ON GRUNBAUM TYPE INEQUALITIES

FRANCISCO MARIN SOLA AND JESUS YEPES NICOLAS

ABSTRACT. Given a compact set K C R" of positive volume, and fixing
a hyperplane H passing through its centroid, we find a sharp lower bound
for the ratio vol(K ™) /vol(K), depending on the concavity nature of the
function that gives the volumes of cross-sections (parallel to H) of K,
where K~ denotes the intersection of K with a halfspace bounded by
H. When K is convex, this inequality recovers a classical result by
Griinbaum. To this respect, we also show that the log-concave case is
the limit concavity assumption for such a generalization of Griinbaum’s
inequality.

1. INTRODUCTION

Let K C R™ be a compact set with positive volume vol(K) (i.e., with
positive n-dimensional Lebesgue measure). The centroid of K is the affine-
covariant point

1
g(K):= W/dex.

According to a classical result by Griinbaum [8], if K is convex with
centroid at the origin, then

vol(K ™) n \"
1.1 >
(1.1) vol(K) — <n—|—1> ’
where K~ = KN{z € R": (z,u) <0} and K+ = KN{x € R": (z,u) > 0}
represent the parts of K which are split by the hyperplane H = {x €
R™ : (xz,u) = 0}, for any given u € S"'. Equality holds, for a fixed

uw € S*1 if and only if K is a cone in the direction wu, i.e., the convex hull
of {x}U(K N (y+ H)), for some x,y € R™.

Griinbaum’s result was extended to the case of sections [5, [16] and pro-
jections [19] of compact convex sets, and generalized to the analytic setting
of log-concave functions [15] (see also [2, Lemma 2.2.6]) and p-concave func-
tions [16], for p > 0. Other Griinbaum type inequalities involving volumes
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of sections of compact convex sets through their centroid, later generalized
to the case of classical and dual quermassintegrals in [I§], can be found in
[, [13)].

The underlying key fact in the original proof of (L)) (see [§]) is the follow-
ing classical result (see e.g. [2 Section 1.2.1] and also [14] Theorem 12.2.1)):

Theorem A (Brunn’s concavity principle). Let K C R™ be a non-empty
compact and convex set and let H be a hyperplane. Then, the function
[+ HY — Rxq given by f(z) = vol,—1 (KN(z+H)) is (1/(n—1))-concave.

In other words, for any given hyperplane H, the cross-sections volume
function f to the power 1/(n — 1) is concave on its support, which is equiv-
alent (due to the convexity of K) to the well-known Brunn-Minkowski in-
equality (see (Z1])). Although this property cannot be in general enhanced,
one can easily find compact convex sets for which f satisfies a stronger
concavity, for a suitable hyperplane H; similarly, the Brunn-Minkowski in-
equality can be refined when dealing with restricted families of sets (see e.g.
[10, 11] and the references therein). Thus, on the one hand, it is natural to
wonder about a possible enhanced version of Griinbaum’s inequality (L))
for the family of those compact convex sets K such that (there exists a hy-
perplane H for which) f is p-concave, with 1/(n — 1) < p. On the other
hand, one could expect to extend this inequality to compact sets K, not
necessarily convex, for which f is p-concave (for some hyperplane H), with
p<1l/(n—1).

Observing that the equality case in Griinbaum’s inequality (LIJ) is char-
acterized by cones, that is, those sets for which f is (1/(n — 1))-affine (i.e.,
such that /(=1 ig an affine function), the following sets of revolution, as-
sociated to p-affine functions, arise as natural candidates to be the extremal
sets, in some sense, of these inequalities.

Definition 1.1. Let p € R and let ¢,v,d > 0 be fized. Then
i) if p # 0, let g, : I — R>q be the non-negative function given by
gp(t) = c(t + )P, where T = [—,0] if p > 0 and I = (—v,0] if
p <0
ii) if p = 0, let go : (—00,8] — R>o be the non-negative function
defined by go(t) = cet.

Let u € S"™! be fized. By C)p we denote the set of revolution whose section
by the hyperplane {x € R™ : (x,u) = t} is an (n — 1)-dimensional ball of
radius (gp(t)//{n_l)l/("_l) with axis parallel to u (see Figure[dl). (We warn
the reader that, in the following, we will use the word “radius” to refer to
such a gemerating function (gp(t)//{n_l)l/("_l) of the set Cp, for short.)

In other words, one may speculate whether, among all compact sets K
with centroid at the origin such that f is p-concave (for some hyperplane
H), C, gives the infimum for the ratio vol(K~)/vol(K). We note that, in



ON GRUNBAUM TYPE INEQUALITIES 3

FIGURE 1. Sets C, in R3, with centroid at the origin, and
C, (coloured), for p =1 (left) and p = 1/4 (right).
this way, we would have a general family of inequalities depending on a real
parameter p (with extremal sets varying continuously on it), and having
Griinbaum’s inequality (LII) as the particular case p =1/(n — 1).

Here we study the above-mentioned problem and show that it has a posi-
tive answer in the full range of p € [0, 00| (in the following, o1 denotes the
Schwarz symmetrization with respect to H'; see Section [ for the precise
definition):

Theorem 1.1. Let K C R"™ be a compact set with non-empty interior and
with centroid at the origin. Let H be a hyperplane such that the function
f: HY — Rsq given by f(z) = VOln_l(K N(z+ H)) is p-concave, for
some p € [0,00). If p > 0 then

- (p+1)/p
(12) vol(K ™) > (2 +1
vol(K) 2p+1
with equality if and only if o1 (K) = Cp. If p=0 then
vol(K ™) 1
. _— >
(1.3) vol(K) — ¢

The inequality is sharp; that is, the quotient vol(K~)/vol(K) comes arbi-

trarily close to e '.

We point out that Theorem [I.I] can be obtained from recent involved
results in the functional setting (more precisely, the case p > 0 is derived
from [16, Theorem 1] whereas the case p = 0 follows from [I5, Theorem
in p. 746] -see also [2, Lemma 2.2.6]). Our goal here is to provide with a
simpler geometric proof, inspired by the role of Brunn’s concavity principle
and comparing with the sets Cp, in the spirit of Griinbaum’s approach in [§].
In this paper we also consider the range of p € [—00,0) and we prove that
[0,00] is the largest set (where the parameter p lies) in which C), provides
us with the infimum value for such a Griinbaum type inequality.
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The paper is organized as follows: in Section2lwe recall some preliminaries
and we establish an auxiliary result that will be needed later on, whereas
the proofs of our main results will be established in Section [Bl

2. BACKGROUND MATERIAL AND AUXILIARY RESULTS

We work in the n-dimensional Euclidean space R" endowed with the stan-
dard inner product (-,-), and we write e; to represent the i-th canonical
unit vector. We denote by B, the n-dimensional Euclidean (closed) unit
ball and by S"~! its boundary. Given a unit direction v € S*"!, an or-
thonormal basis of R™ (uy,us,...,u,) with u; = u, and a vector x € R,
we write [z]; for the first coordinate of x with respect to this basis. For
any hyperplane H = {x € R" : (z,u) = ¢}, ¢ € R, we represent by
H  ={z e R": (z,u) < c} and H" = {z € R" : (z,u) > ¢} the cor-
responding halfspaces bounded by H.

The Grassmannian of k-dimensional linear subspaces of R" is denoted by
G(n, k), and for H € G(n, k), the orthogonal projection of a subset M C R"
onto H is denoted by M|H, whereas the orthogonal complement of H is
represented by H+. The k-dimensional Lebesgue measure of M, provided
that M is measurable, is denoted by voly (M) and we will omit the index k
when it is equal to the dimension n of the ambient space. When integrating
dz stands for dvol(z), and we write k,, = vol(B,,).

Relating the volume of the Minkowski addition of two sets in terms of
their volumes, one is led to the famous Brunn-Minkowski inequality (for
extensive survey articles on this and related inequalities we refer the reader
to [IL [7]; for a general reference on Brunn-Minkowski theory, we also refer
to the updated monograph [17]). One form of it asserts that if K and L are
non-empty compact convex subsets of R", and A € (0,1), then

(2.1) vol((1 = A K + AL)Y™ > (1 = A)vol(K)/™ 4 Avol(L) /™,

with equality, if vol(K)vol(L) > 0, if and only if K and L are homothetic.
Here + is used for the Minkowski sum, i.e., A+ B={a+b: a€ A, be B}
for any non-empty sets A, B C R".

In other words, due to the convexity of K and L, the above result states
that the function A — vol((1 — A)K + AL), A € [0,1], is (1/n)-concave. We
recall that a function f : R™ — Rx¢ is p-concave, for p € RU {£oo}, if

S =Nz +xy) > My (f(x), f(y), )
for all z,y € R™ such that f(z)f(y) > 0 and any X € (0,1). Here M, denotes
the p-mean of two non-negative numbers a, b:
(1= N)a? + \0#) 7P, if p # 0, o0,
1=ApA e
Myfaby) =1 7 S,
max{a, b} if p= o0,

min{a, b} if p=—o0.
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Note that if p > 0, then f is p-concave if and only if fP is concave on its
support {x € R"™ : f(x) > 0} and thus, in particular, 1-concave is just
concave (on its support) in the usual sense. A 0-concave function is usually
called log-concave whereas a (—oo)-concave function is referred to as quasi-
concave. Moreover, Jensen’s inequality for means (see e.g. [9, Section 2.9]
and [3, Theorem 1 p. 203]) implies that if —oco < p < ¢ < oo then

Mp(a7 bv )‘) é Mq(av b7 )‘)7

with equality for ab > 0 and X € (0, 1) if and only if a = b; thus, a g-concave
function is also p-concave, whenever ¢ > p.

Another important technique in the original proof of (L)) is the Schwarz
symmetrization (see [I2, Chapter IV], [6 Page 62]) of a compact set K,
which is defined as follows: given a hyperplane H € G(n,n —1), for any x €
K|H* let B,,_1(x,7r;) C z+H be the (n—1)-dimensional Euclidean ball with
center x and radius 7, such that vol,,_ (Bn_l(:p, rx)) = vol,_1 (Kﬂ (:L'—l—H));
then o1 (K) = Uyex et Bn-1(@,73) is the Schwarz symmetral of K with

respect to HL.

The aim of this paper is to provide with both a refinement and an
extension of Griinbaum’s inequality (I.I) in terms of the concavity na-
ture of the cross-sections volume function f : H- —» R>o defined by
f(z) = vol,_1(K N (z + H)), for a given hyperplane H € G(n,n — 1),
when dealing with compact sets K C R™. Although in general, when K is
convex, f is (1/(n—1))-concave (see Theorem [Al), it is easy to find other ex-
amples of concavity. Indeed, given H = {x € R" : (z,u) = 0} € G(n,n—1),
uwe S and H' € G(n,n —2) with H' ¢ H,let Ko C H and K1 Cu+ H
be compact sets with Ko|H' = Kj|H'. Then the Brunn-Minkowski in-
equality (2.I)) admits the enhanced version VOln_l((l - MKy + )\Kl) >
(1 = X)vol,,—1(Kp) + Avol,—1 (K1) (see e.g. [10, Theorem A] and the refer-
ences therein). This implies that, defining K as the convex hull of KyU K7,
the function f : H+ — Rxq given by f(z) = vol,_1(K N (z + H)) is
concave.

Remark 2.1. The concavity nature of the cross-sections volume function f
depends on the choice of the hyperplane H. Indeed, given Hy = {x € R3 :
(z,e1) =0} and Hy = {x € R?: (x,e3) = 0}, and considering the set

Ci ={z = (z1,22,33) € R3: 2y €[0,1], 23 + 23 < 7‘(:171)2}

of radius r(t) = tY/2 (cf. Definition[I), we have voly(CyN(te1+Hy)) = Kot
and

voly (C1 N (tez + Ha)) = voly ({z € R? : 2y € [t?,1], 23 < r(z1)? — £*})

=S0-)2,
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for any t € [0,1]. Therefore, the function fi : Hi — Rsq defined by
v012(01 N (z+ Hl)) 1s 1-concave whereas the function fo : H2L — R>g
given by volg (C’1 N(x+ Hg)) 18 not 1-concave.

For the sake of simplicity, in the following we consider H = {z € R" :
(z,u) = 0}, for a given direction u € S*~! that we extend to an orthonormal
basis (u1,ug,...,u,) of R" with u; = u. Moreover, given a compact set
K C R"™ with non-empty interior, we denote by K(t) = K N (tu + H) for
any t € R. We notice that, if K|H* C [au, bu], Fubini’s theorem implies
(provided that a < 0) that

(2.2) vol(K /f t)dt and vol(K /f

where, as usual, we are identifying the linear subspace spanned by u with
R. Since the set {t € R : f(¢) > 0} is convex whenever f is quasi-concave,
from now on we will assume, without loss of generality, that f(¢) > 0 for all
t € [a,b]. Furthermore, by Fubini’s theorem, we get

b
ﬁ/ tf(t)dt

and thus, in particular, a < [g(K)]1 < b (cf. ([22)).

As mentioned in the introduction, the sets C, associated to (cross-sections
volume) functions that are p-affine (see Definition [I.T]) seem to be possible
extremal sets of such expected inequalities. So, we start by computing the
ratio vol(-~)/vol(-) for the sets C,.

(2.3) [g(K)h =

Lemma 2.1. Let p € (—oo0,—1) U[0,00) and let H € G(n,n — 1) be a
hyperplane with unit normal vector w € S*™1. Let gp and Cp, with axis
parallel to u, be as in Definition [L1, for any fized c,v,6 > 0. If C, has
centroid at the origin then

1(C~ (p+1)/p
(2.4) vol(G, ) _ (p+1
vol(Cp) 2p+1

where, if p = 0, the above identity must be understood as

1(C (p+1)/p
(2.5) volCo) _ oy, (2H1 —e L.
vol(Cy) p—0t \2p+1

Proof. First we assume that p # 0 and show (2.4]). On the one hand, by
Fubini’s theorem, we get

5 (r+1)/p
cp(d+7)
vol(Cp) = /_’Y gp(t)dt = o .
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On the other hand, from (2.3)), we have

1 0 p—|—1 o+ 1/
[8(Cp)], = m/_ytgp(t)dtz W/o (s —7)s/Pds
_ e+ +)
2p+1

Therefore, from the hypothesis g(Cp) = 0, we obtain that /(6 + ) =
(p+1)/(2p+1), and hence

1(C~ 1 0 (r+1)/p 1\ (P+D/p
vol(Cyp) — vol(Cyp) J_, J+7 2p+1

as desired.
Now we assume that p = 0 and show (2.5]). Again, by Fubini’s theorem
and (2.3)), respectively, we get

é ~é
VOI(C()) = / go(t) dt = %

and

1 8 1
[8(Co)], = m/_ootgo(t)dt =5

In particular, g(Cy) = 0 implies that § = 1/, and hence

vol(Cy) 1 0 o
vol(Cp) — vol(Cp) /_Oogo(t)dt—e )

This concludes the proof. O

Although the value ((p +1)/(2p + 1))(p+l)/p obtained in (24) is also
defined for any p € (—1/2,0), the corresponding sets C), present remarkable
differences with those of the range p > 0, as we will see next. So, we will
study this case separately.

To this aim, let p € (—1/2,0) and let € > 0 be fixed. Let Cj, . be the set of
revolution, with axis parallel to u, of radius (gpc(t)/ /-in_l)l/ (n=1) associated
to the p-affine function g, . : [—y+¢,] — R>q given by g, -(t) = c(t+)VP,
for some ¢,v,0 > 0 (for our purpose we may assume that v > ¢).

On the one hand, by Fubini’s theorem, we get

gp(t)dt =
—v+e ? p+1

g 5 (p+1)/p _ (p+1)/p
Vol(Cp a) = / p (( * 7) c ) .
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Then we notice first that vol(Cp ) — 0o as ¢ — 07. On the other hand,
from (2.3]), we have

)
[8(Cpe)]; = m /_ . tgp(t)dt

_ pt+1 " 1/p
" p((0+ ) PtD/p = i) / (s =7)s 7 ds

(p+ Dale)
2p+1

)

where
(6 +~)@ptD/p _ Crt1)/p

&) = e — e

We note that a(e) — 0 as ¢ — 01, and moreover that a(e) > 0 because of
the direct relation —y + ¢ < [g(Cpe)], jointly with (p +1)/(2p +1) > 0.
Hence, we get

Vol(Cp@ N (g(Cp@) + H)+) 1 J
vol(Cp.e) vol(Cpe) J oyt p+1)ate)/@p+1)
(p+1)/p
(6 4 ~)@+1/p _ <§p_tr11) afe)Pt)/p

(6 +7)tD/p — cp+1)/p

Therefore, although lim vol(Cj ) = oo, we have
e—0t

(26) lim VOI(CI%E n (g(CP,a) + H)+) — <

e—0+ vol(Che)

p+1 (p+1)/p
2p + 1> '

Thus, the value (p+ 1)/(2p + 1))(p /P g asymptotically attained by the
sets Cp .. The main difference with the case p > 0 is that it is now reached
by their parts given by the positive halfspace (with respect to the normal
direction v € S"~!) bounded by the hyperplane through their centroid.

3. GRUNBAUM TYPE INEQUALITIES

Griinbaum’s inequality (LI]) can also be expressed by saying that if K is
a compact convex set, of positive volume, with centroid at the origin, then

. [vol(K™) vol(K™) n \"
min , > .
vol(K) = vol(K) n+1
We start this section by showing that, if the cross-sections volume function
f associated to a compact set K is increasing in the direction of the nor-

mal vector of H, then the above minimum is attained at vol(K ~)/vol(K),
independently of the concavity nature of f.
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Proposition 3.1. Let K C R" be a compact set with non-empty interior
and with centroid at the origin. Let H € G(n,n — 1) be a hyperplane, with
unit normal vector uw € S*~Y, such that the function f : H- — Rsq given
by f(z) = vol,—1 (KN(z+H)) is quasi-concave with f(bu) = maxxe;p f(z),
where [au,bu] = K|H+. Then
vol(K ™) o1
vol(K) — 2

Proof. Let g : [—7,0] — R>g be the constant function given by g(t) = f(0),
where

1 0 1P
(3.1) yzm/a F()dt and 5:m/0 (1) dt

Since f is quasi-concave with f(b) = maxycr f(t), f is increasing on [a, b]
and thus (from (BI])) we have a < —y < 0 < b < §. Hence, since g(K) =0
(and using (23))), from BI]) we get

Vo5 5 N B 5
70) _—/_th(t)dt—/atf(t)dt /_th(t)dt
0

:/_V(t—k’y)f(t)dt—l—/_ (t+7)(f(t) —g(t) dt

b o
+ [=000-sw) i+ [ ¢-n(-g®) <o

which yields v < §, or equivalently vol(K~) < vol(K*). This concludes the
proof. O

We are now ready to prove our main theorem.

Proof of Theorem[1]l. First we assume that p > 0 and show (L2). We
assert that there exists a (p-affine) function g, : [— 7,5] —> R>0 given by
gp(t) = c(t +~)'/P, for some v,6, ¢ > 0, such that g,(0) =

(3.2) /_igp(t)dt:L F()dt and /gp dt_/ £(1)

Indeed, taking

1 1 [b p/(p+1)
v = p—l— / f@) c= @ and 0= (i/ f(t)dt> —,
VP e Ja

elementary computations show ([B.2]). We also note that, since

p/(+1)
-(5 [ow)

we actually have § > 0.
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In other words, for the set of revolution C), of radius (g,(t)/ Fip1) /7D,

we have C,(0) = o1 (K(0)),
(3.3) vol(C,7) = vol(K™) and vol(C,\) = vol(K™).

And thus, in particular, vol(Cp) = vol(K).

From the concavity of fP, together with the relations g,(0) = f(0) and
[B2), we get on the one hand that —y < a <0 < ¢ < b. On the other hand,
defining the functions f, g, : [—7,b] — Rxq given by

f(t):{ f@) iftefadl, gp(t):{ gp(t) if t € [—7,0],

0 otherwise, 0 otherwise,

we may conclude that there exists zg € [a,0) such that f(t) > g,(t) for all
t € [z9,0] U [0,b] and f(t) < gp(t) otherwise (see Figure ). Hence, since
g(K) =0 (and using (23)), from (B32]) we have

) b ) b
- [ wwa= [erwa- [ 0= [ (5o -gw) a

- - -

0o b
:/ {78 - (1)) dt+/0 t(F(t) — gp(t)) dt

—
0 b
= [ =0 - g ac+ [ =070 - g0 at 20,
—
with equality if and only if f = g,. Thus, we have [g(Cp)]1 < 0, and equality
holds if and only if f = g,. Then, from (B3] and Lemma 2]

vol(K~) _ vol(C,) . vol(Cp, N (8(Cp) + H) ™) <p+ 1 >(p+1)/p
vol(K) — wvol(Cp) — vol(Cp) S\ 2p+1

9

with equality if and only if f = g, that is, if and only if oy (K) = C).

fp

- o

FIGURE 2. Relative position of the functions f? and gb.

Now we assume that p = 0 and show (L.3]). We assert that there exists an
exponential function gy : (—00,8] — R>q given by go(t) = ce, for some
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v, 9, ¢ > 0, such that go(0

(3.4) /_0 go(t)dt = /f and /()690(t)dt:/0bf(t)dt

Straightforward computations show that the above relations are equivalent
to take

c=f(0), ~v=f(0) </a0f(t)dt>_1 and 0 = %log <% /abf(t)dt>;

note that, indeed, § > 0.
Again, the set of revolution Cy of radius (go(t)/kn—1)" "~V satisfies that
Co(0) = o1 (K(0)),
(3.5) vol(Cy ) =vol(K~) and vol(Cy") = vol(K™),
and thus, in particular, vol(Cp) = vol(K).
Now the concavity of log f, jointly with the relations go(0) = f(0) and

(B.4), implies that (go(t) > f(t) for all ¢ € [0,6] and so) § < b. Moreover,
for the functions f, go : (—o0, b] — R given by

[ F) e o], [t ifte (—o0d],
Ft) = { 0 otherwise, and - go(t) = 0 otherwise,
we conclude that there exists o € [a,0) such that f(t) > go(t) for all
t € [x0,0] U [d,b] and f(t) < go(t) otherwise (cf. Figure ). Arguing as in
the case p > 0, using ([3.4)) and g(K) = 0, we have that [g(Cy)]1 < 0. Then,
from ([B.3) and Lemma 2.1]
vol(K™) VOI(CO_) S VOI(C’O N (g(C’O) —|—H)_) _
vol(K) — vol(Cp) ~— vol(Cp) -
Finally we notice that if we consider an unbounded set L with centroid at
the origin and such that oy (L) = Cp, for a given go : (—00,0] — R>p
of the form go(t) = ce?, with v,8,¢ > 0, then vol(L™)/vol(L) = e~ ! (cf.
(23))). Hence, considering K, = LN {zx € R" : (x,u) > a}, a < 0, we have
[g(Kqo)l1 — 0 and vol(K, ) /vol(K,) — e~ ', as a = —oco. This proves the
final statement of the theorem O

Note that the “limit case” p = oo in Theorem [[Tlis also trivially fulfilled.
Indeed, if f is co-concave then f is constant on [a, b] and thus 0 = [g(K)]; =
b+ a (see (2.3))), which yields that a = —b and hence

vol(K™) 1 , (p—i—l >(p+1)/p
——2 =— = lim :
p—00

vol(K) ~ 2 2p + 1

Remark 3.1. Grinbaum’s inequality (1)), jointly with its equality case, is
collected in the case p=1/(n—1) of Theorem [ Indeed, on the one hand,
Theorem [A] implies that the cross-sections volume function f is (1/(n —
1))-concave, and thus (L2 yields (LIl). On the other hand, regarding the
equality case of (1)), we note that the fact that f is (1/(n — 1))-affine,
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combined with the convexity of K jointly with the equality case of the Brunn-
Minkowski inequality (2.11), implies that K must be a cone in the direction
of the normal vector of H.

Let K C R"™ be a compact set with non-empty interior and with centroid
at the origin, such that its cross-sections volume function f is p-concave, with
respect to a given hyperplane H. Moreover, if p € (—o0,—1) U (—1/2, 00),
we write for short

. <p+1 )(p+1)/p
P\ 2p+1 ’

where, if p = 0, «q is the value that is obtained “by continuity”, that is,

. <p+ 1 >(p+1)/p .
ap = lim =e .
p—0 2p +1

In Theorem [[1] we have shown that, whenever p > 0, «, is a sharp
lower bound for the ratio vol(K ~)/vol(K), as a consequence of the fact that
[g(Cp)]1 < 0 for the (suitable) set C, such that vol(C, ) = vol(K~) and
vol(C;F) = vol(K). Next we point out that, in fact, these two conditions
are equivalent.

Corollary 3.1. Let p € (—o0,—1) U [0,00) and let H € G(n,n — 1) be a
hyperplane with unit normal vector u € S*~!. Let K C R™ be a compact set
with non-empty interior and with centroid at the origin. If C,, given as in
Definition [I1l, with axis parallel to u, is such that

vol(C,) =vol(K™) and vol(C,") = vol(K™),

then the following assertions are equivalent:
(a) vol(K™)/vol(K) > ayp;
(b) [g(Cp)ly <0.
Proof. From Lemma 2.l we have
vol(Cp N (g(Cyp) + H) ™)
vol(Cp)
Moreover, by hypothesis, we get
vol(K™) vol(Cp, N H™)
vol(K) vol(Cp)

== Oép.

Therefore, the result now follows from the fact that, for any x,y € R™ such
that {z,y} H- C Cp|H*, vol(Cp N (z + H)™) < vol(Cp N (y + H)™) if and
only if [z]y < [y]1. O

Next we show that Theorem [I.I] cannot be extended to the range of p €
(=00, —1). In fact, we prove a more general result:
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Proposition 3.2. Let p € (—oo,—1). There exists no positive constant 3,

such that .

. [vol(K~) vol(K™)

>
mln{ vol(K) 7 vol(K) | — Py

for all compact sets K C R™ with non-empty interior and with centroid
at the origin, for which there exists H € G(n,n — 1) such that f(x) =
voln_l(K N(x+ H)), x € HT, is p-concave.
Proof. By Lemmal[2]] for any ¢ € (—oo, —1) we have oy = VOI(C’q_)/Vol(Cq),
provided that Cj has centroid at the origin. Since ay — 1 as ¢ — —17, we

obtain
vol(C_) vol(C+)
li i d d = I 1-— = 0.

ool mln{ vol(Cy) 7 vol(Cy) q—:I—I}*( %) =0

The proof is now concluded from the fact that any ¢-concave function is also
p-concave, whenever g > p. O

We conclude the paper by showing that the statement of Theorem [I.]]
cannot be extended to the range of p € (—1/2,0) either. To this aim, note
that if p < g are parameters for which 3, and 3, are such sharp lower bounds
for the ratio vol(K~)/vol(K) (i.e., in the cases in which f is respectively p-
concave and g-concave) then 3, < ,, because every g-concave function is
also p-concave. We notice however that, if p € (—1/2,0), the value obtained
by Cp is not a; but 1 — a, (cf. ([2.6)), and then 1 —a, > 1 — g > 1/2 for
any p € (—1/2,0) whereas oy, < 1/2 for all p > 0.

Therefore, this fact (jointly with the case in which p € (—o0, —1), col-
lected in Proposition B.2)) gives that [0, 00] is the largest subset of the real
line (with respect to set inclusion) for which C), provides us with the infi-
mum value for the ratio vol(-~)/vol(-), among all compact sets with (cen-
troid at the origin and) p-concave cross-sections volume function. However,
since «, is increasing in the parameter p on (—1/2,00), and o, — 0 as
p — (—1/2)*, it is still possible to expect o, to be a lower bound for
min{vol(K~)/vol(K),vol(K*)/vol(K)}. Unfortunately, we do not know so
far whether this issue has a positive answer or not.
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