
ON A BRUNN-MINKOWSKI INEQUALITY FOR
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Abstract. In this paper we prove that the classical Brunn-Minkowski
inequality holds for product measures on the Euclidean space with quasi-
convex densities when considering certain classes of sets that contain,
among others, the complements (within a centered box) of unconditional
sets. As a consequence, we derive an isoperimetric type inequality.

1. Introduction

As usual, we write Rn to represent the n-dimensional Euclidean space,
and we denote by ei the i-th canonical unit vector. For i = 1, . . . , n, we
represent by Hi =

{
x = (x1, . . . , xn) ∈ Rn : xi = 0

}
the i-th coordinate

hyperplane. The n-dimensional volume of a measurable set M ⊂ Rn, i.e., its
n-dimensional Lebesgue measure, is denoted by vol(M) (when integrating,
as usual, dx will stand for dvol(x)). We write M(t) = {x ∈ Rn−1 : (x, t) ∈
M} for the (n − 1)-dimensional section at height t ∈ R (in the direction of
en), whereas the orthogonal projection of M onto an i-dimensional linear
subspace H is denoted by M |H. Moreover, H⊥ represents the orthogonal
complement of H and, for any x ∈M |Hi, we set Mi(x) = {t ∈ R : x+ tei ∈
M} to denote the one-dimensional section of M through the point x in the
direction of ei. Finally, given r > 0, rM stands for the set {rm : m ∈M}.

The Minkowski sum of two non-empty sets A,B ⊂ Rn is the classical
vector addition of them: A + B = {a + b : a ∈ A, b ∈ B}. It is natural to
wonder about the possibility of bounding the volume of the Minkowski sum
of two sets in terms of their volumes; this is the statement of the Brunn-
Minkowski inequality (for extensive and beautiful surveys on this inequality
we refer the reader to [1, 7]). One form of it asserts that if λ ∈ (0, 1) and A
and B are non-empty measurable subsets of Rn such that (1− λ)A+ λB is
also measurable then

(1.1) vol
(
(1− λ)A+ λB

)1/n ≥ (1− λ)vol(A)1/n + λvol(B)1/n.
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The Brunn-Minkowski inequality was generalized to different types of
measures, including the cases of log-concave measures [10, 15] and of p-
concave measures (see e.g. [3, 4]). It is interesting to note that it was proved
by Borell [2, 3] that such generalizations would require a p-concavity as-
sumption on the density of the underlying measure (see (2.1) below for the
precise definition). As a consequence of this approach (see also [21]), when
dealing with arbitrary measurable sets and a Radon measure on Rn, the
(1/n)-form of the Brunn-Minkowski inequality (1.1) is only true, in general,
for the volume (up to a constant). However, when considering some special
families of sets (e.g. that of unconditional sets), the (1/n)-Brunn-Minkowski
inequality holds for some types of measures, such as the standard Gaussian
measure, which is given by

dγn(x) =
1

(2π)n/2
e
−|x|2

2 dx

(see e.g. [8, 11, 12, 14, 16]). Furthermore, for the family of C-coconvex sets
(complements of closed convex sets, of positive and finite volume, within a
pointed closed convex cone with non-empty interior C), a “complemented”
version of the Brunn-Minkowski inequality (1.1) holds for the volume (see
[9, 19]), namely

vol
(
C \ ((1− λ)K + λL)

)1/n ≤ (1− λ)vol(C \K)1/n + λvol(C \ L)1/n

for all λ ∈ (0, 1). And again, this (complemented) Brunn-Minkowski in-
equality can be also generalized for certain general measures (see [13]).

To complete the picture, one may ask about possible p-convexity condi-
tions on the density of the underlying measure. Among others, what can be
said about the measure νn on Rn given by

dνn(x) = e|x|
2

dx,

whose density is log-convex? In [13], when dealing with measures involving
certain log-convex functions as part of their densities, the authors showed
another type of complemented Brunn-Minkowski inequality. Nevertheless,
not much more seems to be known regarding Brunn-Minkowski inequalities
for log-convex densities or, more generally, quasi-convex densities (see (2.2)
below for the precise definition).

To this regard, and inspired by the above-mentioned (complemented)
Brunn-Minkowski inequalities, it is natural to wonder whether one may find
certain classes of sets for which a measure on Rn of the kind of νn satisfies
the (1/n)-form of the Brunn-Minkowski inequality. Here we give a positive
answer to this question, by showing that it is enough to consider congruous
sets (see Definition 2.1): a family that contains, among others, the comple-
ments of unconditional sets within a centered box (cf. Example 2.1). This
is the content of the following result, in the more general setting of product
measures with quasi-convex densities (with minimum at the origin).
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Theorem 1.1. Let µ = µ1⊗ · · ·⊗µn be a product measure on Rn such that
µi is the measure given by dµi(x) = φi(x) dx, where φi : R −→ [0,∞) is
quasi-convex with φi(0) = minx∈R φi(x), for all i = 1, . . . , n.

Let λ ∈ (0, 1) and let A,B ⊂ Rn be non-empty measurable congruous sets
such that (1− λ)A+ λB is also measurable. Then

(1.2) µ
(
(1− λ)A+ λB

)1/n ≥ (1− λ)µ(A)1/n + λµ(B)1/n.

Section 2 is mainly devoted to showing this result. Finally, in Section 3,
we derive an isoperimetric type inequality as a consequence of (1.2).

2. Proof of the main result

2.1. Background. We recall that a function φ : Rn −→ [0,∞) is p-concave,
for p ∈ R ∪ {±∞}, if

(2.1) φ
(
(1− λ)x+ λy

)
≥Mp

(
φ(x), φ(y), λ

)
for all x, y ∈ Rn such that φ(x)φ(y) > 0 and any λ ∈ (0, 1). Here Mp denotes
the p-mean of two non-negative numbers a, b:

Mp(a, b, λ) =


(
(1− λ)ap + λbp

)1/p
, if p 6= 0,±∞,

a1−λbλ if p = 0,

max{a, b} if p =∞,
min{a, b} if p = −∞.

A 0-concave function is usually called log-concave whereas a (−∞)-concave
function is called quasi-concave. Quasi-concavity is equivalent to the fact
that the superlevel sets {x ∈ Rn : φ(x) ≥ t} are convex for all t ∈ [0, 1].

On the other side of the coin, one is led to p-convex functions, where
p ∈ R ∪ {±∞}, i.e., those functions satisfying

(2.2) φ
(
(1− λ)x+ λy

)
≤Mp

(
φ(x), φ(y), λ

)
for all x, y ∈ Rn and all λ ∈ (0, 1). Again, 0-convex functions are referred
to as log-convex whereas ∞-convex functions are called quasi-convex.

Now we define a new class of (pairs of) sets that will play a relevant role
throughout this paper.

Definition 2.1. Let A,B ⊂ Rn be non-empty bounded sets. For n = 1, we
say that A and B are congruous if one of the following assertions holds.

i) A ∩ (−∞, 0), B ∩ (−∞, 0) = ∅ and max(A) = max(B).

ii) A ∩ (0,∞), B ∩ (0,∞) = ∅ and min(A) = min(B).

iii) A ∩ (0,∞), B ∩ (0,∞), A ∩ (−∞, 0), B ∩ (−∞, 0) 6= ∅, min(A) =
min(B) and max(A) = max(B).

For n ≥ 2, we say that A and B are congruous if, for any i = 1, . . . , n,
the sets Ai(x) and Bi(y) are congruous for all x ∈ A|Hi and all y ∈ B|Hi.



4 J. YEPES NICOLÁS
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Figure 1. The congruous sets A (in gray) and B (the box),
with the sections A2(x), A1(y) for given x ∈ A|H2, y ∈ A|H1.

We notice that the fact that, for any i = 1, . . . , n, the sets Ai(x) and
Bi(y) are congruous (for all x ∈ A|Hi and all y ∈ B|Hi) does not mean
that the same condition in Definition 2.1 holds for all i (see Figure 1; there
A2(x), B2(x′) satisfy condition iii) of Definition 2.1, for all x ∈ A|H2 and all
x′ ∈ B|H2, whereas A1(y), B1(y′) fulfil condition i), for any y ∈ A|H1 and
any y′ ∈ B|H1).

Unconditional convex sets are of particular interest in convexity, also re-
garding Brunn-Minkowski type inequalities (see e.g. [11, 18]). A subset
A ⊂ Rn is said to be unconditional (not necessarily convex) if for every
(x1, . . . , xn) ∈ A and every (ε1, . . . , εn) ∈ [−1, 1]n one has (ε1x1, . . . , εnxn) ∈
A. As announced before, the family of congruous sets contains certain com-
plements of unconditional sets:

Example 2.1. Let P =
∏n
i=1[−αi, αi], αi > 0 for i = 1, . . . , n, be a centered

orthogonal compact box and let A,B ⊂ P be non-empty compact sets such
that P \A,P \B are unconditional. Then A and B are congruous. Indeed,
from the unconditionality of P \ A and P \ B, we have that max

(
Ai(x)

)
=

max
(
Bi(y)

)
= αi and min

(
Ai(x)

)
= min

(
Bi(y)

)
= −αi, for all x ∈ A|Hi

and all y ∈ B|Hi; thus Ai(x) and Bi(y) are congruous for any i = 1, . . . , n
since they satisfy condition iii) in Definition 2.1 (see Figure 2).

A

Figure 2. A set A (in gray) contained in a centered box P
such that P \A is unconditional.
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The following result is well-known in the literature (see e.g. the one-
dimensional case of [6, Theorem 4.1] and the references therein. Regarding
its statement, and following the notation used in [6], we notice that for a
quasi-concave function φ : R −→ [0,∞) we have (1 − λ)φχA ?−∞ λφχB =
φχ

(1−λ)A+λB
, where χM denotes the characteristic function of the setM ⊂ R).

Lemma 2.1. Let µ be the measure on R given by dµ(x) = φ(x)dx, where
φ : R −→ [0,∞) is quasi-concave with φ(0) = maxx∈R φ(x). Let λ ∈ (0, 1)
and let A,B ⊂ R be measurable sets with 0 ∈ A ∩B. Then

µ(C) ≥ (1− λ)µ(A) + λµ(B)

for any measurable set C such that C ⊃ (1− λ)A+ λB.

As a consequence of such a Brunn-Minkowski inequality for quasi-concave
densities on R, we will obtain the one-dimensional Brunn-Minkowski in-
equality for measures associated to quasi-convex functions when working
with congruous sets. This is the content of Lemma 2.2.

2.2. Proof. We start this subsection by showing the one-dimensional case
of our main result, Theorem 1.1.

Lemma 2.2. Let µ be the measure on R given by dµ(x) = φ(x)dx, where
φ : R −→ [0,∞) is quasi-convex with φ(0) = minx∈R φ(x). Let λ ∈ (0, 1)
and let A,B ⊂ R be non-empty measurable congruous sets. Then

µ(C) ≥ (1− λ)µ(A) + λµ(B)

for any non-empty measurable set C such that C ⊃ (1− λ)A+ λB.

Proof. Let A and B satisfy condition iii) in Definition 2.1. Assuming that
the result is true if either i) or ii) (of Definition 2.1) holds, it is enough to
consider A+, A−, B+, B−, C+, C− where, for any M ⊂ R, the sets M+ and
M− stand for M+ = M ∩ (0,∞) and M− = M ∩ (−∞, 0). Indeed, applying
the result to the sets A+, B+, C+ and A−, B−, C−, respectively, we have

(1− λ)µ(A) + λµ(B) = (1− λ)µ(A+) + λµ(B+) + (1− λ)µ(A−) + λµ(B−)

≤ µ(C+) + µ(C−) = µ(C).

Moreover, we note that the function φ̄ : R −→ [0,∞) given by φ̄(x) =
φ(−x) is quasi-convex (and, clearly, φ̄(0) = minx∈R φ̄(x)). Thus, considering
if necessary Ā = −A, B̄ = −B, C̄ = −C, and the measure µ̄ with density
φ̄, it is enough to prove the result for congruous sets satisfying i). Now, the
quasi-convexity of φ implies that φ(x) ≤ max{φ(0), φ(y)} = φ(y) for any
0 < x < y. This shows that φ is increasing on (0,∞) and then φ · χ

(0,∞)

is quasi-concave. Thus, setting x0 = max(A) = max(B), the result follows
from applying Lemma 2.1 to the function ψ : R −→ [0,∞) given by ψ(x) =
φ(x+ x0) · χ

(−∞,0](x) and the sets A− x0, B − x0, C − x0. �
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As stated in Theorem 1.1, the above result extends to dimension n. The
approach we follow here is based on the underlying idea of [16, Theorem 1.3],
and it goes back to some classical proofs of functional versions of the Brunn-
Minkowski inequality (such as the Prékopa-Leindler inequality) and other
related results.

Proof of Theorem 1.1. For the sake of brevity we write C = (1− λ)A+ λB
and, given t1, t2 ∈ R, tλ = (1−λ)t1+λt2. We also set µ̄ = µ1⊗µ2⊗· · ·⊗µn−1

(i.e., µ = µ̄⊗ µn).
Since µ is inner regular (i.e., µ(A) = sup{µ(K) : K ⊂ A,K compact} for

any measurable setA), we may assume, without loss of generality, thatA and
B are compact. Indeed, given sequences of compact sets (Kn)n∈N, (Ln)n∈N
that approximate from inside the congruous sets A and B, respectively, one
may clearly consider certain sequences of congruous compact sets (K ′n)n∈N,
(L′n)n∈N such that µ(K ′n) = µ(Kn) and µ(L′n) = µ(Ln), for all n ∈ N. In
fact, it is enough to add to Kn and Ln, respectively, the projections

(
A|Hi

)
and

(
B|Hi

)
, located at the appropriate height(s) in the direction of ei, for

i = 1, . . . , n.
Moreover, we observe that we may assume that µ(A)µ(B) > 0. Indeed,

the case in which one of the sets, say B, has measure zero whereas the other
one, A, has positive measure can be obtained (cf. [16, Proposition 2.7]) by
applying the positive measures case to A and the following set: let P be an
orthogonal compact box congruous with B (and so, with A) and let Cm be a
decreasing sequence of (unions of) boxes, which are congruous with B, that
shrinks (as m→∞) to the subset of vertices of P that belong to B; then we
take Bm = B ∪Cm, which is also congruous with A for all m ∈ N. We note
that this congruence ensures that the points in the limit case belong to B,
and hence

⋂
m∈N

(
(1 − λ)A + λBm

)
= (1 − λ)A + λB. Taking into account

that

µ

( ⋂
m∈N

(
(1− λ)A+ λBm

))
= lim

m
µ
(
(1− λ)A+ λBm

)
,

we get (1.2).
We then show the result by (finite) induction on the dimension n. The

case n = 1 is just Lemma 2.2. So, we suppose that n ≥ 2 and that the ine-
quality is true for dimension n− 1. The sets A(t1), B(t2), for t1, t2 ∈ R such
that t1en ∈ A|H⊥n , t2en ∈ B|H⊥n , are clearly congruous and thus, applying
the induction hypothesis (i.e., (1.2) in Rn−1 for µ̄) together with the fact
that C(tλ) ⊃ (1− λ)A(t1) + λB(t2), we have

(2.3) µ̄
(
C(tλ)

)
≥
(

(1− λ)µ̄
(
A(t1)

)1/(n−1)
+ λµ̄

(
B(t2)

)1/(n−1)
)n−1

.

Now, we take the non-negative functions f, g, h : R −→ [0,∞) given by

f(t) =
µ̄(A(t))

|µ̄(A(·))|∞
, g(t) =

µ̄(B(t))

|µ̄(B(·))|∞
, h(t) =

µ̄(C(t))

c
,
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where

c =
(

(1− λ) |µ̄(A(·))|1/(n−1)
∞ + λ |µ̄(B(·))|1/(n−1)

∞

)n−1
.

We notice that the above functions are well-defined: denominators are
positive since µ(A)µ(B) > 0, and they are finite because A|Hn−1 and
B|Hn−1 are compact sets and µ̄ is locally finite. Furthermore, supt∈R f(t) =
supt∈R g(t) = 1.

Using (2.3), and setting θ =
λ |µ̄(B(·))|1/(n−1)

∞
c1/(n−1)

∈ (0, 1), we get

µ̄
(
C(tλ)

)
≥
(

(1− λ)µ̄
(
A(t1)

)1/(n−1)
+ λµ̄

(
B(t2)

)1/(n−1)
)n−1

= c
(

(1− θ)f(t1)1/(n−1) + θg(t2)1/(n−1)
)n−1

≥ c min
{
f(t1), g(t2)

}
.

This shows that h((1 − λ)t1 + λt2) ≥ min{f(t1), g(t2)} for any t1, t2 ∈ R,
which clearly implies that

(2.4) {t ∈ R : h(t) ≥ s} ⊃ (1− λ){t ∈ R : f(t) ≥ s}+ λ{t ∈ R : g(t) ≥ s}

for all s ∈ [0, 1). Moreover, since An(x) and Bn(y) are congruous for all
x ∈ A|Hn and all y ∈ B|Hn then the superlevel sets {t ∈ R : f(t) ≥ s} and
{t ∈ R : g(t) ≥ s} are also congruous for any s ∈ [0, 1). Indeed, assuming
without loss of generality that An(x), Bn(y) satisfy condition i) of Definition
2.1, for all x ∈ A|Hn and all y ∈ B|Hn, then there exists s0 > 0 such that(
A|Hn

)
+ s0en ⊂ A,

(
B|Hn

)
+ s0en ⊂ B and A,B ⊂ [0, s0en] +Hn. Hence,

both f and g attain their maximum at s0 and vanish on (−∞, 0) ∪ (s0,∞),
which implies that their superlevel sets satisfy condition i) of Definition 2.1
and thus are congruous.

Therefore, we may apply Lemma 2.2 to get

µn
(
{t ∈ R : h(t)≥s}

)
≥(1−λ)µn

(
{t ∈ R : f(t)≥s}

)
+λµn

(
{t ∈ R : g(t)≥s}

)
for any s ∈ [0, 1). This, together with Fubini’s theorem and the Cavalieri
Principle ∫

R
ψ(x) dµn(x) =

∫ |ψ|∞
0

µn
(
{t ∈ R : ψ(t) ≥ s}

)
ds

for ψ = f, g, h, jointly with the fact that |h|∞ ≥ 1 = |f |∞ = |g|∞ (cf. (2.4)),
allows us to obtain

µ
(
(1− λ)A+ λB

)
= c

∫
R
h(x) dµn(x)

≥ c
(

(1− λ)

∫
R
f(x) dµn(x) + λ

∫
R
g(x) dµn(x)

)
= c

(
(1− λ)

µ(A)

|µ̄(A(·))|∞
+ λ

µ(B)

|µ̄(B(·))|∞

)
.
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And then, applying the (reverse) Hölder inequality (see e.g. [5, Theorem 1,
page 178]),

a1b1 + a2b2 ≥ (ap1 + ap2)
1/p

(bq1 + bq2)
1/q

,

with parameters p = 1/n and q = −1/(n−1), and taking a1 = (1−λ)1/pµ(A),

a2 = λ1/pµ(B), b1 = (1 − λ)1/q |µ̄(A(·))|−1
∞ and b2 = λ1/q |µ̄(B(·))|−1

∞ , we
conclude that

µ
(
(1− λ)A+ λB

)
≥
(

(1− λ)µ(A)1/n + λµ(B)1/n
)n
,

as desired. �

3. A remark on an isoperimetric inequality

Given a set M ⊂ Rn, let posM and intM denote, respectively, the posi-
tive hull and interior of M . Moreover, let ε1, . . . , ε2n denote the elements of

{−1, 1}n. Then, setting εj = (εj1, . . . , ε
j
n) for any j = 1, . . . , 2n, we write

Oj = pos{εj1e1, . . . , ε
j
nen}

for the corresponding orthant of Rn.

Along this section, we deal with certain sets contained in an orthogonal
compact box (which, for the sake of simplicity, will be assumed to be cen-
tered): fixing a box P =

∏n
i=1[−αi, αi], with αi > 0 for all i, we consider

unions of orthants of unconditional compact convex sets ‘embedded’ in the
corners of P . More precisely, such a set A satisfies that, for all j = 1, . . . , 2n,

(3.1) A ∩Oj = xj + (Kj ∩ (−Oj))

for some unconditional compact convex set Kj ⊂ intP (cf. Figure 3), where

xj = (εj1α1, . . . , ε
j
nαn) is the corresponding vertex of P . In the following, for

the sake of brevity, we will write Aj = A ∩Oj .
As in the Euclidean setting, we will obtain an isoperimetric type inequality

as a consequence of (1.2). To this aim, we introduce some notation. Let

Wµ
1 (A;B) =

1

n
lim inf
t→0+

µ(A+ tB)− µ(A)

t

be the first quermassintegral of A with respect to the set B associated to
the measure µ. Here we assume that A and B are measurable sets such that
A+ tB is also measurable for all t ≥ 0.

In a similar way, and denoting by Bn the n-dimensional Euclidean (closed)
unit ball, we may define

µ+(A) = lim inf
t→0+

µ(A+ tBn)− µ(A)

t
,

the surface area measure associated to µ, i.e., its (lower) Minkowski content.
Clearly, µ+(A) = nWµ

1 (A;Bn). The relative Minkowski content of a set
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A ⊂ Rn with respect to a second set Ω ⊂ Rn is defined by

µ+(A,Ω) = lim inf
t→0+

µ
(
(A+ tBn) ∩ Ω

)
− µ(A ∩ Ω)

t
.

Moreover, given x ∈ Rn, we set

Mµ(x,A) = nµ(x+A)− d

dt

−∣∣∣
t=1

µ(x+ tA),

provided that ((x,A), µ) is so that the above (left) derivative exists. When
dealing with a set A ⊂ Rn satisfying (3.1) for all j = 1, . . . , 2n, we also write

Mµ(A) =
∑2n

j=1M
µ
j (Aj), where Mµ

j (Aj) = Mµ(xj ,Kj ∩ (−Oj)). We notice

that, from the convexity of Kj ∩ (−Oj) and using Theorem 1.1, the function

t 7→ µ(xj + t(Kj ∩ (−Oj)))1/n is (increasing and) concave on (0, 1] for any
product measure µ in the conditions of the latter result. This implies that
the left derivative of µ(xj + t(Kj ∩ (−Oj))) at t = 1 (possibly infinite) exists
(cf. [17, Theorem 23.1]) and hence, for all j = 1, . . . , 2n, Mµ

j (Aj) (and so

Mµ(A)) is well-defined. Clearly, Mvol(A) = 0 for such a set A and thus
this functional does not appear in the classical isoperimetric inequality. For
more information about this functional, we refer the reader to [11, 16] and
the references therein.

Now we show an isoperimetric type inequality for unions of orthants of
unconditional compact convex sets embedded in the corners of a fixed or-
thogonal box, in the setting of product measures with quasi-convex densities.
This a straightforward consequence of the following result for (such) a sole
orthant.

Theorem 3.1. Let µ = µ1⊗ · · ·⊗µn be a product measure on Rn such that
µi is the measure given by dµi(x) = φi(x) dx, where φi : R −→ [0,∞) is
quasi-convex with φi(0) = minx∈R φi(x), for all i = 1, . . . , n.

Let P =
∏n
i=1[−αi, αi], with αi > 0 for all i and let K ⊂ intP be a non-

empty unconditional compact convex set. Let A = x1 + (K ∩ (−O1)), where
x1 = (α1, . . . , αn) and O1 = pos{e1, . . . , en}. Then, for any r > 0 such that
rBn ⊂ intP ,

rµ+(A,P ) +Mµ(x1,K1 ∩ (−O1)) ≥ nµ(A)1−1/nµ
(
x1 + (rBn ∩ (−O1))

)1/n
,

with equality if A = x1 + (rBn ∩ (−O1)).

Following the same argument for any orthant Aj of a non-empty set A ⊂ P
satisfying (3.1) for all j = 1, . . . , 2n, we get that, for any r1, . . . , r2n > 0 such
that rjBn ⊂ intP for all j, we have

2n∑
j=1

(
rjµ

+(Aj , P ) +Mµ
j (Aj)

)
≥ n

2n∑
j=1

µ(Aj)
1−1/nµ

(
xj+(rjBn∩(−Oj))

)1/n
,

with equality if Aj = xj + (rjBn ∩ (−Oj)) for all j = 1, . . . , 2n.
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A1 r1
A2 r2

A3 r3A4

µ+(A4, P )

r4

Figure 3. Union of orthants Aj of unconditional compact
convex sets (left) and the corresponding orthants of balls
xj + rj(Bn ∩ (−Oj)) of the same measure (right).

The particular case r1 = · · · = r2n(=: r) of the latter inequality shows
that

rµ+(A,P ) +Mµ(A) ≥ n
2n∑
j=1

µ(Aj)
1−1/nµ

(
xj + (rBn ∩ (−Oj))

)1/n
.

In other words: among all unions A of orthants of unconditional compact
convex sets embedded in the corners of a fixed centered orthogonal box
P (i.e., satisfying (3.1) for all j = 1, . . . , 2n) with predetermined measure
µ(Aj) = µ(xj + (rBn ∩ (−Oj)), (union of orthants embedded in the corners
of P of) Euclidean balls rBn minimize the functional rµ+(A,P ) +Mµ(A).

The main idea of the proof we present here goes back to the classical proof
of the Minkowski first inequality that can be found in [20, Theorem 7.2.1].
We refer also the reader to [16, Section 4] and the references therein.

Proof. We consider L = rBn and we denote by B = x1 + L−, where L− =
L ∩ (−O1). In the same way, we will write K− = K ∩ (−O1).

Notice that, for any ε > 0 such that K− + εL− ⊂ P , we have that
x1 +K−+ t1L

− and x1 +K−+ t2L
− are congruous for all t1, t2 ∈ [0, ε] (since

each one-dimensional section of them in the direction of ei, i = 1, . . . , n,
satisfies condition i) in Definition 2.1, with maximum equal to αi). Then,
from the convexity of L− (and K−) and using Theorem 1.1, the function

t 7→ µ(A+ tL−)1/n is concave on [0, ε]. This implies that the right derivative
of µ(A + tL−) at t = 0 (possibly infinite) exists (cf. [17, Theorem 23.1]).
Similarly, the left derivative of µ(x1 + tK−) at t = 1 exists.

Now, we consider the function f : [0, 1] −→ R≥0 given by

f(t) = µ
(
(1− t)A+ tB

)1/n − ((1− t)µ(A)1/n + tµ(B)1/n
)
.

By Theorem 1.1 (and from the convexity of both K− and L−) f is concave
(we notice that the fact of being an unconditional set is closed under convex
combinations) and, moreover, f(0) = f(1) = 0. Thus, the right derivative
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of f at t = 0 exists and furthermore

(3.2)
d

dt

+∣∣∣
t=0

f(t) ≥ 0

with equality if and only if f(t) = 0 for all t ∈ [0, 1], i.e., if and only if (1.2)
holds with equality for all t ∈ [0, 1].

Now, since

d

dt

+∣∣∣
t=0

f(t) =
1

n
µ(A)(1/n)−1 d

dt

+∣∣∣
t=0

µ
(
(1− t)A+ tB

)
+ µ(A)1/n − µ(B)1/n,

we just must compute the right derivative at 0 of µ
(
(1− t)A+ tB

)
. Writing

g(r, s) = µ
(
x1 + r(K− + sL−)

)
, we have

d

dt

+∣∣∣
t=0

µ
(
(1− t)A+ tB

)
=

d

dt

+∣∣∣
t=0

g

(
1− t, t

1− t

)
= − d

dt

−∣∣∣
t=1

µ(x1 + tK−) +
d

dt

+∣∣∣
t=0

µ(A+ tL−)

= Mµ(x1,K
−)− nµ(A) + nWµ

1 (A;L−),

and thus

d

dt

+∣∣∣
t=0

f(t) =
1

n
µ(A)(1/n)−1

(
Mµ(x1,K

−) + nWµ
1 (A;L−)

)
− µ(B)1/n.

Hence, the latter identity, together with (3.2), gives

Wµ
1 (A;L−) +

1

n
Mµ(x1,K

−) ≥ µ(A)1−1/nµ(B)1/n,

with equality if A = B.
Finally, from the unconditionality of K− we clearly have that

(
(A+ tL)∩

P
)

= A+ tL−, which yields nWµ
1 (A;L−) = rµ+(A,P ). Then, we have

rµ+(A,P ) +Mµ(x1,K1 ∩ (−O1)) ≥ nµ(A)1−1/nµ
(
x1 + (rBn)−

)1/n
,

with equality if A = x1 + (rBn ∩ (−O1)). This concludes the proof. �
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