li and Riley (1999) generalize some of those results to an arbitrary number of
bidders using numerical methods.
Also, a series of recent works address the question of the seller’s expected

revenues in asymmetric first-price auctions under the private-valuation assump-
tion. Landsberger, Rubinstein, Wolfstetter, and Zamir (2002) study a two-
bidder auction where the ranking of valuations is common knowledge. They
find that the lower valuation bidder bids more aggressively than his rival, and
that, in spite of the induced inefficiency, the seller’s expected revenue is higher
than in the standard auction for a class of distributions (including the uniform).
Fibich, Gavious and Sela (2004) show that weakly asymmetric auctions are ”es-
sentially” revenue equivalent, since the differences in the seller’s revenue across
auction mechanisms are only of second order. To finish, Cantillon (2005) com-
pares the expected revenue of asymmetric auctions with those in a symmetric
benchmark where the expected valuation of the highest bidder is the same as
in the original asymmetric auction, (that is, the social surplus is identical). For
some classes of distributions and 2 bidders, she finds that asymmetries reduce
the seller’s revenue.
In section 2 we present the model and characterize the equilibrium. In section

3 we analyze an example where the bidders’ valuations are uniformly distributed,
and compare the seller’s expected revenue with that in the standard auction.
Conclusions are found in section 4.

2 The model
There are n ≥ 3 buyers with a positive valuation for one object which is to
be sold in a first-price auction or in an oral descending auction. We assume
that the bidders draw their valuations independently from a twice differentiable
distribution function F, with F (0) = 0 and F (1) = 1 and strictly positive
density f on [0, 1]. All players are risk neutral. We assume that the valuation
of one of the bidders is common knowledge. For simplicity, we will refer to
this bidder as bidder 1, and in the feminine, and to the rest of the bidders, in
the masculine, by using the subindex i, where i = 2, ..., n. In this section we
characterize an equilibrium to this game. First, we show that any equilibrium
necessarily involves mixed strategies.

2.1 (Non existence of) a pure strategy equilibrium

Suppose bidder 1 plays a pure strategy. Her valuation is common knowledge,
so her rivals anticipate her bid. Denote this bid by r. Note that r > 0 unless
v1 = 0.4 The best response of bidder 1’s rivals will be to bid as in an auction

4 If bidder 1 bids zero, the rest of the bidders will bid as in a standard symmetric auction
with n − 1 bidders, so that bidder 1 obtains an expected profit of zero. Therefore, as long
as her valuation is strictly positive, she will submit a positive bid, r > 0, and will obtain a
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with n− 1 bidders and a common knowledge reserve price equal to r. It is well
known that the equilibrium of this auction is symmetric and unique.5 Here we
show that if the bidders 2, ..., n bid according to this equilibrium, bidder 1 has
incentives to deviate from her pure strategy bid.

Proposition 1 There is no pure strategy equilibrium in undominated strategies
in the game described above.

Proof. The equilibrium bidding strategy in a first-price auction with n− 1
bidders and a reservation price of r is6

b(vi) = vi −
R vi
r

F (x)n−2dx
F (vi)n−2

∀vi ≥ r (1)

It is easy to see that limvi→r+b
0(vi) = 0, which implies that the rate at which

a bidder with valuation r is willing to increase his bid in return for a greater
probability of winning is zero (although increasing in vi). But as long as v1 > r,
bidder 1’s willingness to increase her bid is strictly positive, so that she has
an incentive to deviate upwards. Formally, given (1), bidder 1’s maximization
problem is

Max r P [b(vi) ≤ r]n−1(v1 − r) (2)

In order to be an optimal solution to the above problem, r must satisfy:

r = ArgMax r≥r F [b−1(r)]n−1(v1 − r) (3)

Substituting r by b(z) we can rewrite condition (3) as

r = ArgMax z≥b−1(r) F (z)n−1(v1 − b(z)) (4)

The marginal benefit of bidding b(z) above r in (4) must be non positive, thus

(n− 1)F (z)n−2f(z)(v1 − b(z))− b0(z)F (z)n−1 |z=r ≤ 0. (5)

Since limz→r+b
0(z) = 0, and f > 0, the term above is positive unless v1 − r ≤

0, which would leave a non positive profit to bidder 1. But she can obtain a
positive profit bidding less than v1. Therefore, condition (5) cannot be satisfied.7

positive expected profit.
5A proof of the uniqueness of equilibrium can be found in Lebrun (1999).
6This bidding strategy can be easily computed by standard methods, and can be found,

for example, in Riley and Samuelson (1981).
7A pure strategy equilibrium where bidder 1 bids v1 could be sustained if she won with

probability zero bidding below that point, that is, if one (or more) of her rivals bid always at
least v1. Of course, this ”overbidding” is a dominated strategy for the rival(s).
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2.2 A mixed strategy equilibrium

In this section we characterize an equilibrium in which, given v1, player 1 ran-
domizes her bid in some interval [b, b], while the other players bid according to
a strictly increasing bidding function b(vi). Bidders 2 to n with valuation be-
low b do not have any chance to win the auction, and we assume that they bid
their own valuation. We can distinguish two kinds of equilibria depending on the
value of v1. There is a cut-off point, bv1 such that if v1 > bv1 the bidders i with val-
uation vi ≥ b bid in the same interval as bidder 1 does. By contrast, if v1 ≤ bv1,
high valuation bidders will bid above the support of bidder 1’s random bid. We
denote by y(b) the valuation of a bidder i who bids b, that is, y(b) = b−1(b).
If v1 ≤ bv1, then y(b) < 1. Figure 1 illustrates the mixed strategy equilibrium
in this case.8 In Proposition 2 we give the equilibrium bidding strategies. We
first define the conditions that the points bv1, b, and y(b) must satisfy, and a
condition that b must satisfy in any mixed strategy equilibrium in undominated
strategies.9 To do it, we make an additional, simplifying assumption.

Assumption 1 Given v1, the function G(b) = F (b)n−1(v1− b) has a unique
maximum in [0, v1].

The next Lemma establishes that this maximum is the lower bound of bidder
1’s random bid.

Lemma 1 The infimum of the support of bidder 1’s random bid, b, must satisfy
the following condition:10

v1 = b+
F (b)

(n− 1)f(b) (6)

Proof. See Appendix.

Notice that in Lemma 1 we are not discussing the optimality (from the point
of view of bidder 1) of bidding b. What we do is to rule out any equilibrium
where the lower bound of her random bid is other than b.11

We now define some points which are necessary to characterize our equilib-
rium. We will see later on how these points have been arrived at.

8Lebrun (2002) gives an example where a similar equilibrium arises: in a three-bidder
asymmetric auction where one of the bidders’ valuation is known, two different equilibria
arise depending on how high that valuation is. The main difference with our model is that
the other bidders’ distributions of valuations are discrete.

9Notice that we have already ruled out any pure strategy equilibrium to this game (in
undominated strategies), and, moreover, any equilibrium in which bidder 1 plays a pure
strategy. Therefore, condition (6) given below is very general, and must be satisfied in any
equilibrium of the game.
10 In their pioneering analysis of asymmetric auctions, Maskin and Riley (1996) identified

the lowest bid of the bidder whose minimal valuation is highest (which in our case is v1), and
the same has also been recently reported by Lebrun (2004). Lemma 1 is a particular case that
can be derived from their results.
11Although Assumption 1 simplifies the proofs, it is not necessary to obtain our equilibrium,

nor for Lemma 1 to hold. If Assumption 1 did not hold and several points satisfied equation
(6), b would be the absolute maximum of G(b). Had G(b) several absolute maxima, our b
would be the largest among them.
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Figure 1: The mixed strategy equilibrium when v1 < bv1: bidder 1 randomizes
her bid in the interval [b, b]. Among her rivals, those with low valuations bid
below b, those with ”intermediate” valuations bid in the same interval as bidder
1, and the rest bid above b.

bidders’ 2 to n valuationbidder 1’s valuation

b

v1

1
1

0

vi

0

y(b)
b

b

v1

bids

Let bv1 be the bidder 1’s valuation at which
bv1 = (n− 2) + bF (b)n−1

(n− 2) + F (b)n−1
. (7)

Notice that b depends on v1, so that here we are defining a fixed point, where b
must satisfy equation (6) with v1 = bv1. As we said, bv1 is the maximal valuation
of bidder 1 such that her rivals bid above the support of her random bid.

If v1 ≤ bv1, let b and y(b) be the points satisfying the following conditions:12

F (y(b))n−1(v1 − b) = F (b)n−1 (v1 − b) (8)

(n− 2) ¡y(b)− b
¢
= (n− 1) (v1 − b) (9)

where, as we said, y(b) is the valuation of a bidder i who submits a bid of b.

If v1 > bv1, let b = v1 − (v1 − b)F (b)n−1 and y(b) = 1.
Further on (Lemmas 3 and 4), we will see that bv1, b and y(b) as defined in

equations (7), (8), and (9) exist and are unique.

12Notice that the points defined in these two equations depend again on v1, not only directly,
but also through b.

7



As long as v1 > 0, equations (6) to (9) imply 0 < b < b < v1 < y(b) ≤ 1.13

Proposition 2 There exists an equilibrium where bidder 1 randomizes her bid
in [b, b] with density h(x) and distribution function H(x) satisfying the differ-
ential equation

h(x) =

 1

F−1
h
F (b) n−1

q
v1−b
v1−x

i
− x
− (n− 2)
(n− 1)(v1 − x)

H(x) ∀x ∈ (b, b]

which implies H(b) = 0, and bidder i = 2, ..., n bids according to the function
b(vi), where

b(vi) =


vi vi ≤ b

v1−
(v1−b)F (b)n−1

F (vi)n−1
b < vi ≤ y(b)

vi −
vi
y(b)

F (x)n−2dx

F (vi)n−2
− [y(b)−b]F (y(b))

n−2

F (vi)n−2
vi > y(b)

Notice that if v1 > bv1 the bidding strategy of bidders 2 to n consists only of
the two first regions given above: y(b) = 1, so that no bidders have valuation
above y(b). The equilibrium is then very similar to the one described by Vickrey
(1961), and Kaplan and Zamir (2000) for the two-bidder case. By contrast, if
v1 < bv1 the bidders with valuations higher than y(b) bid above the support of
bidder 1’s random bid, competing for the good among themselves, rather than
with bidder 1.14

To prove Proposition 2 we do as follows: first, we characterize the bidding
strategy of bidders 2, ..., n assuming they behave symmetrically, and given that
bidder 1 randomizes her bid in the interval [b, b]. Then we prove that h(x) is the
density function of player 1’s random bid and that H is a distribution function
with no mass point at b (Lemma 2); that b and y(b) must satisfy equations
(8) and (9) whenever v1 < bv1, and that they exist and are unique (Lemma 3),
that bidders 2 to n may bid above bidder 1’s random bid support if and only
if v1 < bv1, where bv1 exists and is unique (Lemma 4) and, to finish, that the
bidding functions given above are optimal globally, i.e., that they constitute an
equilibrium to the game (Lemma 5).

As we have seen, the bidding strategy of bidders 2 to n, b(vi), can be divided
in two or three different regions of values vi depending on v1:

13 If v1 = 0 we have b = b = y(b) = 0.
14According to the results in Lebrun (2002) if the equilibrium described above were unique,

infinitesimal changes in the distribution of valuations would lead to infinitesimal changes in
the equilibrium of the game, that is, the Nash equilibrium would be continuous with respect
to the distribution of valuations. This would imply that when the support of one bidder’s
valuation in an asymmetric auction shrinks from a nondegenerate interval to a point {v1} the
limit of the pure strategy equilibria would converge to our mixed strategy equilibrium.
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(1) We assume that the bidders with valuation vi ∈ [0, b] bid their own val-
uation. They have no chance of winning, since player 1 bids at least b.
Therefore, to bid vi is a best response for them.

(2) For vi > b, bidder i 6= 1 should bid at least b, since bidding below b yields
an expected profit of zero. Assume that bidders 2 to n bid symmetrically.
Denote by bs(vi) the bidding function of these players that would make
bidder 1 indifferent about bidding any quantity in [b, b]. Its inverse, b−1s ,
must satisfy the following equation:

F [b−1s (x)]n−1(v1 − x) = F (b)n−1(v1 − b) ∀x ∈ [b, b]. (10)

Doing the change of variable b−1s (x) = vi, and rearranging we obtain15

bs(vi) = v1 − (v1 − b)F (b)n−1

F (vi)n−1
. (11)

Of course, the optimal bidding strategy for bidders 2 to n depends on
the probability distribution of bidder 1’s random bid. Therefore, we will
choose that distribution function in order to make bidding according to
bs(vi) optimal for bidder i with valuation vi ∈ [b, y(b)].

(3) As we have said, if v1 is low enough, bidders with a high valuation will
bid above b (for example, it is easy to see that this will be the case if
v1 = 0). Now, provided v1 is low enough (namely provided that v1 < bv1)
there will be a third region of valuations, vi ∈ [y(b), 1], where player i
bids above b, so that he knows that he will not be beaten by player 1 and
that he is competing against only n − 2 bidders. A necessary condition
for equilibrium in this region is:

vi = argmax z F (z)
n−2(vi − bt(z)). (12)

And also, bt(y(b)) = b.

Then, we must have:

bt(vi) = vi −
R vi
y(b)

F (x)n−2dx

F (vi)n−2
−
£
y(b)− b

¤
F (y(b))n−2

F (vi)n−2
. (13)

We now study how bidder 1 must randomize her bid to make bs optimal for
her rivals.
15Note that bs corresponds to bidder i’s optimal bidding function in the second region of

valuations (the subindex ”s” stands for ”second”). For expositional purposes, it is useful to
refer to this function in particular (instead of the bidding function in Proposition 2). Also,
since bs is the way bidders 2 to n must bid in order to make bidder 1 indifferent, note that it
can be defined in a wider interval of valuations, [b, 1] than the one in which it is the optimal
bidding function. The same happens for the function bt below, which can be defined in a
larger interval of valuations than the one where it is the optimal strategy.
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Lemma 2 Denote the distribution function of bidder 1’s random bid by H,
assume it is differentiable, and denote its derivative by h. The function H must
satisfy the following differential equation:

h [bs(vi)] =

·
1

(vi − bs(vi))
− (n− 2)
(n− 1)(v1 − bs(vi))

¸
H [bs(vi)] (14)

given the initial condition H(b) = 1.16

Proof. See Appendix.

Doing the change of variable bs(vi) = x and using equation (10) we obtain
the expression for h given in Proposition 2.
Equation (14) stems from the maximization problem of bidders 2 to n. They

can only win the auction if they submit a bid above that of bidder 1. Instead of
computing the optimal bidding strategy as usual, what we do is to compute the
adequate H (probability that bidder 1’s random bid is below a certain point)
in order to make our function bs optimal.
Note that we cannot use the initial condition H(b) = 0 to find a particular

solution of equation (14): given that bs(b) = b, the right hand side of the
equation is not continuous at that point, and one of the necessary conditions for
existence of a solution is violated. Instead, as we have seen, we use the condition
H(b) = 1. As h is not defined at b, we let h(b) be any positive constant. Note
that this is consistent with the fact that H(b) = 0, which implies that there is
no mass point at b.
Now we are ready to give a condition y(b) must satisfy and to establish the

existence and uniqueness of b and y(b):

Lemma 3 When v1 ≤ bv1,
(i) y(b) is the point at which b0s(y(b)) = b0t(y(b)).
(ii) b and y(b) satisfying equations (8) and (9) exist and are unique.

Proof. See Appendix.

Loosely speaking, condition (i) in Lemma 3 requires ”smoothness” of the
bidding function of bidders 2 to n. Together with the condition bt(y(b)) = b
given before, which requires continuity, we obtain equations (8) and (9) which
establish the points where the bidders ”shift” their bidding functions from bs to
bt.
Lemma 3 leads us to the next result.

Lemma 4 Bidders 2, 3,..., n bid above the support of bidder 1’s random bid if
and only if v1 < bv1, where bv1, as defined in equation (7) exists and is unique.
Proof. See Appendix.

Imposing condition (i) in Lemma 3 we compute the value of y(b) as a function
of v1. When v1 = bv1, then y(b) = 1 and so it is for higher values of v1.

16The Cauchy-Peano theorem on differential equations, among others, guarantees existence
of a solution to equation (14).
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When v1 > bv1 the equilibrium is very similar to the one described in Vickrey
(1961) for two bidders. In this case b is the maximal bid for all players, and to
compute it we just need to equate bidder 1’s profits when she bids b and when
she bids b (in which case she wins with probability one). When there are more
than two bidders we cannot use this method because, unless v1 is high enough, it
will be optimal for the highest bidders to bid more than b, and therefore, bidder
1 won’t win with probability one when she submits her highest bid. Instead, to
compute b, we need to find first y(b), the point satisfying condition (i) stated in
Lemma 3.
It is clear that bidder 1 maximizes her expected profits by bidding on [b, b].17

However, we have constructed the equilibrium bidding strategy of the other
bidders by imposing only the first order conditions for each interval of valuations.
We have not proved that our solution is a global maximum, nor have we checked
the second order conditions. This is done in the proof of Lemma 5, where we
state that this bidding strategy is indeed optimal for them.

Lemma 5 For every vi, bidding according to b(vi) in Proposition 2 is a global
maximizer of bidder i’s maximization problem.

Proof. See Appendix.

3 A comparison with the standard auction
Now we can try to compare this auction with a standard one (without reserve
price, and in which all valuations are private knowledge) from the point of view
of the bidders and the seller.
First, notice that our equilibrium can lead to inefficient outcomes: as long

as bidder 1 randomizes her bid, it is not guarantied anymore that the highest-
valuation bidder will win the object. Second, while it is obvious that bidder
1´s expected profit is lower in this auction, it is not clear whether the rest of
the bidders are worse or better off.18 Indeed, on the one hand they have an
advantage over bidder 1, which should allow them to perform better, but on
the other hand, player 1 may bid more aggressively, due to the disadvantage
she suffers.19 Moreover, her bid has a similar effect on her rivals as a random
reserve price, which can force them to bid more aggressively than they would
in the standard auction. Which of these two effects is stronger is not obvious.
Since the bidding is more or less aggressive depending on the valuation of bidder

17Note that bs(vi), bidder i’s bidding strategy making bidder 1 indifferent about bidding
on the interval [b, b] can be defined in a larger interval, namely [b, 1], and it is easy to prove
that bt(vi) > bs(vi) ∀vi > y(b) so that bidder 1 has not incentives to bid above b.
18 If bidder 1 bids b in the standard auction she wins with a higher probability than in the

asymmetric auction, since her rivals never bid up to their valuation. Therefore, the expected
profits to this bidder in the standard auction cannot be less than in the asymmetric one.
19Without further conditions on the distribution of the bidders’ valuations it is not easy

to compare bidder 1’s bid in the asymmetric auction with that of the standard auction.
However, we next show that if the bidders’ valuations are uniformly distributed, bidder 1
submits a higher bid in the asymmetric auction with probability one.
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1, it is not clear either whether the seller’s expected revenue in this auction is
higher or lower than that in the standard auction.
In this section we consider the case of three bidders whose valuations are

drawn from the uniform distribution on [0,1]. With this example we illustrate
the equilibrium described above, and compare the expected profits of the seller
and the buyers in the auction we have analyzed with those in a standard auction.
We obtain the following:

b =
2v1
3bv1 = 0.89411

b = 0.88157v1, y(b) = 1.1184v1 ∀v1 ≤ bv1
b = v1 − 4v31

27 , y(b) = 1 ∀v1 > bv1
bs(vi) = v1 − 4v31

27v2i

bt(vi) =
vi
2
+
0.3605v21

vi

h(x) =

"
1

2v1
9(v1−x)

p
3 (v1 − x) v1 − x

− 1

2(v1 − x)

#
H(x)

Figure 2: bs(vi) and bt(vi) where v1 = 0.5.
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An interesting property of the uniform distribution is that the lower bound
of bidder 1’s random bid, b, is precisely what bidder 1 would bid in the standard
auction, that is b = n−1

n v1. This implies that when the valuations are uniformly
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distributed, bidder 1 will always bid more aggressively than she would in a
standard auction.
In Figure 2 we draw bs(vi) and bt(vi) as defined in the interval [b, 1], for

the particular case where v1 = 0.5. In that case we have b = 0.44079 and
y(b) = 0.5592. Note that bs(vi) and bt(vi) satisfy the tangency condition stated
in Lemma 3. Figures 3 and 4 show, respectively, H(x) and h(x) when v1 = 0.5.

Figure 3: H(b) where v1 = 0.5.
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Figure 4: h(b) where v1 = 0.5.
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Now we can compute the expected profits of the buyers and seller. We
compute the expected profits to the participants in this kind of auction ex-
ante, that is, before they learn any valuations, and we compare these results

13



with those of a standard auction, in which all bidders’ valuations are private
information. To do it, we integrate numerically for all valuations of v1 from
0 to 1, (and then for each of the other bidders). We also use the results in
Vickrey (1961) to compute the same for the case of two bidders. The results
are given in the Tables 1 and 2. In columns 2 and 3 we write, respectively,
the ex ante expected profits of participating in our asymmetric auction and a
standard auction. In the fourth column we write the difference between the
second and the third one, that is, the gains to each agent of participating in
our asymmetric auction instead of the standard one. In the fifth and sixth rows
we write, respectively, the rents that the seller extracts from bidder 1 and from
each of the other bidders.

Table 1: Expected profits in the case where n = 2

Expected profit Asymmetric Auction Symmetric A. Gains
Player 1 0.0833 0.1667 -0.0833
Player 2 0.2007 0.1667 0.034
Seller 0.3694 0.3333 0.0361
Revenue from bidder 1 0.1875 0.1667 0.0208
Revenue from bidder 2 0.1819 0.1667 0.0152
Social Surplus 0.6534 0.6667 -0.0132

Table 2: Expected profits in the case where n = 3

Expected profit Asymmetric Auction Symmetric A. Gains
Player 1 0.03704 0.0833 -0.0463
Player i = 2, 3 0.0985 0.0833 0.0151
Seller 0.5101 0.5 0.0101
Revenue from bidder 1 0.1426 0.1667 -0.0241
Revenue from bidders 2, 3 0.1837 0.1667 0.0170
Social Surplus 0.7440 0.75 -0.0060

As we see, with n = 2 the player whose valuation has not been revealed
benefits from the revelation of information less than the seller does. When
n = 3 the opposite happens. However, in both cases all the agents but bidder
1 have a higher expected profit in the asymmetric auction than in the standard
one. As for the rents that the seller extracts from the agents, we see that, with
n = 2 both rents are higher in the asymmetric auction than in the standard one,
while with n = 3 the rents extracted from bidder 1 are lower than those in the
standard auction. The loss of efficiency is not very large compared to the seller’s
increase in expected profits. Hence, an authority interested in both efficiency
and maximal revenue may still prefer this kind of mechanism to the standard
auction when he knows the valuation of one of the bidders. Comparing our
results with those of KZ we observe that, in the particular case of the uniform
distribution and two bidders, the seller’s expected revenues are slightly higher
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when the seller reveals the ranking of the valuations than when he announces
one of them (0.3696 instead of 0.3694). To finish, it may be interesting to point
out that, conditional on bidder 1’s valuation, the expected revenue to the seller
will be higher in the asymmetric auction (compared to the standard one) if
v1 > 0.43 when n = 2 and if v1 > 0.47 when n = 3.20

4 Conclusions
When one of the bidders’ valuations is common knowledge no equilibrium in
pure strategies exists. We have characterized a mixed strategy equilibrium in
which the bidder whose valuation is common knowledge randomizes her bid,
while the other players play pure strategies.
When the valuation which is revealed is low, the bidders with high valuations

compete for the object among themselves rather than with bidder 1, whom they
will beat for sure. As we have seen, when a bidder i has the same valuation as
bidder 1, he bids in the support of bidder 1’s random bid. This implies that
in this auction the inefficiencies go in both senses: player 1 can be beaten by a
lower valuation rival but can also beat a higher valuation one.
As for the seller’s expected revenue, revealing one of the bidders’ valuations

may result in more aggressive bidding from all the players if that valuation is
high, thus enhancing the seller’s expected profit. However, when the valuation
which is revealed is low enough, the effect will be the opposite. Assuming that
ex-ante the bidders’ valuations are symmetrically distributed, and then one of
them is revealed, we compute the seller’s expected profit for the particular case
of the uniform distribution and two and three bidders. We observe that in these
cases it is in the interest of the seller to reveal one of the bidders’ valuations if
he has that information. The bidder whose valuation has been revealed is, as
expected, worse off, while her rivals are better off.
Note that if a second-price auction took place under our assumptions, it

would still be equivalent to a symmetric second-price auction: the fact that af-
ter the valuations have been drawn one of them is revealed does not change the
bidders’ strategic behavior, given that in both cases truthful revealing is opti-
mal for the bidders.21 Therefore, our comparison of the first-price asymmetric
auction with a standard auction (where no valuation is revealed) applies too to
the asymmetric second-price auction, i.e. although the effect on the seller’s ex-
pected revenue is ambiguous, we know that at least in some cases (the uniform
distribution with 2 or 3 bidders) the first-price auction yields more revenues
than the second-price auction does.
As we said, when the bidder whose valuation is revealed is the winner of a

previous auction or the incumbent in a market, it is likely that her valuation
is high. In this case, our numerical computation is not useful, since we were

20Both numbers rounded to the second decimal. The first value was already given by Vickrey
(1961).
21 In case the common knowledge valuation were the highest, equivalence would hold only

if the second highest bidder still submits his bid.
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assuming ex-ante symmetric distributions of valuations. However, under this
assumption, the policy of announcing the incumbent’s valuation will indeed
increase in the seller’s expected profit.
Notice also that the random bid of bidder 1 operates, from the point of view

of the other bidders, as a random (or secret) reserve price. Hence, our analysis
can help to analyze such scenarios.
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5 Appendix

Proof of Lemma 1
Note that

b = ArgMaxb F (b)
n−1(v1 − b), (15)

whose FOC yields (6). We prove Lemma 1 by contradiction.
Suppose that an equilibrium exists where the lower bound of bidder 1’s ran-

dom bid is b∗ 6= b. The optimal response for a bidder i with valuation vi > b∗

implies bidding at least b∗, since bidding less yields a zero expected profit.
Therefore, bidder 1 will win the auction if and only if all her rivals have valua-
tions less than or equal to b∗. Her expected profit is F (b∗)n−1(v1 − b∗).
In undominated strategies bidders 2, ..., n do not bid above their valuation,

so b(vi) ≤ vi. By bidding b, bidder 1 obtains an expected profit of
F (b−1(b))n−1(v1− b) ≥ F (b)n−1(v1− b) > F (b∗)n−1(v1− b∗). Hence, bidding b∗

cannot be optimal for bidder 1. ¥

Proof of Lemma 2
In order to sustain the mixed strategy equilibrium, bidders 2 to n with valua-
tions in [b, y(b)] must bid according to the function bs(vi). These players, who
bid in the interval [b, b] face the following maximization problem:

MaxzH(bs(z))F (z)
n−2(vi − bs(z)) ∀z ∈ [b, y(b)] (16)

where bs is the bidding function given in (11). In equilibrium the derivative
with respect to z, evaluated at vi must be zero. Differentiating bs(vi) we obtain
b0s(vi) =

(n−1)f(vi)(v1−bs(vi))
F (vi)

. Simplifying and rearranging, we get equation (14).

We now show that h is a density function, i.e., h(x) ≥ 0 ∀x ∈ [b, b], and that
H(b) = 0.22

• h is a density function.

We prove this by contradiction. Denote by M(vi) the term in brackets
multiplying H in equation (14). We show first that M ≥ 0 ∀vi ∈ [b, y(b)]. This
holds if

(n− 1)(v1 − bs(vi)) ≥ (n− 2)(vi − bs(vi))

rearranging and substituting bs by its value in (11) we obtain

(n− 2) (v1 − vi) ≥ −(v1 − b)F (b)n−1

F (vi)n−1
. (17)

The left (right) hand side is strictly decreasing (increasing) in vi. Using equations
(8) and (9) it is easy to see that condition (17) holds with equality when vi =

22As we have said, vi ∈ [b, y(b)] implies bs(vi) ∈ [b, b]. To simplify notation, in this proof we
often denote the argument of h or H as x ∈ [b, b] (instead of bs(vi)).
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y(b). Therefore, the inequality holds strictly when vi < y(b). Since M > 0
∀vi < y(b) we must have that sign(h) = sign(H) ∀vi < y(b).

Now, given that H is the primitive of h and that H(b) = 1 we have

H(x) = 1−
Z b

x

h(s)ds ∀x ∈ [b, b].

Suppose ∃z ∈ (b, b) such that h(z) < 0. Then H(z) < 0 and, since H is continu-
ous,23 ∃x ∈ (z, b) such thatH(x) = 0. LetX = min {x > z such that H(x) = 0}.
Then H(X) = 1 − R b

X
h(s)ds = 0, so

R b
X
h(s)ds = 1. Note that by continuity,

both h and H must be negative in the interval [z,X).24

On the other hand H(z) = 1− R b
z
h(s)ds = 1−

³RX
z

h(s)ds+
R b
X
h(s)ds

´
=

0− RX
z

h(s)ds. But
RX
z

h(s)ds < 0, so H(z) > 0. Contradiction.

• H(b) = 0.

Although we have arbitrarily set h(b), we can prove that limx−→b+ H (x) = 0.
Note that it follows that H(b) = 0, since H must be non-decreasing. What we
do is to prove that limvi−→b+ h [bs(vi)] is bounded. Given that, we will have:

lim
vi−→b+

H [bs(vi)] = lim
vi−→b+

h [bs(vi)]

M(vi)
=

C

∞ = 0.

Differentiating equation (14) with respect to vi we have h0 =M 0H +Mh; Sub-
stituting h we get h0 =M 0H +M (MH) =

¡
M 0 +M2

¢
H. We have

limvi−→b+ h0 [bs(vi)] = limvi−→b+
£
M 0 +M2

¤
H.We show that this limit is posi-

tive (in fact limvi−→b+
£
M 0 +M2

¤
=∞). Therefore, h0 is positive. As h is con-

tinuous and positive in (b, b] and its slope is positive at b+, limvi−→b+ h [bs(vi)]
must be finite.
To compute this limit, take equation (14) and substitute bs(vi) by its value

in equation (11). We obtainM as a function of vi. DifferentiatingM we obtain:

M 0 +M2 = F (vi)
n−2

"
(n− 1)f(vi)K − F (vi)

n

[(vi − v1)F (vi)n−1 +K]
2 −

(n− 2)f(vi)
K

#

+

·
F (vi)

n−1

F (vi)n−1(vi − v1) +K
− (n− 2)F (vi)

n−1

(n− 1)K
¸2

Where K = (v1 − b)F (b)n−1.
Doing some computations, taking into account that (v1−b) = F (b)

(n−1)f(b) , and
taking limits, we obtain:

lim
vi−→b+

£
M 0 +M2

¤
=

F (b)2n−2

[0]2
− (n− 2)f (b)

2

F (b)2
=∞

23 Since it is differentiable.
24Here we use the fact that h is differentiable (and therefore continuous) in (b, b], as it is

the product of two functions (M and H) that are so.
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¥

Proof of Lemma 3
(i) Take the functions bs and bt as defined in all the interval [b, bs(1)] and [b, bt(1)]
respectively. Suppose that b0s(y(b)) > b0t(y(b)). Since bs(y(b)) = bt(y(b)) and
both functions are continuous, we must have bs(x) > bt(x) in a neighborhood
at the right of y(b). Suppose that bidder 1 bids b0 > b. Her expected profit is
F [b−1t (b0)]n−1(v1− b0), which is larger than F [b−1s (b0)]n−1(v1− b0), her expected
profit of submitting any bid b ∈ [b, b]. Therefore, it is in the interest of player
1 to deviate bidding above b. (As bs was defined as the way bidders 2 to n
should bid to make bidder 1 indifferent between all her possible bids, as long as
these bidders bid below bs when their valuations are above y(b) bidder 1 will be
strictly better off bidding above b.)
Suppose now that b0s(y(b)) < b0t(y(b)). Deriving the first order conditions to

(12) and (16) we show that b0s(y(b)) < b0t(y(b)) would imply h(y(b)) < 0, which
is impossible. First, from (12) we have that bt must satisfy

b0t(vi)F (vi) = (n− 2)f(vi)(vi − bt(vi))

From the first order condition of the maximization problem (16) we have:

b0s(vi)F (vi) =
(n− 2)f(vi)H(bs(vi))(vi − bs(vi))

H(bs(vi))− h(bs(vi))(vi − bs(vi))

Now, evaluating both equations at y(b), taking into account that bs(y(b)) = b,
simplifying and rearranging we have that b0s(y(b)) < b0t(y(b)) implies:

h(bs[y(b)])
£
y(b)− b

¤
< 0

which cannot hold unless h(b) < 0, since y(b) > b.

(ii) Combining equations (8) and (9) we obtain:

F (y(b))n−1(y(b)− v1) =
1

n− 2F (b)
n−1 (v1 − b) (18)

Note that:

• Both sides of equation (18) are zero when v1 = y(b) = 0 (note that then
b = 0).

• Given y(b), the left hand side of equation (18) is decreasing in v1 while
the right hand side is non-decreasing in it (because of the "incentive com-
patibility constraint", since it is 1

n−2 times bidder 1’s expected profit).
Therefore, y(b) must be strictly increasing in v1, so that equation (18)
holds as v1 increases.

• Combining equations (7) and (18), it is easy to see that when v1 = bv1,
then y(b) = 1. Therefore, for any v1 < bv1, there exists a unique y(b)
satisfying equation (18).
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• Equation (9) can be rearranged to obtain b = (n− 1) v1 − (n− 2) y(b).
Since y(b) is unique, so is b. ¥

Proof of Lemma 4
Deriving the first order condition from (12) and differentiating equation (11) we
obtain

b0t(vi) =
(n− 2)f(vi)(vi − bt(vi))

F (vi)
(19)

b0s(vi) =
(n− 1)f(vi)(v1 − bs(vi))

F (vi)
(20)

Equating the slopes of bs and bt, and simplifying we obtain:

(n− 1) (v1 − bs(vi)) = (n− 2) (vi − bt(vi))

Imposing bt(vi) = bs(vi), substituting bs(vi) by its value from equation (11),
simplifying, and rearranging we have:

vi = v1 +
(v1 − b)F (b)n−1

(n− 2)F (vi)n−1
. (21)

Note that the left hand side of equation (21) increases with vi while the right
hand side decreases. It is clear that if v1 is high (for example, if v1 = 1) equation
(21) does not have a solution on [0, 1]. This will happen when evaluating equa-
tion (21) at vi = 1 the right hand side is still greater than the left hand side,

that is, when 1 < v1 +
(v1−b)F (b)n−1

(n−2) , or, rearranging, when v1 > bv1. On the
other hand, we can rewrite equation (7) as:

F (b)n−1(v1 − b) = (n− 2)(1− v1) (22)

The left hand side is the expected profit to bidder 1. It is zero for v1 = 0 and
non-decreasing in v1.

25 The right hand side is positive if v1 = 0 and strictly
decreasing in v1. Hence, a unique v1, bv1, satisfies the above condition. ¥
Proof of Lemma 5
We have described the optimal strategy of bidders i = 2, .., n but we have not
proved that our solution is a global maximum, and we have not checked the
second order conditions. We proceed by regions:
1) Bidders with valuation vi ≤ b : A bidder has probability zero of winning

and hence, an expected profit of zero. Bidding above b implies negative expected
profit, since there is a positive probability of winning and paying a price higher
than one’s own valuation. Thus, there are no incentives to bid above b, while a
player is indifferent bidding any quantity below it.
2) Bidders with valuation vi ∈ (b, y(b)] : bidder i has a positive expected

profit bidding according to bs(vi). Thus he has not incentives to deviate by

25Because of the incentive-compatibility constraint.
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bidding less than b, which implies zero profits. We also need to show that
bidding according to bt(z) with z > y(b) is not optimal for bidders in this

region. To see that, it is enough to show that dE(πvi (z))

dz < 0 ∀z > y(b), that is,
the expected profit of a player type vi < y(b) who acts as if she were of type
z ≥ y(b) decreases with z. We have E(πvi(z)|z > y(b)) = F (z)n−2(vi − bt(z)).
Differentiating with respect to z, substituting bt(z) by its value in (13), and
b0t(z) by its derivative, and simplifying we obtain E0(π(z)) = vi − z, which is
negative ∀z > y(b) > vi. On the other hand, if v1 is high enough so that bidders
i to n bid only in two regions, it is easy to see that bidding above b cannot
be optimal: by bidding b a player obtains the good with probability one, while
bidding above only implies paying a higher price for it.
It is also necessary to check that bidding according to bs(vi) is indeed the

best strategy for players with valuation vi ∈ [b, y(b)], that is, that bs(vi) is a
maximum of the objective function. From the first order condition of problem
(16) we have

dE(πvi(z))

dz
= −b0s(z)H(bs(z))F (z)n−2+

+
£
h(bs(z))b

0
s(z)F (z)

n−2 + (n− 2)F (z)n−3f(z)H(bs(z))
¤
(vi − bs(z)) (23)

which is zero evaluated at z = vi ∀vi ∈ [b, y(b)]. Now, suppose a bidder type vi
behaves as if he were of type z < vi. Expression (23) would be zero if vi = z.
Since vi is greater than z, the second term, which is positive, will be greater
than it was when vi = z. Therefore, the expected profit increases with z and, as
long as z < vi, it is in the interest of the bidder to increase his bid. Conversely,
if the bidder acts as if he were of type z > vi, the term (vi−bs(z)) decreases and
so does the second term in (23), which implies that the derivative is negative,
and therefore it is in the bidder’s interest to decrease his bid. Hence, bidding
bs(vi) is optimal for a bidder of type vi ∈ [b, y(b)].
3) Bidders with valuation vi > y(b) : Again, bidding less than b implies

zero expected profit, while bidding above bidder i can obtain a positive profit.
Second, we need to show that bidding in the interval [b, b] is not optimal for
bidders in this region. As before, introducing in equation (23) the valuation of
a bidder in this region we have that for all z ∈ [b, y(b)] the derivative of the
expected profit with respect to z is positive, that is, it is in the interest of player
i to increase his bid. Finally, we can use the same reasoning to show that our
bt(vi) is a maximizer of the problem (12) and not a minimum: differentiating
the expression in (12) we get the derivative of the expected profit with respect
to vi. If i behaves as if he were type z < vi this derivative is positive, and if he
behaves as type z > vi it is negative. ¥
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