ON A BRUNN-MINKOWSKI INEQUALITY FOR MEASURES WITH QUASI-CONVEX DENSITIES

JESÚS YEPES NICOLÁS

Abstract

In this paper we prove that the classical Brunn-Minkowski inequality holds for product measures on the Euclidean space with quasiconvex densities when considering certain classes of sets that contain, among others, the complements (within a centered box) of unconditional sets. As a consequence, we derive an isoperimetric type inequality.

1. Introduction

As usual, we write \mathbb{R}^{n} to represent the n-dimensional Euclidean space, and we denote by e_{i} the i-th canonical unit vector. For $i=1, \ldots, n$, we represent by $H_{i}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}=0\right\}$ the i-th coordinate hyperplane. The n-dimensional volume of a measurable set $M \subset \mathbb{R}^{n}$, i.e., its n-dimensional Lebesgue measure, is denoted by $\operatorname{vol}(M)$ (when integrating, as usual, $\mathrm{d} x$ will stand for $\operatorname{dvol}(x))$. We write $M(t)=\left\{x \in \mathbb{R}^{n-1}:(x, t) \in\right.$ $M\}$ for the $(n-1)$-dimensional section at height $t \in \mathbb{R}$ (in the direction of e_{n}), whereas the orthogonal projection of M onto an i-dimensional linear subspace H is denoted by $M \mid H$. Moreover, H^{\perp} represents the orthogonal complement of H and, for any $x \in M \mid H_{i}$, we set $M_{i}(x)=\left\{t \in \mathbb{R}: x+t \mathrm{e}_{i} \in\right.$ $M\}$ to denote the one-dimensional section of M through the point x in the direction of e_{i}. Finally, given $r>0, r M$ stands for the set $\{r m: m \in M\}$.

The Minkowski sum of two non-empty sets $A, B \subset \mathbb{R}^{n}$ is the classical vector addition of them: $A+B=\{a+b: a \in A, b \in B\}$. It is natural to wonder about the possibility of bounding the volume of the Minkowski sum of two sets in terms of their volumes; this is the statement of the BrunnMinkowski inequality (for extensive and beautiful surveys on this inequality we refer the reader to [1, [7]). One form of it asserts that if $\lambda \in(0,1)$ and A and B are non-empty measurable subsets of \mathbb{R}^{n} such that $(1-\lambda) A+\lambda B$ is also measurable then

$$
\begin{equation*}
\operatorname{vol}((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \operatorname{vol}(A)^{1 / n}+\lambda \operatorname{vol}(B)^{1 / n} \tag{1.1}
\end{equation*}
$$

[^0]The Brunn-Minkowski inequality was generalized to different types of measures, including the cases of log-concave measures [10, 15] and of p concave measures (see e.g. [3, 4]). It is interesting to note that it was proved by Borell [2, 3] that such generalizations would require a p-concavity assumption on the density of the underlying measure (see (2.1) below for the precise definition). As a consequence of this approach (see also [21]), when dealing with arbitrary measurable sets and a Radon measure on \mathbb{R}^{n}, the ($1 / n$)-form of the Brunn-Minkowski inequality (1.1) is only true, in general, for the volume (up to a constant). However, when considering some special families of sets (e.g. that of unconditional sets), the ($1 / n$)-Brunn-Minkowski inequality holds for some types of measures, such as the standard Gaussian measure, which is given by

$$
\mathrm{d} \gamma_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{\frac{-|x|^{2}}{2}} \mathrm{~d} x
$$

(see e.g. [8, 11, 12, 14, 16]). Furthermore, for the family of C-coconvex sets (complements of closed convex sets, of positive and finite volume, within a pointed closed convex cone with non-empty interior C), a "complemented" version of the Brunn-Minkowski inequality (1.1) holds for the volume (see [9, 19]), namely

$$
\operatorname{vol}(C \backslash((1-\lambda) K+\lambda L))^{1 / n} \leq(1-\lambda) \operatorname{vol}(C \backslash K)^{1 / n}+\lambda \operatorname{vol}(C \backslash L)^{1 / n}
$$

for all $\lambda \in(0,1)$. And again, this (complemented) Brunn-Minkowski inequality can be also generalized for certain general measures (see [13]).

To complete the picture, one may ask about possible p-convexity conditions on the density of the underlying measure. Among others, what can be said about the measure ν_{n} on \mathbb{R}^{n} given by

$$
\mathrm{d} \nu_{n}(x)=e^{|x|^{2}} \mathrm{~d} x
$$

whose density is log-convex? In [13], when dealing with measures involving certain log-convex functions as part of their densities, the authors showed another type of complemented Brunn-Minkowski inequality. Nevertheless, not much more seems to be known regarding Brunn-Minkowski inequalities for log-convex densities or, more generally, quasi-convex densities (see 2.2) below for the precise definition).

To this regard, and inspired by the above-mentioned (complemented) Brunn-Minkowski inequalities, it is natural to wonder whether one may find certain classes of sets for which a measure on \mathbb{R}^{n} of the kind of ν_{n} satisfies the $(1 / n)$-form of the Brunn-Minkowski inequality. Here we give a positive answer to this question, by showing that it is enough to consider congruous sets (see Definition 2.1): a family that contains, among others, the complements of unconditional sets within a centered box (cf. Example 2.1). This is the content of the following result, in the more general setting of product measures with quasi-convex densities (with minimum at the origin).

Theorem 1.1. Let $\mu=\mu_{1} \otimes \cdots \otimes \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow[0, \infty)$ is quasi-convex with $\phi_{i}(0)=\min _{x \in \mathbb{R}} \phi_{i}(x)$, for all $i=1, \ldots, n$.

Let $\lambda \in(0,1)$ and let $A, B \subset \mathbb{R}^{n}$ be non-empty measurable congruous sets such that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\begin{equation*}
\mu((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n} \tag{1.2}
\end{equation*}
$$

Section 2 is mainly devoted to showing this result. Finally, in Section 3, we derive an isoperimetric type inequality as a consequence of (1.2).

2. Proof of the main result

2.1. Background. We recall that a function $\phi: \mathbb{R}^{n} \longrightarrow[0, \infty)$ is p-concave, for $p \in \mathbb{R} \cup\{ \pm \infty\}$, if

$$
\begin{equation*}
\phi((1-\lambda) x+\lambda y) \geq M_{p}(\phi(x), \phi(y), \lambda) \tag{2.1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}$ such that $\phi(x) \phi(y)>0$ and any $\lambda \in(0,1)$. Here M_{p} denotes the p-mean of two non-negative numbers a, b :

$$
M_{p}(a, b, \lambda)= \begin{cases}\left((1-\lambda) a^{p}+\lambda b^{p}\right)^{1 / p}, & \text { if } p \neq 0, \pm \infty \\ a^{1-\lambda} b^{\lambda} & \text { if } p=0 \\ \max \{a, b\} & \text { if } p=\infty \\ \min \{a, b\} & \text { if } p=-\infty\end{cases}
$$

A 0 -concave function is usually called log-concave whereas a $(-\infty)$-concave function is called quasi-concave. Quasi-concavity is equivalent to the fact that the superlevel sets $\left\{x \in \mathbb{R}^{n}: \phi(x) \geq t\right\}$ are convex for all $t \in[0,1]$.

On the other side of the coin, one is led to p-convex functions, where $p \in \mathbb{R} \cup\{ \pm \infty\}$, i.e., those functions satisfying

$$
\begin{equation*}
\phi((1-\lambda) x+\lambda y) \leq M_{p}(\phi(x), \phi(y), \lambda) \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}$ and all $\lambda \in(0,1)$. Again, 0 -convex functions are referred to as log-convex whereas ∞-convex functions are called quasi-convex.

Now we define a new class of (pairs of) sets that will play a relevant role throughout this paper.

Definition 2.1. Let $A, B \subset \mathbb{R}^{n}$ be non-empty bounded sets. For $n=1$, we say that A and B are congruous if one of the following assertions holds.
i) $A \cap(-\infty, 0), B \cap(-\infty, 0)=\emptyset$ and $\max (A)=\max (B)$.
ii) $A \cap(0, \infty), B \cap(0, \infty)=\emptyset$ and $\min (A)=\min (B)$.
iii) $A \cap(0, \infty), B \cap(0, \infty), A \cap(-\infty, 0), B \cap(-\infty, 0) \neq \emptyset, \min (A)=$ $\min (B)$ and $\max (A)=\max (B)$.
For $n \geq 2$, we say that A and B are congruous if, for any $i=1, \ldots, n$, the sets $A_{i}(x)$ and $B_{i}(y)$ are congruous for all $x \in A \mid H_{i}$ and all $y \in B \mid H_{i}$.

Figure 1. The congruous sets A (in gray) and B (the box), with the sections $A_{2}(x), A_{1}(y)$ for given $x \in A\left|H_{2}, y \in A\right| H_{1}$.

We notice that the fact that, for any $i=1, \ldots, n$, the sets $A_{i}(x)$ and $B_{i}(y)$ are congruous (for all $x \in A \mid H_{i}$ and all $y \in B \mid H_{i}$) does not mean that the same condition in Definition 2.1 holds for all i (see Figure 1; there $A_{2}(x), B_{2}\left(x^{\prime}\right)$ satisfy condition iii) of Definition 2.1, for all $x \in A \mid H_{2}$ and all $x^{\prime} \in B \mid H_{2}$, whereas $A_{1}(y), B_{1}\left(y^{\prime}\right)$ fulfil condition i), for any $y \in A \mid H_{1}$ and any $\left.y^{\prime} \in B \mid H_{1}\right)$.

Unconditional convex sets are of particular interest in convexity, also regarding Brunn-Minkowski type inequalities (see e.g. [11, 18). A subset $A \subset \mathbb{R}^{n}$ is said to be unconditional (not necessarily convex) if for every $\left(x_{1}, \ldots, x_{n}\right) \in A$ and every $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in[-1,1]^{n}$ one has $\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in$ A. As announced before, the family of congruous sets contains certain complements of unconditional sets:

Example 2.1. Let $P=\prod_{i=1}^{n}\left[-\alpha_{i}, \alpha_{i}\right], \alpha_{i}>0$ for $i=1, \ldots, n$, be a centered orthogonal compact box and let $A, B \subset P$ be non-empty compact sets such that $P \backslash A, P \backslash B$ are unconditional. Then A and B are congruous. Indeed, from the unconditionality of $P \backslash A$ and $P \backslash B$, we have that $\max \left(A_{i}(x)\right)=$ $\max \left(B_{i}(y)\right)=\alpha_{i}$ and $\min \left(A_{i}(x)\right)=\min \left(B_{i}(y)\right)=-\alpha_{i}$, for all $x \in A \mid H_{i}$ and all $y \in B \mid H_{i}$; thus $A_{i}(x)$ and $B_{i}(y)$ are congruous for any $i=1, \ldots, n$ since they satisfy condition iii) in Definition 2.1 (see Figure 2).

Figure 2. A set A (in gray) contained in a centered box P such that $P \backslash A$ is unconditional.

The following result is well-known in the literature (see e.g. the onedimensional case of [6, Theorem 4.1] and the references therein. Regarding its statement, and following the notation used in [6, we notice that for a quasi-concave function $\phi: \mathbb{R} \longrightarrow[0, \infty)$ we have $(1-\lambda) \phi \chi_{A}{ }^{{ }_{-}}{ }_{-\infty} \lambda \phi \chi_{B}=$ $\phi \chi_{(1-\lambda) A+\lambda B}$, where χ_{M} denotes the characteristic function of the set $M \subset \mathbb{R}$).

Lemma 2.1. Let μ be the measure on \mathbb{R} given by $\mathrm{d} \mu(x)=\phi(x) \mathrm{d} x$, where $\phi: \mathbb{R} \longrightarrow[0, \infty)$ is quasi-concave with $\phi(0)=\max _{x \in \mathbb{R}} \phi(x)$. Let $\lambda \in(0,1)$ and let $A, B \subset \mathbb{R}$ be measurable sets with $0 \in A \cap B$. Then

$$
\mu(C) \geq(1-\lambda) \mu(A)+\lambda \mu(B)
$$

for any measurable set C such that $C \supset(1-\lambda) A+\lambda B$.
As a consequence of such a Brunn-Minkowski inequality for quasi-concave densities on \mathbb{R}, we will obtain the one-dimensional Brunn-Minkowski inequality for measures associated to quasi-convex functions when working with congruous sets. This is the content of Lemma 2.2 .
2.2. Proof. We start this subsection by showing the one-dimensional case of our main result, Theorem 1.1.

Lemma 2.2. Let μ be the measure on \mathbb{R} given by $\mathrm{d} \mu(x)=\phi(x) \mathrm{d} x$, where $\phi: \mathbb{R} \longrightarrow[0, \infty)$ is quasi-convex with $\phi(0)=\min _{x \in \mathbb{R}} \phi(x)$. Let $\lambda \in(0,1)$ and let $A, B \subset \mathbb{R}$ be non-empty measurable congruous sets. Then

$$
\mu(C) \geq(1-\lambda) \mu(A)+\lambda \mu(B)
$$

for any non-empty measurable set C such that $C \supset(1-\lambda) A+\lambda B$.
Proof. Let A and B satisfy condition iii) in Definition 2.1. Assuming that the result is true if either i) or ii) (of Definition 2.1) holds, it is enough to consider $A^{+}, A^{-}, B^{+}, B^{-}, C^{+}, C^{-}$where, for any $M \subset \mathbb{R}$, the sets M^{+}and M^{-}stand for $M^{+}=M \cap(0, \infty)$ and $M^{-}=M \cap(-\infty, 0)$. Indeed, applying the result to the sets A^{+}, B^{+}, C^{+}and A^{-}, B^{-}, C^{-}, respectively, we have

$$
\begin{aligned}
(1-\lambda) \mu(A)+\lambda \mu(B) & =(1-\lambda) \mu\left(A^{+}\right)+\lambda \mu\left(B^{+}\right)+(1-\lambda) \mu\left(A^{-}\right)+\lambda \mu\left(B^{-}\right) \\
& \leq \mu\left(C^{+}\right)+\mu\left(C^{-}\right)=\mu(C) .
\end{aligned}
$$

Moreover, we note that the function $\bar{\phi}: \mathbb{R} \longrightarrow[0, \infty)$ given by $\bar{\phi}(x)=$ $\phi(-x)$ is quasi-convex (and, clearly, $\bar{\phi}(0)=\min _{x \in \mathbb{R}} \bar{\phi}(x)$). Thus, considering if necessary $\bar{A}=-A, \bar{B}=-B, \bar{C}=-C$, and the measure $\bar{\mu}$ with density $\bar{\phi}$, it is enough to prove the result for congruous sets satisfying i). Now, the quasi-convexity of ϕ implies that $\phi(x) \leq \max \{\phi(0), \phi(y)\}=\phi(y)$ for any $0<x<y$. This shows that ϕ is increasing on $(0, \infty)$ and then $\phi \cdot \chi_{(0, \infty)}$ is quasi-concave. Thus, setting $x_{0}=\max (A)=\max (B)$, the result follows from applying Lemma 2.1 to the function $\psi: \mathbb{R} \longrightarrow[0, \infty)$ given by $\psi(x)=$ $\phi\left(x+x_{0}\right) \cdot \chi_{(-\infty, 0]}(x)$ and the sets $A-x_{0}, B-x_{0}, C-x_{0}$.

As stated in Theorem 1.1, the above result extends to dimension n. The approach we follow here is based on the underlying idea of [16, Theorem 1.3], and it goes back to some classical proofs of functional versions of the BrunnMinkowski inequality (such as the Prékopa-Leindler inequality) and other related results.

Proof of Theorem 1.1. For the sake of brevity we write $C=(1-\lambda) A+\lambda B$ and, given $t_{1}, t_{2} \in \mathbb{R}, t_{\lambda}=(1-\lambda) t_{1}+\lambda t_{2}$. We also set $\bar{\mu}=\mu_{1} \otimes \mu_{2} \otimes \cdots \otimes \mu_{n-1}$ (i.e., $\mu=\bar{\mu} \otimes \mu_{n}$).

Since μ is inner regular (i.e., $\mu(A)=\sup \{\mu(K): K \subset A, K$ compact $\}$ for any measurable set A), we may assume, without loss of generality, that A and B are compact. Indeed, given sequences of compact sets $\left(K_{n}\right)_{n \in \mathbb{N}},\left(L_{n}\right)_{n \in \mathbb{N}}$ that approximate from inside the congruous sets A and B, respectively, one may clearly consider certain sequences of congruous compact sets $\left(K_{n}^{\prime}\right)_{n \in \mathbb{N}}$, $\left(L_{n}^{\prime}\right)_{n \in \mathbb{N}}$ such that $\mu\left(K_{n}^{\prime}\right)=\mu\left(K_{n}\right)$ and $\mu\left(L_{n}^{\prime}\right)=\mu\left(L_{n}\right)$, for all $n \in \mathbb{N}$. In fact, it is enough to add to K_{n} and L_{n}, respectively, the projections $\left(A \mid H_{i}\right)$ and $\left(B \mid H_{i}\right)$, located at the appropriate height(s) in the direction of e_{i}, for $i=1, \ldots, n$.

Moreover, we observe that we may assume that $\mu(A) \mu(B)>0$. Indeed, the case in which one of the sets, say B, has measure zero whereas the other one, A, has positive measure can be obtained (cf. [16, Proposition 2.7]) by applying the positive measures case to A and the following set: let P be an orthogonal compact box congruous with B (and so, with A) and let C_{m} be a decreasing sequence of (unions of) boxes, which are congruous with B, that shrinks (as $m \rightarrow \infty$) to the subset of vertices of P that belong to B; then we take $B_{m}=B \cup C_{m}$, which is also congruous with A for all $m \in \mathbb{N}$. We note that this congruence ensures that the points in the limit case belong to B, and hence $\bigcap_{m \in \mathbb{N}}\left((1-\lambda) A+\lambda B_{m}\right)=(1-\lambda) A+\lambda B$. Taking into account that

$$
\mu\left(\bigcap_{m \in \mathbb{N}}\left((1-\lambda) A+\lambda B_{m}\right)\right)=\lim _{m} \mu\left((1-\lambda) A+\lambda B_{m}\right)
$$

we get (1.2).
We then show the result by (finite) induction on the dimension n. The case $n=1$ is just Lemma 2.2. So, we suppose that $n \geq 2$ and that the inequality is true for dimension $n-1$. The sets $A\left(t_{1}\right), B\left(t_{2}\right)$, for $t_{1}, t_{2} \in \mathbb{R}$ such that $t_{1} \mathrm{e}_{n} \in A\left|H_{n}^{\perp}, t_{2} \mathrm{e}_{n} \in B\right| H_{n}^{\perp}$, are clearly congruous and thus, applying the induction hypothesis (i.e., ($\sqrt[1.2)]{ }$ in \mathbb{R}^{n-1} for $\bar{\mu}$) together with the fact that $C\left(t_{\lambda}\right) \supset(1-\lambda) A\left(t_{1}\right)+\lambda B\left(t_{2}\right)$, we have

$$
\begin{equation*}
\bar{\mu}\left(C\left(t_{\lambda}\right)\right) \geq\left((1-\lambda) \bar{\mu}\left(A\left(t_{1}\right)\right)^{1 /(n-1)}+\lambda \bar{\mu}\left(B\left(t_{2}\right)\right)^{1 /(n-1)}\right)^{n-1} \tag{2.3}
\end{equation*}
$$

Now, we take the non-negative functions $f, g, h: \mathbb{R} \longrightarrow[0, \infty)$ given by

$$
f(t)=\frac{\bar{\mu}(A(t))}{|\bar{\mu}(A(\cdot))|_{\infty}}, g(t)=\frac{\bar{\mu}(B(t))}{|\bar{\mu}(B(\cdot))|_{\infty}}, h(t)=\frac{\bar{\mu}(C(t))}{c}
$$

where

$$
c=\left((1-\lambda)|\bar{\mu}(A(\cdot))|_{\infty}^{1 /(n-1)}+\lambda|\bar{\mu}(B(\cdot))|_{\infty}^{1 /(n-1)}\right)^{n-1}
$$

We notice that the above functions are well-defined: denominators are positive since $\mu(A) \mu(B)>0$, and they are finite because $A \mid H_{n-1}$ and $B \mid H_{n-1}$ are compact sets and $\bar{\mu}$ is locally finite. Furthermore, $\sup _{t \in \mathbb{R}} f(t)=$ $\sup _{t \in \mathbb{R}} g(t)=1$.

Using (2.3), and setting $\theta=\frac{\lambda|\bar{\mu}(B(\cdot))|_{\infty}^{1 /(n-1)}}{c^{1 /(n-1)}} \in(0,1)$, we get

$$
\begin{aligned}
\bar{\mu}\left(C\left(t_{\lambda}\right)\right) & \geq\left((1-\lambda) \bar{\mu}\left(A\left(t_{1}\right)\right)^{1 /(n-1)}+\lambda \bar{\mu}\left(B\left(t_{2}\right)\right)^{1 /(n-1)}\right)^{n-1} \\
& =c\left((1-\theta) f\left(t_{1}\right)^{1 /(n-1)}+\theta g\left(t_{2}\right)^{1 /(n-1)}\right)^{n-1} \\
& \geq c \min \left\{f\left(t_{1}\right), g\left(t_{2}\right)\right\} .
\end{aligned}
$$

This shows that $h\left((1-\lambda) t_{1}+\lambda t_{2}\right) \geq \min \left\{f\left(t_{1}\right), g\left(t_{2}\right)\right\}$ for any $t_{1}, t_{2} \in \mathbb{R}$, which clearly implies that

$$
\begin{equation*}
\{t \in \mathbb{R}: h(t) \geq s\} \supset(1-\lambda)\{t \in \mathbb{R}: f(t) \geq s\}+\lambda\{t \in \mathbb{R}: g(t) \geq s\} \tag{2.4}
\end{equation*}
$$

for all $s \in[0,1)$. Moreover, since $A_{n}(x)$ and $B_{n}(y)$ are congruous for all $x \in A \mid H_{n}$ and all $y \in B \mid H_{n}$ then the superlevel sets $\{t \in \mathbb{R}: f(t) \geq s\}$ and $\{t \in \mathbb{R}: g(t) \geq s\}$ are also congruous for any $s \in[0,1)$. Indeed, assuming without loss of generality that $A_{n}(x), B_{n}(y)$ satisfy condition i) of Definition 2.1, for all $x \in A \mid H_{n}$ and all $y \in B \mid H_{n}$, then there exists $s_{0}>0$ such that $\left(A \mid H_{n}\right)+s_{0} \mathrm{e}_{n} \subset A,\left(B \mid H_{n}\right)+s_{0} \mathrm{e}_{n} \subset B$ and $A, B \subset\left[0, s_{0} \mathrm{e}_{n}\right]+H_{n}$. Hence, both f and g attain their maximum at s_{0} and vanish on $(-\infty, 0) \cup\left(s_{0}, \infty\right)$, which implies that their superlevel sets satisfy condition i) of Definition 2.1 and thus are congruous.

Therefore, we may apply Lemma 2.2 to get
$\mu_{n}(\{t \in \mathbb{R}: h(t) \geq s\}) \geq(1-\lambda) \mu_{n}(\{t \in \mathbb{R}: f(t) \geq s\})+\lambda \mu_{n}(\{t \in \mathbb{R}: g(t) \geq s\})$
for any $s \in[0,1)$. This, together with Fubini's theorem and the Cavalieri Principle

$$
\int_{\mathbb{R}} \psi(x) \mathrm{d} \mu_{n}(x)=\int_{0}^{|\psi|_{\infty}} \mu_{n}(\{t \in \mathbb{R}: \psi(t) \geq s\}) \mathrm{d} s
$$

for $\psi=f, g, h$, jointly with the fact that $|h|_{\infty} \geq 1=|f|_{\infty}=|g|_{\infty}$ (cf. (2.4)), allows us to obtain

$$
\begin{aligned}
\mu((1-\lambda) A+\lambda B) & =c \int_{\mathbb{R}} h(x) \mathrm{d} \mu_{n}(x) \\
& \geq c\left((1-\lambda) \int_{\mathbb{R}} f(x) \mathrm{d} \mu_{n}(x)+\lambda \int_{\mathbb{R}} g(x) \mathrm{d} \mu_{n}(x)\right) \\
& =c\left((1-\lambda) \frac{\mu(A)}{|\bar{\mu}(A(\cdot))|_{\infty}}+\lambda \frac{\mu(B)}{|\bar{\mu}(B(\cdot))|_{\infty}}\right) .
\end{aligned}
$$

And then, applying the (reverse) Hölder inequality (see e.g. [5, Theorem 1, page 178]),

$$
a_{1} b_{1}+a_{2} b_{2} \geq\left(a_{1}^{p}+a_{2}^{p}\right)^{1 / p}\left(b_{1}^{q}+b_{2}^{q}\right)^{1 / q}
$$

with parameters $p=1 / n$ and $q=-1 /(n-1)$, and taking $a_{1}=(1-\lambda)^{1 / p} \mu(A)$, $a_{2}=\lambda^{1 / p} \mu(B), b_{1}=(1-\lambda)^{1 / q}|\bar{\mu}(A(\cdot))|_{\infty}^{-1}$ and $b_{2}=\lambda^{1 / q}|\bar{\mu}(B(\cdot))|_{\infty}^{-1}$, we conclude that

$$
\mu((1-\lambda) A+\lambda B) \geq\left((1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n}\right)^{n}
$$

as desired.

3. A REMARK ON AN ISOPERIMETRIC INEQUALITY

Given a set $M \subset \mathbb{R}^{n}$, let $\operatorname{pos} M$ and $\operatorname{int} M$ denote, respectively, the positive hull and interior of M. Moreover, let $\varepsilon_{1}, \ldots, \varepsilon_{2^{n}}$ denote the elements of $\{-1,1\}^{n}$. Then, setting $\varepsilon_{j}=\left(\varepsilon_{1}^{j}, \ldots, \varepsilon_{n}^{j}\right)$ for any $j=1, \ldots, 2^{n}$, we write

$$
O_{j}=\operatorname{pos}\left\{\varepsilon_{1}^{j} \mathrm{e}_{1}, \ldots, \varepsilon_{n}^{j} \mathrm{e}_{n}\right\}
$$

for the corresponding orthant of \mathbb{R}^{n}.
Along this section, we deal with certain sets contained in an orthogonal compact box (which, for the sake of simplicity, will be assumed to be centered): fixing a box $P=\prod_{i=1}^{n}\left[-\alpha_{i}, \alpha_{i}\right]$, with $\alpha_{i}>0$ for all i, we consider unions of orthants of unconditional compact convex sets 'embedded' in the corners of P. More precisely, such a set A satisfies that, for all $j=1, \ldots, 2^{n}$,

$$
\begin{equation*}
A \cap O_{j}=x_{j}+\left(K_{j} \cap\left(-O_{j}\right)\right) \tag{3.1}
\end{equation*}
$$

for some unconditional compact convex set $K_{j} \subset \operatorname{int} P$ (cf. Figure 3), where $x_{j}=\left(\varepsilon_{1}^{j} \alpha_{1}, \ldots, \varepsilon_{n}^{j} \alpha_{n}\right)$ is the corresponding vertex of P. In the following, for the sake of brevity, we will write $A_{j}=A \cap O_{j}$.

As in the Euclidean setting, we will obtain an isoperimetric type inequality as a consequence of $\sqrt{1.2}$). To this aim, we introduce some notation. Let

$$
\mathrm{W}_{1}^{\mu}(A ; B)=\frac{1}{n} \liminf _{t \rightarrow 0^{+}} \frac{\mu(A+t B)-\mu(A)}{t}
$$

be the first quermassintegral of A with respect to the set B associated to the measure μ. Here we assume that A and B are measurable sets such that $A+t B$ is also measurable for all $t \geq 0$.

In a similar way, and denoting by B_{n} the n-dimensional Euclidean (closed) unit ball, we may define

$$
\mu^{+}(A)=\liminf _{t \rightarrow 0^{+}} \frac{\mu\left(A+t B_{n}\right)-\mu(A)}{t},
$$

the surface area measure associated to μ, i.e., its (lower) Minkowski content. Clearly, $\mu^{+}(A)=n \mathrm{~W}_{1}^{\mu}\left(A ; B_{n}\right)$. The relative Minkowski content of a set
$A \subset \mathbb{R}^{n}$ with respect to a second set $\Omega \subset \mathbb{R}^{n}$ is defined by

$$
\mu^{+}(A, \Omega)=\liminf _{t \rightarrow 0^{+}} \frac{\mu\left(\left(A+t B_{n}\right) \cap \Omega\right)-\mu(A \cap \Omega)}{t} .
$$

Moreover, given $x \in \mathbb{R}^{n}$, we set

$$
M^{\mu}(x, A)=n \mu(x+A)-\left.\frac{\mathrm{d}^{-}}{\mathrm{d} t}\right|_{t=1} \mu(x+t A),
$$

provided that $((x, A), \mu)$ is so that the above (left) derivative exists. When dealing with a set $A \subset \mathbb{R}^{n}$ satisfying (3.1) for all $j=1, \ldots, 2^{n}$, we also write $M^{\mu}(A)=\sum_{j=1}^{2^{n}} M_{j}^{\mu}\left(A_{j}\right)$, where $M_{j}^{\mu}\left(A_{j}\right)=M^{\mu}\left(x_{j}, K_{j} \cap\left(-O_{j}\right)\right)$. We notice that, from the convexity of $K_{j} \cap\left(-O_{j}\right)$ and using Theorem 1.1, the function $t \mapsto \mu\left(x_{j}+t\left(K_{j} \cap\left(-O_{j}\right)\right)\right)^{1 / n}$ is (increasing and) concave on (0,1] for any product measure μ in the conditions of the latter result. This implies that the left derivative of $\mu\left(x_{j}+t\left(K_{j} \cap\left(-O_{j}\right)\right)\right.$) at $t=1$ (possibly infinite) exists (cf. [17, Theorem 23.1]) and hence, for all $j=1, \ldots, 2^{n}, M_{j}^{\mu}\left(A_{j}\right)$ (and so $\left.M^{\mu}(A)\right)$ is well-defined. Clearly, $M^{\mathrm{vol}}(A)=0$ for such a set A and thus this functional does not appear in the classical isoperimetric inequality. For more information about this functional, we refer the reader to [11, 16] and the references therein.

Now we show an isoperimetric type inequality for unions of orthants of unconditional compact convex sets embedded in the corners of a fixed orthogonal box, in the setting of product measures with quasi-convex densities. This a straightforward consequence of the following result for (such) a sole orthant.

Theorem 3.1. Let $\mu=\mu_{1} \otimes \cdots \otimes \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow[0, \infty)$ is quasi-convex with $\phi_{i}(0)=\min _{x \in \mathbb{R}} \phi_{i}(x)$, for all $i=1, \ldots, n$.

Let $P=\prod_{i=1}^{n}\left[-\alpha_{i}, \alpha_{i}\right]$, with $\alpha_{i}>0$ for all i and let $K \subset \operatorname{int} P$ be a nonempty unconditional compact convex set. Let $A=x_{1}+\left(K \cap\left(-O_{1}\right)\right)$, where $x_{1}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $O_{1}=\operatorname{pos}\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}\right\}$. Then, for any $r>0$ such that $r B_{n} \subset \operatorname{int} P$,
$r \mu^{+}(A, P)+M^{\mu}\left(x_{1}, K_{1} \cap\left(-O_{1}\right)\right) \geq n \mu(A)^{1-1 / n} \mu\left(x_{1}+\left(r B_{n} \cap\left(-O_{1}\right)\right)\right)^{1 / n}$,
with equality if $A=x_{1}+\left(r B_{n} \cap\left(-O_{1}\right)\right)$.
Following the same argument for any orthant A_{j} of a non-empty set $A \subset P$ satisfying (3.1) for all $j=1, \ldots, 2^{n}$, we get that, for any $r_{1}, \ldots, r_{2^{n}}>0$ such that $r_{j} B_{n} \subset \operatorname{int} P$ for all j, we have
$\sum_{j=1}^{2^{n}}\left(r_{j} \mu^{+}\left(A_{j}, P\right)+M_{j}^{\mu}\left(A_{j}\right)\right) \geq n \sum_{j=1}^{2^{n}} \mu\left(A_{j}\right)^{1-1 / n} \mu\left(x_{j}+\left(r_{j} B_{n} \cap\left(-O_{j}\right)\right)\right)^{1 / n}$,
with equality if $A_{j}=x_{j}+\left(r_{j} B_{n} \cap\left(-O_{j}\right)\right)$ for all $j=1, \ldots, 2^{n}$.

Figure 3. Union of orthants A_{j} of unconditional compact convex sets (left) and the corresponding orthants of balls $x_{j}+r_{j}\left(B_{n} \cap\left(-O_{j}\right)\right)$ of the same measure (right).

The particular case $r_{1}=\cdots=r_{2^{n}}(=: r)$ of the latter inequality shows that

$$
r \mu^{+}(A, P)+M^{\mu}(A) \geq n \sum_{j=1}^{2^{n}} \mu\left(A_{j}\right)^{1-1 / n} \mu\left(x_{j}+\left(r B_{n} \cap\left(-O_{j}\right)\right)\right)^{1 / n}
$$

In other words: among all unions A of orthants of unconditional compact convex sets embedded in the corners of a fixed centered orthogonal box P (i.e., satisfying (3.1) for all $j=1, \ldots, 2^{n}$) with predetermined measure $\mu\left(A_{j}\right)=\mu\left(x_{j}+\left(r B_{n} \cap\left(-O_{j}\right)\right)\right.$, (union of orthants embedded in the corners of P of) Euclidean balls $r B_{n}$ minimize the functional $r \mu^{+}(A, P)+M^{\mu}(A)$.

The main idea of the proof we present here goes back to the classical proof of the Minkowski first inequality that can be found in [20, Theorem 7.2.1]. We refer also the reader to [16, Section 4] and the references therein.

Proof. We consider $L=r B_{n}$ and we denote by $B=x_{1}+L^{-}$, where $L^{-}=$ $L \cap\left(-O_{1}\right)$. In the same way, we will write $K^{-}=K \cap\left(-O_{1}\right)$.

Notice that, for any $\epsilon>0$ such that $K^{-}+\epsilon L^{-} \subset P$, we have that $x_{1}+K^{-}+t_{1} L^{-}$and $x_{1}+K^{-}+t_{2} L^{-}$are congruous for all $t_{1}, t_{2} \in[0, \epsilon]$ (since each one-dimensional section of them in the direction of $\mathrm{e}_{i}, i=1, \ldots, n$, satisfies condition i) in Definition 2.1, with maximum equal to α_{i}). Then, from the convexity of L^{-}(and K^{-}) and using Theorem 1.1, the function $t \mapsto \mu\left(A+t L^{-}\right)^{1 / n}$ is concave on $[0, \epsilon]$. This implies that the right derivative of $\mu\left(A+t L^{-}\right)$at $t=0$ (possibly infinite) exists (cf. [17, Theorem 23.1]). Similarly, the left derivative of $\mu\left(x_{1}+t K^{-}\right)$at $t=1$ exists.

Now, we consider the function $f:[0,1] \longrightarrow \mathbb{R}_{\geq 0}$ given by

$$
f(t)=\mu((1-t) A+t B)^{1 / n}-\left((1-t) \mu(A)^{1 / n}+t \mu(B)^{1 / n}\right) .
$$

By Theorem 1.1 (and from the convexity of both K^{-}and L^{-}) f is concave (we notice that the fact of being an unconditional set is closed under convex combinations) and, moreover, $f(0)=f(1)=0$. Thus, the right derivative
of f at $t=0$ exists and furthermore

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{+}}{\mathrm{d} t}\right|_{t=0} f(t) \geq 0 \tag{3.2}
\end{equation*}
$$

with equality if and only if $f(t)=0$ for all $t \in[0,1]$, i.e., if and only if 1.2) holds with equality for all $t \in[0,1]$.

Now, since

$$
\left.\frac{\mathrm{d}^{+}}{\mathrm{d} t}\right|_{t=0} f(t)=\left.\frac{1}{n} \mu(A)^{(1 / n)-1} \frac{\mathrm{~d}^{+}}{\mathrm{d} t}\right|_{t=0} \mu((1-t) A+t B)+\mu(A)^{1 / n}-\mu(B)^{1 / n}
$$

we just must compute the right derivative at 0 of $\mu((1-t) A+t B)$. Writing $g(r, s)=\mu\left(x_{1}+r\left(K^{-}+s L^{-}\right)\right)$, we have

$$
\begin{aligned}
\left.\frac{\mathrm{d}^{+}}{\mathrm{d} t}\right|_{t=0} \mu((1-t) A+t B) & =\left.\frac{\mathrm{d}^{+}}{\mathrm{d} t}\right|_{t=0} g\left(1-t, \frac{t}{1-t}\right) \\
& =-\left.\frac{\mathrm{d}^{-}}{\mathrm{d} t}\right|_{t=1} \mu\left(x_{1}+t K^{-}\right)+\left.\frac{\mathrm{d}^{+}}{\mathrm{d} t}\right|_{t=0} \mu\left(A+t L^{-}\right) \\
& =M^{\mu}\left(x_{1}, K^{-}\right)-n \mu(A)+n \mathrm{~W}_{1}^{\mu}\left(A ; L^{-}\right),
\end{aligned}
$$

and thus

$$
\left.\frac{\mathrm{d}^{+}}{\mathrm{d} t}\right|_{t=0} f(t)=\frac{1}{n} \mu(A)^{(1 / n)-1}\left(M^{\mu}\left(x_{1}, K^{-}\right)+n \mathrm{~W}_{1}^{\mu}\left(A ; L^{-}\right)\right)-\mu(B)^{1 / n}
$$

Hence, the latter identity, together with (3.2), gives

$$
\mathrm{W}_{1}^{\mu}\left(A ; L^{-}\right)+\frac{1}{n} M^{\mu}\left(x_{1}, K^{-}\right) \geq \mu(A)^{1-1 / n} \mu(B)^{1 / n}
$$

with equality if $A=B$.
Finally, from the unconditionality of K^{-}we clearly have that $((A+t L) \cap$ $P)=A+t L^{-}$, which yields $n \mathrm{~W}_{1}^{\mu}\left(A ; L^{-}\right)=r \mu^{+}(A, P)$. Then, we have

$$
r \mu^{+}(A, P)+M^{\mu}\left(x_{1}, K_{1} \cap\left(-O_{1}\right)\right) \geq n \mu(A)^{1-1 / n} \mu\left(x_{1}+\left(r B_{n}\right)^{-}\right)^{1 / n}
$$

with equality if $A=x_{1}+\left(r B_{n} \cap\left(-O_{1}\right)\right)$. This concludes the proof.
Acknowledgements. I would like to thank the anonymous referees for their very valuable comments and remarks which have allowed me to improve the presentation of this work. I also thank Prof. M. A. Hernández Cifre for carefully reading the manuscript and her very helpful suggestions during the preparation of it.

References

[1] Barthe, F. "Autour de l'inégalité de Brunn-Minkowski." Ann. Fac. Sci. Toulouse Math. (6) 12, no. 2 (2003): 127-178.
[2] Borell, C. "Convex measures on locally convex spaces." Ark. Mat. 12 (1974): 239-252.
[3] Borell, C. "Convex set functions in d-space." Period. Math. Hungar. 6, no. 2 (1975): 111-136.
[4] Brascamp, H. J. and Lieb, E. H. "On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions and with an application to the diffusion equation." J. Func. Anal. 22, no. 4 (1976): 366-389.
[5] Bullen, P. S. Handbook of means and their inequalities, Mathematics and its Applications vol. 560, Revised from the 1988 original, Kluwer Academic Publishers Group, Dordrecht, 2003.
[6] Colesanti, A., Saorín Gómez, E. and Yepes Nicolás, J. "On a linear refinement of the Prékopa-Leindler Inequality." Canad. J. Math. 68, no. 4 (2016): 762-783.
[7] Gardner, R. J. "The Brunn-Minkowski inequality." Bull. Amer. Math. Soc. 39, no. 3 (2002): 355-405.
[8] Gardner, R. J. and Zvavitch, A. "Gaussian Brunn-Minkowski inequalities." Trans. Amer. Math. Soc. 362, no. 10 (2010): 5333-5353.
[9] Khovanskii, A. and Timorin, V. "On the theory of coconvex bodies." Discrete Comput. Geom. 52, no. 4 (2014) 806-823.
[10] Leindler, L. "On a certain converse of Hölder's inequality II." Acta Sci. Math. (Szeged) 33, no. 3-4 (1972): 217-223.
[11] Livshyts, G., Marsiglietti, A., Nayar, P. and Zvavitch, A. "On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities." Trans. Amer. Math. Soc. 369, no. 12 (2017): 8725-8742.
[12] Marsiglietti, A. "On the improvement of concavity of convex measures." Proc. Amer. Math. Soc. 144, no. 2 (2016): 775-786.
[13] Milman, E. and Rotem, L. "Complemented Brunn-Minkowski inequalities for homogeneous and non-homogeneous measures." Adv. Math. 262 (2014): 867-908.
[14] Nayar, P. and Tkocz, T. "A note on a Brunn-Minkowski inequality for the Gaussian measure." Proc. Amer. Math. Soc. 141 (2013): 4027-4030.
[15] Prékopa, A. "Logarithmic concave measures with application to stochastic programming." Acta Sci. Math. (Szeged) 32 (1971): 301-315.
[16] Ritoré, M. and Yepes Nicolás, J. "Brunn-Minkowski inequalities in product metric measure spaces." Adv. Math. 325 (2018): 824-863.
[17] Rockafellar, R. T. Convex analysis, Princeton University Press, Princeton, New Jersey, 1970.
[18] Saroglou, C. "Remarks on the conjectured log-Brunn-Minkowski inequality." Geom. Dedicata 177, no. 1 (2015): 353-365.
[19] Schneider, R. "A Brunn-Minkowski theory for coconvex sets of finite volume." Adv. Math. 332 (2018), 199-234.
[20] Schneider, R. Convex bodies: The Brunn-Minkowski theory, 2nd expanded ed. Encyclopedia of Mathematics and its Applications, 151. Cambridge: Cambridge University Press, 2014.
[21] Yepes Nicolás, J. "Characterizing the volume via a Brunn-Minkowski type inequality." Analytic aspects of convexity, 103-120. Springer INdAM Ser., 25. Cham: Springer, 2018.

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain

E-mail address: jesus.yepes@um.es

[^0]: 2010 Mathematics Subject Classification. Primary 52A40, 28A35; Secondary 26B25.
 Key words and phrases. Brunn-Minkowski inequality, quasi-convex density, product measure, isoperimetric inequality.

 Supported by MINECO/FEDER project MTM2015-65430-P and "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, 19901/GERM/15.

