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Abstract. We show that the lattice point enumerator Gn(·) satisfies

Gn

(
tK + sL + (−1, dt + se)n

)1/n ≥ tGn(K)1/n + sGn(L)1/n

for any K,L ⊂ Rn bounded sets with integer points and all t, s ≥ 0.
We also prove that a certain family of compact sets, extending that

of cubes [−m,m]n, with m ∈ N, minimizes the functional Gn(K +
t[−1, 1]n), for any t ≥ 0, among those bounded sets K ⊂ Rn with
given positive lattice point enumerator.

Finally, we show that these new discrete inequalities imply the cor-
responding classical Brunn-Minkowski and isoperimetric inequalities for
non-empty compact sets.

1. Introduction

The classical Brunn-Minkowski inequality for non-empty compact sets
K,L ⊂ Rn asserts that if t, s ≥ 0 then

(1.1) vol(tK + sL)1/n ≥ tvol(K)1/n + svol(L)1/n.

Here vol(·) denotes the n-dimensional Lebesgue measure and + is used for
the Minkowski sum, i.e., A+B = {a+ b : a ∈ A, b ∈ B} for any non-empty
sets A,B ⊂ Rn. Moreover, rA stands for the set {ra : a ∈ A} for any r ≥ 0
and we write x+A for {x}+A, where x ∈ Rn.

The Brunn-Minkowski inequality has become not only a cornerstone of
the Brunn-Minkowski theory (for which we refer the reader to the updated
monograph [22]) but also a powerful tool in other related fields of mathe-
matics. Moreover, it quickly yields other well-known inequalities, such as
Urysohn’s inequality (see e.g. [22, page 382]), it has inspired new engaging
related results, such as a reverse Brunn-Minkowski inequality (see [16]), and
it has been the starting point for new extensions and generalizations (see
e.g. [22, Chapter 9]). For extensive survey articles on this and other related
inequalities we refer the reader to [2, 5].

2010 Mathematics Subject Classification. Primary 52C07, 11H06; Secondary 52A40.
Key words and phrases. Brunn-Minkowski inequality, isoperimetric inequality, lattice

point enumerator, integer lattice.
The work is partially supported by MICINN/FEDER project PGC2018-097046-B-I00

and by “Programa de Ayudas a Grupos de Excelencia de la Región de Murcia”, Fundación
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In [6] Gardner and Gronchi obtained a powerful discrete analogue of the
following form of the Brunn-Minkowski inequality, in the setting of Zn with
the cardinality | · |: vol(K + L) ≥ vol(BK +BL), where BK and BL denote
centered Euclidean balls of the same volume as K and L, respectively. More
precisely, they proved that if A,B are finite subsets of the integer lattice Zn,
with dimension dimB = n, then

(1.2) |A+B| ≥
∣∣DB
|A| +DB

|B|
∣∣.

Here DB
|A|, D

B
|B| are B-initial segments: for m ∈ N, DB

m is the set of the

first m points of Zn
+ in the so-called “B-order”, which is a particular order

defined on Zn
+ depending only on the cardinality of B. For both a proper

definition and a deep study of it we refer the reader to [6]. As consequences
of (1.2), they also get two additional engaging discrete Brunn-Minkowski
type inequalities (improving previous results obtained by Ruzsa in [20, 21]):

|A+B|1/n ≥ |A|1/n +
1

(n!)1/n

(
|B| − n

)1/n
and, if |B| ≤ |A|, then

|A+B| ≥ |A|+ (n− 1)|B|+
(
|A| − n

)(n−1)/n(|B| − n)1/n − n(n− 1)

2
.

More recently, different discrete analogues of the Brunn-Minkowski in-
equality have been obtained, including the case of its classical form (cf.
(1.1)) for the cardinality [7, 11, 13], functional extensions of it [8, 12, 13, 14]
and versions for the lattice point enumerator Gn(·) [8, 13], which is given by
Gn(M) = |M ∩ Zn|. In this respect, [13, Theorem 2.1] reads as follows:

Theorem A. Let λ ∈ (0, 1) and let K,L ⊂ Rn be non-empty bounded sets.
Then

Gn

(
(1− λ)K + λL+ (−1, 1)n

)1/n ≥ (1− λ)Gn(K)1/n + λGn(L)1/n.

Equality is attained if K = [0, a]n and L = [0, b]n are cubes with a, b, (1 −
λ)a+ λb ∈ Z.

Here we show that it is possible to extend the previous inequality to
the case of arbitrary t, s ≥ 0 (cf. (1.1)), that is, not necessarily such that
t+s = 1. More precisely, in Section 2 we show the following result (here dxe
represents the ceiling function of x, namely, the least integer greater than
or equal to x):

Theorem 1.1. Let t, s ≥ 0 and let K,L ⊂ Rn be non-empty bounded sets
such that Gn(K)Gn(L) > 0. Then

(1.3) Gn

(
tK + sL+ (−1, dt+ se)n

)1/n ≥ tGn(K)1/n + sGn(L)1/n.

Equality is attained, when t+ s ∈ Z, if K = [0, a]n and L = [0, b]n are cubes
with a, b, ta+ sb ∈ Z.
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Probably the most outstanding and striking conclusion from the Brunn-
Minkowski inequality (1.1) is the following long-standing result: the classical
isoperimetric inequality. Its form for convex bodies in Rn, i.e., for non-empty
compact convex subsets of the n-dimensional Euclidean space, states that
the volume vol(·) and surface area S(·) (Minkowski content) of any n-dimen-
sional convex body K satisfy

(1.4)

(
S(K)

S(Bn)

)n

≥
(

vol(K)

vol(Bn)

)n−1

,

where Bn denotes the Euclidean (closed) unit ball. In other words, Euclidean
balls minimize the surface area among those convex bodies with prescribed
positive volume.

There exist various facets of the isoperimetric inequality (see e.g. [22,
Section 7.2] and the references therein), having different ramifications into
other settings such as its versions in the spherical and hyperbolic spaces
(see e.g. [3]). The isoperimetric inequality has been the starting point for
new engaging related results, such as a reverse isoperimetric inequality (see
[1]), and it has led to various remarkable consequences not only in geometry
but also in analysis (see e.g. [4]). For an extensive survey article on this
inequality we refer the reader to [17].

The isoperimetric inequality (1.4) admits the following “neighbourhood
form” (see e.g. [15, Proposition 14.2.1]): for any n-dimensional convex body
K ⊂ Rn, and all t ≥ 0, we have

(1.5) vol(K + tBn) ≥ vol(rBn + tBn),

where rBn, r > 0, is a ball of the same volume as K. In fact, by subtracting
vol(K) = vol(rBn), dividing both sides of (1.5) by t, and taking limits as
t→ 0+, one immediately gets (1.4) from (1.5).

The neighbourhood K + tBn, t ≥ 0, of the n-dimensional convex body K
coincides with the set of all points of Rn having (Euclidean) distance from
K at most t. Exchanging the role of the unit ball Bn in (1.5) by another (n-
dimensional) convex body E ⊂ Rn, i.e., changing the involved “distance”,
one is naturally led to the fact

(1.6) vol(K + tE) ≥ vol(rE + tE)

for all t ≥ 0, where again r > 0 is such that rE has the same volume as K.
Thus, the advantage of using the volume of a neighbourhood of K, instead of
its surface area, is that it can be extended to other spaces in which the latter
notion makes no sense; it just suffices to consider a metric and a measure
on the given space.

A relevant example of a space in which an isoperimetric inequality in
this form holds is the n-dimensional discrete cube {0, 1}n (see e.g. [15,
Section 14.2]). Similar inequalities also hold in other discrete metric spaces,
in the settings of combinatorics and graph theory (for which we refer the
reader to [10]). Recently, in [18], a discrete isoperimetric inequality has
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been derived for the integer lattice Zn endowed with the L∞ norm and the
cardinality measure | · | (see also [9] for a related result in the case of the L1

norm, where the author uses a method based on the solvability of a certain
finite difference equations problem). To this aim, a suitable extension of
lattice cubes (i.e., the intersection of cubes [a, b]n with Zn) is considered:
we will call these sets extended lattice cubes, which will be denoted by Ir
(see Definition 2.2), for any r ∈ N. In fact, when r = mn for some m ∈ N,
Ir turns out to be a lattice cube. Thus, the authors show that such sets
Ir minimize the cardinality of the suitable neighbourhood among all non-
empty sets of fixed cardinality r. More precisely, [18, Theorem 1], combined
with [18, Lemma 1], leads to the following discrete analogue of (1.6):

Theorem B ([18]). Let A ⊂ Zn be a non-empty finite set and let r ∈ N be
such that |Ir| = |A|. Then

(1.7)
∣∣A+

(
(m[−1, 1]n) ∩ Zn

)∣∣ ≥ ∣∣Ir +
(
(m[−1, 1]n) ∩ Zn

)∣∣
for all m ∈ N.

Indeed, the authors prove the above theorem for m = 1; a brief additional
argument allows to state it for all m ∈ N (see Section 2 for the proper
explanation).

Here, we are interested in studying an analogue of the above discrete
isoperimetric inequality in the setting of arbitrary non-empty bounded sets
in Rn endowed with (the L∞ norm and) the lattice point enumerator Gn(·).
In this way, one may consider neighbourhoods of a given set at any distance
t ≥ 0, not necessarily integer (cf. (1.7)). In Section 2 we show that such
extremal sets will be the extended cubes Cr (see Definition 2.2), which satisfy
Cr∩Zn = Ir (and thus Gn(Cr) = |Ir| = r) and are furthermore characterized
as the largest sets for which Cr + (−1, 1)n = Ir + (−1, 1)n, for any r ∈ N:

Theorem 1.2. Let K ⊂ Rn be a bounded set with Gn(K) > 0 and let r ∈ N
be such that Gn(Cr) = Gn(K). Then

(1.8) Gn

(
K + t[−1, 1]n

)
≥ Gn

(
Cr + t[−1, 1]n

)
for all t ≥ 0.

Finally, in Section 3 we show that both the classical Brunn-Minkowski
inequality (1.1) and the isoperimetric inequality (1.6), in the setting of non-
empty compact sets, can be derived as a consequence of these new discrete
inequalities for the lattice point enumerator Gn(·):

Theorem 1.3. The discrete Brunn-Minkowski inequality (1.3) implies the
classical Brunn-Minkowski inequality (1.1) for non-empty compact sets.

Theorem 1.4. The discrete isoperimetric inequality (1.8) implies the classi-
cal isoperimetric inequality (1.6), with E = [−1, 1]n, for non-empty compact
sets.
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2. Brunn-Minkowski and isoperimetric inequalities for Gn(·)

2.1. A Brunn-Minkowski type inequality for the lattice point enu-
merator. This subsection is mainly devoted to Theorem 1.1, shown by
induction on the dimension. We start by proving the following result, which
will be used to obtain the one-dimensional case of Theorem 1.1. Although
it turns out to be a particular case of the corresponding analogue of [13,
Lemma 2.1] (by suitably replacing the parameters (1 − λ) and λ by t and
s, respectively), we include its proof here to make the paper more self-
contained.

Lemma 2.1. Let t, s ≥ 0 and let K,L,M ⊂ R be non-empty sets such that
tK + sL ⊂ M . If M =

⋃r
i=1[ai, bi], with ai, bi ∈ Z for all i = 1, . . . , r, is

a finite union of pairwise disjoint compact intervals with integer extremes
then

G1(M) + r(t+ s− 1) ≥ tG1(K) + sG1(L).

From now on, by bxc we will denote the floor function of the real number
x, i.e., the greatest integer less than or equal to x.

Proof. We prove the result by induction on r. For the case r = 1, i.e.,
when M = [a1, b1] is a (non-empty) compact interval (with a1, b1 ∈ Z), we
have on the one hand that G1(M) = b1 − a1 + 1. Moreover, denoting by
a = inf K, b = supK, c = inf L and d = supL, we clearly get G1(K) ≤
G1([a, b]) = bbc − dae + 1 and G1(L) ≤ G1([c, d]) = bdc − dce + 1. On the
other hand, the inclusion tK + sL ⊂ M implies that b1 ≥ tbbc + sbdc and
a1 ≤ tdae+ sdce, and thus b1−a1 ≥ t (bbc − dae) + s(bdc−dce). Altogether,
we get G1(M)− 1 ≥ t(G1(K)− 1) + s(G1(L)− 1), showing the case r = 1.

So, we suppose that the inequality is true for r ≥ 1 and assume that
M = ∪r+1

i=1 [ai, bi], where bi < ai+1 for all 1 ≤ i ≤ r.
Denoting by M1 = [a1, b1] and M2 = ∪r+1

i=2 [ai, bi], we may assume, without
loss of generality, that M1 ∩ (tK + sL) 6= ∅. Hence, we may define m =
sup
(
M1 ∩ (tK + sL)

)
and then, since K and L are bounded (because tK +

sL ⊂ M), there exist k ∈ clK and l ∈ clL such that t k + s l = m. Thus,
considering the sets K1 = {x ∈ K : x ≤ k}, K2 = K \K1, L1 = {x ∈ L :
x ≤ l} and L2 = L\L1, we have that tK1 + sL1 ⊂M1 and tK2 + sL2 ⊂M2.
Therefore, applying the induction hypothesis (and taking into account that
M1 are M2 are disjoint), we get

G1(M) + (r + 1)(t+ s− 1) = G1(M1) + (t+ s− 1) + G1(M2) + r(t+ s− 1)

≥ tG1(K1) + sG1(L1) + tG1(K2) + sG1(L2)

= tG1(K) + sG1(L),

as desired. �

The following result yields the case n = 1 of Theorem 1.1 and, as previ-
ously announced, it will be used to derive (1.3).
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Lemma 2.2. Let t, s ≥ 0 and let K,L ⊂ R be non-empty bounded sets.
Then

(2.1) G1

(
tK + sL+

(
−1, dt+ se

))
≥ tG1(K) + sG1(L).

Equality is attained, when t+s ∈ Z, if K = [0, a] and L = [0, b] are intervals
with a, b, ta+ sb ∈ Z.

Proof. Let M =
⋃

x∈tK+sL

[
bxc, dxe

]
. Clearly, since K and L are bounded,

M is a finite union of compact disjoint intervals, say M =
⋃r

i=1[ai, bi] for
some ai, bi ∈ Z, i = 1, . . . , r.

For I =
{

1 ≤ i < r : ai+1−bi ≤ dt+s−1e
}

, let M ′ = M ∪
(⋃

i∈I [bi, ai+1]
)

and let M ′′ = M ′+
[
0, dt+ s− 1e

]
= M +

[
0, dt+ s− 1e

]
. From Lemma 2.1

we obtain

G1(M ′′) = G1(M ′) +
(
r − |I|

)(
dt+ s− 1e

)
≥ G1(M ′) +

(
r − |I|

)
(t+ s− 1)

≥ tG1(K) + sG1(L).

This yields (2.1) since M ∩ Z =
(
tK + sL+ (−1, 1)

)
∩ Z and

M ′′ ∩ Z =
(
tK + sL+

(
−1, dt+ s− 1e+ 1

))
∩ Z.

Finally, in order to show that equality may be attained (for some t, s ≥ 0),
it is enough to consider a, b, t, s > 0 such that a, b, t + s, ta + sb ∈ Z, and
take K = [0, a] and L = [0, b], for which we have

tK + sL+
(
−1, dt+ se

)
= (−1, ta+ sb+ t+ s),

and thus

G1

(
tK + sL+

(
−1, dt+ se

))
= t(a+ 1) + s(b+ 1) = tG1(K) + sG1(L). �

Before proving (the general case of) Theorem 1.1, we need to state an aux-
iliary result and additional notation. First we collect the following lemma,
which can be regarded as a discrete counterpart of the well-known Cava-
lieri Principle for the lattice point enumerator (see [13] and the references
therein).

Lemma 2.3. [13, Corollary 2.1] Let Ω ⊂ Rn be a bounded set, let f : Rn −→
[0,∞) and set f(Ω ∩ Zn) ⊂ {k0, k1, . . . , kr} with 0 = k0 < k1 < · · · < kr.
Then ∑

x∈Ω∩Zn

f(x) =

r∑
i=1

(ki − ki−1)Gn

(
{x ∈ Ω : f(x) ≥ ki}

)
.

Now, we denote by ei the i-th canonical unit vector and we set (x, y) for
the open segment with endpoints x, y ∈ Rn. Moreover, given a non-empty
bounded set M ⊂ Rn and τ ∈ R, we denote by M(τ) the hyperplane section
of M at height τ (in the direction of en), i.e.,

M(τ) =
{
x ∈ Rn−1 : (x, τ) ∈M

}
.
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Next we show the general case of Theorem 1.1. The proof follows the ideas
of [11, Theorem 2.1] and [13, Theorem 2.1]; we include it here for the sake
of completeness.

Proof of Theorem 1.1. We will show (1.3) by (finite) induction on the di-
mension n. The case n = 1 is collected in (2.1). So, we will suppose that
the inequality is true for n− 1.

We first observe that for all x, y ∈ R,

(tK + sL) (tx+ sy) ⊃ tK(x) + sL(y).

Then, for any x, y ∈ R such that K(x), L(y) 6= ∅, applying the induction

hypothesis (i.e., (1.3) in Rn−1) and setting Cn−1 =
∑n−1

i=1

(
−ei, dt+seei

)
, we

get that

Gn−1

(
(tK + sL+ Cn−1)(tx+ sy)

)
≥ Gn−1

(
tK(x) + sL(y) +

(
−1, dt+ se

)n−1
)

≥
(
tGn−1

(
K(x)

)1/(n−1)
+ sGn−1

(
L(y)

)1/(n−1)
)n−1

.

(2.2)

For the sake of brevity we denote by

N = tK + sL+ Cn−1, M = tK + sL+
(
−1, dt+ se

)n
,

a = max
x∈Z

Gn−1

(
K(x)

)
, b = max

x∈Z
Gn−1

(
L(x)

)
.

Since Gn(K)Gn(L) > 0, we have that a > 0 and b > 0. Without loss of
generality, we may assume that t, s are not both identically zero, and then
we define

c =
(
ta1/(n−1) + sb1/(n−1)

)n−1
and θ =

s b1/(n−1)

c1/(n−1)
.

Finally, for S = K,L,N or M , we denote by fS : R −→ [0,∞) the functions
given by

fK(x) =
Gn−1

(
K(x)

)
a

, fL(x) =
Gn−1

(
L(x)

)
b

,

fN (x) =
Gn−1

(
N(x)

)
c

, fM (x) =
Gn−1

(
M(x)

)
c

.

Using (2.2) we get

Gn−1

(
N(tx+ sy)

)
≥
(
tGn−1

(
K(x)

)1/(n−1)
+ sGn−1

(
L(y)

)1/(n−1)
)n−1

= c

(
t
a1/(n−1)fK(x)1/(n−1)

c1/(n−1)
+ s

b1/(n−1)fL(y)1/(n−1)

c1/(n−1)

)n−1

= c
(

(1− θ)fK(x)1/(n−1) + θfL(y)1/(n−1)
)n−1

≥ cmin
{
fK(x), fL(y)

}
.
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Thus, we have obtained the functional inequality

(2.3) fN (tx+ sy) ≥ min
{
fK(x), fL(y)

}
.

Now we observe, on the one hand, that the superlevel sets

{
x ∈ R : fK(x) ≥ τ

}
,

{
x ∈ R : fL(x) ≥ τ

}
are non-empty for all τ ∈ [0, 1]. On the other hand, (2.3) implies that

{
x ∈ R : fN (x) ≥ τ

}
⊃ t
{
x ∈ R : fK(x) ≥ τ

}
+ s
{
x ∈ R : fL(x) ≥ τ

}
,

and thus, applying Lemma 2.2, we obtain

G1

({
x ∈ R : fN (x) ≥ τ

}
+
(
−1, dt+ se

))
≥ tG1

({
x ∈ R : fK(x) ≥ τ

})
+ sG1

({
x ∈ R : fL(x) ≥ τ

})(2.4)

for all τ ∈ [0, 1]. Now, since N ⊂ M , then fN (x) ≤ fM (x) for every x ∈ R
and so {

x ∈ R : fN (x) ≥ τ
}
⊂
{
x ∈ R : fM (x) ≥ τ

}
.

Moreover, from

Cn−1 +
(
−en, dt+ seen

)
=
(
−1, dt+ se

)n
,

we have N +
(
−en, dt+ seen

)
= M and hence

(2.5)
{
x ∈ R : fM (x) ≥ τ

}
⊃
{
x ∈ R : fN (x) ≥ τ

}
+
(
−1, dt+ se

)
.

Finally, set {k0, k1, . . . , kr} ⊃ fK(Z)∪fL(Z)∪fN (Z)∪fM (Z), with 0 = k0 <
k1 < · · · < kr where, for some s ∈ {1, . . . , r},

ks = max
m∈Z

fK(m) = max
m∈Z

fL(m) = 1.

Then, using (2.4) and (2.5), together with Lemma 2.3 we obtain
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Gn(M) =
∑
m∈Z

Gn−1

(
M(m)

)
=
∑
m∈Z

cfM (m)

= c

r∑
i=1

(ki − ki−1) G1

({
x ∈ R : fM (x) ≥ ki

})
≥ c

r∑
i=1

(ki − ki−1) G1

({
x ∈ R : fN (x) ≥ ki

}
+
(
−1, dt+ se

))
≥ c

s∑
i=1

(ki − ki−1)

[
tG1

({
x ∈ R : fK(x) ≥ t

})
+ sG1

({
x ∈ R : fL(x) ≥ t

})]
= c

(
t
∑
m∈Z

fK(m) + s
∑
m∈Z

fL(m)

)
= c

(
t
Gn(K)

a
+ s

Gn(L)

b

)

≥

[(
ta1/(n−1)

)1−1/n
(
t

a
Gn(K)

)1/n

+
(
sb1/(n−1)

)1−1/n (s
b

Gn(L)
)1/n

]n
=
(
tGn(K)1/n + sGn(L)1/n

)n
,

where the last inequality follows from Hölder’s inequality.
In order to prove that equality may be attained, we consider a, b, t, s > 0

such that a, b, t + s, ta + sb ∈ Z and take K = [0, a]n and L = [0, b]n, for
which we have

tK + sL+
(
−1, dt+ se

)n
=
(
−1, ta+ sb+ dt+ se

)n
.

Therefore

Gn

(
tK + sL+

(
−1, dt+ se

)n)1/n
= t(a+ 1) + s(b+ 1)

= tGn(K)1/n + sGn(L)1/n. �

Theorem 1.1 allows us to obtain a property for the lattice point enumer-
ator that resembles the homogeneity of the volume:

Corollary 2.1. Let t ≥ 0 and let K ⊂ Rn be a non-empty bounded set.
Then

Gn

(
tK +

(
−1, dte

)n) ≥ tnGn(K).

Proof. We may assume, without loss of generality, that Gn(K) > 0. Then
the result follows from Theorem 1.1 for s = 0 and L = {0}. �

2.2. An isoperimetric type inequality for the lattice point enumer-
ator. Let K be a non-empty bounded set with

Gn(K) = Gn

(
r[−1, 1]n

)
= (2r + 1)n
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for some r ∈ N. Then, from Theorem 1.1 for t = 1 and s ∈ N,

Gn

(
K + s[−1, 1]n +

(
−1,d1 + se

)n) ≥ (Gn(K)1/n + sGn

(
[−1, 1]n

)1/n)n
= (2r + 3s+ 1)n

= Gn

(
r[−1, 1]n + s[−1, 1]n +

(
−1, d1 + se

)n)
,

which gives a particular discrete analogue of (1.6). Here we will show how
such a type of inequality can be extended to the case of any bounded set
K, i.e., with an arbitrary amount of integer points, and any s ≥ 0; in other
words, we will prove Theorem 1.2.

To this aim, first we need to give some definitions and point out some
important facts. Given a vector u = (u1 . . . , un) ∈ Zn and fixing iu ∈
{1, . . . , n}, we will write

u′ = (u1 . . . , uiu−1, uiu+1, . . . , un) ∈ Zn−1.

With this notation, in [18] the following well-order ≺ on Zn is defined:

Definition 2.1. If n = 1 we define the order ≺ given by

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ · · · ≺ m ≺ −m ≺ . . .
For n ≥ 2 we set, for w = (w1, . . . , wn) ∈ Zn,

mw = max
≺
{wi : i = 1, . . . , n} and iw = min

{
i : wi = mw

}
,

and we define ≺ recursively as follows: for any u, v ∈ Zn with u 6= v,

i) if mu ≺ mv then u ≺ v;
ii) if mu = mv then u ≺ v if either iv < iu or (iv = iu and) u′ ≺ v′.

Moreover, we write u � v if either u ≺ v or u = v.

This order will allow us to define the extended lattice cube Ir of r points as
the initial segment in Zn with respect to ≺. To define the sets Cr, which will
be referred to as extended cubes, first we need the following definition, which
can be seen as a particular case of the family of weakly unconditional sets,
first introduced in [19] (we refer the reader to this work for further properties
and relations of them with certain Brunn-Minkowski type inequalities): for
any non-empty finite set A ⊂ Rn, we write

CA =
{

(λ1x1, . . . , λnxn) ∈ Rn : (x1, . . . , xn) ∈ A, λi ∈ [0, 1] for i = 1, . . . , n
}

(see Figure 1).

Definition 2.2. Let r ∈ N. By Ir we denote the initial segment in (Zn,≺)
of length r, i.e., the set of the first r points with respect to the order ≺ on
Zn (see Figure 2, left). Moreover, by Cr we denote the set given by Cr := CIr
(see Figure 2, right).

We note that if r = mn for some m ∈ N then Ir is indeed a lattice cube.
More precisely, Ir = {−m/2 + 1,−m/2 + 2, . . . ,m/2− 1,m/2}n if m is even
and Ir =

{
−(m − 1)/2,−(m − 1)/2 + 1, . . . , (m − 1)/2, (m − 1)/2

}n
if m
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Figure 1. Sets CA ⊂ R2 for different finite sets A ⊂ Z2.
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Figure 2. The extended lattice cube I23 in Z2 (left) and
the corresponding extended cube C23 in R2 (right).

is odd (cf. Figure 2, left). This further implies that Cr is a cube whenever
r = mn for some m ∈ N.

In [18, Theorem 1]) it was proven that Theorem B holds for m = 1. Next
we show that [18, Theorem 1]), in combination with [18, Lemma 1] (which
ensures that Ir +{−1, 0, 1}n is also an extended lattice cube, for any r ∈ N),
indeed implies Theorem B for all m ∈ N. We include the proof here to make
the paper more self-contained:

Proof of Theorem B. First, we write

rm =
∣∣∣A+

(
(m[−1, 1]n) ∩ Zn

)∣∣∣ and sm =
∣∣∣Ir +

(
(m[−1, 1]n) ∩ Zn

)∣∣∣
for any m ∈ N, where r ∈ N is such that |Ir| = |A|. The case m = 1 of (1.7)
is collected in [18, Theorem 1]). So, let m ≥ 2 and assume that Theorem B
holds for m− 1. On the one hand, from [18, Theorem 1] applied to the set

A+
((

(m− 1)[−1, 1]n
)
∩ Zn

)
, we have

(2.6)

rm =
∣∣∣A+

((
(m− 1)[−1, 1]n

)
∩ Zn

)
+ {−1, 0, 1}n

∣∣∣ ≥ ∣∣Irm−1 + {−1, 0, 1}n
∣∣.
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On the other hand, from [18, Lemma 1] we immediately get

(2.7) Ir +
((

(m− 1)[−1, 1]n
)
∩ Zn

)
= Ism−1 .

Hence, from the induction hypothesis we obtain rm−1 ≥ sm−1 and then
Irm−1 ⊃ Ism−1 . Therefore, this inclusion jointly with (2.7) and (2.6) implies
that rm ≥ sm, as desired. �

Now we are in a position to prove Theorem 1.2. To this aim, we will
relate the extended cubes Cr to the lattice ones Ir.

Proof of Theorem 1.2. First we claim that

(2.8) Cr + (−1, 1)n = Ir + (−1, 1)n

for all r ∈ N. To show it, let r ∈ N and let z = (z1, . . . , zn) ∈ Cr ∩Zn. Then,
there exists x = (x1, . . . , xn) ∈ Ir such that zi = λixi for some λi ∈ [0, 1],
i = 1, . . . , n, which implies that zi � xi for all i = 1, . . . , n and thus z � x.
Hence, z ∈ Ir and the relation Cr∩Zn ⊂ Ir infers. Since the reverse inclusion
trivially follows from the definition of Cr, we have that Cr ∩ Zn = Ir for all
r ∈ N. This further implies that C{x}+(−1, 1)n ⊂ Ir+(−1, 1)n for all x ∈ Ir
and thus, since Cr =

⋃
x∈Ir C{x}, we obtain (2.8).

Now, let λ = t− btc ∈ [0, 1) be the decimal part of t ≥ 0. From (2.8) we
have Cr + [−λ, λ]n ⊂ Ir + (−1, 1)n and then, by adding the cube btc[−1, 1]n,
we get Cr + t[−1, 1]n ⊂ Ir +

(
btc + 1

)
(−1, 1)n. Hence, since Ir ⊂ Zn, we

have

Gn

(
Cr + t[−1, 1]n

)
≤
∣∣∣Ir +

((
btc[−1, 1]n

)
∩ Zn

)∣∣∣.
Thus, from Theorem B applied to the set K ∩ Zn, we get

Gn

(
K + t[−1, 1]n

)
≥ Gn

(
(K ∩ Zn) + t[−1, 1]n

)
=
∣∣∣(K ∩ Zn) +

((
btc[−1, 1]n

)
∩ Zn

)∣∣∣
≥
∣∣∣Ir +

((
btc[−1, 1]n

)
∩ Zn

)∣∣∣ ≥ Gn

(
Cr + t[−1, 1]n

)
,

as desired. �

Remark 2.1. From the proof of the previous result we note that the role
of the extended cubes Cr could be played by other sets Lr, with Gn(Lr) = r,
such that Lr + (−1, 1)n ⊂ Ir + (−1, 1)n. However, Cr are the largest sets
(with respect to set inclusion) satisfying this property (cf. (2.8)). Indeed,
for any x = (x1, . . . , xn) ∈ Rn such that x + (−1, 1)n ⊂ Ir + (−1, 1)n, it
is enough to consider the point y = (y1, . . . , yn) ∈

(
x + (−1, 1)n

)
∩ Zn ⊂(

Ir + (−1, 1)n
)
∩ Zn = Ir given by

yi =

 dxie if xi > 0,
0 if xi = 0,
bxic otherwise,

which yields x ∈ C{y} ⊂ Cr.
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Remark 2.2. Theorems 1.1 and 1.2 can be extended to the setting of an
arbitrary n-dimensional lattice Λ ⊂ Rn. Indeed, if B = {v1 . . . , vn} is a
basis of Λ, we may consider ϕ : Rn −→ Rn the linear (bijective) map given
by ϕ(x) =

∑n
i=1 xivi for any x = (x1, . . . , xn) ∈ Rn. Then, denoting by

GΛ(M) = |M ∩ Λ|, Theorem 1.1 implies that

GΛ

(
tK + sL+ ϕ

(
(−1, dt+ se)n

))1/n
≥ tGΛ(K)1/n + sGΛ(L)1/n

for any non-empty bounded sets K,L ⊂ Rn with GΛ(K)GΛ(L) > 0 and all
t, s ≥ 0. Analogously, Theorem 1.2 yields

GΛ

(
K + tϕ

(
[−1, 1]n

))
≥ GΛ

(
ϕ(Cr) + tϕ

(
[−1, 1]n

))
for any bounded set K ⊂ Rn with GΛ(K) > 0 and all t ≥ 0, where r ∈ N is
such that GΛ

(
ϕ(Cr)

)
= GΛ(K).

3. From the discrete versions to the continuous ones

We first fix some additional notation that will be used throughout the
rest of the paper. For each m ∈ N, we denote by Gm,n(·) the lattice point
enumerator with respect to the lattice 2−mZn, that is,

Gm,n(L) =
∣∣L ∩ (2−mZn)

∣∣ =
∣∣(2mL) ∩ Zn

∣∣ = Gn

(
2mL

)
,

for any L ⊂ Rn. Moreover, for each m ∈ N, we write Rm = [0, 2−m)n ⊂ Rn

and Om = Rm−Rm = (−2−m, 2−m)n. Finally, for any compact set M ⊂ Rn

and each m ∈ N we denote by

Mm =
{
z ∈ 2−mZn : (z + Rm) ∩M 6= ∅

}
,

for which we clearly have

(3.1) M ⊂Mm + Rm ⊂M + Om.

Next we will prove that (the neighbourhood form of) the isoperimetric
inequality (1.6) for compact sets, when E = [−1, 1]n, can be obtained as a
consequence of the discrete inequality (1.8). Although the underlying idea
is nothing but successively shrinking the lattice and then approximating the
volume by means of the lattice point enumerator, we will include here all
the details of the proof for the sake of completeness.

To this aim we show the following auxiliary result. Before, we make a
final observation: in the rest of this section, we will take limits provided that
they exist; in fact, their existence can be checked using standard arguments
in every case and we omit them.

Lemma 3.1. Let K ⊂ Rn be a non-empty compact set. If {pm}m∈N ⊂
N ∪ {0} is a sequence satisfying (2pm + 1)n ≤ |Km| < (2pm + 3)n then

(3.2) lim
m→∞

pm
2m

=
vol(K)1/n

2
.
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Proof. First we show that limm→∞ 2−mn|Km| = vol(K). Using (3.1) we
have

vol(K) ≤ vol(Km + Rm) ≤ vol(K + Om).

This, together with the identity vol(Km + Rm) = 2−mn|Km| and the fact
that {K + Om}m∈N is a decreasing sequence with

∞⋂
m=1

(K + Om) = K,

shows that

vol(K) ≤ lim
m→∞

|Km|
2mn

≤ lim
m→∞

vol(K+Om) = vol

( ∞⋂
m=1

(K + Om)

)
= vol(K).

Furthermore, from

lim
m→∞

(2pm + 1)n

2mn
≤ lim

m→∞

|Km|
2mn

= vol(K),

we infer the existence of a constant c > 0 such that pm < 2pm + 1 < 2mc for
all m ∈ N. Thus, applying that (x + 2)n − xn ≤ 3nxn−1 for any x ≥ 1, we
have

0 ≤ |Km| − (2pm + 1)n < (2pm + 3)n − (2pm + 1)n

≤ 3n(2pm + 1)n−1 ≤ 3n(2m+1c+ 1)n−1,

and since we may assume, without loss of generality, that c ≥ 1/4, then

0 ≤ |Km| − (2pm + 1)n < 3n(2m+1c+ 1)n−1 ≤ 3n(2m+1c+ 2m+1c)n−1

= 2mn−m+2n−23ncn−1.

Hence,

0 ≤ lim
m→∞

|Km| − (2pm + 1)n

2mn
≤ lim

m→∞
2−m+2n−23ncn−1 = 0.

Finally, we have

vol(K)1/n

2
=

1

2

(
lim

m→∞

|Km|
2mn

)1/n

=
1

2

(
lim

m→∞

|Km| − (2pm + 1)n

2mn
+ lim

m→∞

(2pm + 1)n

2mn

)1/n

=
1

2
lim

m→∞

2pm + 1

2m
= lim

m→∞

pm
2m

,

which shows (3.2). This concludes the proof. �

We observe that, considering the partition{[
(2k + 1)n, (2k + 3)n

)
∩ N

}
k∈N∪{0}

of N, then the relation (2pm + 1)n ≤ |Km| < (2pm + 3)n given in Lemma 3.1
uniquely determines such a sequence {pm}m∈N ⊂ N ∪ {0}.
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We conclude this section by proving Theorem 1.4.

Proof of Theorem 1.4. Let {pm}m∈N ⊂ N ∪ {0} be a sequence satisfying
the conditions of Lemma 3.1 and, for the sake of brevity, we write rm =
(2pm + 1)n. Since

Gn

(
2mKm + 2mRm

)
= Gm,n(Km + Rm) = |Km|
≥ (2pm + 1)n =

∣∣Irm∣∣ = Gn

(
Crm
)
,

applying (1.8) we get

Gm,n

(
Km + Rm + t[−1, 1]n

)
= Gn

(
2mKm + 2mRm + 2mt[−1, 1]n

)
≥ Gn

(
Crm + 2mt[−1, 1]n

)
= Gm,n

(
2−mCrm + t[−1, 1]n

)
for all m ∈ N. Therefore
(3.3)

lim
m→∞

Gm,n

(
Km + Rm + t[−1, 1]n

)
2mn

≥ lim
m→∞

Gm,n

(
2−mCrm + t[−1, 1]n

)
2mn

.

Applying again (3.1) to the set M = Km + Rm + t[−1, 1]n, we get

Km + Rm + t[−1, 1]n ⊂
(
Km + Rm + t[−1, 1]n

)
m

+ Rm

⊂ Km + Rm + t[−1, 1]n + Om ⊂ K + t[−1, 1]n + 2Om

and then

Gm,n

(
Km + Rm + t[−1, 1]n

)
2mn

≤

∣∣∣(Km + Rm + t[−1, 1]n
)
m

∣∣∣
2mn

= vol
((
Km + Rm + t[−1, 1]n

)
m

+ Rm
)

≤ vol
(
K + t[−1, 1]n + 2Om

)
.

Since
{
K + t[−1, 1]n + 2Om

}
m∈N is a decreasing sequence with⋂

m∈N

(
K + t[−1, 1]n + 2Om

)
= K + t[−1, 1]n,

we have

lim
m→∞

vol
(
K + t[−1, 1]n + 2Om

)
= vol

(
K + t[−1, 1]n

)
.

Therefore

(3.4) lim
m→∞

Gm,n

(
Km + Rm + t[−1, 1]n

)
2mn

≤ vol
(
K + t[−1, 1]n

)
.

Finally, we note that

Gm,n

(
2−mCrm + t[−1, 1]n

)
=
(
2(pm + tm) + 1

)n
,
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where tm := b2mtc for all m ∈ N (which clearly satisfies that tm/2
m → t as

m→∞). Thus, writing r = vol(K)1/n/2 and applying Lemma 3.1, we get

lim
m→∞

Gm,n

(
2−mCrm + t[−1, 1]n

)
2mn

= lim
m→∞

(
2(pm + tm) + 1

2m

)n

=
(
2(r + t)

)n
= vol

(
r[−1, 1]n + t[−1, 1]n

)
.

This, together with (3.3) and (3.4), shows (1.6), as desired. �

To conclude the paper, we point out that in [13, Corollary 2.3] it was
shown that the discrete inequality (1.3) with t = (1 − λ) and s = λ (for
λ ∈ (0, 1)) implies the corresponding form of the classical Brunn-Minkowski
inequality (i.e., for such values of t and s). Since the latter is equivalent, by
homogeneity, to (1.1) for arbitrary t, s ≥ 0, Theorem 1.3 then infers. Fur-
thermore, a direct proof of this result can be given in a way similar to what
is performed within the proof of Theorem 1.4, by directly approximating the
volume by means of the lattice point enumerator, as the lattice shrinks.
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Departamento de Matemáticas, Universidad de Murcia, Campus de Espinar-
do, 30100-Murcia, Spain

E-mail address: david.iglesias@um.es

E-mail address: eduardo.lucas@um.es

E-mail address: jesus.yepes@um.es


	1. Introduction
	2. Brunn-Minkowski and isoperimetric inequalities for Gn()
	2.1. A Brunn-Minkowski type inequality for the lattice point enumerator
	2.2. An isoperimetric type inequality for the lattice point enumerator

	3. From the discrete versions to the continuous ones
	References

