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Abstract. The Brunn-Minkowski inequality asserts that the n-th root

of the functional volume is concave, namely, vol
(
(1 − λ)A + λB

)1/n

is greater than (1 − λ)vol(A)1/n + λvol(B)1/n for compact sets A, B
and λ ∈ [0, 1]. Here we will show that if a given measure satisfies an
inequality like this, with a certain positive power, for the family of all
Euclidean balls then it must be a constant multiple of the volume.

1. Introduction

Let Kn be the set of all convex bodies, i.e., nonempty compact convex sets,
in the n-dimensional Euclidean space Rn, and let | · | denote the Euclidean
norm in Rn. We write Bn for the n-dimensional Euclidean (closed) unit ball
whereas Bn will denote the set of all closed balls in Rn, i.e.,

Bn = {x+ rBn : x ∈ Rn, r > 0}.
The volume of a measurable set M ⊂ Rn, i.e., its n-dimensional Lebesgue
measure, is denoted by vol(M) or voln(M) if the distinction of the dimension
is useful (when integrating, as usual, dx will stand for dvol(x)). With intM ,
bdM , aff M and dimM we represent its interior, boundary, affine hull and
dimension (namely, the dimension of its affine hull), respectively.

Relating the volume with the Minkowski (vectorial) addition of convex
bodies, one is led to the famous Brunn-Minkowski inequality. One form of
it states that if K,L ∈ Kn and λ ∈ (0, 1), then

(1.1) vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n,

i.e., the n-th root of the volume is a concave function. Equality for some
λ ∈ (0, 1) holds if and only if K and L either lie in parallel hyperplanes or
are homothetic.

The Brunn-Minkowski inequality is one of the most powerful theorems in
Convex Geometry and beyond: it implies, among others, strong results such
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as the isoperimetric and Urysohn inequalities (see e.g. [19, s. 7.2]) or even
the Aleksandrov-Fenchel inequality (see e.g. [19, s. 7.3]). It would not be
possible to collect here all references regarding versions, applications and/or
generalizations on the Brunn-Minkowski inequality. So, for extensive and
beautiful surveys on them we refer the reader to [1, 7].

The Brunn-Minkowski inequality in its simplest form states that

(1.2) vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n,

from where one can verify its equivalence with (1.1) just by using the ho-
mogeneity of the volume. Yet some other equivalent forms of (1.1) are that

(1.3) vol
(
(1− λ)K + λL

)
≥ vol(K)1−λvol(L)λ,

which is often referred to in the literature as its multiplicative or dimension
free form, and also that

(1.4) vol
(
(1− λ)K + λL

)
≥ min{vol(K), vol(L)}.

The main goal of this paper is to know whether the dimensional forms
of the Brunn-Minkowski inequality, (1.1) and (1.2), are also satisfied for
other measures on Rn or whether they constitute an inherent property of
the volume. To this aim, we need first to overview some results closely
related to this inequality.

Regarding an analytical counterpart for functions of the Brunn-Minkowski
inequality, one is naturally led to the Prékopa-Leindler inequality, originally
proved in [15] and [12].

Theorem A (The Prékopa-Leindler inequality). Let λ ∈ (0, 1) and let
f, g, h : Rn −→ R≥0 be non-negative measurable functions such that

h
(
(1− λ)x+ λy

)
≥ f(x)1−λg(y)λ

for all x, y ∈ Rn. Then

(1.5)

∫
Rn
h(x) dx ≥

(∫
Rn
f(x) dx

)1−λ(∫
Rn
g(x) dx

)λ
.

In fact, a straightforward proof of (1.3) can be obtained by applying (1.5)
to the characteristic functions f = χK , g = χL and h = χ

(1−λ)K+λL
.

To further understand how the Prékopa-Leindler inequality is strongly
related to the general Brunn-Minkowski inequality (1.1) one must know the
so-called Borell-Brascamp-Lieb inequality. In order to introduce it, we first
recall the definition of the p-th mean of two non-negative numbers, where
p is a parameter varying in R ∪ {±∞} (for a general reference for p-means
of non-negative numbers, we refer the reader to the classic text of Hardy,
Littlewood, and Pólya [9] and to the handbook [4]). Consider first the case
p ∈ R and p 6= 0; given a, b ≥ 0 such that ab 6= 0 and λ ∈ (0, 1), we set

Mp(a, b, λ) = ((1− λ)ap + λbp)1/p.
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For p = 0 we define

M0(a, b, λ) = a1−λbλ

and, to complete the picture, for p = ±∞ we set M+∞(a, b, λ) = max{a, b}
and M−∞(a, b, λ) = min{a, b}. Finally, if ab = 0, we will define Mp(a, b, λ) =
0 for all p ∈ R∪{±∞}. Note that Mp(a, b, λ) = 0, if ab = 0, is redundant for
all p ≤ 0, however it is relevant for p > 0. Furthermore, for p 6= 0, we shall
allow that a, b take the value +∞ and in that case, as usual, Mp(a, b, λ) will
be the value that is obtained “by continuity” with respect to p.

Jensen’s inequality for means (see e.g [9, Section 2.9] and [4, Theorem 1
p. 203]) implies that if −∞ ≤ p < q < +∞ then

(1.6) Mp(a, b, λ) ≤Mq(a, b, λ),

with equality for ab > 0 and λ ∈ (0, 1) if and only if a = b.
The following theorem contains the Borell-Brascamp-Lieb inequality (see

[2], [3] and also [7] for a detailed presentation), which uses the p-th mean to
generalize the Prékopa-Leindler inequality (the case p = 0).

Theorem B (The Borell-Brascamp-Lieb inequality). Let λ ∈ (0, 1), −1/n ≤
q ≤ +∞ and let f, g, h : Rn −→ R≥0 be non-negative measurable functions
such that

h
(
(1− λ)x+ λy

)
≥Mq (f(x), g(y), λ)

for all x, y ∈ Rn. Then∫
Rn
h(x) dx ≥Mp

(∫
Rn
f(x) dx,

∫
Rn
g(x) dx, λ

)
,

where p = q/(nq + 1).

As a direct application of this result we notice that, for f = χK , g = χL
and h = χ

(1−λ)K+λL
, (1.1) is obtained when taking q = +∞ whereas (1.4)

holds if we set q = −1/n (and thus p = −∞).
Regarding the functions which are naturally connected to the above the-

orem, we get to the following definition (see e.g. [3]).

Definition 1.1. A non-negative function f : Rn −→ R≥0 is q-concave, for
a given q ∈ R ∪ {±∞}, if for all x, y ∈ Rn and all λ ∈ (0, 1),

f
(
(1− λ)x+ λy

)
≥Mq (f(x), f(y), λ) .

A 0-concave function is usually called log-concave whereas a (−∞)-concave
function is referred to as quasi-concave.

Let µ be a measure on Rn with density function f : Rn −→ R≥0. If
f is q-concave, with −1/n ≤ q ≤ +∞, then by the Borell-Brascamp-Lieb
inequality for f = f χA , g = f χB and h = f χ

(1−λ)A+λB
, we have that

(1.7) µ((1−λ)A+λB) ≥Mp(µ(A), µ(B), λ) =
(
(1−λ)µ(A)p+λµ(B)p

)1/p
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for any pair of measurable sets A,B with µ(A)µ(B) > 0 and such that
(1 − λ)A + λB is also measurable, where p = q/(nq + 1). From now on, a
measure µ satisfying (1.7) will be said to be p-concave.

Borell [2, Theorem 3.2] (see also [6, Section 3.3]) gave a sort of converse
to this statement:

Theorem C. Let −∞ ≤ p ≤ 1/n and let µ be a Radon measure on an
open convex set Ω ⊂ Rn, which is also its support. If µ is p-concave on Ω
then there exists a q-concave function f such that dµ(x) = f(x)dx, where
−1/n ≤ q ≤ +∞ is so that p = q/(nq + 1).

In other words, p-concave measures are associated to q-concave functions
(under the link p = q/(nq+1)) and vice versa. When 0 < p < 1/n, q is non-
negative and then f is q-concave if and only if f q is concave on the convex
set Ω = {x ∈ Rn : f(x) > 0}. Thus, on the one hand, since there are no
further non-negative concave functions defined on the whole Euclidean space
Rn than constants (see e.g. [16, Problem-Remark H, p. 8]), if µ is a Radon
measure with support Rn that is p-concave, for some p > 0, then it must
be, up to a constant, the volume. On the other hand, (for p = 1/n) since
the sole (+∞)-concave functions supported on open sets are those that are
constants over them (see e.g. [3, p. 373]), if µ is a Radon measure supported
on a certain open convex subset of Rn that is (1/n)-concave then the only
possibility, once again, is that it is a constant multiple of the volume.

Here we are interested in showing this characterization of the volume, via
the Brunn-Minkowski inequality, independently of Borell’s result. Moreover,
we will prove, on the one hand, that it is enough to assume that the measure
satisfies the corresponding Brunn-Minkowski inequality for a subfamily of
convex bodies: the set of all balls Bn. More precisely, the main result of the
paper reads as follows.

Theorem 1.2. Let p > 0 and let Ω ⊂ Rn be an open convex set. Let µ be
a locally finite Borel measure on Ω such that

(1.8) µ((1− λ)K + λL)p ≥ (1− λ)µ(K)p + λµ(L)p

holds for any pair of balls K,L ∈ Bn with K,L ⊂ Ω, and all λ ∈ (0, 1).
Then µ = c voln for some (constant) c ≥ 0 if either Ω = Rn or p = 1/n.

When dealing with Brunn-Minkowski type inequalities (cf. (1.7)), it is
natural to wonder about the improvement of the concavity of the corre-
sponding measure (see e.g. [8], [10], [13] and [14]), i.e., whether it is possible
to ‘enhance’ the exponent p for such an inequality, in the sense of consider-
ing a tighter p-th mean (cf. (1.6)). To this aim, many times one shows that
the desired inequality is not true for arbitrary convex bodies and thus, it
is necessary to consider the problem only for special subfamilies of sets. In
this context, the characterization provided in this paper can be viewed as a
useful tool for this type of problems, as well as another step for a better un-
derstanding of the extent and diversity of the Brunn-Minkowski inequality
and its applications.
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We will also explicitly show that the only condition needed for the measure
is being locally finite (see Lemma 2.3), as well as that both the assumptions
p > 0 when the support of the measure is Rn and p = 1/n when it is an
arbitrary open convex set are necessary (see Remark 3.5).

In contrast to Theorem 1.2, the additive version of the Brunn-Minkowski
inequality (cf. (1.2)) characterizes the volume even in the case in which
neither the measure satisfies this inequality on the whole space Rn nor the
exponent p equals 1/n. The only assumption needed to this aim is assuming
that the origin is an interior point. More precisely, we show the following
result.

Theorem 1.3. Let p > 0 and let Ω ⊂ Rn be an open convex set with 0 ∈ Ω.
Let µ be a locally finite Borel measure on Ω such that

µ(K + L)p ≥ µ(K)p + µ(L)p

holds for any pair of balls K,L ∈ Bn with K,L ⊂ Ω, and all λ ∈ (0, 1).
Then µ = c voln for some (constant) c ≥ 0.

The paper is organized as follows. Section 2 is mainly devoted to collecting
some definitions and auxiliary well-known results, whereas Sections 3 and
4 are devoted to proving (among other results) Theorems 1.2 and 1.3. In
Section 3 we will focus on the simpler case in which the measure is absolutely
continuous with a continuous density function, for the purpose of showing
the general case of an arbitrary locally finite measure along Section 4.

2. Background material and auxiliary results

For the sake of completeness, we will collect some definitions and well-
known facts from measure theory that will be used throughout this work.
We refer the reader to [5].

Definition 2.1. Let Ω ⊂ Rn be a nonempty set. Let (Ω, µ) be a measure
space where µ is a Borel measure on Ω, i.e., we will omit for simplicity the
σ-algebra Σ which will be assumed to contain the σ-algebra of Borel sets in
Ω, and that will be contained in the σ-algebra of Lebesgue measurable sets.

We recall the definition of the support of a measure µ, which is the set
supp(µ) =

{
x ∈ Ω : µ

(
(x + rBn) ∩ Ω

)
> 0 for all r > 0

}
. When Ω = Rn,

the support is closed because its complement is the union of the open sets of
measure 0. Moreover, by compactness arguments, and writing Rn \ supp(µ)
as a countable union of compact sets (cf. [5, Proposition 1.1.6]), we clearly
have µ(Rn \ supp(µ)) = 0.

Definition 2.2. A measure µ on Ω ⊂ Rn is said to be locally finite if for
every point x ∈ Ω there exists r = r(x) > 0 such that µ

(
x + rBn

)
< +∞.

In particular, a locally finite measure is finite on every compact subset of Ω
and hence is σ-finite, i.e., Ω is the countable union of measurable sets with
finite measure.
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Moreover, a measure µ is called a Radon measure if it is locally finite and
µ(A) = sup{µ(K) : K ⊂ A compact} for every measurable set A.

In this paper we deal with the characterization of measures on (subsets
of) Rn via the Brunn-Minkowski inequality. To this end, from now on, we
will omit the measures that are not locally finite because in that case they
are trivially defined on the sets with nonempty interior. This is the content
of the following result.

Lemma 2.3. Let p > 0 and let Ω ⊂ Rn be an open convex set. Let µ be a
Borel measure on Ω that is not locally finite. If

(2.1) µ((1− λ)K + λL)p ≥ (1− λ)µ(K)p + λµ(L)p

holds for any pair of balls K,L ∈ Bn with K,L ⊂ Ω, and all λ ∈ (0, 1), then
µ(A) = +∞ for all A ⊂ Ω with nonempty interior.

Proof. It is enough to show that µ(B) = +∞ for all B ∈ Bn, B ⊂ Ω. Since
µ is not locally finite, there exists x0 ∈ Ω such that

µ(x0 + rBn) = +∞

for all r > 0 such that x0 +rBn ⊂ Ω. Since Ω is open, for any x ∈ Ω, x 6= x0,
there exist y ∈ Ω and λ ∈ (0, 1) such that (1− λ)x0 + λy = x. Thus, taking
K = x0 + rBn and L = y + rBn for r > 0 small enough, by (2.1) we have

(2.2) µ(x+ rBn)p ≥ (1− λ)µ(x0 + rBn)p + λµ(y + rBn)p = +∞,

which concludes the proof. �

We would like to point out that the proof of the precedent result does not
work for further values of p, because in that case we would also have (cf.
(2.2)) that µ(x+rBn) ≥Mp

(
µ(x0 +rBn), µ(y+rBn), λ

)
, but the right-hand

side would not be, in general, infinity.

Definition 2.4. We recall that µ is said to be concentrated on a measurable
set A ⊂ Ω if µ(Ω \ A) = 0. In this sense, µ is singular with respect to the
Lebesgue measure if there exists a measurable set A ⊂ Ω such that µ is
concentrated on A and vol is concentrated on Ω \A.

Conversely, µ is said to be absolutely continuous (with respect to the
Lebesgue measure) if for every measurable set A ⊂ Ω, µ(A) = 0 whenever
vol(A) = 0.

We would like to stress that, for simplicity, we will sometimes omit the
Lebesgue measure in those notions, like absolutely continuous or singular,
which refer to a specific measure in a context where more than one are
mentioned. In the same way, expressions like for almost every x will mean
for vol-almost every x.

The well-known Radon-Nikodym theorem (see e.g. [5, Theorem 4.2.2])
will play a relevant role throughout this paper.
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Theorem D (Radon-Nikodym theorem). Let µ be a σ-finite measure on
Ω ⊂ Rn. If µ is absolutely continuous (with respect to the Lebesgue measure)
then there exists a measurable function f : Ω −→ R≥0 such that

µ(A) =

∫
A
f(x) dx

for any measurable set A ⊂ Ω.

Such a function f for a given σ-finite absolutely continuous measure is
usually called a density function of µ, which will be denoted, for short, as
dµ(x) = f(x)dx.

Another useful tool along the paper will be the Lebesgue decomposition
theorem (we refer the reader to [5, Theorem 4.3.2]), which asserts that,
roughly speaking, every σ-finite measure is the sum of an absolutely contin-
uous measure and a singular one.

Theorem E (Lebesgue’s decomposition theorem). Let µ be a σ-finite Borel
measure on Ω ⊂ Rn. Then there is a unique measure µs and a unique (up
to a null set) measurable function f : Ω −→ R≥0 such that

(2.3) dµ(x) = f(x)dx+ dµs(x),

where µs is singular with respect to the Lebesgue measure.

For a σ-finite Borel measure µ, (2.3) will be referred to as the Lebesgue
decomposition of µ (with respect to the Lebesgue measure).

The following result (see e.g. [18, Theorem 7.7]) shows that the content of
the fundamental theorem of calculus over the real line persists in the setting
of the Lebesgue integral over the whole Euclidean space Rn. To this end one
must consider the so-called symmetric derivative of the measure µ given by
dµ(x) = f(x)dx. First we recall the following definition (see e.g. [5]).

Definition 2.5. A function f : Ω ⊂ Rn −→ R≥0 is locally integrable if for
every point x ∈ Ω there exists r = r(x) > 0 such that

∫
x+rBn

f(t) dt < +∞.
In particular, the integral of a locally integrable function is finite on every
compact subset of Ω.

Theorem F (Lebesgue’s differentiation theorem). Let Ω ⊂ Rn be an open
set and let f : Ω −→ R≥0 be a locally integrable function. Then

lim
r→0+

1

vol(rBn)

∫
x+rBn

f(t) dt = f(x)

for almost every x ∈ Ω.
Furthermore, if f is a continuous function then the above condition holds

everywhere.

The above result admits a stronger version in the setting of the Radon-
Nikodym theorem and the Lebesgue decomposition, as the following result
shows (see e.g. [18, Theorem 7.14]).
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Theorem G. Let Ω ⊂ Rn be an open set, let µ be a locally finite Borel mea-
sure on Ω, and let dµ(x) = f(x)dx+ dµs(x) be the Lebesgue decomposition
of µ. Then

lim
r→0+

µ(x+ rBn)

vol(rBn)
= f(x)

for almost every x ∈ Ω.

When working with singular measures, the symmetric derivative satisfies
the following property (see e.g. [18, Theorem 7.15]).

Theorem H. Let Ω ⊂ Rn be an open set and let µ be a Borel measure on
Ω that is singular with respect to the Lebesgue measure. Then

lim
r→0+

µ(x+ rBn)

vol(rBn)
= +∞

for µ-almost every x ∈ Ω.

By Definition 2.4, we notice that Theorems G and H suppose to be the two
faces of the same coin, in the sense that each of them shows what essentially
happens in the sets where the absolutely continuous part and the singular
one of a given locally finite measure are, respectively, concentrated.

3. Simple case: absolutely continuous measures with
continuous Radon-Nikodym derivative

Here we will show the statement of Theorem 1.2 when working with ab-
solutely continuous measures associated to continuous density functions. In
other words, we will prove on the one hand that, for such a measure, assum-
ing the Brunn-Minkowski inequality with exponent p > 0 (cf. (1.8)) in the
whole Euclidean space Rn, is equivalent to say that the measure is (up to a
constant) the volume. On the other hand, the Brunn-Minkowski inequality
with exponent 1/n in a given open convex set Ω ⊂ Rn yields the same con-
sequence. Moreover, the assumptions that either Ω = Rn for a given p > 0
or p = 1/n for an arbitrary open convex set Ω ⊂ Rn, are necessary (see
Remark 3.5).

Furthermore, we would like to point out that along this paper we will not
assume, in principle, that the exponent p is not bigger than 1/n. However,
we will get this constraint for p (unless we are dealing with the zero measure).
Indeed, if the measure satisfies the Brunn-Minkowski inequality for p > 1/n,
then it also does for p = 1/n because of (1.6) and thus, from Theorem 1.2,
the measure must be a constant multiple of the volume. The equality case of
(1.1) (together with (1.6)) yields that 1/n is the ‘largest’ exponent for such
an inequality for the volume, and hence this implies that the given measure
must be the zero one.

We will start by showing that, if an absolutely continuous measure, with
continuous Radon-Nikodym derivative, satisfies the Brunn-Minkowski in-
equality with exponent p then its density function must be quasi-concave
(even when p ≤ 0).



CHARACTERIZING THE VOLUME VIA A BM TYPE INEQUALITY 9

Lemma 3.1. Let p ∈ R ∪ {±∞} and let µ be the measure on Rn given by
dµ(x) = f(x)dx, where f is a (non-negative) continuous function. If

µ((1− λ)K + λL) ≥
(
(1− λ)µ(K)p + λµ(L)p

)1/p
holds for any pair of balls K,L ∈ Bn, and all λ ∈ (0, 1), then f is quasi-
concave.

Proof. Suppose, by contradiction, that f((1−λ0)x+λ0y) < min{f(x), f(y)}
for certain x, y ∈ Rn and λ0 ∈ (0, 1). Let z = (1− λ0)x+ λ0y and let ε > 0
be such that f(z) + ε < min{f(x), f(y)} − ε.

Since f is continuous there exists δ > 0 such that |f(t)− f(t′)| < ε for all
t ∈ t′+ δBn and t′ ∈ {x, y, z}. Then, taking K = x+ δBn and L = y+ δBn,
we have

µ((1− λ0)K + λ0L) = µ
(
z + δBn

)
=

∫
z+δBn

f(t) dt

≤ δnκn(f(z) + ε) < δnκn
(
min{f(x), f(y)} − ε

)
≤
[
(1− λ0)

(∫
x+δBn

f(t) dt

)p
+ λ0

(∫
y+δBn

f(t) dt

)p]1/p

=
(
(1− λ0)µ(K)p + λ0µ(L)p

)1/p
,

a contradiction. �

Next we will show the main result of this section, which is the particular
case of Theorem 1.2 for absolutely continuous measures with continuous
density function and Ω = Rn.

Theorem 3.2. Let p > 0 and let µ be the measure on Rn given by dµ(x) =
f(x)dx, where f is a (non-negative) continuous function. If

µ((1− λ)K + λL)p ≥ (1− λ)µ(K)p + λµ(L)p

holds for any pair of balls K,L ∈ Bn, and all λ ∈ (0, 1), then µ = c voln for
some (constant) c ≥ 0.

Proof. Suppose, by contradiction, that f(x) 6= f(y) for some x, y ∈ Rn.
Without loss of generality, aff({x, y}) = {z ∈ Rn : z2 = · · · = zn = 0}.
Let f1 : R −→ R≥0 be the function given by f1(s) = f(s, 0, . . . , 0). Then
x = (x1, 0, . . . , 0), y = (y1, 0 . . . , 0) and f(x) = f1(x1), f(y) = f1(y1).

Without loss of generality, we may assume that f1(x1) > f1(y1). By
Lemma 3.1, f is quasi-concave and then f1 is so. Hence, assuming that
x1 < y1, the quasi-concavity of f1 implies that it must be decreasing in
[y1,+∞) and thus, the limit 0 ≤ L = limt→+∞ f1(t) exists (the case x1 > y1

is analogous). So, L ≤ f1(y1) < f1(x1) and thus we can find ε > 0 and
λ0 ∈ (0, 1) such that

(3.1) L+ ε < (f1(x1)− ε)(1− λ0)1/p.
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Moreover, for such an ε, there exists z1 ∈ R such that

(3.2) f1(t) ≤ L+
ε

2
for all t ≥ z1.

On the other hand, since f is continuous, there exists δ > 0 such that

(3.3)
∣∣f(t)− f(t′)

∣∣ < ε

2

for all t ∈ t′ + δBn and t′ ∈ {x, z}, where z = (z1, 0 . . . , 0).
Let K = x+ δBn and let L = w+ δBn, where w = (w1, 0 . . . , 0) is so that

(1− λ0)x+ λ0w = z. Then, by (3.1), (3.2) and (3.3), we have

µ((1− λ0)K + λ0L) = µ
(
z + δBn

)
=

∫
z+δBn

f(t) dt

≤ δnκn
(
f(z) +

ε

2

)
= δnκn

(
f1(z1) +

ε

2

)
≤ δnκn(L+ ε)

< δnκn(f1(x1)− ε)(1− λ0)1/p = δnκn(f(x)− ε)(1− λ0)1/p

≤
[
(1− λ0)

(∫
x+δBn

f(t) dt

)p]1/p

=
(
(1− λ0)µ(K)p

)1/p
≤
(
(1− λ0)µ(K)p + λ0µ(L)p

)1/p
,

a contradiction. �

Second proof of Theorem 3.2. For any x, y ∈ Rn and λ ∈ [0, 1], we have(∫
(1−λ)x+λy+rBn

f(t) dt

)p
≥ (1−λ)

(∫
x+rBn

f(t) dt

)p
+λ

(∫
y+rBn

f(t) dt

)p
for all r > 0 and thus, dividing by vol(rBn)p and using Theorem F, we get

f((1− λ)x+ λy)p ≥ (1− λ)f(x)p + λf(y)p.

Then fp is a concave function on the whole Rn and thus, since f is non-
negative, f must be constant (see e.g. [16, Problem-Remark H, p. 8]). �

Now, we deal with the particular case p = 1/n of Theorem 1.2, i.e.,
assuming the Brunn-Minkowski inequality with exponent 1/n over an arbi-
trary open convex set Ω. To this aim, we will start with the one-dimensional
case, since the proof we present here will help us to better understand which
approach ‘should’ be carried out for the corresponding n-dimensional case,
shown in Theorem 3.4.

Theorem 3.3. Let Ω ⊂ R be an open convex set and let µ be the measure
on Ω given by dµ(x) = f(x)dx, where f is a (non-negative) continuous
function. If

(3.4) µ((1− λ)K + λL) ≥ (1− λ)µ(K) + λµ(L)

holds for any pair of balls K,L ∈ B1 with K,L ⊂ Ω, and all λ ∈ (0, 1), then
µ = c vol1 for some (constant) c ≥ 0.
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Proof. Let x0 ∈ Ω and let F : Ω −→ R be the function given by

F (x) =

∫ x

x0

f(t) dt.

Fix x, y > x0, x, y ∈ Ω, and take K = [x0, x] and L = [x0, y]. Then, from
(3.4), we get F

(
(1 − λ)x + λy

)
≥ (1 − λ)F (x) + λF (y). Since it is true

for arbitrary x, y ∈ (x0,+∞) ∩ Ω and λ ∈ [0, 1], we may assure that F is
concave on (x0,+∞) ∩ Ω. In the same way, we obtain that F is convex on
(−∞, x0) ∩ Ω.

Moreover, since f is continuous, by the fundamental theorem of calculus
we get F ′(x) = f(x), for all x ∈ Ω. Now, the concavity of F on (x0,+∞)∩Ω
(resp. the convexity of F on (−∞, x0) ∩ Ω) implies that f(x) = F ′(x) is
decreasing in (x0,+∞)∩Ω (resp. f(x) = F ′(x) is increasing in (−∞, x0)∩Ω).
Since x0 ∈ Ω is arbitrary, f must be constant. �

As we have just seen in the above result, the ‘local nature’ of the Brunn-
Minkowski inequality on (a subset of) R suggests us to employ some tools
from differential calculus such as its fundamental theorem. Thus, for the
general case, it seems to be natural to use the n-dimensional counterpart of
the above-mentioned result in the setting of the Lebesgue integral, i.e., the
Lebesgue differentiation theorem (Theorem F).

Moreover, we would like to point out that, although Borell’s approach in
[2] is quite involved and complicated, the underlying key idea of his proof of
Theorem C is exploiting the Lebesgue differentiation theorem for boxes with
suitable lengths (depending on the range in which the parameter p lies) in
order to get the corresponding desired properties of concavity of the density
function. This idea is similar to that of the proof we present here for the
following result, which is included for the sake of completeness.

Theorem 3.4. Let Ω ⊂ Rn be an open convex set and let µ be the measure
on Ω given by dµ(x) = f(x)dx, where f is a (non-negative) continuous
function. If

(3.5) µ((1− λ)K + λL)1/n ≥ (1− λ)µ(K)1/n + λµ(L)1/n

holds for any pair of balls K,L ∈ Bn with K,L ⊂ Ω, and all λ ∈ (0, 1), then
µ = c voln for some (constant) c ≥ 0.

Proof. Let r1, r2 > 0 be fixed. Then, for any x, y ∈ Ω and λ ∈ [0, 1], by (3.5)
we have (∫

(1−λ)x+λy+ r((1−λ)r1+λr2)Bn

f(t) dt

)1/n

≥ (1− λ)

(∫
x+ rr1Bn

f(t) dt

)1/n

+ λ

(∫
y+ rr2Bn

f(t) dt

)1/n

for all r > 0 small enough. Thus, dividing by vol(rBn)1/n and using Theorem
F (together with the fact that the volume is homogeneous of degree n), we
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get

f((1− λ)x+ λy)1/n((1− λ)r1 + λr2) ≥ (1− λ)f(x)1/n r1 + λf(y)1/n r2.

Now, by taking limits in the latter expression as r2 → 0 and r1 → 0,
respectively, we may assure that f((1 − λ)x + λy) ≥ max{f(x), f(y)} (for
any x, y ∈ Ω and all λ ∈ [0, 1]). Hence, and since Ω is open, f must be
constant. �

Remark 3.5. In relation to Theorem 1.2, we would like to point out that
the assumptions p > 0 when Ω = Rn or p = 1/n when Ω is an arbitrary
open convex set, are necessary.

Indeed, for p = 0 (and hence, from the monotonicity of the p-means (1.6),
also for any p < 0) it is enough to consider the standard Gaussian measure
γ in Rn, which is given by

dγ(x) =
1

(2π)n/2
e
−|x|2

2 dx,

because it is log-concave and thus, by Theorem A, it satisfies the (multiplica-
tive) Brunn-Minkowski inequality on the whole Rn, i.e., (1.7) holds for any
pair of convex bodies K,L ∈ Kn and all λ ∈ (0, 1).

On the other hand, let q ∈ R>0 and let µq be the measure given by

dµq(x) = (1− |x|)1/qχBn (x) dx.

Then, by the Borell-Brascamp-Lieb inequality, Theorem B, µq satisfies the
Brunn-Minkowski inequality (1.7) for p = q/(nq + 1). Thus, taking Ω =
intBn, (1.8) holds for any pair of non-degenerate convex bodies K,L ∈ Kn
with K,L ⊂ Ω, and all λ ∈ (0, 1).

4. General case

The main goal of this section is to show Theorems 1.2 and 1.3. To this
aim, we will prove that it is enough to work with absolutely continuous
measures with continuous density function, and thus we may use the results
that were previously obtained in Section 3. More precisely, we will show the
following:

Lemma 4.1. Let p > 0 and let Ω ⊂ Rn be an open convex set. Let µ be a
locally finite Borel measure on Ω such that

µ((1− λ)K + λL)p ≥ (1− λ)µ(K)p + λµ(L)p

holds for any pair of balls K,L ∈ Bn with K,L ⊂ Ω, and all λ ∈ (0, 1).
Then µ is absolutely continuous and dµ(x) = f(x)dx where f : Ω −→ R≥0

is continuous.

For the sake of simplicity, we will split the above result into another two,
namely, Lemmas 4.2 and 4.4. We will start this section by showing that
a locally finite measure that satisfies the Brunn-Minkowski inequality (1.8)
is absolutely continuous. We would like to stress here the relevance of the
assumption of locally finiteness, in contrast to what Lemma 2.3 ensures.
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Lemma 4.2. Let p > 0 and let Ω ⊂ Rn be an open convex set. Let µ be a
locally finite Borel measure on Ω such that

(4.1) µ((1− λ)K + λL)p ≥ (1− λ)µ(K)p + λµ(L)p

holds for any pair of balls K,L ∈ Bn with K,L ⊂ Ω, and all λ ∈ (0, 1).
Then µ is absolutely continuous.

Proof. Since µ is locally finite, by Theorem E, there exist a singular measure
µs and a measurable function f : Ω −→ R≥0 for which dµ(x) = f(x)dx +
dµs(x). Moreover, by means of Theorem H, the set

A =

{
x ∈ Ω : lim

r→0+

µs(x+ rBn)

vol(rBn)
= +∞

}
satisfies that µs(Ω \A) = 0.

If A is nonempty, there exists x0 ∈ Ω for which

(4.2) lim
r→0+

µs(x0 + rBn)

vol(rBn)
= +∞.

Since Ω is open, for any x ∈ Ω, x 6= x0, there exist y ∈ Ω and λ ∈ (0, 1) such
that (1− λ)x0 + λy = x. Then, by (4.1), for all r > 0 small enough we get

µ(x+ rBn) ≥
(
(1− λ)µ(x0 + rBn)p + λµ(y + rBn)p

)1/p
≥ (1− λ)1/pµ(x0 + rBn) ≥ (1− λ)1/pµs(x0 + rBn).

Now, the above inequality implies, by (4.2), that

lim
r→0+

µ(x+ rBn)

vol(rBn)
= +∞

for all x ∈ Ω, a contradiction with the statement of Theorem G (we notice
that f(x) 6= +∞ for all x ∈ Ω). Thus, A is empty and hence µs is identically
zero. �

Remark 4.3. We would like to stress, for the sake of completeness, the
role played by both Theorem G and Theorem H in the proof of the precedent
result, Lemma 4.2.

On the one hand, regarding the singular part of µ, µs, we have that the
set

A =

{
x ∈ Ω : lim

r→0+

µs(x+ rBn)

vol(rBn)
= +∞

}
satisfies that µs(Ω \A) = 0, because of Theorem H (and moreover, vol(A) =
0, by Theorem G).

On the other hand, Theorem G together with the p-concavity of µ imply,
using the above consequence of Theorem H, that A must be empty and thus
µs is identically zero.

In order that the general case can be reduced to the one studied in the
previous section, we must show that the Radon-Nikodym derivative can be
chosen to be continuous. This is the content of the following result, which
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is proved with a quite standard argument, and whose proof is included for
the sake of completeness.

Lemma 4.4. Let p > 0 and let Ω ⊂ Rn be an open convex set. Let µ be a
locally finite Borel measure on Ω given by dµ(x) = f(x)dx. If

µ((1− λ)K + λL)p ≥ (1− λ)µ(K)p + λµ(L)p

holds for any pair of balls K,L ∈ Bn with K,L ⊂ Ω, and all λ ∈ (0, 1), then
there exists a (non-negative) continuous function φ : Ω −→ R≥0 such that
φ(x) = f(x) for almost every x ∈ Ω.

Proof. Let φ : Ω −→ R≥0 ∪ {+∞} be the function given by

φ(x) = lim inf
r→0+

1

vol(rBn)

∫
x+rBn

f(t) dt.

On the one hand, we have that φ(x) = f(x) for almost every x ∈ Ω, by
Theorem F (we notice that f is locally integrable because µ is locally finite).

On the other hand, for any x, y ∈ Ω and λ ∈ [0, 1],

φ((1− λ)x+ λy) = lim inf
r→0+

1

vol(rBn)

∫
(1−λ)x+λy+rBn

f(t) dt

≥ lim inf
r→0+

1

vol(rBn)

[
(1− λ)

(∫
x+rBn

f(t) dt

)p
+ λ

(∫
y+rBn

f(t) dt

)p]1/p

≥
[
(1− λ)

(
lim inf
r→0+

1

vol(rBn)

∫
x+rBn

f(t) dt

)p
+ λ

(
lim inf
r→0+

1

vol(rBn)

∫
y+rBn

f(t) dt

)p]1/p

=
(
(1− λ)φ(x)p + λφ(y)p

)1/p
.

So we have that φp is concave and thus, since Ω is open, φ(x) 6= +∞ for all
x ∈ Ω. Hence, we may assert that φ : Ω −→ R≥0 is continuous (see e.g. [17,
Theorem 10.1]). �

Proof of Theorem 1.2. If Ω = Rn the statement follows from Lemma 4.1 and
Theorem 3.2. For p = 1/n, in the same way, the result comes from Lemma
4.1 and Theorem 3.4 (also from Theorem 3.3 if n = 1). �

One can easily check that a nonzero measure µ satisfying (1.8), for any
pair of balls contained in an open set A, fulfills A ⊂ supp(µ). Indeed, given
x0 ∈ supp(µ) (we notice that supp(µ) 6= ∅ because µ is nonzero), for any
x ∈ A, x 6= x0, there exist y ∈ A and λ ∈ (0, 1) such that (1−λ)x0 +λy = x,
since A is open. Thus, taking K = x0 + rBn and L = y + rBn for r > 0
small enough, from (1.8) we have that x ∈ supp(µ).

Now, as a consequence of Theorem 1.2, we get the following result for
p-concave measures with arbitrary support.
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Theorem 4.5. Let p > 0 and let µ be a nonzero locally finite Borel measure
on Rn. Let X = supp(µ), H = aff X and let m = dimX. Suppose that µ is
such that

(4.3) µ((1− λ)K + λL) ≥Mp

(
µ(K), µ(L), λ

)
holds for any pair of balls K,L ∈ Bn, and all λ ∈ (0, 1). Then µ|X = c volm
for some (constant) c > 0 if either X = H or p = 1/m.

Proof. Assume first that m = n and let Ω = intX. By (4.3) and the
definition of support, X is clearly convex. In particular, Ω is an open convex
subset of Rn for which µ((1− λ)K + λL)p ≥ (1− λ)µ(K)p + λµ(L)p for any
pair of balls K,L ∈ Bn with K,L ⊂ Ω, and all λ ∈ (0, 1). Hence, by Theorem
1.2, µ|Ω = c voln for some (constant) c > 0. Without loss of generality we
may assume that c = 1 (otherwise we would work with the measure µ/c).

Thus, if X = Rn, we are done. We next consider the case X 6= Rn and
p = 1/n. Since the boundary of a convex set has Lebesgue measure zero
(see e.g. [11]), and together with the already proved fact that µ|Ω = voln, it
is enough to show that µ(bdX) = 0 (we notice that X is a closed convex
set with nonempty interior Ω and then X = Ω ∪ bdX). To this end, by
compactness arguments and by means of the relation

µ(bdX) = µ

(
+∞⋃
k=1

(
(bdX) ∩ kBn

))
= lim

k
µ
(
(bdX) ∩ kBn

)
,

it is enough to show that for each x ∈ bdX there exists r = rx > 0 such
that µ

(
(x+ rBn) ∩ bdX

)
= 0.

Suppose by contradiction that there exists x ∈ bdX such that

(4.4) µ
(
(x+ rBn) ∩ bdX

)
> 0

for all r > 0. Let x0 ∈ Ω and let r0 > 0 such that x0 + r0Bn ⊂ Ω and
(x+ x0)/2 + r0Bn ⊂ Ω. Let K = (x+ r0Bn) ∩X and L = (x0 − x) +K ⊂
x0 + r0Bn ⊂ Ω. Then (K + L)/2 ⊂ (x+ x0)/2 + r0Bn ⊂ Ω and so, by (4.4)
and the (equality case of the) Brunn-Minkowski inequality (1.1), we have

µ

(
K + L

2

)
= vol

(
K + L

2

)
= M1/n

(
vol(K), vol(L), 1/2

)
< M1/n

(
vol(K) + µ(K ∩ bdX), vol(L), 1/2

)
= M1/n

(
µ(K), µ(L), 1/2

)
,

a contradiction with (4.3). We point out that (K + L)/2 is measurable
because it is convex, since it is a convex combination of convex sets.

Now the general case m ≤ n follows from the n-dimensional one because
µ(Rn \X) = 0 (cf. Definition 2.1) and thus (4.3) holds for any pair of balls
x+K, y+L, with x, y ∈ H and K,L ∈ Bm, K,L ⊂ H, and all λ ∈ (0, 1). �

Proof of Theorem 1.3. Let x0 ∈ Ω be fixed. Since Ω is open, and 0 ∈ Ω,
there exists r0 > 0 such that r0Bn ⊂ Ω and x0 + r0Bn ⊂ Ω.
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On the one hand, for all u ∈ r0Bn and all r > 0 small enough, we get

µ(x0 + u+ 2rBn) ≥
(
µ(x0 + rBn)p + µ(u+ rBn)p

)1/p
.

Thus, dividing by vol(rBn), we have

2nµ(x+ 2rBn)

vol(2rBn)
≥ µs(x0 + rBn)

vol(rBn)

for all x ∈ (x0 +r0Bn) ⊂ Ω, where dµ(x) = f(x)dx+dµs(x) is the Lebesgue
decomposition of µ.

So, by the above expression (and following the same steps to the proof of
Lemma 4.2), one may conclude that µ is absolutely continuous.

Now, on the other hand, let φ : Ω −→ R≥0 ∪ {+∞} be the function given
by

φ(x) = lim inf
r→0+

1

vol(rBn)

∫
x+rBn

f(t) dt.

Then, following similar steps to the proof of Lemma 4.4 and taking K =
x0 + (1 − λ)rBn, L = u + λrBn for λ ∈ (0, 1) and r > 0 small enough, we
obtain

φ(x0 + u) ≥
((

(1− λ)nφ(x0)
)p

+
(
λnφ(u)

)p)1/p
≥ (1− λ)nφ(x0).

Taking limits as λ → 0+ we may assert that φ(x) ≥ φ(x0) for all x ∈
x0 + r0Bn. Exchanging the roles of x and x0 we have that φ is constant on
x0 + r0Bn. Since x0 is arbitrary, we get that φ is constant on every compact
subset C ⊂ Ω and thus φ is so on Ω. The proof is now concluded because
φ(x) = f(x) for almost every x ∈ Ω (by Theorem F). �

Remark 4.6. Let E be a convex body with nonempty interior. The role
played by Bn along this paper can be replaced by Fn = {x + rE : x ∈
Rn, r > 0} since all the tools here involved are also true when exchanging
the Euclidean unit ball Bn by E (see e.g. [18, Definition 7.9] and consequent
results).
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