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Abstract. In this paper we study various Rogers-Shephard type inequalities

for the lattice point enumerator Gn(·) on Rn. In particular, for any non-empty
convex bounded sets K,L ⊂ Rn, we show that

Gn(K + L)Gn
(
K ∩ (−L)

)
≤

(2n

n

)
Gn

(
K + (−1, 1)n

)
Gn

(
L + (−1, 1)n

)
.

and

Gn−k(PH⊥K)Gk(K ∩H) ≤
(n
k

)
Gn

(
K + (−1, 1)n

)
,

for H = lin{e1, . . . , ek}, k ∈ {1, . . . , n− 1}.
Additionally, a discrete counterpart to a classical result by Berwald for

concave functions, from which other discrete Rogers-Shephard type inequalities
may be derived, is shown. Furthermore, we prove that these new discrete

analogues for Gn(·) imply the corresponding results involving the Lebesgue
measure.

1. Introduction and main results

Let Kn be the set of all convex bodies of the Euclidean space Rn, i.e., the
family of all non-empty compact convex sets in Rn. The n-dimensional volume of
a measurable set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is denoted by
vol(M) or voln(M) if the distinction of the dimension is useful (when integrating,
as usual, dx will stand for dvol(x)). The Minkowski sum of two non-empty sets
A,B ⊂ Rn is the classical vector addition of them, A+B = {a+ b : a ∈ A, b ∈ B},
and we write A − B for A + (−B). We denote by A ∼ B = {x ∈ Rn : x + B ⊂
A} the so-called Minkowski difference of A and B (for more on this notion and
its connection with the Minkowski sum, we refer the reader to [34, Section 3.1]).
Moreover, λA represents the set {λa : a ∈ A} for λ ≥ 0, and dimA denotes its
dimension, i.e., the dimension of its affine hull.

A fundamental relation involving the volume and the Minkowski addition is the
Brunn-Minkowski inequality. One form of it states that if K,L ∈ Kn and λ ∈ (0, 1)
then

(1.1) vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n.

The Brunn-Minkowski inequality has become not only a cornerstone of the Brunn-
Minkowski theory (for which we refer the reader to the updated monograph [34])
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19901/GERM/15.

1
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but also a powerful tool in other related fields of mathematics. Moreover, it quickly
yields other well-known inequalities, such as the isoperimetric inequality, it has
inspired new engaging related results and it has been the starting point for new
extensions and generalizations (see e.g. [34, Chapter 9]). For extensive survey
articles on this and other related inequalities we refer the reader to [10, 15].

In the particular case when L = −K and λ = 1/2, (1.1) gives

vol(K −K) ≥ 2nvol(K).

An upper bound for the volume of the difference body K − K is given by the
Rogers-Shephard inequality, originally proven in [29]. For more details about this
inequality, we also refer the reader to [34, Section 10.1].

Theorem A (The Rogers-Shephard inequality). Let K ∈ Kn. Then

(1.2) vol(K −K) ≤
(

2n

n

)
vol(K).

This relation for K − K can be generalized to the Minkowski addition of two
convex bodies K,L ∈ Kn as follows:

(1.3) vol(K + L)vol
(
K ∩ (−L)

)
≤
(

2n

n

)
vol(K)vol(L).

The Rogers-Shephard inequality was recently extended to the functional setting
[4, 6, 9, 14], generalized to different types of measures [8, 31], as well as studied
in the Lp setting [3, 13]. Moreover, it was recently extended to other geometric
functionals [7], and a reverse form of Rogers-Shephard inequality in the setting of
log-concave functions was given in [3]. The role of this inequality in characterization
results of the difference body was also studied in [1], and it was proven an optimal
stability version of it in [12]. It is also interesting to note that a strengthening of
this inequality for mixed volumes was conjectured (independently by Godbersen
and Makai Jr., see [34, Note 5 for Section 10.1] and the references therein); a
conjecture on which engaging progress was recently made in [9].

In [16] Gardner and Gronchi obtained a powerful discrete analogue of the follow-
ing form of the Brunn-Minkowski inequality, in the setting of Zn with the cardinality
| · |: vol(K+L) ≥ vol(BK +BL), where BK and BL denote centered Euclidean balls
of the same volume as K and L, respectively. Moreover, from the mentioned ver-
sion, they derive some inequalities that improve previous results by Ruzsa, collected
in [32, 33].

More recently, different discrete analogues of the Brunn-Minkowski inequality
have been obtained, including the case of its classical form (cf. (1.1)) for the cardi-
nality [18, 22, 26], functional extensions of it [21, 25, 26, 27, 35] and versions for the
lattice point enumerator Gn(·) [21, 23, 26], which is given by Gn(M) = |M ∩ Zn|.
In this respect, [26, Theorem 2.1] reads as follows:

Theorem B. Let λ ∈ (0, 1) and let K,L ⊂ Rn be non-empty bounded sets. Then

(1.4) Gn

(
(1− λ)K + λL+ (−1, 1)n

)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n.

Apart from the above-mentioned discrete analogues of the Brunn-Minkowski
inequality, various discrete counterparts, for the lattice point enumerator Gn(·), of
results in Convex Geometry were recently proven. Some examples of such results
are Koldobsky’s slicing inequality [2], Meyer’s inequality [19] and an isoperimetric
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type inequality [24]. We refer the reader to these articles and the references therein
for other connected problems, questions and results.

At this point, and taking into account the strong connection between the Brunn-
Minkowski inequality and the Rogers-Shephard inequality (1.2), it is natural to
wonder about the possibility of obtaining a discrete version of the latter, when
dealing with the lattice point enumerator. To this aim, a very elegant discrete
analogue of the Rogers-Shephard inequality (1.2) in the planar case (in fact, a
stronger version of it) was shown in [16], as a consequence of Pick’s theorem jointly
with (1.2):

Theorem C. Let P ⊂ R2 be a convex polygon with integer vertices. Then

(1.5) G2(P − P ) ≤ 6G2(P )− b(P )− 5,

where b(P ) denotes the number of integer points in the boundary of P .

However, when dealing with an arbitrary convex body K ∈ Kn, one cannot
expect to get a discrete counterpart of (1.2) for the lattice point enumerator Gn(·),
namely,

Gn(K −K) ≤
(

2n

n

)
Gn(K).

Indeed, just considering K = [−1/2, 1/2]n one would obtain 3n ≤
(

2n
n

)
, which is

false for n = 1, 2, 3, 4. Moreover, as pointed out in [19], where the authors consider
certain simplices with integer vertices, there is neither a possible extension of (1.5)
in dimension n ≥ 3 nor even a hope to get Gn(K−K) ≤ cnGn(K) for some constant
cn > 0 depending only on the dimension n, for n ≥ 3.

Altogether, and taking into account the “behavior” of the discrete version of
the Brunn-Minkowski inequality collected in (1.4), an alternative to get such an
inequality for the lattice point enumerator would be to consider some extension of
K (by Minkowski adding certain cube) on the right-hand side of (1.2) (or, more
generally, on that of (1.3)). In this regard, here we show the following:

Theorem 1.1. Let K ⊂ Rn be a non-empty convex bounded set. Then

(1.6) Gn(K −K) ≤
(

2n

n

)
Gn

(
K +

(
−3

4
,

3

4

)n)
.

When considering the Minkowski sum of two non-empty convex bounded sets
K,L ⊂ Rn, instead of K −K, we have the following discrete counterpart of (1.3):

Theorem 1.2. Let K,L ⊂ Rn be non-empty convex bounded sets and let

c
K,L

=
vol
(
K + L+

(
− 1

2 ,
1
2

)n)
vol
(
K + L+ (−1, 1)n

) ∈ (0, 1).

Then

(1.7) Gn(K +L)Gn

(
K ∩ (−L)

)
≤
(

2n

n

)
c
K,L

Gn

(
K + (−1, 1)n

)
Gn

(
L+ (−1, 1)n

)
.

In particular, taking L = −K, with 0 ∈ K,

(1.8) Gn(K −K) ≤
(

2n

n

)
c
K,−K

Gn

(
K + (−1, 1)n

)2
Gn(K)

.
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Both (1.6) and (1.7) (and thus also (1.8)) are asymptotically sharp (in the sense
that, for any of these inequalities, there exist convex bodies containing the origin
in such a way that the ratio between the right-hand and the left-hand sides, when
applied to dilations of these sets scaled by a factor r > 0, tends to 1 as r →∞; see
Remark 3.6) and, even more, they imply the continuous versions (1.2) and (1.3),
respectively.

Furthermore, we will also show in Section 3 an alternative discrete version of
(1.3) involving both the Minkowski difference and the addition of the sets and the
cube (−1, 1)n (see Theorem 3.1).

In [30, Theorem 1], Rogers and Shephard also gave the following lower bound
for the volume of a convex body K ∈ Kn in terms of the volumes of a projection
and a section of K. Before recalling its precise statement we need some auxiliary
notation: the set of all k-dimensional linear subspaces of Rn is denoted by Lnk , and
for H ∈ Lnk , the orthogonal projection of M onto H is denoted by PHM ; moreover,
as usual, H⊥ ∈ Lnn−k represents the orthogonal complement of H.

Theorem D. Let k ∈ {1, . . . , n − 1} and H ∈ Lnk . Let K ∈ Kn be a convex body.
Then

(1.9) voln−k(PH⊥K)volk(K ∩H) ≤
(
n

k

)
vol(K).

In this paper we will show that the above result also admits a suitable discrete
version for the lattice point enumerator Gn(·). More precisely, we obtain:

Theorem 1.3. Let k ∈ {1, . . . , n− 1} and H = lin{e1, . . . , ek} ∈ Lnk . Let K ⊂ Rn
be a non-empty convex bounded set. Then

(1.10) Gn−k(PH⊥K)Gk(K ∩H) ≤
(
n

k

)
Gn

(
K + (−1, 1)n

)
.

A classical result due to Berwald [11] (see also [4, 5] for other extensions and
considerations), from which the Rogers-Shephard inequalities (1.2) and (1.9) can
be derived, relates certain weighted power means of a concave function, as follows:

Theorem E (Berwald’s inequality). Let K ∈ Kn be a convex body with dimK = n
and let f : K −→ R≥0 be a concave function. Then, for any 0 < p < q,

(1.11)

( (
n+q
n

)
vol(K)

∫
K

fq(x) dx

)1/q

≤

( (
n+p
n

)
vol(K)

∫
K

fp(x) dx

)1/p

.

As mentioned, it is remarkable to point out that the above result provides one
with an alternative unified proof of both Theorems A and D, either by considering
the function f : PH⊥K −→ R≥0 given by

f(x) = volk
(
K ∩ (x+H

))1/k
for H ∈ Lnk , p = k (and n′ = n − k), and letting q → ∞, or by considering the
function f : K −K −→ R≥0 defined by

f(x) = vol
(
K ∩ (x+K)

)1/n
,

p = n, and letting q →∞ (see Section 4 for the precise details on the obtention of
Theorems A and D from Theorem E).
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Therefore, one may wonder whether Berwald’s inequality also admits a discrete
analogue. To establish its statement, we need the following notation (see [26] and
the references therein for more about this notion): for a function φ : K −→ R≥0

defined on a convex bounded set K ⊂ Rn, we denote by φ� : K + (−1, 1)n −→ R≥0

the function given by

φ�(z) = sup
u∈(−1,1)n

φ(z + u) for all z ∈ K + (−1, 1)n,

where φ : Rn −→ R≥0 is the function defined by

φ(x) =

{
φ(x) if x ∈ K,

0 otherwise.

In other words, φ� is the function whose hypograph is the closure of the Minkowski
sum of the hypograph of φ and (−1, 1)n × {0}.

Here we show the following discrete analogue of Berwald’s inequality (1.11):

Theorem 1.4. Let K ⊂ Rn be a convex bounded set containing the origin and let
f : K −→ R≥0 be a concave function with f(0) = |f |∞. Then, for any 0 < p < q,

(1.12)

( (
n+q
n

)
Gn(K)

∑
x∈K∩Zn

fq(x)

)1/q

≤

 (
n+p
n

)
Gn(K)

∑
x∈(K+(−1,1)n)∩Zn

(
f�
)p

(x)

1/p

.

Remark 1.5. Let us point out that the origin does not play any role in the latter
theorem and the assumption on the origin could be substituted by |f |∞ = f(x0) for
some x0 ∈ Zn. It is, however, needed in our proof that, that the maximum of f is
attained at some point in Zn.

As we will see along the manuscript, all our discrete analogues for the lattice point
enumerator Gn(·) imply the corresponding classical inequalities (see Theorems 3.5
and 4.5).

The paper is organized as follows: in Section 2 we recall some preliminaries
and we derive Theorem 1.3 as a consequence of a stronger inequality, collected in
Theorem 2.1. In Section 3 we obtain our discrete Rogers-Shephard type inequalities
(in particular, we prove both Theorems 1.1 and 1.2) and we show that these discrete
analogues imply the corresponding continuous versions. Finally, Section 4 is mainly
devoted to the proof of Theorem 1.4.

2. Discrete projection-section inequalities

We start this section by recalling some notions and fixing some notation that
will be needed throughout the rest of the manuscript. We shall work in the n-
dimensional Euclidean space Rn, with origin 0 (or 0n if the distinction of the di-
mension is useful), endowed with the standard inner product 〈·, ·〉, and we will write
ei to represent the i-th canonical unit vector. Given a non-empty set M ⊂ Rn, let
convM and linM denote, respectively, the convex and linear hulls of M , i.e., the
smallest convex set and vector subspace, respectively, containing the set M . More-
over, χ

M
will represent the characteristic function of M . We will also write

hyp(f) =
{

(x, t) : x ∈M, t ∈ R, f(x) ≥ t
}
⊂ Rn+1

for the hypograph of a non-negative function f : M −→ R≥0.
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For the vector subspace H = lin{e1, . . . , ek} ∈ Lnk , k ∈ {1, . . . , n− 1} we denote
by

Gk(M) =
∣∣M ∩ (x+ (Zk × {0n−k})

)∣∣
for any M ⊂ x+H for some x ∈ H⊥. Analogously, we write

Gn−k(M) =
∣∣M ∩ (y + ({0k} × Zn−k)

)∣∣
for each M ⊂ y + H⊥, for y ∈ H. Furthermore, for the sake of simplicity, we will
write CH := (−1, 1)n ∩H.

Finally, as usual in the literature, we will use the following conventional notation:(
r

s

)
:=

Γ(r + 1)

Γ(s+ 1)Γ(r − s+ 1)

for any r, s > 0, where Γ(·) denotes the Gamma function.

Now we prove Theorem 1.3, under the mild assumption that K contains the
origin, by showing the following more general result. In Remark 3.2 we will give an
alternative proof of Theorem 1.3, also valid for the case of any non-empty convex
bounded set K (not necessarily containing the origin).

Theorem 2.1. Let k ∈ {1, . . . , n− 1} and H = lin{e1, . . . , ek} ∈ Lnk . Let K ⊂ Rn
be a convex bounded set containing the origin. Then
(2.1)[
n−k∑
i=0

k

n− i

(
n− k
i

)(
n

i

)−1

Gn−k(PH⊥K)i/(n−k)

]
Gk(K ∩H) ≤ Gn

(
K + (−1, 1)n

)
.

In particular, taking only the terms corresponding to i = 0 and i = n − k, we
obtain [(

n− 1

k − 1

)
+ Gn−k(PH⊥K)

]
Gk(K ∩H) ≤

(
n

k

)
Gn

(
K + (−1, 1)n

)
.

Proof. First, for any r ≥ 0, we define the superlevel set

Dr =
{
x ∈ PH⊥

(
K + (−1, 1)n

)
: Gk

((
K + (−1, 1)n

)
∩ (x+H)

)
≥ r
}

=
{
x ∈ PH⊥K + CH⊥ : Gk

((
(K + CH⊥) ∩ (x+H)

)
+ CH

)
≥ r
}
.

Now, let x ∈ D0, y ∈ CH⊥ and λ ∈ [0, 1]. So, from the convexity of K, we have

Gk

((
(K + CH⊥) ∩

(
(1− λ)x+ λy +H

))
+ CH

)1/k

≥ Gk

(
(1− λ)

(
(K + CH⊥) ∩ (x+H)

)
+ λ
(
(K + CH⊥) ∩ (y +H)

)
+ CH

)1/k

.

(2.2)

Notice that, since x ∈ D0 = PH⊥K + CH⊥ and y ∈ CH⊥ ⊂ PH⊥K + CH⊥ (because
0 ∈ K), the sets (K + CH⊥) ∩ (x + H), (K + CH⊥) ∩ (y + H) are non-empty and
then the above sum

(1− λ)
(
(K + CH⊥) ∩ (x+H)

)
+ λ
(
(K + CH⊥) ∩ (y +H)

)
+ CH
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is well-defined. Hence, from (1.4) we get

Gk

(
(1− λ)

(
(K + CH⊥) ∩ (x+H)

)
+ λ
(
(K + CH⊥) ∩ (y +H)

)
+ CH

)1/k

≥ (1− λ)Gk

(
(K + CH⊥) ∩ (x+H)

)1/k
+ λGk

(
(K + CH⊥) ∩ (y +H)

)1/k
≥ λGk(K ∩H)1/k,

(2.3)

where in the last inequality we have used that

Gk

(
(K + CH⊥) ∩ (y +H)

)
≥ Gk

(
(y +K) ∩ (y +H)

)
= Gk(K ∩H)

for every y ∈ CH⊥ . Thus, setting

λs =

(
s

Gk(K ∩H)

)1/k

for any 0 ≤ s ≤ Gk(K ∩H) (observe that Gk(K ∩H) 6= 0 since 0 ∈ K), from (2.2)
and (2.3) for λ = λs we conclude that

(1− λs)
(
PH⊥K + CH⊥

)
+ λsCH⊥ ⊂ Ds.

In other words, for any 0 ≤ s ≤ Gk(K ∩H) we have

(1− λs)PH⊥K + CH⊥ ⊂ Ds

and then, by (1.4), we get

(1− λs)Gn−k(PH⊥K)1/(n−k) + λsGn−k({0n−k})1/(n−k) ≤ Gn−k(Ds)1/(n−k)

and consequently

(2.4)

n−k∑
i=0

(
n− k
i

)
(1− λs)iλn−k−is Gn−k(PH⊥K)i/(n−k) ≤ Gn−k(Ds)

for all 0 ≤ s ≤ Gk(K ∩H).

Now, on the one hand, we observe that∫ Gk(K∩H)

0

(1− λs)iλn−k−is ds = kGk(K ∩H)

∫ 1

0

θn−i−1(1− θ)i dθ

= kGk(K ∩H)
Γ(n− i)Γ(i+ 1)

Γ(n+ 1)

=
k

n− i

(
n

i

)−1

Gk(K ∩H)

and hence, integration on s ∈ [0,Gk(K ∩H)] on the left-hand side of (2.4) yields[
n−k∑
i=0

k

n− i

(
n− k
i

)(
n

i

)−1

Gn−k(PH⊥K)i/(n−k)

]
Gk(K ∩H).
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On the other hand, we have∫ Gk(K∩H)

0

Gn−k(Ds) ds

=

∫ Gk(K∩H)

0

∑
x∈(P

H⊥K+C
H⊥ )∩Zn

χDs
(x) ds

=
∑

x∈(P
H⊥K+C

H⊥ )∩Zn

min
{

Gk

((
(K + CH⊥) ∩ (x+H)

)
+ CH

)
,Gk(K ∩H)

}
≤

∑
x∈(P

H⊥K+C
H⊥ )∩Zn

Gk

((
(K + CH⊥) ∩ (x+H)

)
+ CH

)
=

∑
x∈(P

H⊥K+C
H⊥ )∩Zn

Gk

((
K + (−1, 1)n

)
∩ (x+H)

)
= Gn

(
K + (−1, 1)n

)
.

This concludes the proof. �

Remark 2.2. The role of H = lin{e1, . . . , ek} in the above result can be played by
any other k-dimensional coordinate (vector) subspace.

Next we derive a first discrete analogue of the Rogers-Shephard inequality (1.3),
by considering a suitable (2n)-dimensional convex bounded set and applying The-
orem 1.3, following the original idea of Rogers and Shephard in [30]:

Corollary 2.3. Let K,L ⊂ Rn be convex bounded sets containing the origin. Then

(2.5) Gn(K + L)Gn

(
K ∩ (−L)

)
≤
(

2n

n

)
Gn

(
K + (−1, 1)n

)
Gn

(
L+ (−2, 2)n

)
.

In particular, taking L = −K,

(2.6) Gn(K −K) ≤
(

2n

n

)
Gn

(
K + (−1, 1)n

)Gn

(
K + (−2, 2)n

)
Gn(K)

.

Proof. Consider the (2n)-dimensional convex bounded set containing the origin
defined by

F =
{

(x, y) ∈ R2n : x ∈ K, x− y ∈ −L
}

and let H = lin{e1, . . . , en} ∈ L2n
n . Notice that PH⊥F is the set of points (0, y)

such that (x, y) ∈ F for some x ∈ Rn, which is equivalent to the fact that y ∈ x+L
for some x ∈ K, and hence we get PH⊥F = {0n} × (K + L). Moreover, we clearly
have that

F ∩H =
(
K ∩ (−L)

)
× {0n}.

Now, given (x, y) ∈ F + (−1, 1)2n, we have that x ∈ x1 + (−1, 1)n for some x1 ∈ K
and that y ∈ y1 + (−1, 1)n for some y1 ∈ x1 + L ⊂ x+ (−1, 1)n + L. So, for every
(x, y) ∈ F + (−1, 1)2n, x ∈ K + (−1, 1)n and y ∈ x+ L+ (−2, 2)n. Thus,

G2n

(
F + (−1, 1)2n

)
≤

∑
x∈(K+(−1,1)n)∩Zn

Gn

(
x+ L+ (−2, 2)n

)
= Gn

(
K + (−1, 1)n

)
Gn

(
L+ (−2, 2)n

)
.
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Therefore, from Theorem 1.3 (applied to the convex bounded set F containing the
origin and the vector subspace H) we obtain

Gn(K + L)Gn

(
K ∩ (−L)

)
≤
(

2n

n

)
Gn

(
K + (−1, 1)n

)
Gn

(
L+ (−2, 2)n

)
,

which clearly further implies (2.6). This concludes the proof. �

As we will see in the forthcoming section, we will derive other discrete Rogers-
Shephard type inequalities, which are actually stronger than those (collected in
Corollary 2.3) that may be obtained as a consequence of applying the discrete
projection-section inequality (1.10), in contrast to what happens in the continuous
setting.

3. Discrete Rogers-Shephard type inequalities

When dealing with the (proof of the) Rogers-Shephard inequality (1.2), one is
naturally led to the notion of the covariogram of a convex body K ∈ Kn, that is,
the function f : Rn −→ R≥0 given by

f(x) = vol
(
K ∩ (x+K)

)
.

Its discrete version for finite sets A ⊂ Rn,
∣∣A ∩ (x + A)

∣∣, has been studied in [17],
where the authors show elegant relations of the latter with the continuous version.
Here, first we will consider the following slight modification of the corresponding
discrete version (for the lattice point enumerator) of the covariogram of K:

x 7→ Gn

((
K + (−1, 1)n

)
∩
(
x+K + (−1, 1)n

))
.

By using this, and exploiting the classical proof of the Rogers-Shephard inequality
(1.2) that is based on the covariogram, we get to the following result. Again, we
will present it in the more general setting of two convex bounded sets K,L ⊂ Rn.

Theorem 3.1. Let K,L ⊂ Rn be convex bounded sets containing the origin, and
such that (−1, 1)n ⊂ L. Then

[
n∑
i=0

n

2n− i

(
n

i

)(
2n

i

)−1

Gn

(
(K + L) ∼ (−1, 1)n

)i/n]
Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
≤ Gn

(
K + (−1, 1)n

)
Gn

(
L+ (−1, 1)n

)
.

(3.1)

In particular, taking L = −K (for a convex set K ⊂ Rn with (−1, 1)n ⊂ K),

(3.2)

n∑
i=0

n

2n− i

(
n

i

)(
2n

i

)−1

Gn

(
(K −K) ∼ (−1, 1)n

)i/n ≤ Gn

(
K + (−1, 1)n

)2
Gn

(
K ∼ (−1, 1)n

) .
Before showing the result, we observe that taking only the terms corresponding

to i = 0 and i = n in the above expressions we obtain[
1

2

(
2n

n

)
+ Gn

(
(K + L) ∼ (−1, 1)n

)]
Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
≤
(

2n

n

)
Gn

(
K + (−1, 1)n

)
Gn

(
L+ (−1, 1)n

)
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and

1

2

(
2n

n

)
+ Gn

(
(K −K) ∼ (−1, 1)n

)
≤
(

2n

n

)
Gn

(
K + (−1, 1)n

)2
Gn

(
K ∼ (−1, 1)n

) ,
respectively.

Moreover, taking only the term corresponding to i = n applied to the sets
K and L′ := L + (−1, 1)n (and taking into account the relations between the
Minkowski difference and addition; see e.g. [34, Lemma 3.1.11]), one recovers again
the statement of Corollary 2.3.

Proof. First, for any r ≥ 0, we consider the superlevel set

Dr =
{
x ∈ (K + L) + (−2, 2)n : Gn

((
K + (−1, 1)n

)
∩
(
x− L+ (−1, 1)n

))
≥ r
}
.

Now, let x ∈ K + L, y ∈ (−1, 1)n and λ ∈ [0, 1]. Then, from the convexity of K
and L, we have

Gn

((
K + (−1, 1)n

)
∩
(
(1− λ)x+ λy − L+ (−1, 1)n

))1/n

≥ Gn

(
(1− λ)

(
K ∩ (x− L)

)
+ λ
(
K ∩ (y − L)

)
+ (−1, 1)n

)1/n
(3.3)

Notice that, since x ∈ K + L and y ∈ (−1, 1)n ⊂ L ⊂ K + L (because 0 ∈ K), the
sets K ∩ (x− L),K ∩ (y − L) are non-empty and then the above sum

(1− λ)
(
K ∩ (x− L)

)
+ λ
(
K ∩ (y − L)

)
+ (−1, 1)n

is well-defined. Hence, from (1.4) we get

Gn

(
(1− λ)

(
K ∩ (x− L)

)
+ λ

(
K ∩ (y − L)

)
+ (−1, 1)n

)1/n

≥ (1− λ)Gn

(
K ∩ (x− L)

)1/n
+ λGn

(
K ∩ (y − L)

)1/n
≥ λGn

(
K ∩

(
(−L) ∼ (−1, 1)n

))1/n

,

(3.4)

where in the last inequality we have used that

Gn

(
K ∩ (y − L)

)
≥ Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
for every y ∈ (−1, 1)n. Observing also that Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
6= 0 since

0 ∈ K ∩
(
(−L) ∼ (−1, 1)n

)
, we may define

λs =

 s

Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
1/n

for any 0 ≤ s ≤ Gn

(
K∩

(
(−L) ∼ (−1, 1)n

))
. Thus, from (3.3) and (3.4) for λ = λs

we conclude that

(1− λs)(K + L) + λs(−1, 1)n ⊂ Ds.

In particular, for any 0 ≤ s ≤ Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
we have
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(1− λs)
(
(K + L) ∼ (−1, 1)n

)
+ (−1, 1)n

= (1− λs)
((

(K + L) ∼ (−1, 1)n
)

+ (−1, 1)n
)

+ λs(−1, 1)n

⊂ (1− λs)(K + L) + λs(−1, 1)n ⊂ Ds.

Then, by (1.4), we get

(1− λs)Gn

(
(K + L) ∼ (−1, 1)n

)1/n
+ λsGn({0})1/n ≤ Gn(Ds)1/n

and consequently

(3.5)

n∑
i=0

(
n

i

)
(1− λs)iλn−is Gn

(
(K + L) ∼ (−1, 1)n

)i/n ≤ Gn(Ds)

for all 0 ≤ s ≤ Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
.

Now, writing s0 = Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
, on the one hand we observe

that∫ s0

0

(1− λs)iλn−is ds = nGn

(
K ∩

(
(−L) ∼ (−1, 1)n

)) ∫ 1

0

θ2n−i−1(1− θ)i dθ

= nGn

(
K ∩

(
(−L) ∼ (−1, 1)n

))Γ(2n− i)Γ(i+ 1)

Γ(2n+ 1)

=
n

2n− i

(
2n

i

)−1

Gn

(
K ∩

(
(−L) ∼ (−1, 1)n

))
and hence, integration on s ∈ [0, s0] on the left-hand side of (3.5) yields[

n∑
i=0

n

2n− i

(
n

i

)(
2n

i

)−1

Gn

(
(K + L) ∼ (−1, 1)n

)i/n]
Gn

(
K∩

(
(−L) ∼ (−1, 1)n

))
.

On the other hand, we have∫ s0

0

Gn(Ds) ds

=

∫ s0

0

∑
x∈(K+L+(−2,2)n)∩Zn

χDs
(x) ds

=
∑

x∈(K+L+(−2,2)n)∩Zn

min
{

Gn

((
K + (−1, 1)n

)
∩
(
x− L+ (−1, 1)n

))
, s0

}
≤

∑
x∈(K+L+(−2,2)n)∩Zn

Gn

((
K + (−1, 1)n

)
∩
(
x− L+ (−1, 1)n

))
=

∑
x∈(K+L+(−2,2)n)∩Zn

∑
y∈Zn

χ
K+(−1,1)n

(y)χ
x−L+(−1,1)n

(y)

=
∑

x∈(K+L+(−2,2)n)∩Zn

∑
y∈Zn

χ
K+(−1,1)n

(y)χ
y+L+(−1,1)n

(x)

=
∑
y∈Zn

χ
K+(−1,1)n

(y)
∑

x∈(K+L+(−2,2)n)∩Zn

χ
y+L+(−1,1)n

(x)

= Gn

(
K + (−1, 1)n

)
Gn

(
L+ (−1, 1)n

)
.
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This concludes the proof. �

Next we will use a different approach to show a discrete analogue of the Rogers-
Shephard inequality (1.2). To this aim, let K ⊂ Rn be a non-empty convex bounded
set. Then the following two relations involving the lattice point enumerator Gn(·)
and the volume vol(·) hold:

(3.6) Gn(K) ≤ vol

(
K +

(
−1

2
,

1

2

)n)
and

(3.7) vol(K) ≤ Gn

(
K +

(
−1

2
,

1

2

)n)
.

Regarding (3.6) (cf. e.g. [20, Equation (3.3)]), notice that it can be easily deduced
from the inclusion K ∩Zn ⊂ K jointly with the fact that Gn(K) = vol

(
(K ∩Zn) +

(−1/2, 1/2)n
)
.

It is also easy to derive (3.7) (although it is “folklore”, we have not found a
precise reference for it): let A =

{
z ∈ Zn :

(
z + (−1/2, 1/2)n

)
∩K 6= ∅

}
, for which

one clearly has

A ⊂
(
K +

(
−1

2
,

1

2

)n)
∩ Zn

and thus

(3.8) |A| ≤ Gn

(
K +

(
−1

2
,

1

2

)n)
.

Moreover, taking the null measure set M := Rn \
(
Zn + (−1/2, 1/2)n

)
, we get

K ⊂M ∪
[
A+

(
−1

2
,

1

2

)n]
and hence

(3.9) vol(K) ≤ vol

(
A+

(
−1

2
,

1

2

)n)
= |A|.

Thus, using (3.9) and (3.8), (3.7) follows.

Now, we are in a condition to show Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Using (3.6) jointly with the classical Rogers-Shephard in-
equality (1.2) (for which the assumption on the convex bounded set K to be closed
is actually not necessary, due to the facts that the boundary of a convex set has null
measure and the closure of the Minkowski sum of bounded sets is the Minkowski
sum of the closure of them) and (3.7), we get

Gn(K −K) ≤ vol

(
K −K +

(
−1

2
,

1

2

)n)
= vol

(
K +

(
−1

4
,

1

4

)n
−
[
K +

(
−1

4
,

1

4

)n])
≤
(

2n

n

)
vol

(
K +

(
−1

4
,

1

4

)n)
≤
(

2n

n

)
Gn

(
K +

(
−3

4
,

3

4

)n)
.

This concludes the proof. �
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Proof of Theorem 1.2. By (3.6) and the fact that, for any A,B,C ⊂ Rn,

(3.10) (A ∩B) + C ⊂ (A+ C) ∩ (B + C)

(see e.g. [34, Equation (3.2)]), we get

Gn(K + L)Gn

(
K ∩ (−L)

)
≤ vol

(
K + L+

(
−1

2
,

1

2

)n)
vol

(
K ∩ (−L) +

(
−1

2
,

1

2

)n)
≤ c

K,L
vol
(
K + L+ (−1, 1)n

)
vol

([
K +

(
−1

2
,

1

2

)n]
∩
[
−L+

(
−1

2
,

1

2

)n])
.

Now, applying the classical Rogers-Shephard inequality (1.3) (again, the assump-
tion on the convex sets K,L to be closed is not needed) jointly with (3.7), we
have

c
K,L

vol
(
K + L+ (−1, 1)n

)
vol

([
K +

(
−1

2
,

1

2

)n]
∩
[
−L+

(
−1

2
,

1

2

)n])
≤
(

2n

n

)
c
K,L

vol

(
K +

(
−1

2
,

1

2

)n)
vol

(
L+

(
−1

2
,

1

2

)n)
≤
(

2n

n

)
c
K,L

Gn

(
K + (−1, 1)n

)
Gn

(
L+ (−1, 1)n

)
.

This concludes the proof. �

Remark 3.2. We can also use this approach based on the relations between the
volume and the lattice point enumerator to provide an alternative proof to Theo-
rem 1.3. Indeed, from (3.6), (3.10), (1.9) (for which the assumption on the convex
set K to be closed is not necessary) and (3.7), we obtain

Gn−k(PH⊥K)Gk(K ∩H)

≤ voln−k

((
PH⊥K

)
+

1

2
CH⊥

)
volk

((
K ∩H

)
+

1

2
CH

)
≤ voln−k

(
PH⊥

[
K +

(
−1

2
,

1

2

)n])
volk

([
K +

(
−1

2
,

1

2

)n]
∩H

)
≤
(
n

k

)
vol

(
K +

(
−1

2
,

1

2

)n)
≤
(
n

k

)
Gn

(
K + (−1, 1)n

)
.

We point out that, now, there is no need to assume that 0 ∈ K. However, notice
that such a method does not allow us to show the statement of the stronger inequality
collected in Theorem 2.1.

Given a convex bounded set containing the origin K, if we apply (3.1) to the
sets K and L′ := −K + (−1, 1)n we have
(3.11)

n∑
i=0

n

2n− i

(
n

i

)(
2n

i

)−1

Gn(K −K)i/n ≤
Gn

(
K + (−1, 1)n

)
Gn

(
K + (−2, 2)n

)
Gn(K)

.

At this point, it is natural to compare the discrete analogues of (1.2) that involve
extensions of K by Minkowski adding certain cubes, i.e., the above inequality, (1.6)
and (1.8).
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First, to compare this inequality with (1.6), we need to relate

Gn

(
K + (−1, 1)n

)
Gn

(
K + (−2, 2)n

)
Gn(K)

−
n−1∑
i=0

n

2n− i

(
n

i

)(
2n

i

)−1

Gn(K −K)i/n

and

Gn

(
K +

(
−3

4
,

3

4

)n)
.

Although, unfortunately, we do not have a full answer to this question, next we
show that in dimension n = 2 the latter expression provides us with a smaller upper
bound for

Gn(K −K)

(
2n

n

)−1

and hence, in the plane, (1.6) is tighter than (3.11). This is an immediate conse-
quence of the following result.

Proposition 3.3. Let K ∈ K2 be a planar convex body containing the origin. Then

(3.12) G2

(
K+(−1, 1)2

)
< G2

(
K+(−2, 2)2

)
−

1∑
i=0

2

4− i

(
2

i

)(
4

i

)−1

G2(K−K)i/2.

Proof. Let Hi = {x ∈ R2 : 〈x, ei〉 = 0}, i = 1, 2, and set

m := max
i=1,2

G1(PHi
K),

for which we will assume without loss of generality that m = G1(PH1
K). Then, K is

contained in a rectangle [−a1, b1]× [−a2, b2], with ai, bi ≥ 0 and G1

(
[−ai, bi]

)
≤ m,

i = 1, 2.

So, we clearly have that G2(K) ≤ m2 and G2(K −K) ≤ (2m + 1)2. Moreover,
since K + (−1, 1)2 is open and thus, for any x ∈ (PH1

K) ∩ Z2,(
K + (−2, 2)2

)
∩
(
x+ lin{e1}

)
contains at least two more integer points than(

K + (−1, 1)2
)
∩
(
x+ lin{e1}

)
,

we get
G2

(
K + (−2, 2)2

)
≥ G2

(
K + (−1, 1)2

)
+ 2m.

Altogether, since m ≥ 1 (because 0 ∈ K), we have

1

2
+

1

3
G2(K−K)1/2 ≤ 1

2
+

1

3
(2m+1) < 2m ≤ G2

(
K+(−2, 2)2

)
−G2

(
K+(−1, 1)2

)
,

which is equivalent to (3.12). �

Next we relate (1.6) and (1.8).

Remark 3.4. Inequalities (1.6) and (1.8) are not comparable. Indeed, taking K =
[−r, r]n with r > 0, one has

c
K,−K

=

(
4r + 1

4r + 2

)n
< 1.

So, on the one hand, if r ∈ N we get

Gn(K) = Gn

(
K +

(
−3

4
,

3

4

)n)
= Gn

(
K + (−1, 1)n

)
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and thus

c
K,−K

Gn

(
K + (−1, 1)n

)2
Gn(K)

< Gn

(
K +

(
−3

4
,

3

4

)n)
.

On the other hand, if r /∈ N then

c
K,−K

Gn

(
K + (−1, 1)n

)
Gn(K)

=
(4r + 1)n

(
2brc+ 3

)n
(4r + 2)n

(
2brc+ 1

)n =

(
1 + 2

2brc+1

1 + 1
4r+1

)n
> 1,

where brc denotes the floor function of r (i.e., the greatest integer less than or equal
to r), and hence

c
K,−K

Gn

(
K + (−1, 1)n

)2
Gn(K)

> Gn

(
K +

(
−3

4
,

3

4

)n)
.

3.1. From the discrete analogues to the continuous versions. It is intuitive
that one can approximate the volume of a convex body by successively shrinking
the lattice. This can be easily seen by means of the fact that the volume and the
lattice point enumerator are equivalent when the convex body is “large enough”.
More precisely, given a convex body K ∈ Kn with dimension dimK = n, we have

(3.13) lim
r→∞

Gn(rK)

rn
= vol(K)

(see e.g. [36, Lemma 3.22]). Moreover, it is easy to check that

(3.14) lim
r→∞

Gn(rK +M)

rn
= vol(K)

for any bounded convex set M containing the origin. Indeed, given ε > 0 it follows
that, for any r > 0 large enough, M ⊂ (rεK) + zr for some zr ∈ Zn, and thus

vol(K) = lim
r→∞

Gn(rK)

rn
≤ lim inf

r→∞

Gn(rK +M)

rn
≤ lim sup

r→∞

Gn(rK +M)

rn

≤ lim
r→∞

Gn

(
r(K + εK)

)
rn

= vol(K + εK) = (1 + ε)nvol(K).

Since ε > 0 was arbitrary, (3.14) holds.

We then conclude this section by proving that the discrete versions of the
projection-section and the Rogers-Shephard inequalities we have previously shown
imply their corresponding continuous analogues, by exploiting the above relations
between the lattice point enumerator and the volume. To this aim, regarding the
discrete projection-section type inequalities, we will show that (1.10) already im-
plies (1.9) (and hence, the same is obtained from the stronger inequality (2.1)).
In the same way, we will prove that (2.5) is enough to derive (1.3) (and thus, the
same happens for the more powerful inequalities (1.7) and (3.1)). Moreover, in
particular, (2.6) implies (1.2) (and so, the same is true for the stronger versions
(1.6), (1.8) and (3.2)).

Theorem 3.5. Let K,L ∈ Kn be convex bodies containing the origin with dimK =
dimL = n. Then

i) The discrete inequality (1.10) for the lattice point enumerator implies the
classical projection-section inequality (1.9) for the volume.

ii) The discrete inequality (2.5) for the lattice point enumerator implies the
classical Rogers-Shephard inequality (1.3) for the volume.
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Proof. Applying (1.10) with rK (for r > 0), taking limits as r → ∞ and using
(3.13) and (3.14), we get

voln−k(PH⊥K)volk(K ∩H) = lim
r→∞

Gn−k(rPH⊥K)

rn−k
·

Gk

(
r(K ∩H)

)
rk

= lim
r→∞

Gn−k
(
PH⊥(rK)

)
Gk

(
(rK) ∩H

)
rn

≤ lim
r→∞

(
n

k

)
Gn

(
rK + (−1, 1)n

)
rn

=

(
n

k

)
vol(K).

Analogously, but now applying (2.5) with rK and rL (for r > 0), we obtain

vol(K + L)vol
(
K ∩ (−L)

)
= lim
r→∞

Gn

(
r(K + L)

)
Gn

(
r
(
K ∩ (−L)

))
r2n

= lim
r→∞

Gn(rK + rL)Gn

(
(rK) ∩ (−rL)

)
r2n

≤ lim
r→∞

(
2n

n

)
Gn

(
rK + (−1, 1)n

)
Gn

(
rL+ (−2, 2)n

)
r2n

=

(
2n

n

)
vol(K)vol(L).

This concludes the proof. �

Remark 3.6. Since (1.9) and (1.3) are sharp, from the proof above, we have that
their discrete analogues (1.10) and (2.5) (and hence their corresponding stronger
related versions) are asymptotically sharp.

4. A discrete analogue of Berwald’s inequality

Let K ⊂ Rn be a convex bounded set containing the origin, let f : K −→ R≥0

be a non-negative function and set p > 0. We will write µ to denote the counting
measure on Zn, considered as a measure on Rn, namely, the measure on Rn given
by µ(M) = Gn(M) for any M ⊂ Rn. First we observe that we have

(4.1)
∑

x∈K∩Zn

f(x)p =

∫ ∞
0

ptp−1Gn

({
x ∈ K : f(x) > t

})
dt.

Indeed, by Fubini’s theorem, we obtain∑
x∈K∩Zn

f(x)p =

∫
Rn

f(x)pχ
K

(x) dµ(x) =

∫
Rn

(∫ f(x)

0

ptp−1 dt

)
χ

K
(x) dµ(x)

=

∫ ∞
0

∫
Rn

ptp−1χ
K

(x)χ
(0,f(x))

(t) dµ(x) dt

=

∫ ∞
0

ptp−1

∫
Rn

χ{x∈K: f(x)>t}(x) dµ(x) dt

=

∫ ∞
0

ptp−1Gn

({
x ∈ K : f(x) > t

})
dt,

which shows (4.1).

To prove Theorem 1.4, we need the following auxiliary results.
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Lemma 4.1. Let K ⊂ Rn be a convex bounded set containing the origin and let
m > 0. Let hm : K + (−1, 1)n −→ R≥0 be the concave function whose hypograph is
the closure of conv

(
(K×{0})∪ (0n,m)

)
+
(
(−1, 1)n×{0}

)
. Then, for every p > 0,

(4.2)

 (
n+p
n

)
Gn(K)

∑
x∈(K+(−1,1)n)∩Zn

hm(x)p

1/p

≥ m.

Proof. Observe that, for any 0 ≤ t < m,(
conv

(
(K × {0}) ∪ (0n,m)

)
+
(
(−1, 1)n × {0}

))
∩
(
Rn × {t}

)
=

((
1− t

m

)
K + (−1, 1)n

)
× {t}

and thus {
x ∈ K + (−1, 1)n : hm(x) > t

}
=

(
1− t

m

)
K + (−1, 1)n.

Then, using (1.4) we get∫ ∞
0

ptp−1Gn

({
x ∈ K + (−1, 1)n : hm(x) > t

})
dt

=

∫ m

0

ptp−1Gn

((
1− t

m

)
K + (−1, 1)n

)
dt

≥
∫ m

0

ptp−1

(
1− t

m

)n
Gn(K) dt = pmp Gn(K)

∫ 1

0

sp−1(1− s)n ds

= pmp Gn(K)
Γ(p)Γ(n+ 1)

Γ(n+ p+ 1)
= mp Gn(K)

(
n+ p

n

)−1

.

This, together with (4.1) applied to the function hm, yields∑
x∈(K+(−1,1)n)∩Zn

hm(x)p ≥ mp Gn(K)

(
n+ p

n

)−1

,

which shows (4.2). �

Now, given a concave function f : K −→ R≥0 defined on a convex bounded
set K ⊂ Rn, we will relate the number of integer points of the superlevel sets of
both the function f and its extension f� (whose hypograph is the closure of the
Minkowski addition of the hypograph of f and (−1, 1)n×{0}) in terms of a suitable
(1/n)-concave function (on its support).

Lemma 4.2. Let K ⊂ Rn be a convex bounded set containing the origin and let
f : K −→ R≥0 be a concave function with f(0) = |f |∞ > 0. For any p > 0, let

m =

 (
n+p
n

)
Gn(K)

∑
x∈(K+(−1,1)n)∩Zn

(
f�
)p

(x)

1/p

and let g : R≥0 −→ R≥0 be the function given by

g(t) =

{ (
1− t

m

)n
Gn(K) if t ≤ m,

0 otherwise.
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Then, there exists t0 ∈ R≥0 such that

(4.3) Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
> g(t)

for all 0 ≤ t < t0 and

(4.4) g(t) ≥ Gn

({
x ∈ K : f(x) > t

})
for all t ≥ t0.

Proof. First we will show that m ≥ |f |∞. To this aim, assume by contradiction
that m < |f |∞ and set hm : K + (−1, 1)n −→ R≥0 the concave function whose
hypograph is the closure of

conv
(
(K × {0}) ∪ (0n,m)

)
+
(
(−1, 1)n × {0}

)
.

Then, by the concavity of f ,

hyp(f) ⊃ conv
(
(K × {0}) ∪ (0n,m)

)
and so hyp

(
f�
)
⊃ hyp(hm). This also implies that{

x ∈ K + (−1, 1)n : f�(x) > t
}
⊃
{
x ∈ K + (−1, 1)n : hm(x) > t

}
for all 0 ≤ t < |f |∞. Therefore, assuming that m < |f |∞, the latter inclusion
jointly with (4.1) applied to the functions f� and hm, Lemma 4.1 and the fact that

Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
≥ 1

for all 0 ≤ t < |f |∞ (since f(0) = |f |∞), imply that

m =

( (
n+p
n

)
Gn(K)

∫ |f |∞
0

ptp−1Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
dt

)1/p

>

( (
n+p
n

)
Gn(K)

∫ m

0

ptp−1Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
dt

)1/p

≥

( (
n+p
n

)
Gn(K)

∫ m

0

ptp−1Gn

({
x ∈ K + (−1, 1)n : hm(x) > t

})
dt

)1/p

=

 (
n+p
n

)
Gn(K)

∑
x∈(K+(−1,1)n)∩Zn

hm(x)p

1/p

≥ m,

a contradiction.
Now, since f� ≤ |f |∞, we trivially have

0 = Gn

({
x ∈ K + (−1, 1)n : f�(x) > |f |∞

})
≤ g
(
|f |∞

)
and thus we may consider

t0 := inf
{
t > 0 : Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
≤ g(t)

}
<∞.

Then, on the one hand, we obtain by the definition of t0 that (4.3) holds for all
0 ≤ t < t0 ≤ |f |∞. Moreover, since{

x ∈ K + (−1, 1)n : f�(x) > t
}

=
{
x ∈ K : f(x) > t

}
+ (−1, 1)n
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(which is an open convex bounded set) for all 0 ≤ t < |f |∞, we have that the

function t 7→ Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
is continuous from the right on

R≥0. Therefore, we obtain that

Gn

({
x ∈ K + (−1, 1)n : f�(x) > t0

})
≤ g(t0).

On the other hand, given t ∈
[
t0, |f |∞

]
and taking λ ∈ (0, 1] such that t0 = λt,

from (1.4) we obtain

Gn

({
x ∈ K + (−1, 1)n : f�(x) > t0

})1/n

= Gn

({
x ∈ K : f(x) > t0

}
+ (−1, 1)n

)1/n

≥ Gn

(
(1− λ)

{
x ∈ K : f(x) ≥ 0

}
+ λ
{
x ∈ K : f(x) > t

}
+ (−1, 1)n

)1/n

≥ (1− λ)Gn(K)1/n + λGn

({
x ∈ K : f(x) > t

})1/n

(4.5)

and also (taking into account that t0 ≤ |f |∞ ≤ m)

(4.6) g(t0)1/n =

(
1− t0

m

)
Gn(K)1/n = (1−λ)Gn(K)1/n+λ

(
1− t

m

)
Gn(K)1/n.

Thus, using (4.5) and (4.6), we get that (4.4) holds for all t0 ≤ t ≤ |f |∞. This
concludes the proof, since (4.4) is further trivially true for any t ∈

[
|f |∞,∞

)
. �

Proof of Theorem 1.4. We may assume, without loss of generality, that |f |∞ > 0,
and let m and g be defined as in Lemma 4.2. Observe also that, for any r > 0,

(4.7)

( (
n+r
n

)
Gn(K)

∫ m

0

rtr−1

(
1− t

m

)n
Gn(K) dt

)1/r

= m.

From (4.1) applied to f� jointly with the definition of g and m, the latter implies,
in particular, that

(4.8)

∫ ∞
0

tp−1Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
dt =

∫ ∞
0

tp−1g(t) dt.

Hence, with t0 as provided by Lemma 4.2 we obtain, from (4.3) and (4.4), that∫ t0

0

tq−1
[
Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
− g(t)

]
dt

−
∫ ∞
t0

tq−1
[
g(t)−Gn

({
x ∈ K : f(x) > t

})]
dt

=

∫ t0

0

tp−1tq−p
[
Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
− g(t)

]
dt

−
∫ ∞
t0

tp−1tq−p
[
g(t)−Gn

({
x ∈ K : f(x) > t

})]
dt

≤ tq−p0

∫ t0

0

tp−1
[
Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
− g(t)

]
dt

− tq−p0

∫ ∞
t0

tp−1
[
g(t)−Gn

({
x ∈ K : f(x) > t

})]
dt.
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Moreover, we have

tq−p0

∫ t0

0

tp−1
[
Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
− g(t)

]
dt

+ tq−p0

∫ ∞
t0

tp−1
[
Gn

({
x ∈ K : f(x) > t

})
− g(t)

]
dt

≤ tq−p0

∫ ∞
0

tp−1
[
Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
− g(t)

]
dt = 0,

where the latter equality follows from (4.8).
Altogether, we have shown that∫ t0

0

tq−1Gn

({
x ∈ K + (−1, 1)n : f�(x) > t

})
dt

+

∫ ∞
t0

tq−1Gn

({
x ∈ K : f(x) > t

})
dt ≤

∫ ∞
0

tq−1g(t) dt

and hence ∫ ∞
0

tq−1Gn

({
x ∈ K : f(x) > t

})
dt ≤

∫ ∞
0

tq−1g(t) dt.

Consequently, from (4.7) for r = q, we have( (
n+q
n

)
Gn(K)

∫ ∞
0

qtq−1Gn

({
x ∈ K : f(x) > t

})
dt

)1/q

≤

( (
n+q
n

)
Gn(K)

∫ m

0

qtq−1

(
1− t

m

)n
Gn(K) dt

)1/q

= m

and thus, from (4.1) applied to f and q,( (
n+q
n

)
Gn(K)

∑
x∈K∩Zn

fq(x)

)1/q

≤

 (
n+p
n

)
Gn(K)

∑
x∈(K+(−1,1)n)∩Zn

(
f�
)p

(x)

1/p

.

This concludes the proof. �

As briefly pointed out within the introduction, the continuous version of Berwald’s
inequality (Theorem E) allows us to derive the Rogers-Shephard inequalities (1.9)
and (1.2). To show this, first notice that Stirling’s formula for the gamma function
yields the asymptotic formula

lim
x→∞

Γ(x)√
2π
x

(
x
e

)x = 1,

which implies, in particular, that
(
n+q
n

)1/q → 1 as q → ∞. Moreover, given a
convex body K ∈ Kn with dimK = n and a concave function f : K −→ R≥0, it is
well-known that

lim
q→∞

(∫
K

fq(x) dx

)1/q

= |f |∞
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(here we notice that, since f is concave, |f |∞ agrees with ess supx∈K f(x)). Thus,
applying Theorem E with p = k (and n′ = n − k) and the concave function (cf.
(1.1)) f : PH⊥K −→ R≥0 given by

f(x) = volk
(
K ∩ (x+H

))1/k
for H ∈ Lnk , one gets Theorem D by taking limit as q →∞. Indeed, one has

volk(K ∩H)1/k ≤ |f |∞ = lim
q→∞

( (
n−k+q
n−k

)
voln−k(PH⊥K)

∫
P

H⊥K

fq(x) dx

)1/q

≤

( (
n
k

)
voln−k(PH⊥K)

∫
P

H⊥K

fk(x) dx

)1/k

=

( (
n
k

)
voln−k(PH⊥K)

vol(K)

)1/k

,

where the last equality follows from Fubini’s theorem.
Analogously, from Theorem E for p = n and the concave function (cf. (1.1))

f : K −K −→ R≥0 given by

f(x) = vol
(
K ∩ (x+K)

)1/n
,

for which one has∫
K−K

fn(x) dx =

∫
Rn

∫
Rn

χ
K

(y)χ
x+K

(y) dy dx =

∫
Rn

∫
Rn

χ
K

(y)χ
y−K

(x) dx dy

= vol(K)2,

one gets

vol(K)1/n = |f |∞ = lim
q→∞

( (
n+q
n

)
vol(K −K)

∫
K−K

fq(x) dx

)1/q

≤

( (
2n
n

)
vol(K −K)

∫
K−K

fn(x) dx

)1/n

=

( (
2n
n

)
vol(K −K)

vol(K)2

)1/n

,

and so Theorem A follows.
Arguing in a similar way in the discrete setting, but now applying Theorem 1.4

(for the above-mentioned functions and values of p, and letting q →∞), we get the
following results:

Corollary 4.3. Let k ∈ {1, . . . , n − 1} and H ∈ Lnk . Let K ⊂ Rn be a convex
bounded set containing the origin. Then

Gn−k(PH⊥K)volk(K∩H) ≤
(
n

k

) ∑
x∈(P

H⊥K+C
H⊥ )∩Zn

sup
z∈C

H⊥

volk

(
K∩

(
(x+z)+H

))
.

Corollary 4.4. Let K ⊂ Rn be a convex bounded set containing the origin. Then

Gn(K −K)vol(K) ≤
(

2n

n

) ∑
x∈(K−K+(−1,1)n)∩Zn

sup
z∈(−1,1)n

vol
(
K ∩

(
(x+ z) +K

))
.
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We point out that the more general result, involving convex bounded sets K,L ⊂
Rn containing the origin such that maxx∈K+L vol

(
K ∩ (x − L)

)
= vol

(
K ∩ (−L)

)
may be also derived, obtaining in this way that

Gn(K+L)vol
(
K∩(−L)

)
≤
(

2n

n

) ∑
x∈(K+L+(−1,1)n)∩Zn

sup
z∈(−1,1)n

vol
(
K∩

(
(x+z)−L

))
.

We also observe that one cannot immediately derive, in principle, other discrete
versions of the Rogers-Shephard inequalities (1.9) and (1.2) from Theorem 1.4,
despite counting with the discrete analogue (1.4) of the classical Brunn-Minkowski
inequality, because of the lack of concavity of the functional Gn(·)1/n. This is the
reason for which Theorem 1.4 yields the above discrete counterparts of (1.9) and
(1.2), where the volume arises jointly with the lattice point enumerator. Some
engaging examples of discrete analogues of classical inequalities where these two
functionals appear together can be found in [2].

We conclude the paper by showing that the discrete version of Berwald’s inequal-
ity we have previously proven implies its continuous analogue:

Theorem 4.5. Let K ∈ Kn and let f : K −→ R≥0 be a concave function. Then
the discrete inequality (1.12) implies the classical Berwald inequality (1.11).

Before proving this result we observe the following. Given K ∈ Kn and a concave
function f : K −→ R≥0, we have

(4.9) lim
r→∞

 1

rn

∑
x∈(rK)∩Zn

f
(x
r

) = lim
r→∞

 1

rn

∑
y∈K∩((1/r)Zn)

f(y)

 =

∫
K

f(x) dx,

since f is Riemann integrable (because it is concave on the convex set K, whose
boundary has null measure).

Moreover, we may assume without loss of generality that f is upper semicontin-
uous. Indeed, otherwise we would work with its upper closure, which is determined
via the closure of the superlevel sets of f (see [28, page 14 and Theorem 1.6])
and thus has the same integral on Rn because of Fubini’s theorem together with
the facts that all the superlevel sets of f are convex (since f is concave) and the
boundary of a convex set has null (Lebesgue) measure.

Notice then that, for any decreasing sequence (rk)k∈N with rk → 0 as k → ∞,
we have

(4.10)

∞⋂
k=1

({
x ∈ K : f(x) ≥ t

}
+ rk(−1, 1)n

)
=
{
x ∈ K : f(x) ≥ t

}
due to the fact that {x ∈ K : f(x) ≥ t

}
is closed for all t ≥ 0.

Proof of Theorem 4.5. On the one hand, from (1.12) applied to the function h :
rK −→ R≥0 given by h(x) := f(x/r), we get (

n+q
n

)
Gn(rK)

∑
y∈(rK)∩Zn

hq(y)

1/q

≤

 (
n+p
n

)
Gn(rK)

∑
y∈(rK+(−1,1)n)∩Zn

(
h�
)p

(y)

1/p

.
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On the other hand, given ε > 0, for sufficiently large r > 0 we have that∑
y∈(rK+(−1,1)n)∩Zn

(
h�
)p

(y)

=
∑

y/r∈(K+(1/r)(−1,1)n)∩((1/r)Zn)

(
sup

u∈(−1,1)n
f

(
y + u

r

))p

=
∑

x∈(K+(1/r)(−1,1)n)∩((1/r)Zn)

(
sup

v∈(1/r)(−1,1)n
f(x+ v)

)p

≤
∑

x∈(K+ε(−1,1)n)∩((1/r)Zn)

(
sup

v∈ε(−1,1)n
f(x+ v)

)p
≤

∑
x∈(K+ε(−1,1)n)∩((1/r)Zn)

(
f�ε
)p

(x),

where f�ε : K + ε(−1, 1)n −→ R≥0 is the function given by

f�ε(z) = sup
u∈ε(−1,1)n

f(z + u)

for all z ∈ Rn. Thus, for r large enough, we get (
n+q
n

)
Gn(rK)

∑
y∈(rK)∩Zn

hq(y)

1/q

≤

 (
n+p
n

)
Gn(rK)

∑
x∈(K+ε(−1,1)n)∩((1/r)Zn)

(
f�ε
)p

(x)

1/p

which implies, using (4.9) and (3.13), that( (
n+q
n

)
vol(K)

∫
K

fq(x) dx

)1/q

≤

( (
n+p
n

)
vol(K)

∫
K+ε(−1,1)n

(
f�ε
)p

(x) dx

)1/p

.

Since ε > 0 was arbitrary, to conclude the proof it is enough to show that

(4.11) inf
ε>0

∫
K+ε(−1,1)n

(
f�ε
)p

(x) dx ≤
∫
K

fp(x) dx.

To this aim first observe that, by Fubini’s theorem, we have (cf. (4.1))
(4.12)∫

K+ε(−1,1)n

(
f�ε
)p

(x) dx =

∫ ∞
0

ptp−1vol
({
x ∈ K + ε(−1, 1)n : f�ε(x) > t

})
dt.

Now, since{
x ∈ K + ε(−1, 1)n : f�ε(x) > t

}
=
{
x ∈ K : f(x) > t

}
+ ε(−1, 1)n,

we have

vol
({
x ∈ K + ε(−1, 1)n : f�ε(x) > t

})
≤ vol

({
x ∈ K : f(x) ≥ t

}
+ ε(−1, 1)n

)
and hence, from (4.10),

(4.13) lim
ε→0+

vol
({
x ∈ K + ε(−1, 1)n : f�ε(x) > t

})
≤ vol

({
x ∈ K : f(x) ≥ t

})
.
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Therefore, taking limits as ε→ 0+ in both sides of (4.12), applying the monotone
convergence theorem and using (4.13), we get

inf
ε>0

∫
K+ε(−1,1)n

(
f�ε
)p

(x) dx = lim
ε→0+

∫
K+ε(−1,1)n

(
f�ε
)p

(x) dx

≤
∫ ∞

0

ptp−1vol
({
x ∈ K : f(x) ≥ t

})
dt

=

∫
K

fp(x) dx.

So (4.11) follows, which concludes the proof. �
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