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Abstract. Geometric and functional Brunn-Minkowski type inequali-
ties for the lattice point enumerator Gn(·) are provided. In particular,
we show that

Gn((1− λ)K + λL+ (−1, 1)n)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n

for any non-empty bounded sets K,L ⊂ Rn and all λ ∈ (0, 1).
We also show that these new discrete versions imply the classical

results, and discuss some links with other related inequalities.

1. Introduction and notation

As usual, we write Rn to represent the n-dimensional Euclidean space, and
we denote by ei the i-th canonical unit vector. We set (x, y) for the open
segment with endpoints x, y ∈ Rn. The n-dimensional volume of a compact
set K ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is denoted by vol(K),
and as a discrete counterpart, we use |A| to represent the cardinality of a
finite subset A ⊂ Rn.

Let Zn be the integer lattice, i.e., the lattice of all points with integral
coordinates in Rn. We will denote by Gn(·) the lattice point enumerator for
the integer lattice Zn, i.e., Gn(M) = |M ∩ Zn|. By bxc we denote the floor
function of the real number x, i.e., the greatest integer less than or equal
to x. Similarly, dxe represents the ceiling function of x, namely, the least
integer greater than or equal to x.

Finally, given a set M ⊂ Rn, χM represents the characteristic function of
M and, moreover, we denote by intM , bdM and clM its interior, boundary
and closure, respectively. Furthermore, given r > 0, rM stands for the set
{rm : m ∈M}.
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Relating the volume of the Minkowski addition of two sets in terms of
their volumes, one is led to the famous Brunn-Minkowski inequality (for
extensive survey articles on this and related inequalities we refer the reader
to [1, 5]). One form of it asserts that if λ ∈ (0, 1) and K and L are non-empty
compact subsets of Rn then

(1.1) vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n.

Here + is used for the Minkowski sum, i.e., A+B = {a+ b : a ∈ A, b ∈ B}
for any non-empty sets A,B ⊂ Rn. Moreover, from the homogeneity of the
volume, (1.1) is equivalent to

(1.2) vol
(
K + L

)1/n ≥ vol(K)1/n + vol(L)1/n.

Next we move to the discrete setting, i.e., we consider finite sets of (inte-
ger) points which are not necessarily full-dimensional unless indicated oth-
erwise. It can easily be seen that one cannot expect to obtain a Brunn-
Minkowski type inequality for the cardinality in the classical form. Indeed,
simply taking A = {0} to be the origin and any finite set B ⊂ Zn, we get

|A+B|1/n < |A|1/n + |B|1/n.
Therefore, a discrete Brunn-Minkowski type inequality should either have
a different structure or involve modifications of the sets. A first example is
the simple inequality

(1.3) |A+B| ≥ |A|+ |B| − 1,

for finite A,B ⊂ Zn (see e.g. [17, Chapter 2]).
In [6], Gardner and Gronchi obtained an engaging discrete Brunn-Min-

kowski inequality: they proved that if A,B are finite subsets of the integer
lattice Zn, with dimension dimB = n, then

(1.4) |A+B| ≥
∣∣DB
|A| +DB

|B|
∣∣.

Here DB
|A|, D

B
|B| are B-initial segments: for m ∈ N, DB

m is the set of the first

m points of Zn+ in the so-called “B-order”, which is a particular order defined
on Zn+ depending only on the cardinality of B. For a proper definition and
a deep study of it we refer the reader to [6]. As consequences of (1.4) they
also get two additional nice discrete Brunn-Minkowski type inequalities:

|A+B|1/n ≥ |A|1/n +
1

(n!)1/n

(
|B| − n

)1/n
and, if |B| ≤ |A|, then

|A+B| ≥ |A|+ (n− 1)|B|+
(
|A| − n

)(n−1)/n(|B| − n)1/n − n(n− 1)

2
.

These inequalities improve previous results obtained by Ruzsa in [14, 15].

An alternative to getting a “classical” Brunn-Minkowski type inequality
might be to transform (one of) the sets involved in the problem. In this
regard, in [10] an extension Ā of A, is defined for any non-empty and finite
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set A ⊂ Zn (for n = 1 then Ā = A ∪ {max(A) + 1}, whereas for n > 1 the
set Ā is obtained by first adding the maximal cardinality section of A, and
then applying the corresponding extension to every section of the latter new
set; we refer to Section 2.1 in [10] for its precise definition and properties).
Using this technique the following discrete counterpart for (1.2) was shown:

Theorem A ([10]). Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

(1.5)
∣∣Ā+B

∣∣1/n ≥ |A|1/n + |B|1/n.

The inequality is sharp.

Aiming to get a discrete version of (1.1), it is worth noting the following:
for any pair of non-empty finite sets A,B ⊂ Rn, by (1.3) (and using that
|A|, |B| ≥ 1), one has∣∣(1− λ)A+ λB

∣∣ ≥ ∣∣(1− λ)A
∣∣+
∣∣λB∣∣− 1 = |A|+ |B| − 1

≥ (1− λ)|A|+ λ|B| ≥
(
(1− λ)|A|1/n + λ|B|1/n

)n
,

where the last inequality follows from the convexity of the function t 7→ tn,
for t ≥ 0. Nevertheless this inequality is meaningless from a geometric point
of view: the point is that while the quantities |A|, |B| on the right-hand
side are reduced by the factors (1− λ) and λ, the sets (1− λ)A and λB on
the left-hand side have the same cardinality as A and B, respectively. A
possible solution would be to involve a more natural way to “count points”
according to dilatations, namely, using the lattice point enumerator Gn (for
compact subsets of Rn) instead of the cardinality | · | (for finite subsets of
Rn).

Again, one cannot expect to obtain a Brunn-Minkowski type inequality
for Gn in the classical form (1.1) (which, as we have mentioned before, would
be a similar situation to what happens for | · | regarding a discrete version of
(1.2)). Indeed, just by taking λ = 1/2, K = [0,m−ε]n and L = [0,m+ε/2]n,
with m ∈ N and 0 < ε < 1, one gets

(1.6) Gn

(
K + L

2

)1/n

= m < m+
1

2
=

Gn(K)1/n + Gn(L)1/n

2
.

Thus, as in (1.5), an alternative to get such an inequality for the lattice
point enumerator would be to consider a certain extension of (1−λ)K+λL.
So, we pose the following question:

Question 1.1. Given compact sets K,L ⊂ Rn containing points from Zn,
what is the “best” way to define a set Mλ such that (1 − λ)K + λL ⊂ Mλ

and

Gn(Mλ)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n

holds for a given λ ∈ (0, 1)?
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2. Main results

Here we give an answer to Question 1.1, which we view as a discrete
counterpart of (1.1):

Theorem 2.1. Let λ ∈ (0, 1) and let K,L ⊂ Rn be non-empty bounded sets.
Then

(2.1) Gn

(
(1− λ)K + λL+ (−1, 1)n

)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n.

The inequality is sharp.

We point out the following: when dealing with arbitrary non-empty sub-
sets K,L ⊂ Rn (i.e., not necessarily bounded), from (2.1) we immediately
get that

Gn

(
Mλ + (−1, 1)n

)1/n ≥ sup
m∈N

Gn

(
(1− λ)Km + λLm + (−1, 1)n

)1/n
≥ sup

m∈N

(
(1− λ)Gn(Km)1/n + λGn(Lm)1/n

)
= (1− λ)Gn(K)1/n + λGn(L)1/n

for any λ ∈ (0, 1), where Mλ = (1 − λ)K + λL, Km = K ∩ [−m,m]n and
Lm = L ∩ [−m,m]n. So, for the sake of simplicity, we will present here
the results in the setting of bounded sets, although they also hold in full
generality.

The core ingredient in the proof of Theorem 2.1 is its functional analogue.
To introduce such a result, we present an analytical counterpart for func-
tions of the Brunn-Minkowski inequality, the so-called Borell-Brascamp-Lieb
inequality, originally proved in [2] and [3]. To this end, we first recall the
definition of the p-mean Mλ

p (·, ·) of two non-negative numbers, where p is
a parameter varying in R ∪ {±∞} (for a general reference for p-means of
non-negative numbers, we refer the reader to the classic text of Hardy, Lit-
tlewood, and Pólya [9] and to the handbook [4]): we consider first the case
p ∈ R, with p 6= 0: given a, b > 0 we set

Mλ
p (a, b) =

(
(1− λ)ap + λbp

)1/p
.

For p = 0, we write Mλ
0 (a, b) = a1−λbλ. To complete the picture, for p =

±∞ we set Mλ
∞ (a, b) = max{a, b} and Mλ

−∞ (x, y) = min{a, b}. Finally,

if ab = 0, we define Mλ
p (a, b) = 0 for all p ∈ R ∪ {±∞}. Note that

Mλ
p (a, b) = 0, if ab = 0, is redundant for all p ≤ 0, however it is relevant for

p > 0. The reason to modify in this way the definition of p-mean given in
[9] is due to the classical statement of the Borell-Brascamp-Lieb inequality,
which is collected below. In fact, without such a modification, the thesis of
the latter result would not have mathematical interest.

The following theorem (see also [5] for a detailed presentation), as previ-
ously stated, can be regarded as the functional counterpart of the Brunn-
Minkowski inequality. In fact, a straightforward proof of (1.1) for compact
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sets K,L ⊂ Rn of positive volume can be obtained by applying (2.2) to the
characteristic functions f = χK , g = χL and h = χ

(1−λ)K+λL
with p = ∞.

Moreover, in the literature, the case p = 0 is referred to as the Prékopa-
Leindler inequality, which is a powerful tool, in particular when dealing
with log-concave functions.

Theorem B (The Borell-Brascamp-Lieb inequality). Let λ ∈ (0, 1). Let
−1/n ≤ p ≤ ∞ and let f, g, h : Rn −→ R≥0 be measurable functions such
that

h((1− λ)x+ λy) ≥Mλ
p (f(x), g(y))

for all x, y ∈ Rn. Then

(2.2)

∫
Rn
h(x) dx ≥Mλ

p
np+1

(∫
Rn
f(x) dx,

∫
Rn
g(x) dx

)
.

To state our main result and henceforth, we will need the following no-
tation: for a function φ : Rn −→ R≥0, we denote by φ� : Rn −→ R≥0 the
function given by

φ�(z) = sup
u∈(−1,1)n

φ(z + u) for all z ∈ Rn.

Such an extension of the function φ is nothing but the Asplund product ?
(also referred to as the sup-convolution, which can be regarded as the func-
tional analogue of the Minkowski sum in the setting of log-concave functions,
for which we refer the reader to [16, Section 9.5] and the references therein)
of the functions φ and χ(−1,1)n . Indeed,

φ�(z) = sup
u∈(−1,1)n

φ(z + u) = sup
u∈Rn

φ(z + u)χ(−1,1)n(−u)

= sup
u1+u2=z

φ(u1)χ(−1,1)n(u2) =
(
φ ? χ(−1,1)n

)
(z).

Our main result reads as follows:

Theorem 2.2. Let λ ∈ (0, 1) and let K,L ⊂ Rn be non-empty bounded sets.
Let −1/n ≤ p ≤ ∞ and let f, g, h : Rn −→ R≥0 be functions such that

h((1− λ)x+ λy) ≥Mλ
p (f(x), g(y))

for all x ∈ K, y ∈ L. Then

(2.3)
∑

z∈M∩Zn
h�(z) ≥Mλ

p
np+1

 ∑
x∈K∩Zn

f(x),
∑

y∈L∩Zn
g(y)

 ,

where M = (1− λ)K + λL+ (−1, 1)n.

Let B = {v1 . . . , vn} be a basis of an n-dimensional lattice Λ ⊂ Rn. Under
the same assumptions of the above result, we may consider the auxiliary
functions fB, gB, hB : Rn → R≥0 defined by

fB(x) = f(ϕ(x)), gB(x) = g(ϕ(x)) and hB(x) = h(ϕ(x)),
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for all x ∈ Rn, where ϕ : Rn → Rn is the linear (bijective) map given by
ϕ(x) =

∑n
i=1 xivi for any x = (x1, . . . , xn) ∈ Rn. Thus, as an immediate

consequence of the previous result (applied to the functions fB, gB and hB),
we get that ∑

z∈M∩Λ

h�B (z) ≥Mλ
p

np+1

 ∑
x∈K∩Λ

f(x),
∑

y∈L∩Λ

g(y)

 ,

where M = (1−λ)K+λL+ϕ((−1, 1)n) and h�B (z) = supu∈ϕ((−1,1)n) h(z+u)
for all z ∈ Rn. So, Theorem 2.2 also holds in the setting of an n-dimensional
lattice Λ ⊂ Rn.

We would like to point out that Theorem B admits an equivalent version
for p-sums (instead of p-means). In this regard, in [11] a discrete version of
the Borell-Brascamp-Lieb inequality for p-sums was provided. However, in
contrast to the continuous setting, where one may directly obtain Theorem
B from the corresponding version for p-sums (and vice versa) because of the
homogeneity of the volume, one cannot expect to derive in a similar way a
discrete version of Theorem B (like Theorem 2.2) from [11, Theorem 2.1].

In order to prove Theorem 2.2, we state an auxiliary result that will allow
us to get the one-dimensional case of the above-mentioned Brunn-Minkowski
type inequality for the lattice point enumerator (cf. Question 1.1).

Lemma 2.1. Let λ ∈ (0, 1) and let K,L,M ⊂ R be non-empty sets such
that (1 − λ)K + λL ⊂ M . If M =

⋃s
i=1[ai, bi] is a finite union of pairwise

disjoint compact intervals then

(2.4) G1(M) + ∆(M) ≥ (1− λ)G1(K) + λG1(L),

where ∆(M) denotes the number of non-integer extreme points of M , namely

∆(M) = |{ai /∈ Z : 1 ≤ i ≤ s}|+ |{bi /∈ Z : 1 ≤ i ≤ s}|.

Proof. We show the result by induction on the number of intervals s of
M . For the case s = 1, i.e., when M = [a1, b1] is a (non-empty) compact
interval, we have on the one hand that G1(M) = bb1c− da1e+ 1. Moreover,
denoting by a = inf K, b = supK, c = inf L and d = supL, we clearly get
G1(K) ≤ G1([a, b]) = bbc − dae+ 1 and G1(L) ≤ G1([c, d]) = bdc − dce+ 1.
On the other hand, the inclusion (1− λ)K + λL ⊂M implies that

bb1c ≥ b1 − χR\Z(b1) ≥ (1− λ) bbc+ λ bdc − χR\Z(b1)

and

−da1e ≥ −a1 − χR\Z(a1) ≥ −(1− λ) dae − λ dce − χR\Z(a1),

and thus

bb1c − da1e+ 1 ≥ (1− λ)(bbc − dae+ 1) + λ(bdc − dce+ 1)−∆(M).

This, together with the above upper bounds for the lattice point enumerator
G1 of K and L, yields G1(M) ≥ (1 − λ)G1(K) + λG1(L) − ∆(M), which
shows the case s = 1.
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So, we suppose that the inequality is true for s ≥ 1 and assume that
M =

⋃s+1
i=1 [ai, bi], where bi < ai+1 for all 1 ≤ i ≤ s.

Denoting by M1 = [a1, b1] and M2 =
⋃s+1
i=2 [ai, bi], we may assume, without

loss of generality, that M1∩((1−λ)K+λL) 6= ∅ (otherwise, the result follows
directly from the induction hypothesis applied to the sets K, L and M2).
Hence, we may define m = sup

(
M1 ∩ ((1 − λ)K + λL)

)
and then, since K

and L are bounded (because (1 − λ)K + λL ⊂ M), there exist k ∈ clK
and l ∈ clL such that (1 − λ)k + λl = m. Thus, considering the sets
K1 = {x ∈ K : x ≤ k}, K2 = K \K1, L1 = {x ∈ L : x ≤ l} and L2 = L\L1,
we clearly have that (1 − λ)K1 + λL1 ⊂ M1 and (1 − λ)K2 + λL2 ⊂ M2.
Therefore, applying the induction hypothesis (and taking into account that
M1 are M2 are disjoint), we get

G1(M) + ∆(M) = G1(M1) + G1(M2) + ∆(M1) + ∆(M2)

≥ (1− λ)
(
G1(K1) + G1(K2)

)
+ λ

(
G1(L1) + G1(L2)

)
= (1− λ)G1(K) + λG1(L),

as desired. �

Remark 2.1. One might think that if (1−λ)K +λL is itself a finite union
of (pairwise disjoint) compact intervals, the set M = (1− λ)K + λL would
yield a tighter inequality in (2.4) than other greater sets (with respect to set
inclusion). Nevertheless, this is not true in general: if we consider K =
[−2m,−1] ∪ [1, 2m] with m ∈ N, L = {0} and λ = 1/2, then for M =
(1 − λ)K + λL = [−m,−1/2] ∪ [1/2,m] we get G1(M) + ∆(M) = 2m + 2
whereas for M ′ = [−m,m] we have G1(M ′) + ∆(M ′) = 2m+ 1.

We notice that, as shown in (1.6), the quantity ∆(M) cannot be (in
general) omitted. However, we can rewrite (2.4) to provide an answer to
Question 1.1 for n = 1, which is the one-dimensional case of Theorem 2.1:

Lemma 2.2. Let λ ∈ (0, 1) and let K,L ⊂ R be non-empty bounded sets.
Then

(2.5) G1

(
(1− λ)K + λL+ (−1, 1)

)
≥ (1− λ)G1(K) + λG1(L).

The inequality is sharp.

Proof. Let M =
⋃
x∈(1−λ)K+λL[bxc , dxe]. Clearly, M is a finite union of

compact intervals (since K and L are bounded) containing (1 − λ)K +
λL. From Lemma 2.1 we then obtain G1(M) + ∆(M) ≥ (1 − λ)G1(K) +
λG1(L), which, together with the facts that ∆(M) = 0 and M ∩ Z =
((1− λ)K + λL+ (−1, 1)) ∩ Z, yields (2.5).

Finally, in order to show that equality may be attained, we consider K =
L = [0,m] with m ∈ N, for which G1

(
(1− λ)K + λL+ (−1, 1)

)
= m+ 1 =

(1− λ)G1(K) + λG1(L) for all λ ∈ (0, 1). �

Remark 2.2. Since both sides of (2.5) are invariant under translations by
integers of the sets K and L, we may replace (−1, 1) (in (2.5)) by any other
interval (m,m+ 2), with m ∈ Z.
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We note however that the solution to Question 1.1 provided by Lemma
2.2 (for n = 1), via M = (1− λ)K + λL+ (−1, 1), for all λ ∈ (0, 1), cannot
be in general improved by means of any other interval strictly contained in
(−1, 1). Indeed, by considering I = [−a, 1), with −1 < −a < 0, and taking
K = [−1, 0], L = [−2, 0] and λ ∈ (0, 1) such that λ+ a < 1, we get that

G1

(
(1− λ)K + λL+ I

)
= G1

(
[−1− λ− a, 1)

)
= 2

< 2 + λ = (1− λ)G1(K) + λG1(L).

The case I = (−1, a], for 0 < a < 1, is completely analogous and thus, no
interval smaller than (−1, 1) (with respect to set inclusion) can be taken into
account.

Now we state some auxiliary results. The following lemma can be regarded
as a discrete counterpart of the well-known Cavalieri Principle (see [11,
Lemma 3.1]).

Lemma 2.3 ([11]). Let Ω ⊂ Rn be a finite set, let f : Ω −→ R≥0 and
suppose f(Ω) ⊂ {k0, k1, . . . , kr} where 0 = k0 < k1 < · · · < kr. Then∑
x∈Ω

f(x) =
r∑
i=1

(ki−ki−1)
∣∣∣{x ∈ Ω : f(x) ≥ ki}

∣∣∣ =

∫ ∞
0

∣∣∣{x ∈ Ω : f(x) ≥ t}
∣∣∣dt.

Corollary 2.1. Let Ω ⊂ Rn be a bounded set, let f : Rn −→ R≥0 and
suppose f(Ω ∩ Zn) ⊂ {k0, k1, . . . , kr} where 0 = k0 < k1 < · · · < kr. Then∑

x∈Ω∩Zn
f(x) =

r∑
i=1

(ki − ki−1)Gn

(
{x ∈ Ω : f(x) ≥ ki}

)
.

The following result yields the case n = 1 of Theorem 2.2 and will be used
to derive (2.3).

Lemma 2.4. Let λ ∈ (0, 1) and let Ω1,Ω2 ⊂ R be non-empty bounded sets.
Let −1 ≤ p ≤ ∞ and let f, g, h : R −→ R≥0 be functions such that

h((1− λ)x+ λy) ≥Mλ
p (f(x), g(y))

for all x ∈ Ω1, y ∈ Ω2. Then

∑
z∈Ω∩Z

h�(z) ≥Mλ
p
p+1

 ∑
x∈Ω1∩Z

f(x),
∑

y∈Ω2∩Z
g(y)

 ,

where Ω = (1− λ)Ω1 + λΩ2 + (−1, 1).

Proof. Clearly, we may assume that
∑

x∈Ω1∩Z f(x),
∑

y∈Ω2∩Z g(y) > 0. We
consider the functions F,G,H,H� : R −→ R≥0 given by

F (x) =
f(x)

a
, G(y) =

g(y)

b
, H(z) =

h(z)

cp
, H�(z) =

h�(z)

cp
,
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where

a = max
x∈Ω1∩Z

f(x) > 0, b = max
y∈Ω2∩Z

g(y) > 0 and cp =Mλ
p (a, b) > 0.

Then

max
x∈Ω1∩Z

F (x) = max
y∈Ω2∩Z

G(y) = 1.

First, we show that, for any x ∈ Ω1, y ∈ Ω2, we have

(2.6) H((1− λ)x+ λy) ≥ min(F (x), G(y)).

To this aim, it is enough to consider x ∈ Ω1, y ∈ Ω2 with f(x)g(y) > 0. If
p 6= 0 and p 6=∞, writing θ = λbp/cpp ∈ (0, 1), we get

h((1− λ)x+ λy) ≥ ((1− λ)f(x)p + λg(y)p)1/p

= cp

(
(1− λ)apF (x)p + λbpG(y)p

cpp

)1/p

= cp
(
(1− θ)F (x)p + θG(y)p

)1/p
≥ cp min{F (x), G(y)}.

For p = 0, we have

h((1− λ)x+ λy) ≥ f(x)1−λg(y)λ = c0F (x)1−λG(y)λ ≥ c0 min{F (x), G(y)}.

For p = ∞, h((1 − λ)x + λy) ≥ max{f(x), g(y)} ≥ c∞min{F (x), G(y)}
clearly holds. Therefore, we have shown (2.6).

Next, note that the definition of F and G implies that the level sets

{x ∈ Ω1 : F (x) ≥ t}, {y ∈ Ω2 : G(y) ≥ t}

are non-empty for any t ∈ [0, 1]. Moreover, writing Ωλ = (1 − λ)Ω1 + λΩ2,
we deduce from (2.6) that

{z ∈ Ωλ : H(z) ≥ t} ⊃ (1− λ){x ∈ Ω1 : F (x) ≥ t}+ λ{y ∈ Ω2 : G(y) ≥ t}

and thus, by Lemma 2.2, we have

G1

(
{z ∈ Ωλ : H(z) ≥ t}+ (−1, 1)

)
≥ (1− λ)G1

(
{x ∈ Ω1 : F (x) ≥ t}

)
+ λG1

(
{y ∈ Ω2 : G(y) ≥ t}

)(2.7)

for all t ∈ [0, 1].
Note that, since H�(z + u) ≥ H

(
(z + u)− u

)
= H(z) for all u ∈ (−1, 1),

we also have

(2.8) {z ∈ Ω : H�(z) ≥ t} ⊃ {z ∈ Ωλ : H(z) ≥ t}+ (−1, 1).

Finally, set {k0, k1, . . . , kr} ⊃ F
(
Ω1 ∩ Z

)
∪G

(
Ω2 ∩ Z

)
∪H�

(
Ω ∩ Z

)
, with

0 = k0 < k1 < · · · < kr where, for some s ∈ {1, . . . , r},

ks = max
x∈Ω1∩Z

F (x) = max
y∈Ω2∩Z

G(y) = 1.
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Then, by Corollary 2.1, (2.7) and (2.8), we get∑
z∈Ω∩Z

h�(z) =
∑

z∈Ω∩Z
cpH

�(z) = cp

r∑
i=1

(ki − ki−1)G1

(
{z ∈ Ω : H�(z) ≥ ki}

)
≥ cp

s∑
i=1

(ki − ki−1)G1

(
{z ∈ Ω : H�(z) ≥ ki}

)
≥ cp

s∑
i=1

(ki − ki−1)
(

(1− λ)G1

(
{x ∈ Ω1 : F (x) ≥ ki}

)
+ λG1

(
{y ∈ Ω2 : G(y) ≥ ki}

))
= cp

(1− λ)
∑

x∈Ω1∩Z
F (x) + λ

∑
y∈Ω2∩Z

G(y)


= cp

1− λ
a

∑
x∈Ω1∩Z

f(x) +
λ

b

∑
y∈Ω2∩Z

g(y)


≥Mλ

p
p+1

 ∑
x∈Ω1∩Z

f(x),
∑

y∈Ω2∩Z
g(y)

 .

If p 6= 0 and p 6= ∞, the last inequality follows from the reverse Hölder
inequality (see e.g. [4, Theorem 1, page 178]),

a1b1 + a2b2 ≥
(
a−p1 + a−p2

)−1/p
(bq1 + bq2)

1/q
,

where q = p/(p + 1) is the Hölder conjugate of (−p) ≤ 1, just by taking

a1 = ((1 − λ)1/pa)−1, a2 = (λ1/pb)−1, b1 = (1 − λ)1/q
∑

x∈Ω1∩Z f(x) and

b2 = λ1/q
∑

y∈Ω2∩Z g(y).
The case p = 0 follows from the Arithmetic-Geometric mean inequality,

whereas the case p = ∞ is immediate, since there the (p/(p + 1))-mean
coincides with the 1-mean. �

We would like to introduce a few additional notations which will be used
to prove Theorem 2.2: we write M(t) = {x ∈ Rn−1 : (x, t) ∈ M} for the
(n− 1)-dimensional section at height t ∈ R (in the direction of en) whereas
πn(M) denotes the orthogonal projection of M onto Ren (regarded as a
subset of R), namely πn(M) = {t ∈ R : M(t) 6= ∅}.

Proof of Theorem 2.2. If n = 1, the result follows immediately from Lemma
2.4. Now suppose that n > 1 and assume that the theorem holds for di-
mension n − 1. Let tK ∈ πn(K), tL ∈ πn(L) and set, for the sake of
brevity, tλ = (1 − λ)tK + λtL. Moreover, we denote by Cn = (−1, 1)n,
Cn−1 = (−1, 1)n−1 × {0}, Mn−1 = (1− λ)K(tK) + λL(tL) + (−1, 1)n−1 and
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Mλ = (1 − λ)K + λL (thus, M = Mλ + (−1, 1)n). Consider the functions
f1, g1, h1 : Rn−1 −→ R≥0 given by

f1(x) = f(x, tK), g1(x) = g(x, tL),

h1(x) = h(x, tλ)

for any x ∈ Rn−1. Since for all x ∈ K(tK), y ∈ L(tL) we have

h1((1− λ)x+ λy) = h((1− λ)x+ λy, (1− λ)tK + λtL)

≥Mλ
p (f(x, tK), g(y, tL)) =Mλ

p (f1(x), g1(y)) ,

we may assert that

∑
z∈Mn−1∩Zn−1

h�1(z) ≥Mλ
p

(n−1)p+1

 ∑
x∈K(tK)∩Zn−1

f1(x),
∑

y∈L(tL)∩Zn−1

g1(y)

 .

This, together with the fact that

((1− λ)K + λL)((1− λ)tK + λtL) ⊃ (1− λ)K(tK) + λL(tL),

and hence (Mλ + Cn−1)(tλ) ⊃Mn−1, yields, in terms of f , g and h,∑
z∈((Mλ+Cn−1)(tλ))∩Zn−1

h��(z, tλ)

≥Mλ
p

(n−1)p+1

 ∑
x∈K(tK)∩Zn−1

f(x, tK),
∑

y∈L(tL)∩Zn−1

g(y, tL)

 ,

(2.9)

where h�� : Rn −→ R≥0 is the function given by h��(z) = supv∈Cn−1
h(z+v),

for which we have h��(x, tλ) = h�1(x) for all x ∈ Rn−1.
Now, let f2, g2, h2 : R −→ R≥0 be the functions defined by

f2(t) =
∑

x∈K(t)∩Zn−1

f(x, t), g2(t) =
∑

y∈L(t)∩Zn−1

g(y, t), and

h2(t) =
∑

z∈((Mλ+Cn−1)(t))∩Zn−1

h��(z, t).

Hence, (2.9) yields, in terms of f2, g2 and h2,

h2((1− λ)tK + λtL) ≥Mλ
p

(n−1)p+1
(f2(tK), g2(tL))

for any tK ∈ πn(K), tL ∈ πn(L), and thus we may use Lemma 2.4 with the
sets πn(K), πn(L) and the functions f2, g2 and h2 to obtain

∑
t∈Ω∩Z

h�2(t) ≥Mλ
p

np+1

 ∑
tK∈πn(K)∩Z

f2(tK),
∑

tL∈πn(L)∩Z

g(tL)

 ,
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where Ω = (1− λ)πn(K) + λπn(L) + (−1, 1). In the following we prove that∑
t∈Ω∩Z h

�
2(t) ≤

∑
z∈M∩Zn h

�(z), and hence the above inequality together
with the relations ∑

tK∈πn(K)∩Z

f2(tK) =
∑

x∈K∩Zn
f(x),

∑
tL∈πn(L)∩Z

g2(tL) =
∑

y∈L∩Zn
g(y),

shows the result. Indeed, from the fact that (u,−w) ∈ Cn for any (u, 0) ∈
Cn−1 and w ∈ (−1, 1), we have (Mλ+Cn−1)(t+w) ⊂M(t) for all w ∈ (−1, 1)
and thus we get∑

t∈Ω∩Z
h�2(t) =

∑
t∈Ω∩Z

sup
w∈(−1,1)

h2(t+ w)

=
∑
t∈Ω∩Z

sup
w∈(−1,1)

∑
x∈((Mλ+Cn−1)(t+w))∩Zn−1

h��(x, t+ w)

≤
∑
t∈Ω∩Z

∑
x∈M(t)∩Zn−1

sup
w∈(−1,1)

h��(x, t+ w)

=
∑
t∈Ω∩Z

∑
x∈M(t)∩Zn−1

sup
w∈(−1,1)

sup
v∈(−1,1)n−1

h(x+ v, t+ w)

=
∑

z∈M∩Zn
sup

u∈(−1,1)n
h(z + u) =

∑
z∈M∩Zn

h�(z),

as claimed. This finishes the proof. �

Corollary 2.2. Let λ ∈ (0, 1) and let K,L ⊂ Rn be non-empty bounded
sets. Let −1/n ≤ p ≤ ∞. Then

(2.10) Gn

(
(1− λ)K + λL+ (−1, 1)n

)
≥Mλ

p
np+1

(Gn(K),Gn(L)) .

The inequality is sharp.

Proof. The result is an immediate consequence of Theorem 2.2, just by tak-
ing f = χK , g = χL and h = χ

(1−λ)K+λL
, for which we clearly have that

h� = χ
(1−λ)K+λL+(−1,1)n

.

Now, in order to show that the equality may be attained, we consider
K = L = [0,m]n with m ∈ N, for which Gn

(
(1 − λ)K + λL + (−1, 1)n

)
=

Gn(K) = Gn(L) = (m+ 1)n. �

We notice that (2.10) for p =∞ yields (2.1) for bounded sets K,L ⊂ Rn
with Gn(K)Gn(L) > 0. So, to prove Theorem 2.1, it is enough to deal with
the case in which (only) one of the sets, say L, has no integer points. To
this aim, first we show the following auxiliary result:
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Theorem 2.3. Let K,L ⊂ Rn be bounded sets such that Gn(K)Gn(L) > 0
and let α = m/q and β = p/q with m, p, q ∈ N so that α+ β ≤ 1. Then

(2.11) Gn

(
αK + βL+

[
−q − 1

q
,
q − 1

q

]n)1/n

≥ αGn(K)1/n+βGn(L)1/n.

The proof of Theorem 2.3 is ideologically similar to the proof we have
provided for Corollary 2.2. So only the sketch of the proof is presented
here. The main step is to prove an analogue of Theorem 2.2 and apply it
to f = χK , g = χL and h = χ

αK+βL
. The main new ingredient in the proof

of such an analogue is the one dimensional case, for which we require an
adaptation of Lemma 2.2, which is done below in Lemma 2.5.

Lemma 2.5. Let K,L ⊂ R be non-empty bounded sets and let α = m/q
and β = p/q with m, p, q ∈ N so that α+ β ≤ 1. Then

(2.12) G1

(
αK + βL+

[
−q − 1

q
,
q − 1

q

])
≥ αG1(K) + βG1(L).

Proof. First we notice that, for any x, y ∈ R, we have

(2.13)

⌊
mx

q
+
py

q
+
q − 1

q

⌋
≥ m bxc+ p byc

q
.

Indeed, given z ∈ R, from the fact that

z

q
+
q − 1

q
≥ bzc

q
+
q − 1

q
= c+

r

q
+
q − 1

q

for some c, r ∈ Z with 0 ≤ r ≤ q − 1, we get that⌊
z

q
+
q − 1

q

⌋
≥ bzc

q

for any z ∈ R. This now implies that⌊
mx

q
+
py

q
+
q − 1

q

⌋
≥ bmx+ pyc

q
≥ m bxc+ p byc

q
,

which yields (2.13).

Next we show the following: if K,L,M ⊂ R are non-empty sets with
αK + βL ⊂M and such that M + [−(q − 1)/q, (q − 1)/q] =

⋃s
i=1[ai, bi] is a

finite union of (pairwise disjoint) compact intervals then

(2.14) G1

(
M + [−(q − 1)/q, (q − 1)/q]

)
≥ αG1(K) + βG1(L).

We prove it by induction on the number of intervals s of M+[−(q−1)/q, (q−
1)/q]. For s = 1, i.e., when M + [−(q − 1)/q, (q − 1)/q] = [a1, b1] is a (non-
empty) compact interval, we have on the one hand that

G1

(
M + [−(q − 1)/q, (q − 1)/q]

)
= bb1c − da1e+ 1.
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Moreover, denoting by a = inf K, b = supK, c = inf L and d = supL, we
clearly get G1(K) ≤ G1([a, b]) = bbc − dae + 1 and G1(L) ≤ G1([c, d]) =
bdc − dce+ 1. On the other hand, the inclusion αK + βL ⊂M implies that

a1 ≤ αa+ βc− q − 1

q
≤ αb+ βd+

q − 1

q
≤ b1.

Altogether, and using (2.13) jointly with the facts that dxe = −b−xc for
any x ∈ R, and α+ β ≤ 1, we obtain

G1

(
M +

[
−q − 1

q
,
q − 1

q

])
= bb1c − da1e+ 1

≥
⌊
αb+ βd+

q − 1

q

⌋
−
⌈
αa+ βc− q − 1

q

⌉
+ 1

≥ α bbc+ β bdc − α dae+ β dce+ 1

≥ αG1([a, b]) + βG1([c, d])

≥ αG1(K) + βG1(L).

Thus, we suppose that (2.14) is true for s ≥ 1 and assume that M +

[−(q − 1)/q, (q − 1)/q] =
⋃s+1
i=1 [ai, bi], where bi < ai+1 for all 1 ≤ i ≤ s.

Denoting by M1 and M2 the subsets of M such that M1 +[−(q−1)/q, (q−
1)/q] = [a1, b1] and M2 + [−(q − 1)/q, (q − 1)/q] =

⋃s+1
i=2 [ai, bi], we may

assume, without loss of generality, that M1 ∩ (αK + βL) 6= ∅ (otherwise,
the result follows from the induction hypothesis applied to the sets K, L
and M2). Hence, we may define m = sup

(
M1 ∩ (αK + βL)

)
and then,

since K and L are bounded, there exist k ∈ clK and l ∈ clL such that
αk+βl = m. Thus, considering the setsK1 = {x ∈ K : x ≤ k}, K2 = K\K1,
L1 = {x ∈ L : x ≤ l} and L2 = L \ L1, and taking into account that
m+[−(q−1)/q, (q−1)/q] ⊂ [a1, b1], we clearly have that αK1+βL1 ⊂M1 and
αK2 +βL2 ⊂M2. Therefore, applying the induction hypothesis (and taking
into account that M1 +[−(q−1)/q, (q−1)/q] and M2 +[−(q−1)/q, (q−1)/q]
are disjoint), we get

G1

(
M + [−(q − 1)/q, (q − 1)/q]

)
= G1

(
M1 + [−(q − 1)/q, (q − 1)/q]

)
+ G1

(
M2 + [−(q − 1)/q, (q − 1)/q]

)
≥ αG1(K1) + βG1(L1) + αG1(K2) + βG1(L2) = αG1(K) + βG1(L),

which shows (2.14).

Next we prove (2.12). We observe that we may assume, without loss of
generality, that K and L are compact. Indeed, otherwise, considering the
compact setsK ′ = K∩Z and L′ = L∩Z, for which we have G1(K ′) = G1(K),
G1(L′) = G1(L) and, from the monotonicity of G1(·), G1

(
αK+βL+[−(q−

1)/q, (q − 1)/q]
)
≥ G1

(
αK ′ + βL′ + [−(q − 1)/q, (q − 1)/q]

)
, we would get

the result. So, (2.12) follows from applying (2.14) with M = αK + βL,
because the fact that M is compact implies that there exists a finite sequence
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m1, . . . ,mr such that {m1, . . . ,mr}+ [−(q − 1)/q, (q − 1)/q] = M + [−(q −
1)/q, (q − 1)/q]. This concludes the proof. �

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. For the sake of brevity, we will again denote by Mλ =
(1−λ)K +λL. By Corollary 2.2 for p =∞, and the monotonicity of Gn(·),
it is enough to show the result in the case in which K = K ∩Zn (for which,
clearly, Gn(K) > 0) and L = {x} with x = (x1, . . . , xn) /∈ Zn.

First we show the case in which λ = p/q, p, q ∈ N, is a rational number.
Then, writing px = z + y, with z ∈ Zn and y = (y1, . . . , yn) ∈ [0, 1)n, and
using Theorem 2.3, we have

Gn

(
Mλ + (−1, 1)n

)1/n
= Gn

(
q − p
q

K +
1

q
z +

n∏
i=1

(
−1 +

yi
q
, 1 +

yi
q

))1/n

≥ Gn

(
q − p
q

K +
1

q
z +

[
−q − 1

q
,
q − 1

q

]n)1/n

≥ (1− λ)Gn(K)1/n +
1

q
> (1− λ)Gn(K)1/n,

as desired.
Next we prove the case of an irrational λ ∈ R \Q. Let I be the (possibly

empty) subset of {1, . . . , n} defined in the following way: i ∈ I if and only
if xi = ai + bi/λ for some ai, bi ∈ Z. We point out that such ai, bi ∈ Z are
necessarily unique, since λ ∈ R \Q. Hence we may then consider the point
x′ = (x′1, . . . , x

′
n) given by x′i = bi/λ if i ∈ I and x′i = 0 otherwise, for all

i = 1, . . . , n. First we notice that, since λx′ is an integer point, we have

Gn

(
Mλ + (−1, 1)n

)
= Gn

(
(1− λ)K + λ(x− x′) + λx′ + (−1, 1)n

)
= Gn

(
(1− λ)K + λ(x− x′) + (−1, 1)n

)
.

Next, denoting by x0 = x− x′, we will show that there exists δ > 0 such
that

(2.15) Gn

(
(1− λ)K + λx0 + (−1, 1)n

)
≥ Gn

(
(1− µ)K + µx0 + (−1, 1)n

)
for all µ with |µ− λ| < δ. Thus, taking a sequence (rm)m ⊂ Q ∩ (0, 1) with
limm→∞ rm = λ and |rm − λ| < δ for all m ∈ N, we get, from the previous
case, that

Gn

(
(1− λ)K + λx0 + (−1, 1)n

)1/n ≥ Gn

(
(1− rm)K + rmx0 + (−1, 1)n

)1/n
≥ (1− rm)Gn(K)1/n + rmGn({x0})1/n

≥ (1− rm)Gn(K)1/n

for all m ∈ N, which yields the result.
To show (2.15) we notice that, since K is finite, (1−λ)K+λx0 + [−1, 1]n

is a finite union of closed unit cubes and then, for any µ, (1− µ)K + µx0 +
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[−1, 1]n is the union of the corresponding translates of the cubes that consti-
tute (1−λ)K+λx0 + [−1, 1]n. Thus, there exists δ1 > 0 such that if z ∈ Zn
satisfies that z /∈ (1−λ)K+λx0 +[−1, 1]n then z /∈ (1−µ)K+µx0 +(−1, 1)n

for all |µ−λ| < δ1. Moreover, if (1−λ)K+λx0+(−1, 1)n contains no integer
boundary points, we may take δ = δ1 and we are done.

So, we may assume that bd
((

(1−λ)K+λx0+(−1, 1)n
)
∩Zn

)
6= ∅. Let z ∈

Zn be a boundary point of (1−λ)K+λx0 + (−1, 1)n and let k ∈ K. On the
one hand, if z is in the boundary of the cube (1−λ)k+λx0 +(−1, 1)n, there
exist i ∈ {1, . . . , n} and ε ∈ {−1, 1} such that (1−λ)ki+λ(xi−x′i) + ε = zi,
where ki, zi ∈ Z are the i-th components of k, z, respectively. This implies
that xi − x′i = ki + (zi − ε − ki)/λ and then, from the definition of both
I and x′, we get that i ∈ I and so ai = ki + (zi − ε − ki)/λ, which yields
that zi − ε − ki = 0 (because λ is irrational) and thus xi − x′i = ai = ki.
But then (1 − µ)ki + µ(xi − x′i) + ε = (1 − λ)ki + λ(xi − x′i) + ε = zi for
all µ ∈ R, and hence z lies in the affine hull of a facet of the open cube
(1− µ)k+ µx0 + (−1, 1)n, which implies that z /∈ (1− µ)k+ µx0 + (−1, 1)n

for any µ. On the other hand, if z is not in the boundary of the cube
(1 − λ)k + λx0 + (−1, 1)n (and so not contained in it either), there exists
δz,k > 0 so that z /∈ (1− µ)k + µx0 + (−1, 1)n for all µ with |µ− λ| < δz,k.

Since the number of integer points z in the boundary of (1−λ)K+λx0 +
(−1, 1)n is finite (and so is K), we may define δ2 = minz,k δz,k. Altogether,
(2.15) holds for δ = min{δ1, δ2}. �

We conclude this section by showing that the classical Borell-Brascamp-
Lieb inequality (2.2) can be obtained from the discrete version (2.3) under
some mild assumptions on the functions involved:

Theorem 2.4. The discrete Borell-Brascamp-Lieb type inequality (2.3) im-
plies the classical Borell-Brascamp-Lieb inequality (2.2), provided that the
functions f, g are Riemann integrable and h is upper semicontinuous.

Before proving this result, we notice that it is not possible to directly
obtain any of the discrete Brunn-Minkowski type inequalities stated so far
in the paper from the classical one (1.2), by using the method of replacing
the points by suitable compact sets. As pointed out by Gardner and Gronchi
in [6, pages 3996–3997]:

“it is worth remarking that the obvious idea of replacing the points in
the two finite sets by small congruent balls and applying the classical
Brunn-Minkowski inequality to the resulting compact sets is doomed
to failure. The fact that the sum of two congruent balls is a ball of
twice the radius introduces an extra factor of 1/2 that renders the
resulting bound weaker than even the trivial bound (11) below ”.

We clarify that (11) in [6] coincides with (1.3) of the present paper.
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In the following, for a function φ : Rn −→ R≥0, we write φ�k : Rn −→ R≥0

to denote the function given by φ�k(z) = supu∈(−2−k,2−k)n φ(z + u) for all
z ∈ Rn.

Proof. Consider f, g, h : Rn −→ R≥0 which satisfy the conditions of Theorem
B, i.e., f, g, h are measurable such that

h((1− λ)x+ λy) ≥Mλ
p (f(x), g(y))

holds for all x, y ∈ Rn and for some fixed λ ∈ (0, 1) and −1/n ≤ p ≤ ∞. Let
m ∈ N and let K = [−m,m]n. We will first show that

(2.16)

∫
K
h(x)dx ≥Mλ

p
np+1

(∫
K
f(x)dx,

∫
K
g(x)dx

)
,

for which we may assume (multiplying by χK if necessary) that f , g and h
vanish outside K.

For each k ∈ N, we define the functions fk, gk, hk : Rn → R≥0 given by

fk(x) = inf
z∈x+[0,2−k]n

f(z), gk(x) = inf
z∈x+[0,2−k]n

g(z)

and
hk(x) = inf

z∈x+[0,2−k]n
h(z).

Writing for short K0 = intK, note that for any x, y ∈ K0 we have

hk((1− λ)x+ λy) = inf
z∈(1−λ)x+λy+[0,2−k]n

h(z)

= inf
z∈(1−λ)(x+[0,2−k]n)+λ(y+[0,2−k]n)

h(z)

= inf
z1∈x+[0,2−k]n,z2∈y+[0,2−k]n

h((1− λ)z1 + λz2)

≥ inf
z1∈x+[0,2−k]n,z2∈y+[0,2−k]n

Mλ
p (f(z1), g(z2))

≥Mλ
p

(
inf

z1∈x+[0,2−k]n
f(z1), inf

z2∈y+[0,2−k]n
g(z2)

)
=Mλ

p (fk(x), gk(y)) ,

and thus, we can use Theorem 2.2 for 2−kZn to deduce that, for any k ∈ N,
we have
(2.17)

2−kn
∑

z∈K∩2−kZn
(hk)

�k(z) ≥Mλ
p

np+1

2−kn
∑

x∈K0∩2−kZn
fk(x), 2−kn

∑
y∈K0∩2−kZn

gk(y)

 ,

where, on the left-hand side, we have used that K = [−m,m]n, thus(
2kK0 + (−1, 1)n

)
∩ Zn = 2kK ∩ Zn

and (
K0 + (−2−k, 2−k)n

)
∩ 2−kZn = K ∩ 2−kZn.
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The level sets {x ∈ K : h(x) ≥ t} are closed, because h is upper semi-
continuous and K is closed (see [13, Theorem 1.6]), and then a standard
straightforward computation shows that

{x ∈ K : h(x) ≥ t} =

∞⋂
k=1

(
{x ∈ K : h(x) ≥ t}+ (−2−k, 2−k)n

)
.

Moreover, since h vanishes outside K, we have {x ∈ K : h(x) > t} +
(−2−k, 2−k)n ⊃ {x ∈ K + [0, 2−k]n : h�k(x) > t} for all t > 0. Thus, by
Fubini’s theorem and the monotone convergence theorem, we get

∫
K
h(x)dx =

∫ ∞
0

vol
(
{x ∈ K : h(x) ≥ t}

)
dt

=

∫ ∞
0

vol

( ∞⋂
k=1

(
{x ∈ K : h(x) ≥ t}+ (−2−k, 2−k)n

))
dt

=

∫ ∞
0

lim
k→∞

vol
(
{x ∈ K : h(x) ≥ t}+ (−2−k, 2−k)n

)
dt

= lim
k→∞

∫ ∞
0

vol
(
{x ∈ K : h(x) ≥ t}+ (−2−k, 2−k)n

)
dt

≥ lim
k→∞

∫ ∞
0

vol
(
{x ∈ K + [0, 2−k]n : h�k(x) > t}

)
dt

= lim
k→∞

∫
K+[0,2−k]n

h�k(x)dx.

(2.18)

Now we show that, given z ∈ Rn, h�k(x) ≥ (hk)
�k(z) for all x ∈ z +

[0, 2−k]n. Indeed, we have

h�k(x) = sup
u∈(−2−k,2−k)n

h(x+ u) ≥ sup
u∈(−2−k,2−k)n

inf
v∈[0,2−k]n

h(z + v + u)

= sup
u∈(−2−k,2−k)n

hk(z + u) = (hk)
�k(z).

This, together with (2.18) and the fact that K + [0, 2−k]n = K ∩ 2−kZn +
[0, 2−k]n, implies that∫

K
h(x)dx ≥ lim

k→∞

∫
K+[0,2−k]n

h�k(x)dx ≥ lim
k→∞

2−kn
∑

z∈K∩2−kZn
(hk)

�k(z).

Furthermore, since f is Riemann integrable and 2−kn
∑

x∈K0∩2−kZn fk(x) is

a lower sum of f ·χ
(−m,m]n

for the partition {x+ [0, 2−k]n ⊂ K : x ∈ 2−kZn}
of K, it is clear that

lim
k→∞

2−kn
∑

x∈K0∩2−kZn
fk(x) =

∫
K
f(x)dx.

Here we observe that it was crucial to work with K0 in order to get a lower
sum of f · χ

(−m,m]n
for the above partition. We also point out the necessity
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of considering the characteristic function χ
(−m,m]n

instead of χ
[−m,m]n

, which
has no influence when computing the above integral: in this way, the function
f · χ

(−m,m]n
vanishes on the points of the corresponding facets of the cube.

The same holds for the function g and then, taking limits on both sides
of (2.17), we get (2.16). Since (2.16) is true for K = [−m,m]n, for every
m ∈ N, the proof is now concluded because∫

Rn
φ(x)dx = lim

m→∞

∫
[−m,m]n

φ(x)dx,

for every measurable function φ : Rn → R≥0. �

It is well-known that a function is Riemann integrable if and only if it
is continuous almost everywhere. Since the boundary of a convex set has
null measure (and from the characterization of the upper semicontinuity
in terms of the level sets) we get the following result, as a straightforward
consequence of the previous one.

Corollary 2.3. The discrete Brunn-Minkowski type inequality (2.1) implies
the classical Brunn-Minkowski inequality (1.1) for bounded convex sets K
and L.

We notice the necessity of assuming convexity in the latter result: for
any measurable sets K,L ⊂ Rn of positive volume, containing no rational
point, one cannot expect to recover the Brunn-Minkowski inequality (1.1)
with the above method of shrinking the lattice Zn, since K,L have no point
in 2−kZn, for any k ∈ N.

3. Relations with other inequalities

The multiplicative version of the Brunn-Minkowski inequality is, among
all its equivalent forms, the one that is naturally connected to the Prékopa-
Leindler inequality (the case p = 0 of Theorem B). It asserts that if λ ∈ (0, 1)
and K and L are non-empty compact subsets of Rn then

(3.1) vol
(
(1− λ)K + λL

)
≥ vol(K)1−λvol(L)λ.

In the discrete setting, considering now non-empty bounded sets K,L ⊂
Rn, from (2.10) for p = 0 we get

(3.2) Gn

(
(1− λ)K + λL+ (−1, 1)n

)
≥ Gn(K)1−λGn(L)λ.

Regarding other possible discrete versions of (3.1), we have the following
engaging and elegant result, shown very recently by Halikias, Klartag and
Slomka in [8] (see also [12]):

Theorem C ([8]). Let λ ∈ (0, 1) and let f, g, h, k : Zn −→ R≥0 be functions
such that

h(b(1− λ)x+ λyc)k(dλx+ (1− λ)ye) ≥ f(x)g(y)
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for all x, y ∈ Zn, where bxc = (bx1c , . . . , bxnc) and dxe = (dx1e , . . . , dxne).
Then (∑

x∈Zn
h(x)

)(∑
x∈Zn

k(x)

)
≥

(∑
x∈Zn

f(x)

)(∑
x∈Zn

g(x)

)
.

As they observed, when applying the above result to the functions f = χK ,
g = χL , h = χK+L

2 +(−1,0]n
and k = χK+L

2 +[0,1)n
, one has

Gn

(
K + L

2
+ (−1, 0]n

)
Gn

(
K + L

2
+ [0, 1)n

)
≥ Gn(K)Gn(L),

which yields the discrete multiplicative Brunn-Minkowski type inequality

(3.3) Gn

(
K + L

2
+ [0, 1]n

)
≥
√

Gn(K)Gn(L).

We notice that the sole difference between (3.3) and (3.2) (for λ = 1/2) is the
necessity of adding either the closed cube of edge length 1 or the open cube
of edge length 2, respectively. However, they are not comparable. Indeed, let
n = 1 and let K = L = [−x, x] with x ∈ R≥0. On the one hand, for x ∈ Z,
we have G1

(
(K+L)/2+[0, 1]

)
= 2x+2 > 2x+1 = G1

(
(K+L)/2+(−1, 1)

)
.

On the other hand, for x /∈ Z, we get G1

(
(K + L)/2 + [0, 1]

)
= 2 bxc+ 2 <

2 bxc+ 3 = G1

(
(K + L)/2 + (−1, 1)

)
.

As pointed out in Remark 2.2, inequality (2.1) is in general not true (even
for λ = 1/2) by just adding the cube [0, 1)n to the convex combination
(K +L)/2. However, this can be solved by just considering the closed cube
[0, 1]n, i.e., we show that inequality (3.3) also admits a (1/n)-form:

Theorem 3.1. Let K,L ⊂ Rn be bounded sets such that Gn(K)Gn(L) > 0.
Then

(3.4) Gn

(
K + L

2
+ [0, 1]n

)1/n

≥ Gn(K)1/n + Gn(L)1/n

2
.

The inequality is sharp.

As in Theorem 2.3, we just have to prove the corresponding one-dimen-
sional case, collected in Lemma 3.1. Then, the proof of Theorem 3.1 is
completed in a way similar to the proof of Theorem 2.2 with the particular
functions f = χK , g = χL and h = χK+L

2

, and λ = 1/2, replacing there the

use of inequality (2.5) by (3.5).

Finally, to show that equality may be attained, we consider K = −L =
[0,m]n with m ∈ N odd, for which we have Gn

(
(K + L)/2 + [0, 1]n

)
=

Gn(K) = Gn(L) = (m+ 1)n.

Lemma 3.1. Let K,L ⊂ R be non-empty bounded sets. Then

(3.5) G1

(
K + L

2
+ [0, 1]

)
≥ G1(K) + G1(L)

2
.
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Proof. The proof is completely analogous to that of Lemma 2.5, and thus
we include here just the slight differences.

First we notice that, for any x, y ∈ R, we have

(3.6)

⌊
x+ y

2

⌋
+

1

2
≥ bxc+ byc

2
.

Indeed, if bxc + byc is even then b(x+ y)/2c = (bxc + byc)/2 whereas if
bxc+ byc is odd we get b(x+ y)/2c ≥ (bxc+ byc − 1)/2.

Now, we notice that if M ⊃ (K + L)/2 is such that M + [0, 1] = [a1, b1]
is a (non-empty) compact interval, we have on the one hand that G1

(
M +

[0, 1]
)

= bb1c − da1e + 1. Moreover, denoting by a = inf K, b = supK,
c = inf L and d = supL, we clearly get G1(K) ≤ G1([a, b]) = bbc − dae + 1
and G1(L) ≤ G1([c, d]) = bdc − dce + 1. On the other hand, the inclusion
(K + L)/2 ⊂M implies that

a1 ≤
a+ c

2
≤ b+ d

2
≤ b1 − 1.

Altogether, and using (3.6) jointly with the fact that dxe = −b−xc for any
x ∈ R, we obtain

G1

(
M + [0, 1]

)
= bb1c − da1e+ 1 ≥

⌊
b+ d

2

⌋
−
⌈
a+ c

2

⌉
+ 2

≥ bbc+ bdc
2

− dae+ dce
2

+ 1 =
G1([a, b]) + G1([c, d])

2

≥ G1(K) + G1(L)

2
.

The proof is then completed in a way analogous to the proof of Lemma
2.5. �

We would like to point out that the corresponding version of Theorem 3.1
for an arbitrary λ ∈ (0, 1) is, in general, not true. Indeed, taking K = [0, 1]n,
L = [−5, 6]n and λ = 1/3 one has that

Gn

(
(1− λ)K + λL+ [0, 1]n

)1/n
= Gn

([
−5

3
,
11

3

]n)1/n

= 5

<
16

3
= (1− λ)Gn(K)1/n + λGn(L)1/n.

We include here an open question that arose during our study:

Question 3.1. Regarding the statement of Theorem 3.1, is the assumption
Gn(K)Gn(L) > 0 necessary?

We conclude the section by proving an inequality similar to (1.5) but
in the spirit of (2.1), namely that one may add another (fixed) set to the
Minkowski sum A+B instead of considering the extension Ā of A. We show
that an appropriate set to be taken into account in this respect is the lattice
cube {0, 1}n, which also fits well with inequality (3.4).
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Theorem 3.2. Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

(3.7)
∣∣A+B + {0, 1}n

∣∣1/n ≥ |A|1/n + |B|1/n.
The inequality is sharp.

The idea of the proof we present here goes back to [7, Lemma 2.4].

Proof. Taking into account the relation

A+B + {0, 1}n + [0, 1]n = A+ [0, 1]n +B + [0, 1]n,

jointly with the fact that vol(X+[0, 1]n) = |X|, for any non-empty and finite
set X ⊂ Zn, the result directly follows from the Brunn-Minkowski inequality
(1.2). Finally, to show that the inequality is sharp, we consider the lattice
cubes A = {0, . . . ,m1}n and B = {0, . . . ,m2}n, for m1,m2 ∈ Z≥0. �

We conclude the paper by comparing inequalities (1.5) and (3.7); again,
we refer the reader to Section 2.1 in [10] for the precise definition of the
extension Ā of a given non-empty finite set A ⊂ Zn.

Since A+({0}n−1×{0, 1}) contains at least the same amount of points that
the union of A and its maximal cardinality section, and taking into account
that {0, 1}n =

(
{0, 1}n−1 × {0}

)
+
(
{0}n−1 × {0, 1}

)
, from the definition of

Ā is then immediate that
∣∣Ā∣∣ ≤ ∣∣A + {0, 1}n

∣∣. However, inequalities (1.5)
and (3.7) are not comparable. Indeed, if we consider on the one hand A =
{(0, 0), (1, 0), (2, 0), (1, 1)} and B = {0, 1}2, we have

∣∣Ā∣∣ = 10 =
∣∣A+{0, 1}2

∣∣
(with Ā 6= A+{0, 1}2) and

∣∣Ā+B
∣∣ = 20 > 18 =

∣∣A+{0, 1}2+B
∣∣ (see Figure

3). On the other hand, for A = {(0, 0), (0, 1), (1, 1), (4, 1)} and B = {0, 1}2
we obtain

∣∣Ā+B
∣∣ = 21 < 24 =

∣∣A+ {0, 1}2 +B
∣∣.

Figure 1. Left: the sets A (thick points), Ā (thick and hol-
low points) and Ā + B. Right: the sets A (thick points),
A+ {0, 1}2 (thick and hollow points) and A+ {0, 1}2 +B.
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