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Abstract. If f, g, h : Rn −→ R≥0 are non-negative measurable func-
tions such that h(x + y) is greater than or equal to the p-sum of f(x)
and g(y), where −1/n ≤ p ≤ ∞, p 6= 0, then the Borell-Brascamp-Lieb
inequality asserts that the integral of h is not smaller than the q-sum of
the integrals of f and g, for q = p/(np + 1).

In this paper we obtain a discrete analog for the sum over finite sub-
sets of the integer lattice Zn: under the same assumption as before, for
A,B ⊂ Zn, then

∑
A+B h ≥ [(

∑
rf (A) f)q + (

∑
B g)q]1/q, where rf (A) is

obtained by removing points from A in a particular way, and depending
on f . We also prove that the classical Borell-Brascamp-Lieb inequality
for Riemann integrable functions can be obtained as a consequence of
this new discrete version.

1. Introduction

As usual, we write Rn to represent the n-dimensional Euclidean space.
The n-dimensional volume of a compact set K ⊂ Rn, i.e., its n-dimensional
Lebesgue measure, is denoted by vol(K) (when integrating, as usual, dx will
stand for dvol(x)), and as a discrete counterpart, we use |A| to represent
the cardinality of a finite subset A ⊂ Rn.

We write πi1,...,ik , 1 ≤ i1, . . . , ik ≤ n, to denote the orthogonal projection
onto the k-dimensional coordinate plane Rei1 + · · · + Reik , and also write
π(i) = π1,...,i−1,i+1,...,n to represent the corresponding orthogonal projection
onto the i-th coordinate hyperplane Re1 + · · ·+ Rei−1 + Rei+1 + · · ·+ Ren.

Let Zn be the integer lattice, i.e., the lattice of all points with integer
coordinates in Rn, and let Zn≥0 =

{
x ∈ Zn : xi ≥ 0

}
.

Relating the volume with the Minkowski addition of compact sets, one is
led to the famous Brunn-Minkowski inequality. One form of it states that if
K,L ⊂ Rn are compact and non-empty, then

(1.1) vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n,
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with equality, if vol(K)vol(L) > 0, if and only if K and L are homothetic
compact convex sets. Here + is used for the Minkowski (vectorial) sum, i.e.,

A+B = {a+ b : a ∈ A, b ∈ B}
for any A,B ⊂ Rn. The Brunn-Minkowski inequality is one of the most pow-
erful theorems in Convex Geometry and beyond: it implies, among others,
strong results such as the isoperimetric and Urysohn inequalities (see e.g. [14,
s. 7.2]) or even the Aleksandrov-Fenchel inequality (see e.g. [14, s. 7.3]). It
would not be possible to collect here all references regarding versions, appli-
cations and/or generalizations of the Brunn-Minkowski inequality. So, for
extensive and beautiful surveys on them, we refer the reader to [1, 5, 10].

Regarding an analytical counterpart for functions of the Brunn-Minkowski
inequality, one is naturally led to the so-called Borell-Brascamp-Lieb inequal-
ity, originally proved in [2] and [3]. In order to introduce it, we first recall
the definition of the p-sum of two non-negative numbers, where p 6= 0 is
a parameter varying in R ∪ {±∞} (for a general reference for p-sums of
non-negative numbers, we refer the reader to the classic text of Hardy, Lit-
tlewood, and Pólya [7] and to the handbook [4]). We consider first the case
p ∈ R, with p 6= 0: given a, b > 0 we set

Sp (a, b) = (ap + bp)1/p.

To complete the picture, for p = ±∞ we set S∞ (a, b) = max{a, b} and
S−∞ (x, y) = min{a, b}. Finally, if ab = 0, we define Sp (a, b) = 0 for all
p ∈ R ∪ {±∞}, p 6= 0. Note that Sp (a, b) = 0, if ab = 0, is redundant for
all p < 0, however it is relevant for p > 0. The reason to modify in this
way the definition of p-sum given in [7] is due to the classical statement
of the Borell-Brascamp-Lieb inequality, which is collected below. In fact,
without such a modification, the thesis of the latter result would not have
mathematical interest.

The following theorem (see also [5] for a detailed presentation), as previ-
ously stated, can be regarded as the functional counterpart of the Brunn-
Minkowski inequality. In fact, a straightforward proof of (1.1) can be ob-
tained by applying (1.2) to the characteristic functions f = χK , g = χL and
h = χK+L with p =∞.

Theorem A (The Borell-Brascamp-Lieb inequality). Let −1/n ≤ p ≤ ∞,
p 6= 0, and let f, g, h : Rn −→ R≥0 be non-negative measurable functions
such that

h(x+ y) ≥ Sp (f(x), g(y))

for all x, y ∈ Rn. Then

(1.2)

∫
Rn

h(x) dx ≥ S p
np+1

(∫
Rn

f(x) dx,

∫
Rn

g(x) dx

)
.

Next we move to the discrete setting, i.e., we consider finite subsets of
Zn. Note that one cannot expect to obtain a discrete analog of the Borell-
Brascamp-Lieb inequality just by replacing integrals by sums since it is not
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even possible to get a Brunn-Minkowski inequality in its classical form for
the cardinality. Indeed, simply taking A = {0} to be the origin and any
finite set B ⊂ Zn, then

|A+B|1/n < |A|1/n + |B|1/n.

Therefore, discrete counterparts for both the Brunn-Minkowski inequality
and the Borell-Brascamp-Lieb inequality should either have a different struc-
ture or involve modifications of the sets.

In [6], Gardner and Gronchi obtained a beautiful and powerful discrete
Brunn-Minkowski inequality: they proved that if A,B are finite subsets of
the integer lattice Zn, with dimension dimB = n, then

(1.3) |A+B| ≥
∣∣DB
|A| +DB

|B|
∣∣.

Here DB
|A|, D

B
|B| are B-initial segments: for any m ∈ N, DB

m is the set of

the first m points of Zn≥0 in the so-called “B-order”, which is a particular
order defined on Zn≥0 depending only on the cardinality of B. For a proper

definition and a deep study of it we refer the reader to [6]. As consequences
of (1.3) they also get two additional nice discrete Brunn-Minkowski type
inequalities which improve previous results obtained by Ruzsa [12, 13].

2. Background and main results

An alternative to getting a “classical” Brunn-Minkowski type inequality
might be to transform (one of) the sets involved in the problem, either
by adding or removing some points. In this spirit, two (equivalent) new
discrete Brunn-Minkowski type inequalities are obtained in [8]. Similarly,
by removing points from the original set A ⊂ Zn, A 6= ∅, we may define a
new set rf (A) to reduce it according to a particular function f .

To this aim, we need the following notation. If Λ ⊂ Zk is finite, k ∈
{1, . . . , n}, for each m ∈ Z we write Λ(m) to represent the section of Λ at
m orthogonal to the (last) coordinate line Rek, i.e.,

Λ(m) =
{
p ∈ Zk−1 : (p,m) ∈ Λ

}
.

Next, given a non-negative function f : Λ −→ R≥0 (which will be often
referred to as a weight function), let m0 = m0(Λ, f) ∈ πk(Λ) be such that∑

x∈Λ(m0) f(x,m0) = maxm
∑

x∈Λ(m) f(x,m). Certainly the integer m0 pro-

viding the “maximum section” with respect to the weight function f does
not necessarily have to be unique. In that case, we define

(2.1) m0 = max

m′ ∈ πk(Λ) :
∑

x∈Λ(m′)

f(x,m′) = max
m

∑
x∈Λ(m)

f(x,m)

 .

Now we define the function

ρk : {Λ ⊂ Zk : Λ finite} −→ {Λ ⊂ Zk : Λ finite}
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given by

ρk(Λ) =

{
Λ \ {m0} if k = 1,

Λ \
(

Λ(m0)× {m0}
)

if k > 1;

i.e., ρk acts on Λ by just removing the “maximum section” Λ(m0), with
respect to the weight function f , from the set. To complete the picture we
set ρk(∅) = ∅.

Then, for 1 ≤ k < n, we write

A−k =
⋃

m∈πn,...,k+1(A−k−1)

(
ρk
(
A−k−1(m)

)
× {m}

)
,

with A−0 = A. Then we define

rf (A) = ρn
(
A−n−1

)
.

In other words, rf (A) is given by

(2.2) rf (A) =
⋃

m∈πn(A)\{m0(A−n−1,f)}

(
rf
(
A(m)

)
× {m}

)
.

Using this technique, in [8, Theorem 2.2] the following result is shown,
where ϕ : Zn −→ R≥0 is the constant weight function given by ϕ(x) = 1 for
all x ∈ Zn.

Theorem B. Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

(2.3) |A+B|1/n ≥
∣∣rϕ(A)

∣∣1/n + |B|1/n.
The inequality is sharp.

Equality holds in (2.3) when both A and B are lattice cubes. By a lattice
cube we mean (up to a translation) the intersection of a cube r[0, 1]n, r ∈ N,
with the lattice Zn.

In [8] it is shown that inequalities (1.3) and (2.3) are not comparable.

The main goal of this paper is to obtain a discrete analog of Theorem A,
in the spirit of Theorem B. This is the content of the following result.

Theorem 2.1. Let A,B ⊂ Zn be finite sets. Let −1/n ≤ p ≤ ∞, p 6= 0,
and let f, g, h : Rn −→ R≥0 be non-negative functions such that

h(x+ y) ≥ Sp (f(x), g(y))

for all x ∈ A, y ∈ B. Then

(2.4)
∑

z∈A+B

h(z) ≥ S p
np+1

 ∑
x∈rf (A)

f(x),
∑
y∈B

g(y)

 .

We note that, as in the case of Theorem B in [8], the above result holds
for finite subsets A,B ⊂ Rn, via a suitable construction of the set rf (A). We
state and prove Theorem 2.1 in the case of Zn for the sake of simplicity.
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As in the continuous setting, inequality (2.4) can be seen as a functional
extension of the discrete Brunn-Minkowski inequality (2.3), just by consid-
ering the characteristic functions f = χA , g = χB and h = χA+B , and taking
p =∞.

Moreover, we also show that the classical Borell-Brascamp-Lieb inequality
(1.2) can be obtained from the discrete version (2.4) under the mild (but
necessary) assumption that the functions f, g are Riemann integrable:

Theorem 2.2. The discrete Borell-Brascamp-Lieb inequality (2.4) implies
the classical Borell-Brascamp-Lieb inequality (1.2), provided that the func-
tions f, g are Riemann integrable.

We finish this section by recalling the simple inequality

(2.5) |A+B| ≥ |A|+ |B| − 1

for finite subsets A,B in Zn (see e.g. [15, Chapter 2]), which provides, in
particular, a 1-dimensional discrete Brunn-Minkowski inequality.

3. Proofs of the main results

Before the proof of Theorem 2.1 we state some auxiliary results. The
following lemma can be regarded as a discrete analog of the well-known
Cavalieri Principle.

Lemma 3.1. Let Ω ⊂ Zn be finite, let f : Ω −→ R≥0 and set f(Ω) ⊂
{k0, k1, . . . , kr} where 0 = k0 < k1 < · · · < kr. Then∑
x∈Ω

f(x) =
r∑
i=1

(ki−ki−1)
∣∣∣{x ∈ Ω : f(x) ≥ ki}

∣∣∣ =

∫ ∞
0

∣∣∣{x ∈ Ω : f(x) ≥ t}
∣∣∣ dt.

Proof. The second equality is immediate and, hence, we will show the first
one. To this aim, let x ∈ Ω and consider ks = f(x) for some s ∈ {1, . . . , r}
(we may assume, without loss of generality, that f(x) > 0). Then, with

δi(x) =

{
1 if f(x) ≥ ki,
0 otherwise,

we have

f(x) =

s∑
i=1

(ki − ki−1) =

r∑
i=1

(ki − ki−1)δi(x),

and thus we can conclude that∑
x∈Ω

f(x) =
∑
x∈Ω

r∑
i=1

(ki − ki−1)δi(x) =

r∑
i=1

(ki − ki−1)
∑
x∈Ω

δi(x)

=

r∑
i=1

(ki − ki−1)
∣∣∣{x ∈ Ω : f(x) ≥ ki}

∣∣∣. �
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We note that, under the conditions of the above result, on one hand we
may ensure that for any k′ ∈ (ki−1, ki),

(ki − ki−1)
∣∣∣{x ∈ Ω : f(x) ≥ ki}

∣∣∣ = (ki − k′)
∣∣∣{x ∈ Ω : f(x) ≥ ki}

∣∣∣
+ (k′ − ki−1)

∣∣∣{x ∈ Ω : f(x) ≥ k′}
∣∣∣.

On the other hand, for every k′ > km = maxx∈Ω f(x), we clearly have∣∣{x ∈ Ω : f(x) ≥ k′}
∣∣ = 0. Hence, the set {k0, k1, . . . , kr} is not relevant.

The following result essentially yields the case n = 1 of Theorem 2.1
and will be used to derive (2.4). Note, however, that it holds not only for
1-dimensional sets but also for n-dimensional sets, in contrast to the case
n = 1 of the classical Borell-Brascamp-Lieb inequality.

Lemma 3.2. Let Ω1,Ω2 ⊂ Zn be finite sets. Let −1 ≤ p ≤ ∞, p 6= 0, and
let f, g, h : Rn −→ R≥0 be non-negative functions such that

h(x+ y) ≥ Sp (f(x), g(y))

for all x ∈ Ω1, y ∈ Ω2. Then∑
z∈Ω1+Ω2

h(z) ≥ S p
p+1

 ∑
x∈Ω1\{x0}

f(x),
∑
y∈Ω2

g(y)

 ,

where x0 ∈ Ω1 is such that f(x0) = maxx∈Ω1 f(x).

Proof. Clearly, we may assume that
∑

x∈Ω1\{x0} f(x),
∑

y∈Ω2
g(y) > 0. We

consider the non-negative functions F,G,H : Rn −→ R≥0 given by

F (x) =
f(x)

A
, G(y) =

g(y)

B
, H(z) =

h(z)

Cp
,

where

A = max
x∈Ω1

f(x) > 0, B = max
y∈Ω2

g(y) > 0 and Cp = Sp (A,B) > 0.

Then
max
x∈Ω1

F (x) = max
y∈Ω2

G(y) = 1.

First, we show that, for any x ∈ Ω1, y ∈ Ω2, we have

(3.1) H(x+ y) ≥ min{F (x), G(y)}.
To this aim, it is enough to consider x ∈ Ω1, y ∈ Ω2 with f(x)g(y) > 0. For
p 6=∞, and writing θ = Bp/Cpp ∈ (0, 1), we get

h(x+ y) ≥ (f(x)p + g(y)p)1/p

= Cp

(
F (x)pAp +G(y)pBp

Cpp

)1/p

= Cp
(
(1− θ)F (x)p + θG(y)p

)1/p
≥ Cp min{F (x), G(y)}.
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For p = ∞, h(x + y) ≥ max{f(x), g(y)} ≥ C∞min{F (x), G(y)} clearly
holds. Therefore, we have shown (3.1).

The definition of F and G now implies that the level sets

{x ∈ Ω1 : F (x) ≥ t}, {y ∈ Ω2 : G(y) ≥ t}
are non-empty for any t ∈ [0, 1]. Moreover, from (3.1) we deduce that

{z ∈ Ω1 + Ω2 : H(z) ≥ t} ⊃ {x ∈ Ω1 : F (x) ≥ t}+ {y ∈ Ω2 : G(y) ≥ t}
and thus, by (2.5) together with the fact that f(x0) = maxx∈Ω1 f(x), we
have∣∣∣{z ∈ Ω1 + Ω2 : H(z) ≥ t}

∣∣∣ ≥ ∣∣∣{x ∈ Ω1 : F (x) ≥ t}
∣∣∣+
∣∣∣{y ∈ Ω2 : G(y) ≥ t}

∣∣∣− 1

=
∣∣∣{x ∈ Ω1\{x0} : F (x) ≥ t}

∣∣∣+
∣∣∣{y ∈ Ω2 : G(y) ≥ t}

∣∣∣
for all t ∈ [0, 1].

Finally, set {k0, k1, . . . , kr} ⊃ F
(
Ω1

)
∪ G

(
Ω2

)
∪ H

(
Ω1 + Ω2

)
, with 0 =

k0 < k1 < · · · < kr where, for some s ∈ {1, . . . , r}, ks = maxy∈Ω2 G(y) =
1 ≥ maxx∈Ω1\{x0} F (x). Then, by the above inequality, and using Lemma
3.1, we get∑
z∈Ω1+Ω2

h(z) =
∑

z∈Ω1+Ω2

CpH(z) = Cp

r∑
i=1

(ki − ki−1)
∣∣∣{z ∈ Ω1 + Ω2 : H(z) ≥ ki}

∣∣∣
≥ Cp

s∑
i=1

(ki − ki−1)
∣∣∣{z ∈ Ω1 + Ω2 : H(z) ≥ ki}

∣∣∣
≥ Cp

s∑
i=1

(ki − ki−1)
(∣∣∣{x ∈ Ω1\{x0} : F (x) ≥ ki}

∣∣∣
+
∣∣∣{y ∈ Ω2 : G(y) ≥ ki}

∣∣∣)
= Cp

 ∑
x∈Ω1\{x0}

F (x) +
∑
y∈Ω2

G(y)


= Cp

 1

A

∑
x∈Ω1\{x0}

f(x) +
1

B

∑
y∈Ω2

g(y)

 ,

≥ S p
p+1

 ∑
x∈Ω1\{x0}

f(x),
∑
y∈Ω2

g(y)

 .

For p 6=∞, the last inequality follows from the reverse Hölder inequality [4,
Theorem 1, p. 178],

a1b1 + a2b2 ≥
(
a−p1 + a−p2

)−1/p(
bq1 + bq2

)1/q
,

where q = p/(p + 1) is the Hölder conjugate of (−p) ≤ 1, just by taking
a1 = 1/A, a2 = 1/B, b1 =

∑
x∈Ω1\{x0} f(x) and b2 =

∑
y∈Ω2

g(y).
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The case p =∞ is immediate. �

Now we are in a position to prove our main result. The main idea of
the proof we present here is exploiting the above result (for n = 1) via an
inductive procedure, and it goes back to the classical proof of the Borell-
Brascamp-Lieb inequality (see e.g. [2, 3, 9, 11]). We present it here for the
sake of completeness.

Proof of Theorem 2.1. We may assume, without loss of generality, that both∑
x∈rf (A) f(x) > 0 and

∑
y∈B g(y) > 0.

If n = 1, the result follows immediately from Lemma 3.2 with Ω1 =
A, Ω2 = B and noticing that rf (A) = A \ {m0}; recall that f(m0) =
maxm∈A f(m), cf. (2.1).

Now suppose that n > 1 and assume that the theorem holds for dimension
n − 1. Let mA ∈ πn(A), mB ∈ πn(B), let Ω1 = A(mA) ⊂ Zn−1, Ω2 =
B(mB) ⊂ Zn−1 and consider the functions f1, g1, h1 : Rn−1 −→ R≥0 given
by

f1(x) = f(x,mA), g1(x) = g(x,mB), h1(x) = h(x,mA +mB),

for any x ∈ Rn−1. Since for all x ∈ Ω1, y ∈ Ω2 we have

h1(x+y) = h(x+y,mA+mB) ≥ Sp (f(x,mA), g(y,mB)) = Sp (f1(x), g1(y)) ,

we may assert that

∑
z∈A(mA)+B(mB)

h1(z) ≥ S p
(n−1)p+1

 ∑
x∈rf (A(mA))

f1(x),
∑

y∈B(mB)

g1(y)

 .

This, together with the fact that

(A+B)(mA +mB) ⊃ A(mA) +B(mB),

yields, in terms of f , g and h,

∑
z∈(A+B)(mA+mB)

h(z,mA +mB)

≥ S p
(n−1)p+1

 ∑
x∈rf (A(mA))

f(x,mA),
∑

y∈B(mB)

g(y,mB)

 .

(3.2)

Now, let f2, g2, h2 : Z −→ R≥0 be the functions defined by

f2(m) =
∑

x∈rf (A(m))

f(x,m), g2(m) =
∑

y∈B(m)

g(y,m), and

h2(m) =
∑

z∈(A+B)(m)

h(z,m).
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Let m0 = m0(A−n−1, f) ∈ πn(A) be the value for which

rf (A) =
⋃

m∈πn(A)\{m0}

(
rf (A(m))× {m}

)
holds (see (2.2)). Then we clearly have f2(m0) = maxm∈πn(A) f2(m).

Hence, (3.2) yields, in terms of f2, g2 and h2,

h2(mA +mB) ≥ S p
(n−1)p+1

(f2(mA), g2(mB))

for any mA ∈ πn(A), mB ∈ πn(B), and thus we may use Lemma 3.2 with
Ω1 = πn(A), Ω2 = πn(B) and the functions f2, g2 and h2 to obtain

∑
m∈πn(A)+πn(B)

h2(m) ≥ S p
np+1

 ∑
mA∈πn(A)\{m0}

f2(mA),
∑

mB∈πn(B)

g2(mB)

 .

This, together with the relations∑
m∈πn(A)+πn(B)

h2(m) =
∑

z∈A+B

h(z),
∑

mA∈πn(A)\{m0}

f2(mA) =
∑

x∈rf (A)

f(x),

∑
mB∈πn(B)

g2(mB) =
∑
y∈B

g(y),

finishes the proof. �

As a straightforward consequence of the above result we get the follow-
ing Brunn-Minkowski type inequality for discrete measures associated to
p-additive functions, in the spirit of (2.3). Indeed, it is enough to apply
Theorem 2.1 to the functions f = χAφ, g = χBφ and h = χA+Bφ.

Corollary 3.1. Let −1/n ≤ p ≤ ∞, p 6= 0, and let φ : Zn −→ R≥0 be a
non-negative function such that

φ(x+ y) ≥ Sp (φ(x), φ(y))

for any x, y ∈ Zn. Let µ be the discrete measure on Zn with mass function
φ, i.e., such that

µ(M) =
∑
x∈M

φ(x)

for any finite set M ⊂ Zn, and let A,B ⊂ Zn be finite. Then

µ(A+B) ≥ S p
np+1

(
µ
(
rφ(A)

)
, µ(B)

)
.

We conclude the paper by proving Theorem 2.2. To this aim, we need
the following definition.

Definition 3.1. Let K ⊂ Rn be a compact set. The k-discretization of K,
k ∈ N, is defined as

Kk =
{
x ∈ 2−kZn :

(
x+

[
0, 2−k

)n) ∩ intK 6= ∅
}
,

where, by intK, we denote the interior of K.
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Proof of Theorem 2.2. Let m ∈ N and let K = [−m,m]n. For each k ∈ N,
let Kk be the k-discretization of K.

We define the functions fk, gk : Kk −→ R≥0 given by

fk(x) = inf
z∈x+[0,2−k)n

f(z), gk(x) = inf
z∈x+[0,2−k)n

g(z),

and let hk : Kk +Kk −→ R≥0 be the function defined by

hk(x) = inf
z∈x+[0,2−k)n

h(z).

Note that for any x, y ∈ Kk we have

hk(x+ y) = inf
z∈x+y+[0,2−k)n

h(z)

≥ inf
z∈x+[0,2−k)n+y+[0,2−k)n

h(z)

= inf
z1∈x+[0,2−k)n, z2∈y+[0,2−k)n

h(z1 + z2)

≥ inf
z1∈x+[0,2−k)n, z2∈y+[0,2−k)n

Sp (f(z1), g(z2))

≥ Sp
(

inf
z1∈x+[0,2−k)n

f(z1), inf
z2∈y+[0,2−k)n

g(z2)

)
= Sp (fk(x), gk(y)) ,

and thus, since Kk is a finite set, we can use Theorem 2.1 to deduce that,
for any k ∈ N, we have

(3.3) 2−kn
∑

z∈Kk+Kk

hk(z) ≥ S p
np+1

2−kn
∑

x∈rf (Kk)

fk(x), 2−kn
∑
y∈Kk

gk(y)

 .

First, we clearly have

(3.4)

∫
Rn

h(x) dx ≥
∑

z∈Kk+Kk

2−knhk(z).

Now, using (3.4), (3.3) and taking into account that g is Riemann inte-
grable we immediately get

∫
Rn

h(x) dx ≥ lim
k→∞

S p
np+1

2−kn
∑

x∈rf (Kk)

fk(x), 2−kn
∑
y∈Kk

gk(y)


= S p

np+1

 lim
k→∞

2−kn
∑

x∈rf (Kk)

fk(x), lim
k→∞

2−kn
∑
y∈Kk

gk(y)


= S p

np+1

 lim
k→∞

2−kn
∑

x∈rf (Kk)

fk(x),

∫
K
g(x) dx

 ,

(3.5)
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because 2−kn
∑

y∈Kk
gk(y) is a lower sum of g for the partition Kk+[0, 2−k)n

of K.
In the following, we show that

(3.6) lim
k→∞

2−kn
∑

x∈rf (Kk)

fk(x) =

∫
K
f(x) dx.

Since the function f is Riemann integrable and non-negative, it is bounded
and then there exists a constant c ∈ R≥0 such that f(x) ≤ c for all x ∈ Rn,
which implies that fk(x) ≤ c for any x ∈ Kk. For the sake of brevity let
Kk,i = (Kk)

−
i−1\(Kk)

−
i , i = 1, . . . , n, i.e., the set of all points removed from

Kk in the i-th step of the construction of rf (Kk). Then it is clear that∣∣Kk,i

∣∣ =
∣∣π(i)(Kk,i)

∣∣ ≤ ∣∣π(i)(Kk)
∣∣,

and since K is compact,
(
π(i)(K)

)
k

= π(i)(Kk). So we have

0 =

∫
π(i)(K)

cdx = lim
k→∞

2−kn
∑

x∈
(
π(i)(K)

)
k

c ≥ lim
k→∞

2−kn
∑

x∈Kk,i

c,

which implies that

lim
k→∞

2−kn
∑

x∈Kk,i

fk(x) = 0.

This shows that

lim
k→∞

2−kn
∑

x∈rf (Kk)

fk(x) = lim
k→∞

2−kn
∑
x∈Kk

fk(x)− 2−kn
∑

x∈Kk\rf (Kk)

fk(x)


= lim

k→∞

2−kn
∑
x∈Kk

fk(x)− 2−kn
n∑
i=1

∑
x∈Kk,i

fk(x)


= lim

k→∞
2−kn

∑
x∈Kk

fk(x)−
n∑
i=1

lim
k→∞

2−kn
∑

x∈Kk,i

fk(x)

=

∫
K
f(x) dx.

This proves (3.6) and then, by (3.5),∫
Rn

h(x) dx ≥ S p
np+1

(∫
K
f(x) dx,

∫
K
g(x) dx

)
.

Since this is true for K = [−m,m]n, for every m ∈ N, the proof is now
concluded because

lim
m→∞

∫
[−m,m]n

φ(x) dx =

∫
Rn

φ(x) dx

for every non-negative measurable function φ : Rn −→ R≥0. �
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Note that the assumption that the functions f and g are Riemann in-
tegrable in Theorem 2.2 seems to be necessary. Indeed, in order to derive
the classical Borell-Brascamp-Lieb inequality (1.2) from the discrete version
(2.4), one needs to consider some functions to which one may apply (2.4),
and then the corresponding finite sums should approximate in some sense
the integrals of f and g. The point is that, while these sums may be seen
as Riemann sums over uniform partitions, there seems to be no natural way
to involve integrals of arbitrary (measurable) simple functions.
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[9] L. Leindler, On certain converse of Hölder’s inequality II, Acta Math. Sci. (Szeged)
33 (1972), 217–223.
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