ON GRÜNBAUM TYPE INEQUALITIES

FRANCISCO MARÍN SOLA AND JESÚS YEPES NICOLÁS

Abstract

Given a compact set $K \subset \mathbb{R}^{n}$ of positive volume, and fixing a hyperplane H passing through its centroid, we find a sharp lower bound for the ratio $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$, depending on the concavity nature of the function that gives the volumes of cross-sections (parallel to H) of K, where K^{-}denotes the intersection of K with a halfspace bounded by H. When K is convex, this inequality recovers a classical result by Grünbaum. To this respect, we also show that the log-concave case is the limit concavity assumption for such a generalization of Grünbaum's inequality.

1. Introduction

Let $K \subset \mathbb{R}^{n}$ be a compact set with positive volume $\operatorname{vol}(K)$ (i.e., with positive n-dimensional Lebesgue measure). The centroid of K is the affinecovariant point

$$
\mathrm{g}(K):=\frac{1}{\operatorname{vol}(K)} \int_{K} x \mathrm{~d} x .
$$

According to a classical result by Grünbaum [8], if K is convex with centroid at the origin, then

$$
\begin{equation*}
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)} \geq\left(\frac{n}{n+1}\right)^{n} \tag{1.1}
\end{equation*}
$$

where $K^{-}=K \cap\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq 0\right\}$ and $K^{+}=K \cap\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \geq 0\right\}$ represent the parts of K which are split by the hyperplane $H=\{x \in$ $\left.\mathbb{R}^{n}:\langle x, u\rangle=0\right\}$, for any given $u \in \mathbb{S}^{n-1}$. Equality holds, for a fixed $u \in \mathbb{S}^{n-1}$, if and only if K is a cone in the direction u, i.e., the convex hull of $\{x\} \cup(K \cap(y+H))$, for some $x, y \in \mathbb{R}^{n}$.

Grünbaum's result was extended to the case of sections [5, 16] and projections [19] of compact convex sets, and generalized to the analytic setting of log-concave functions [15] (see also [2, Lemma 2.2.6]) and p-concave functions [16], for $p>0$. Other Grünbaum type inequalities involving volumes

[^0]of sections of compact convex sets through their centroid, later generalized to the case of classical and dual quermassintegrals in [18], can be found in [4, 13.

The underlying key fact in the original proof of (1.1) (see [8]) is the following classical result (see e.g. [2, Section 1.2.1] and also [14, Theorem 12.2.1]):
Theorem A (Brunn's concavity principle). Let $K \subset \mathbb{R}^{n}$ be a non-empty compact and convex set and let H be a hyperplane. Then, the function $f: H^{\perp} \longrightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H))$ is $(1 /(n-1))$-concave.

In other words, for any given hyperplane H, the cross-sections volume function f to the power $1 /(n-1)$ is concave on its support, which is equivalent (due to the convexity of K) to the well-known Brunn-Minkowski inequality (see (2.1)). Although this property cannot be in general enhanced, one can easily find compact convex sets for which f satisfies a stronger concavity, for a suitable hyperplane H; similarly, the Brunn-Minkowski inequality can be refined when dealing with restricted families of sets (see e.g. [10, 11] and the references therein). Thus, on the one hand, it is natural to wonder about a possible enhanced version of Grünbaum's inequality (1.1) for the family of those compact convex sets K such that (there exists a hyperplane H for which) f is p-concave, with $1 /(n-1)<p$. On the other hand, one could expect to extend this inequality to compact sets K, not necessarily convex, for which f is p-concave (for some hyperplane H), with $p<1 /(n-1)$.

Observing that the equality case in Grünbaum's inequality (1.1) is characterized by cones, that is, those sets for which f is $(1 /(n-1))$-affine (i.e., such that $f^{1 /(n-1)}$ is an affine function), the following sets of revolution, associated to p-affine functions, arise as natural candidates to be the extremal sets, in some sense, of these inequalities.

Definition 1.1. Let $p \in \mathbb{R}$ and let $c, \gamma, \delta>0$ be fixed. Then
i) if $p \neq 0$, let $g_{p}: I \longrightarrow \mathbb{R}_{\geq 0}$ be the non-negative function given by $g_{p}(t)=c(t+\gamma)^{1 / p}$, where $I=[-\gamma, \delta]$ if $p>0$ and $I=(-\gamma, \delta]$ if $p<0$;
ii) if $p=0$, let $g_{0}:(-\infty, \delta] \longrightarrow \mathbb{R}_{\geq 0}$ be the non-negative function defined by $g_{0}(t)=c e^{\gamma t}$.
Let $u \in \mathbb{S}^{n-1}$ be fixed. By C_{p} we denote the set of revolution whose section by the hyperplane $\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle=t\right\}$ is an ($n-1$)-dimensional ball of radius $\left(g_{p}(t) / \kappa_{n-1}\right)^{1 /(n-1)}$ with axis parallel to u (see Figure 1). (We warn the reader that, in the following, we will use the word "radius" to refer to such a generating function $\left(g_{p}(t) / \kappa_{n-1}\right)^{1 /(n-1)}$ of the set C_{p}, for short.)

In other words, one may speculate whether, among all compact sets K with centroid at the origin such that f is p-concave (for some hyperplane $H), C_{p}$ gives the infimum for the ratio $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$. We note that, in

Figure 1. Sets C_{p} in \mathbb{R}^{3}, with centroid at the origin, and C_{p}^{-}(coloured), for $p=1$ (left) and $p=1 / 4$ (right).
this way, we would have a general family of inequalities depending on a real parameter p (with extremal sets varying continuously on it), and having Grünbaum's inequality (1.1) as the particular case $p=1 /(n-1)$.

Here we study the above-mentioned problem and show that it has a positive answer in the full range of $p \in[0, \infty]$ (in the following, $\sigma_{H^{\perp}}$ denotes the Schwarz symmetrization with respect to H^{\perp}; see Section 2 for the precise definition):
Theorem 1.1. Let $K \subset \mathbb{R}^{n}$ be a compact set with non-empty interior and with centroid at the origin. Let H be a hyperplane such that the function $f: H^{\perp} \longrightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H))$ is p-concave, for some $p \in[0, \infty)$. If $p>0$ then

$$
\begin{equation*}
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)} \geq\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p} \tag{1.2}
\end{equation*}
$$

with equality if and only if $\sigma_{H^{\perp}}(K)=C_{p}$. If $p=0$ then

$$
\begin{equation*}
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)} \geq e^{-1} \tag{1.3}
\end{equation*}
$$

The inequality is sharp; that is, the quotient $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$ comes arbitrarily close to e^{-1}.

We point out that Theorem 1.1 can be obtained from recent involved results in the functional setting (more precisely, the case $p>0$ is derived from [16, Theorem 1] whereas the case $p=0$ follows from [15, Theorem in p. 746] -see also [2, Lemma 2.2.6]). Our goal here is to provide with a simpler geometric proof, inspired by the role of Brunn's concavity principle and comparing with the sets C_{p}, in the spirit of Grünbaum's approach in [8]. In this paper we also consider the range of $p \in[-\infty, 0)$ and we prove that $[0, \infty]$ is the largest set (where the parameter p lies) in which C_{p} provides us with the infimum value for such a Grünbaum type inequality.

The paper is organized as follows: in Section 2 we recall some preliminaries and we establish an auxiliary result that will be needed later on, whereas the proofs of our main results will be established in Section 3 ,

2. BACKGROUND MATERIAL AND AUXILIARY RESULTS

We work in the n-dimensional Euclidean space \mathbb{R}^{n} endowed with the standard inner product $\langle\cdot, \cdot\rangle$, and we write e_{i} to represent the i-th canonical unit vector. We denote by B_{n} the n-dimensional Euclidean (closed) unit ball and by \mathbb{S}^{n-1} its boundary. Given a unit direction $u \in \mathbb{S}^{n-1}$, an orthonormal basis of $\mathbb{R}^{n}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ with $u_{1}=u$, and a vector $x \in \mathbb{R}^{n}$, we write $[x]_{1}$ for the first coordinate of x with respect to this basis. For any hyperplane $H=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle=c\right\}, c \in \mathbb{R}$, we represent by $H^{-}=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq c\right\}$ and $H^{+}=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \geq c\right\}$ the corresponding halfspaces bounded by H.

The Grassmannian of k-dimensional linear subspaces of \mathbb{R}^{n} is denoted by $\mathrm{G}(n, k)$, and for $H \in \mathrm{G}(n, k)$, the orthogonal projection of a subset $M \subset \mathbb{R}^{n}$ onto H is denoted by $M \mid H$, whereas the orthogonal complement of H is represented by H^{\perp}. The k-dimensional Lebesgue measure of M, provided that M is measurable, is denoted by $\operatorname{vol}_{k}(M)$ and we will omit the index k when it is equal to the dimension n of the ambient space. When integrating $\mathrm{d} x$ stands for $\operatorname{dvol}(x)$, and we write $\kappa_{n}=\operatorname{vol}\left(B_{n}\right)$.

Relating the volume of the Minkowski addition of two sets in terms of their volumes, one is led to the famous Brunn-Minkowski inequality (for extensive survey articles on this and related inequalities we refer the reader to [1, 7]; for a general reference on Brunn-Minkowski theory, we also refer to the updated monograph [17]). One form of it asserts that if K and L are non-empty compact convex subsets of \mathbb{R}^{n}, and $\lambda \in(0,1)$, then

$$
\begin{equation*}
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} \tag{2.1}
\end{equation*}
$$

with equality, if $\operatorname{vol}(K) \operatorname{vol}(L)>0$, if and only if K and L are homothetic. Here + is used for the Minkowski sum, i.e., $A+B=\{a+b: a \in A, b \in B\}$ for any non-empty sets $A, B \subset \mathbb{R}^{n}$.

In other words, due to the convexity of K and L, the above result states that the function $\lambda \mapsto \operatorname{vol}((1-\lambda) K+\lambda L), \lambda \in[0,1]$, is $(1 / n)$-concave. We recall that a function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}_{\geq 0}$ is p-concave, for $p \in \mathbb{R} \cup\{ \pm \infty\}$, if

$$
f((1-\lambda) x+\lambda y) \geq M_{p}(f(x), f(y), \lambda)
$$

for all $x, y \in \mathbb{R}^{n}$ such that $f(x) f(y)>0$ and any $\lambda \in(0,1)$. Here M_{p} denotes the p-mean of two non-negative numbers a, b :

$$
M_{p}(a, b, \lambda)= \begin{cases}\left((1-\lambda) a^{p}+\lambda b^{p}\right)^{1 / p}, & \text { if } p \neq 0, \pm \infty \\ a^{1-\lambda} b^{\lambda} & \text { if } p=0 \\ \max \{a, b\} & \text { if } p=\infty \\ \min \{a, b\} & \text { if } p=-\infty\end{cases}
$$

Note that if $p>0$, then f is p-concave if and only if f^{p} is concave on its support $\left\{x \in \mathbb{R}^{n}: f(x)>0\right\}$ and thus, in particular, 1-concave is just concave (on its support) in the usual sense. A 0-concave function is usually called \log-concave whereas a $(-\infty)$-concave function is referred to as quasiconcave. Moreover, Jensen's inequality for means (see e.g. [9, Section 2.9] and [3, Theorem 1 p. 203]) implies that if $-\infty \leq p<q \leq \infty$ then

$$
M_{p}(a, b, \lambda) \leq M_{q}(a, b, \lambda),
$$

with equality for $a b>0$ and $\lambda \in(0,1)$ if and only if $a=b$; thus, a q-concave function is also p-concave, whenever $q>p$.

Another important technique in the original proof of (1.1) is the Schwarz symmetrization (see [12, Chapter IV], [6, Page 62]) of a compact set K, which is defined as follows: given a hyperplane $H \in \mathrm{G}(n, n-1)$, for any $x \in$ $K \mid H^{\perp}$ let $B_{n-1}\left(x, r_{x}\right) \subset x+H$ be the ($n-1$)-dimensional Euclidean ball with center x and radius r_{x} such that $\operatorname{vol}_{n-1}\left(B_{n-1}\left(x, r_{x}\right)\right)=\operatorname{vol}_{n-1}(K \cap(x+H))$; then $\sigma_{H^{\perp}}(K)=\bigcup_{x \in K \mid H^{\perp}} B_{n-1}\left(x, r_{x}\right)$ is the Schwarz symmetral of K with respect to H^{\perp}.

The aim of this paper is to provide with both a refinement and an extension of Grünbaum's inequality (1.1) in terms of the concavity nature of the cross-sections volume function $f: H^{\perp} \longrightarrow \mathbb{R}_{\geq 0}$ defined by $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H))$, for a given hyperplane $H \in \mathrm{G}(n, n-1)$, when dealing with compact sets $K \subset \mathbb{R}^{n}$. Although in general, when K is convex, f is $(1 /(n-1))$-concave (see Theorem \mathbb{A}), it is easy to find other examples of concavity. Indeed, given $H=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle=0\right\} \in \mathrm{G}(n, n-1)$, $u \in \mathbb{S}^{n-1}$, and $H^{\prime} \in \mathrm{G}(n, n-2)$ with $H^{\prime} \subset H$, let $K_{0} \subset H$ and $K_{1} \subset u+H$ be compact sets with $K_{0}\left|H^{\prime}=K_{1}\right| H^{\prime}$. Then the Brunn-Minkowski inequality (2.1) admits the enhanced version $\operatorname{vol}_{n-1}\left((1-\lambda) K_{0}+\lambda K_{1}\right) \geq$ $(1-\lambda) \operatorname{vol}_{n-1}\left(K_{0}\right)+\lambda \operatorname{vol}_{n-1}\left(K_{1}\right)$ (see e.g. [10, Theorem A] and the references therein). This implies that, defining K as the convex hull of $K_{0} \cup K_{1}$, the function $f: H^{\perp} \longrightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H))$ is concave.

Remark 2.1. The concavity nature of the cross-sections volume function f depends on the choice of the hyperplane H. Indeed, given $H_{1}=\left\{x \in \mathbb{R}^{3}\right.$: $\left.\left\langle x, \mathrm{e}_{1}\right\rangle=0\right\}$ and $H_{2}=\left\{x \in \mathbb{R}^{3}:\left\langle x, \mathrm{e}_{2}\right\rangle=0\right\}$, and considering the set

$$
C_{1}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1} \in[0,1], x_{2}^{2}+x_{3}^{2} \leq r\left(x_{1}\right)^{2}\right\}
$$

of radius $r(t)=t^{1 / 2}\left(c f\right.$. Definition 1.1), we have $\operatorname{vol}_{2}\left(C_{1} \cap\left(t \mathrm{e}_{1}+H_{1}\right)\right)=\kappa_{2} t$ and

$$
\begin{aligned}
\operatorname{vol}_{2}\left(C_{1} \cap\left(t \mathrm{e}_{2}+H_{2}\right)\right) & =\operatorname{vol}_{2}\left(\left\{x \in \mathbb{R}^{3}: x_{1} \in\left[t^{2}, 1\right], x_{3}^{2} \leq r\left(x_{1}\right)^{2}-t^{2}\right\}\right) \\
& =\frac{4}{3}\left(1-t^{2}\right)^{3 / 2}
\end{aligned}
$$

for any $t \in[0,1]$. Therefore, the function $f_{1}: H_{1}^{\perp} \longrightarrow \mathbb{R}_{\geq 0}$ defined by $\operatorname{vol}_{2}\left(C_{1} \cap\left(x+H_{1}\right)\right)$ is 1 -concave whereas the function $f_{2}: H_{2}^{\perp} \longrightarrow \mathbb{R}_{\geq 0}$ given by $\operatorname{vol}_{2}\left(C_{1} \cap\left(x+H_{2}\right)\right)$ is not 1-concave.

For the sake of simplicity, in the following we consider $H=\left\{x \in \mathbb{R}^{n}\right.$: $\langle x, u\rangle=0\}$, for a given direction $u \in \mathbb{S}^{n-1}$ that we extend to an orthonormal basis $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of \mathbb{R}^{n}, with $u_{1}=u$. Moreover, given a compact set $K \subset \mathbb{R}^{n}$ with non-empty interior, we denote by $K(t)=K \cap(t u+H)$ for any $t \in \mathbb{R}$. We notice that, if $K \mid H^{\perp} \subset[a u, b u]$, Fubini's theorem implies (provided that $a \leq 0$) that

$$
\begin{equation*}
\operatorname{vol}(K)=\int_{a}^{b} f(t) \mathrm{d} t \quad \text { and } \quad \operatorname{vol}\left(K^{-}\right)=\int_{a}^{0} f(t) \mathrm{d} t \tag{2.2}
\end{equation*}
$$

where, as usual, we are identifying the linear subspace spanned by u with \mathbb{R}. Since the set $\{t \in \mathbb{R}: f(t)>0\}$ is convex whenever f is quasi-concave, from now on we will assume, without loss of generality, that $f(t)>0$ for all $t \in[a, b]$. Furthermore, by Fubini's theorem, we get

$$
\begin{equation*}
[\mathrm{g}(K)]_{1}=\frac{1}{\operatorname{vol}(K)} \int_{a}^{b} t f(t) \mathrm{d} t \tag{2.3}
\end{equation*}
$$

and thus, in particular, $a<[\mathrm{g}(K)]_{1}<b(\mathrm{cf}.(\sqrt{2.2}))$.
As mentioned in the introduction, the sets C_{p} associated to (cross-sections volume) functions that are p-affine (see Definition 1.1) seem to be possible extremal sets of such expected inequalities. So, we start by computing the ratio $\operatorname{vol}\left(\cdot^{-}\right) / \operatorname{vol}(\cdot)$ for the sets C_{p}.

Lemma 2.1. Let $p \in(-\infty,-1) \cup[0, \infty)$ and let $H \in G(n, n-1)$ be a hyperplane with unit normal vector $u \in \mathbb{S}^{n-1}$. Let g_{p} and C_{p}, with axis parallel to u, be as in Definition 1.1, for any fixed $c, \gamma, \delta>0$. If C_{p} has centroid at the origin then

$$
\begin{equation*}
\frac{\operatorname{vol}\left(C_{p}^{-}\right)}{\operatorname{vol}\left(C_{p}\right)}=\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p} \tag{2.4}
\end{equation*}
$$

where, if $p=0$, the above identity must be understood as

$$
\begin{equation*}
\frac{\operatorname{vol}\left(C_{0}^{-}\right)}{\operatorname{vol}\left(C_{0}\right)}=\lim _{p \rightarrow 0^{+}}\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p}=e^{-1} \tag{2.5}
\end{equation*}
$$

Proof. First we assume that $p \neq 0$ and show (2.4). On the one hand, by Fubini's theorem, we get

$$
\operatorname{vol}\left(C_{p}\right)=\int_{-\gamma}^{\delta} g_{p}(t) \mathrm{d} t=\frac{c p(\delta+\gamma)^{(p+1) / p}}{p+1}
$$

On the other hand, from (2.3), we have

$$
\begin{aligned}
{\left[\mathrm{g}\left(C_{p}\right)\right]_{1} } & =\frac{1}{\operatorname{vol}\left(C_{p}\right)} \int_{-\gamma}^{\delta} t g_{p}(t) \mathrm{d} t=\frac{p+1}{p(\delta+\gamma)^{(p+1) / p}} \int_{0}^{\delta+\gamma}(s-\gamma) s^{1 / p} \mathrm{~d} s \\
& =\frac{(p+1)(\delta+\gamma)}{2 p+1}-\gamma .
\end{aligned}
$$

Therefore, from the hypothesis $\mathrm{g}\left(C_{p}\right)=0$, we obtain that $\gamma /(\delta+\gamma)=$ $(p+1) /(2 p+1)$, and hence

$$
\frac{\operatorname{vol}\left(C_{p}^{-}\right)}{\operatorname{vol}\left(C_{p}\right)}=\frac{1}{\operatorname{vol}\left(C_{p}\right)} \int_{-\gamma}^{0} g_{p}(t) \mathrm{d} t=\left(\frac{\gamma}{\delta+\gamma}\right)^{(p+1) / p}=\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p}
$$

as desired.
Now we assume that $p=0$ and show (2.5). Again, by Fubini's theorem and (2.3), respectively, we get

$$
\operatorname{vol}\left(C_{0}\right)=\int_{-\infty}^{\delta} g_{0}(t) \mathrm{d} t=\frac{c e^{\gamma \delta}}{\gamma}
$$

and

$$
\left[\mathrm{g}\left(C_{0}\right)\right]_{1}=\frac{1}{\operatorname{vol}\left(C_{0}\right)} \int_{-\infty}^{\delta} t g_{0}(t) \mathrm{d} t=\delta-\frac{1}{\gamma} .
$$

In particular, $\mathrm{g}\left(C_{0}\right)=0$ implies that $\delta=1 / \gamma$, and hence

$$
\frac{\operatorname{vol}\left(C_{0}^{-}\right)}{\operatorname{vol}\left(C_{0}\right)}=\frac{1}{\operatorname{vol}\left(C_{0}\right)} \int_{-\infty}^{0} g_{0}(t) \mathrm{d} t=e^{-1} .
$$

This concludes the proof.

Although the value $((p+1) /(2 p+1))^{(p+1) / p}$ obtained in (2.4) is also defined for any $p \in(-1 / 2,0)$, the corresponding sets C_{p} present remarkable differences with those of the range $p \geq 0$, as we will see next. So, we will study this case separately.

To this aim, let $p \in(-1 / 2,0)$ and let $\varepsilon>0$ be fixed. Let $C_{p, \varepsilon}$ be the set of revolution, with axis parallel to u, of radius $\left(g_{p, \varepsilon}(t) / \kappa_{n-1}\right)^{1 /(n-1)}$ associated to the p-affine function $g_{p, \varepsilon}:[-\gamma+\varepsilon, \delta] \longrightarrow \mathbb{R}_{\geq 0}$ given by $g_{p, \varepsilon}(t)=c(t+\gamma)^{1 / p}$, for some $c, \gamma, \delta>0$ (for our purpose we may assume that $\gamma>\varepsilon$).

On the one hand, by Fubini's theorem, we get

$$
\operatorname{vol}\left(C_{p, \varepsilon}\right)=\int_{-\gamma+\varepsilon}^{\delta} g_{p}(t) \mathrm{d} t=\frac{c p\left((\delta+\gamma)^{(p+1) / p}-\varepsilon^{(p+1) / p}\right)}{p+1}
$$

Then we notice first that $\operatorname{vol}\left(C_{p, \varepsilon}\right) \rightarrow \infty$ as $\varepsilon \rightarrow 0^{+}$. On the other hand, from (2.3), we have

$$
\begin{aligned}
{\left[\mathrm{g}\left(C_{p, \varepsilon}\right)\right]_{1} } & =\frac{1}{\operatorname{vol}\left(C_{p, \varepsilon}\right)} \int_{-\gamma+\varepsilon}^{\delta} t g_{p}(t) \mathrm{d} t \\
& =\frac{p+1}{p\left((\delta+\gamma)^{(p+1) / p}-\varepsilon^{(p+1) / p}\right)} \int_{\varepsilon}^{\delta+\gamma}(s-\gamma) s^{1 / p} \mathrm{~d} s \\
& =\frac{(p+1) \alpha(\varepsilon)}{2 p+1}-\gamma
\end{aligned}
$$

where

$$
\alpha(\varepsilon)=\frac{(\delta+\gamma)^{(2 p+1) / p}-\varepsilon^{(2 p+1) / p}}{(\delta+\gamma)^{(p+1) / p}-\varepsilon^{(p+1) / p}}
$$

We note that $\alpha(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$, and moreover that $\alpha(\varepsilon)>0$ because of the direct relation $-\gamma+\varepsilon \leq\left[\mathrm{g}\left(C_{p, \varepsilon}\right)\right]_{1}$ jointly with $(p+1) /(2 p+1)>0$. Hence, we get

$$
\begin{aligned}
\frac{\operatorname{vol}\left(C_{p, \varepsilon} \cap\left(\mathrm{~g}\left(C_{p, \varepsilon}\right)+H\right)^{+}\right)}{\operatorname{vol}\left(C_{p, \varepsilon}\right)} & =\frac{1}{\operatorname{vol}\left(C_{p, \varepsilon}\right)} \int_{-\gamma+(p+1) \alpha(\varepsilon) /(2 p+1)}^{\delta} g_{p}(t) \mathrm{d} t \\
& =\frac{(\delta+\gamma)^{(p+1) / p}-\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p} \alpha(\varepsilon)^{(p+1) / p}}{(\delta+\gamma)^{(p+1) / p}-\varepsilon^{(p+1) / p}}
\end{aligned}
$$

Therefore, although $\lim _{\varepsilon \rightarrow 0^{+}} \operatorname{vol}\left(C_{p, \varepsilon}\right)=\infty$, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\operatorname{vol}\left(C_{p, \varepsilon} \cap\left(\mathrm{~g}\left(C_{p, \varepsilon}\right)+H\right)^{+}\right)}{\operatorname{vol}\left(C_{p, \varepsilon}\right)}=\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p} \tag{2.6}
\end{equation*}
$$

Thus, the value $(p+1) /(2 p+1))^{(p+1) / p}$ is asymptotically attained by the sets $C_{p, \varepsilon}$. The main difference with the case $p \geq 0$ is that it is now reached by their parts given by the positive halfspace (with respect to the normal direction $u \in \mathbb{S}^{n-1}$) bounded by the hyperplane through their centroid.

3. GRÜNBAUM TYPE INEQUALITIES

Grünbaum's inequality (1.1) can also be expressed by saying that if K is a compact convex set, of positive volume, with centroid at the origin, then

$$
\min \left\{\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)}, \frac{\operatorname{vol}\left(K^{+}\right)}{\operatorname{vol}(K)}\right\} \geq\left(\frac{n}{n+1}\right)^{n}
$$

We start this section by showing that, if the cross-sections volume function f associated to a compact set K is increasing in the direction of the normal vector of H, then the above minimum is attained at $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$, independently of the concavity nature of f.

Proposition 3.1. Let $K \subset \mathbb{R}^{n}$ be a compact set with non-empty interior and with centroid at the origin. Let $H \in \mathrm{G}(n, n-1)$ be a hyperplane, with unit normal vector $u \in \mathbb{S}^{n-1}$, such that the function $f: H^{\perp} \longrightarrow \mathbb{R}_{\geq 0}$ given by $f(x)=\operatorname{vol}_{n-1}(K \cap(x+H))$ is quasi-concave with $f(b u)=\max _{x \in H^{\perp}} f(x)$, where $[a u, b u]=K \mid H^{\perp}$. Then

$$
\frac{\operatorname{vol}\left(K^{+}\right)}{\operatorname{vol}(K)} \geq \frac{1}{2}
$$

Proof. Let $g:[-\gamma, \delta] \longrightarrow \mathbb{R}_{\geq 0}$ be the constant function given by $g(t)=f(0)$, where

$$
\begin{equation*}
\gamma=\frac{1}{f(0)} \int_{a}^{0} f(t) \mathrm{d} t \quad \text { and } \quad \delta=\frac{1}{f(0)} \int_{0}^{b} f(t) \mathrm{d} t . \tag{3.1}
\end{equation*}
$$

Since f is quasi-concave with $f(b)=\max _{t \in \mathbb{R}} f(t), f$ is increasing on $[a, b]$ and thus (from (3.1)) we have $a \leq-\gamma<0<b \leq \delta$. Hence, since $\mathrm{g}(K)=0$ (and using (2.3)), from (3.1) we get

$$
\begin{aligned}
f(0) \frac{\gamma^{2}-\delta^{2}}{2} & =-\int_{-\gamma}^{\delta} t g(t) \mathrm{d} t=\int_{a}^{b} t f(t) \mathrm{d} t-\int_{-\gamma}^{\delta} t g(t) \mathrm{d} t \\
& =\int_{a}^{-\gamma}(t+\gamma) f(t) \mathrm{d} t+\int_{-\gamma}^{0}(t+\gamma)(f(t)-g(t)) \mathrm{d} t \\
& +\int_{0}^{b}(t-b)(f(t)-g(t)) \mathrm{d} t+\int_{b}^{\delta}(t-b)(-g(t)) \mathrm{d} t \leq 0
\end{aligned}
$$

which yields $\gamma \leq \delta$, or equivalently $\operatorname{vol}\left(K^{-}\right) \leq \operatorname{vol}\left(K^{+}\right)$. This concludes the proof.

We are now ready to prove our main theorem.
Proof of Theorem 1.1. First we assume that $p>0$ and show (1.2). We assert that there exists a (p-affine) function $g_{p}:[-\gamma, \delta] \longrightarrow \mathbb{R}_{\geq 0}$ given by $g_{p}(t)=c(t+\gamma)^{1 / p}$, for some $\gamma, \delta, c>0$, such that $g_{p}(0)=f(0)$,

$$
\begin{equation*}
\int_{-\gamma}^{0} g_{p}(t) \mathrm{d} t=\int_{a}^{0} f(t) \mathrm{d} t \quad \text { and } \quad \int_{0}^{\delta} g_{p}(t) \mathrm{d} t=\int_{0}^{b} f(t) \mathrm{d} t \tag{3.2}
\end{equation*}
$$

Indeed, taking
$\gamma=\frac{p+1}{p f(0)} \int_{a}^{0} f(t) \mathrm{d} t, \quad c=\frac{f(0)}{\gamma^{1 / p}} \quad$ and $\quad \delta=\left(\frac{p+1}{p c} \int_{a}^{b} f(t) \mathrm{d} t\right)^{p /(p+1)}-\gamma$,
elementary computations show (3.2). We also note that, since

$$
\gamma=\left(\frac{p+1}{p c} \int_{a}^{0} f(t) \mathrm{d} t\right)^{p /(p+1)}
$$

we actually have $\delta>0$.

In other words, for the set of revolution C_{p} of radius $\left(g_{p}(t) / \kappa_{n-1}\right)^{1 /(n-1)}$, we have $C_{p}(0)=\sigma_{H^{\perp}}(K(0))$,

$$
\begin{equation*}
\operatorname{vol}\left(C_{p}^{-}\right)=\operatorname{vol}\left(K^{-}\right) \quad \text { and } \quad \operatorname{vol}\left(C_{p}^{+}\right)=\operatorname{vol}\left(K^{+}\right) \tag{3.3}
\end{equation*}
$$

And thus, in particular, $\operatorname{vol}\left(C_{p}\right)=\operatorname{vol}(K)$.
From the concavity of f^{p}, together with the relations $g_{p}(0)=f(0)$ and (3.2), we get on the one hand that $-\gamma \leq a<0<\delta \leq b$. On the other hand, defining the functions $\bar{f}, \bar{g}_{p}:[-\gamma, b] \longrightarrow \mathbb{R}_{\geq 0}$ given by

$$
\bar{f}(t)=\left\{\begin{array}{ll}
f(t) & \text { if } t \in[a, b], \\
0 & \text { otherwise },
\end{array} \quad \text { and } \quad \bar{g}_{p}(t)= \begin{cases}g_{p}(t) & \text { if } t \in[-\gamma, \delta] \\
0 & \text { otherwise }\end{cases}\right.
$$

we may conclude that there exists $x_{0} \in[a, 0)$ such that $\bar{f}(t) \geq \bar{g}_{p}(t)$ for all $t \in\left[x_{0}, 0\right] \cup[\delta, b]$ and $\bar{f}(t) \leq \bar{g}_{p}(t)$ otherwise (see Figure 2). Hence, since $\mathrm{g}(K)=0$ (and using (2.3)), from (3.2) we have

$$
\begin{aligned}
& -\int_{-\gamma}^{\delta} t g_{p}(t) \mathrm{d} t=\int_{a}^{b} t f(t) \mathrm{d} t-\int_{-\gamma}^{\delta} t g_{p}(t) \mathrm{d} t=\int_{-\gamma}^{b} t\left(\bar{f}(t)-\bar{g}_{p}(t)\right) \mathrm{d} t \\
& =\int_{-\gamma}^{0} t\left(\bar{f}(t)-\bar{g}_{p}(t)\right) \mathrm{d} t+\int_{0}^{b} t\left(\bar{f}(t)-\bar{g}_{p}(t)\right) \mathrm{d} t \\
& =\int_{-\gamma}^{0}\left(t-x_{0}\right)\left(\bar{f}(t)-\bar{g}_{p}(t)\right) \mathrm{d} t+\int_{0}^{b}(t-\delta)\left(\bar{f}(t)-\bar{g}_{p}(t)\right) \mathrm{d} t \geq 0,
\end{aligned}
$$

with equality if and only if $f=g_{p}$. Thus, we have $\left[\mathrm{g}\left(C_{p}\right)\right]_{1} \leq 0$, and equality holds if and only if $f=g_{p}$. Then, from (3.3) and Lemma 2.1,

$$
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)}=\frac{\operatorname{vol}\left(C_{p}^{-}\right)}{\operatorname{vol}\left(C_{p}\right)} \geq \frac{\operatorname{vol}\left(C_{p} \cap\left(\mathrm{~g}\left(C_{p}\right)+H\right)^{-}\right)}{\operatorname{vol}\left(C_{p}\right)}=\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p}
$$

with equality if and only if $f=g_{p}$, that is, if and only if $\sigma_{H^{\perp}}(K)=C_{p}$.

Figure 2. Relative position of the functions f^{p} and g_{p}^{p}.

Now we assume that $p=0$ and show (1.3). We assert that there exists an exponential function $g_{0}:(-\infty, \delta] \longrightarrow \mathbb{R}_{\geq 0}$ given by $g_{0}(t)=c e^{\gamma t}$, for some
$\gamma, \delta, c>0$, such that $g_{0}(0)=f(0)$,

$$
\begin{equation*}
\int_{-\infty}^{0} g_{0}(t) \mathrm{d} t=\int_{a}^{0} f(t) \mathrm{d} t \quad \text { and } \quad \int_{0}^{\delta} g_{0}(t) \mathrm{d} t=\int_{0}^{b} f(t) \mathrm{d} t . \tag{3.4}
\end{equation*}
$$

Straightforward computations show that the above relations are equivalent to take
$c=f(0), \quad \gamma=f(0)\left(\int_{a}^{0} f(t) \mathrm{d} t\right)^{-1} \quad$ and $\quad \delta=\frac{1}{\gamma} \log \left(\frac{\gamma}{f(0)} \int_{a}^{b} f(t) \mathrm{d} t\right) ;$
note that, indeed, $\delta>0$.
Again, the set of revolution C_{0} of radius $\left(g_{0}(t) / \kappa_{n-1}\right)^{1 /(n-1)}$ satisfies that $C_{0}(0)=\sigma_{H^{\perp}}(K(0))$,

$$
\begin{equation*}
\operatorname{vol}\left(C_{0}^{-}\right)=\operatorname{vol}\left(K^{-}\right) \quad \text { and } \quad \operatorname{vol}\left(C_{0}^{+}\right)=\operatorname{vol}\left(K^{+}\right) \tag{3.5}
\end{equation*}
$$

and thus, in particular, $\operatorname{vol}\left(C_{0}\right)=\operatorname{vol}(K)$.
Now the concavity of $\log f$, jointly with the relations $g_{0}(0)=f(0)$ and (3.4), implies that $\left(g_{0}(t) \geq f(t)\right.$ for all $t \in[0, \delta]$ and so) $\delta \leq b$. Moreover, for the functions $\bar{f}, \bar{g}_{0}:(-\infty, b] \longrightarrow \mathbb{R}_{\geq 0}$ given by

$$
\bar{f}(t)=\left\{\begin{array}{ll}
f(t) & \text { if } t \in[a, b], \\
0 & \text { otherwise },
\end{array} \quad \text { and } \quad \bar{g}_{0}(t)= \begin{cases}g_{0}(t) & \text { if } t \in(-\infty, \delta], \\
0 & \text { otherwise },\end{cases}\right.
$$

we conclude that there exists $x_{0} \in[a, 0)$ such that $\bar{f}(t) \geq \bar{g}_{0}(t)$ for all $t \in\left[x_{0}, 0\right] \cup[\delta, b]$ and $\bar{f}(t) \leq \bar{g}_{0}(t)$ otherwise (cf. Figure (2). Arguing as in the case $p>0$, using (3.4) and $\mathrm{g}(K)=0$, we have that $\left[\mathrm{g}\left(C_{0}\right)\right]_{1} \leq 0$. Then, from (3.5) and Lemma 2.1,

$$
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)}=\frac{\operatorname{vol}\left(C_{0}^{-}\right)}{\operatorname{vol}\left(C_{0}\right)} \geq \frac{\operatorname{vol}\left(C_{0} \cap\left(\mathrm{~g}\left(C_{0}\right)+H\right)^{-}\right)}{\operatorname{vol}\left(C_{0}\right)}=e^{-1} .
$$

Finally we notice that if we consider an unbounded set L with centroid at the origin and such that $\sigma_{H^{\perp}}(L)=C_{0}$, for a given $g_{0}:(-\infty, \delta] \longrightarrow \mathbb{R}_{\geq 0}$ of the form $g_{0}(t)=c e^{\gamma t}$, with $\gamma, \delta, c>0$, then $\operatorname{vol}\left(L^{-}\right) / \operatorname{vol}(L)=e^{-1}$ (cf. (2.5)). Hence, considering $K_{a}=L \cap\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \geq a\right\}, a<\delta$, we have $\left[\mathrm{g}\left(K_{a}\right)\right]_{1} \rightarrow 0$ and $\operatorname{vol}\left(K_{a}^{-}\right) / \operatorname{vol}\left(K_{a}\right) \rightarrow e^{-1}$, as $a \rightarrow-\infty$. This proves the final statement of the theorem.

Note that the "limit case" $p=\infty$ in Theorem 1.1] is also trivially fulfilled. Indeed, if f is ∞-concave then f is constant on $[a, b]$ and thus $0=[\mathrm{g}(K)]_{1}=$ $b+a$ (see (2.3)), which yields that $a=-b$ and hence

$$
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)}=\frac{1}{2}=\lim _{p \rightarrow \infty}\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p}
$$

Remark 3.1. Grünbaum's inequality (1.1), jointly with its equality case, is collected in the case $p=1 /(n-1)$ of Theorem 1.1. Indeed, on the one hand, Theorem A implies that the cross-sections volume function f is $(1 /(n-$ $1)$)-concave, and thus (1.2) yields (1.1). On the other hand, regarding the equality case of (1.1), we note that the fact that f is $(1 /(n-1))$-affine,
combined with the convexity of K jointly with the equality case of the BrunnMinkowski inequality (2.1), implies that K must be a cone in the direction of the normal vector of H.

Let $K \subset \mathbb{R}^{n}$ be a compact set with non-empty interior and with centroid at the origin, such that its cross-sections volume function f is p-concave, with respect to a given hyperplane H. Moreover, if $p \in(-\infty,-1) \cup(-1 / 2, \infty)$, we write for short

$$
\alpha_{p}:=\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p}
$$

where, if $p=0, \alpha_{0}$ is the value that is obtained "by continuity", that is,

$$
\alpha_{0}=\lim _{p \rightarrow 0}\left(\frac{p+1}{2 p+1}\right)^{(p+1) / p}=e^{-1}
$$

In Theorem [1.1 we have shown that, whenever $p \geq 0, \alpha_{p}$ is a sharp lower bound for the ratio $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$, as a consequence of the fact that $\left[\mathrm{g}\left(C_{p}\right)\right]_{1} \leq 0$ for the (suitable) set C_{p} such that $\operatorname{vol}\left(C_{p}^{-}\right)=\operatorname{vol}\left(K^{-}\right)$and $\operatorname{vol}\left(C_{p}^{+}\right)=\operatorname{vol}\left(K^{+}\right)$. Next we point out that, in fact, these two conditions are equivalent.

Corollary 3.1. Let $p \in(-\infty,-1) \cup[0, \infty)$ and let $H \in \mathrm{G}(n, n-1)$ be a hyperplane with unit normal vector $u \in \mathbb{S}^{n-1}$. Let $K \subset \mathbb{R}^{n}$ be a compact set with non-empty interior and with centroid at the origin. If C_{p}, given as in Definition 1.1, with axis parallel to u, is such that

$$
\operatorname{vol}\left(C_{p}^{-}\right)=\operatorname{vol}\left(K^{-}\right) \quad \text { and } \quad \operatorname{vol}\left(C_{p}^{+}\right)=\operatorname{vol}\left(K^{+}\right)
$$

then the following assertions are equivalent:
(a) $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K) \geq \alpha_{p}$;
(b) $\left[\mathrm{g}\left(C_{p}\right)\right]_{1} \leq 0$.

Proof. From Lemma 2.1, we have

$$
\frac{\operatorname{vol}\left(C_{p} \cap\left(\mathrm{~g}\left(C_{p}\right)+H\right)^{-}\right)}{\operatorname{vol}\left(C_{p}\right)}=\alpha_{p}
$$

Moreover, by hypothesis, we get

$$
\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)}=\frac{\operatorname{vol}\left(C_{p} \cap H^{-}\right)}{\operatorname{vol}\left(C_{p}\right)}
$$

Therefore, the result now follows from the fact that, for any $x, y \in \mathbb{R}^{n}$ such that $\{x, y\}\left|H^{\perp} \subset C_{p}\right| H^{\perp}, \operatorname{vol}\left(C_{p} \cap(x+H)^{-}\right) \leq \operatorname{vol}\left(C_{p} \cap(y+H)^{-}\right)$if and only if $[x]_{1} \leq[y]_{1}$.

Next we show that Theorem 1.1 cannot be extended to the range of $p \in$ $(-\infty,-1)$. In fact, we prove a more general result:

Proposition 3.2. Let $p \in(-\infty,-1)$. There exists no positive constant β_{p} such that

$$
\min \left\{\frac{\operatorname{vol}\left(K^{-}\right)}{\operatorname{vol}(K)}, \frac{\operatorname{vol}\left(K^{+}\right)}{\operatorname{vol}(K)}\right\} \geq \beta_{p}
$$

for all compact sets $K \subset \mathbb{R}^{n}$ with non-empty interior and with centroid at the origin, for which there exists $H \in \mathrm{G}(n, n-1)$ such that $f(x)=$ $\operatorname{vol}_{n-1}(K \cap(x+H)), x \in H^{\perp}$, is p-concave.

Proof. By Lemma2.1, for any $q \in(-\infty,-1)$ we have $\alpha_{q}=\operatorname{vol}\left(C_{q}^{-}\right) / \operatorname{vol}\left(C_{q}\right)$, provided that C_{q} has centroid at the origin. Since $\alpha_{q} \rightarrow 1$ as $q \rightarrow-1^{-}$, we obtain

$$
\lim _{q \rightarrow-1^{-}} \min \left\{\frac{\operatorname{vol}\left(C_{q}^{-}\right)}{\operatorname{vol}\left(C_{q}\right)}, \frac{\operatorname{vol}\left(C_{q}^{+}\right)}{\operatorname{vol}\left(C_{q}\right)}\right\}=\lim _{q \rightarrow-1^{-}}\left(1-\alpha_{q}\right)=0
$$

The proof is now concluded from the fact that any q-concave function is also p-concave, whenever $q>p$.

We conclude the paper by showing that the statement of Theorem 1.1 cannot be extended to the range of $p \in(-1 / 2,0)$ either. To this aim, note that if $p<q$ are parameters for which β_{p} and β_{q} are such sharp lower bounds for the ratio $\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K)$ (i.e., in the cases in which f is respectively p concave and q-concave) then $\beta_{p} \leq \beta_{q}$, because every q-concave function is also p-concave. We notice however that, if $p \in(-1 / 2,0)$, the value obtained by C_{p} is not α_{p} but $1-\alpha_{p}$ (cf. (2.6)), and then $1-\alpha_{p} \geq 1-\alpha_{0}>1 / 2$ for any $p \in(-1 / 2,0)$ whereas $\alpha_{p} \leq 1 / 2$ for all $p \geq 0$.

Therefore, this fact (jointly with the case in which $p \in(-\infty,-1)$, collected in Proposition (3.2) gives that $[0, \infty]$ is the largest subset of the real line (with respect to set inclusion) for which C_{p} provides us with the infimum value for the ratio $\operatorname{vol}\left(\cdot^{-}\right) / \operatorname{vol}(\cdot)$, among all compact sets with (centroid at the origin and) p-concave cross-sections volume function. However, since α_{p} is increasing in the parameter p on $(-1 / 2, \infty)$, and $\alpha_{p} \rightarrow 0$ as $p \rightarrow(-1 / 2)^{+}$, it is still possible to expect α_{p} to be a lower bound for $\min \left\{\operatorname{vol}\left(K^{-}\right) / \operatorname{vol}(K), \operatorname{vol}\left(K^{+}\right) / \operatorname{vol}(K)\right\}$. Unfortunately, we do not know so far whether this issue has a positive answer or not.

Acknowledgements. We would like to thank the anonymous referee for her/his very valuable comments and remarks. We also thank Prof. M. A. Hernández Cifre for carefully reading the manuscript and her very helpful suggestions during the preparation of it.

References

[1] F. Barthe, Autour de l'inégalité de Brunn-Minkowski, Ann. Fac. Sci. Toulouse Math. (6) 12 (2) (2003): 127-178.
[2] S. Brazitikos, A. Giannopoulos, P. Valettas and B. H. Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs, 196. American Mathematical Society, Providence, RI, 2014.
[3] P. S. Bullen, Handbook of means and their inequalities, Mathematics and its Applications 560, Revised from the 1988 original. Kluwer Academic Publishers Group, Dordrecht, 2003.
[4] M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math. 69 (1997): 515-522.
[5] M. Fradelizi, M. Meyer and V. Yaskin, On the volume of sections of a convex body by cones, Proc. Amer. Math. Soc. 145 (7) (2017): 3153-3164.
[6] R. J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, New York, 2006.
[7] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (3) (2002): 355-405.
[8] B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960): 1257-1261.
[9] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Mathematical Library, Reprint of the 1952 edition. Cambridge University Press, Cambridge, 1988.
[10] M. A. Hernández Cifre and J. Yepes Nicolás, Refinements of the Brunn-Minkowski inequality, J. Convex Anal. 21 (3) (2014): 727-743.
[11] M. A. Hernández Cifre and J. Yepes Nicolás, Brunn-Minkowski and PrékopaLeindler's inequalities under projection assumptions, J. Math. Anal. Appl. 455 (2) (2017): 1257-1271.
[12] K. Leichtweiss, Konvexe Mengen, Hochschulbücher für Mathematik, 81. VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.
[13] E. Makai Jr. and H. Martini, The cross-section body, plane sections of convex bodies and approximation of convex bodies. I, Geom. Dedicata 63 (3) (1996): 267-296.
[14] J. Matoušek, Lectures on discrete geometry, Graduate Texts in Mathematics, 212. Springer-Verlag, New York, 2002.
[15] M. Meyer, F. Nazarov, D. Ryabogin and V. Yaskin, Grünbaum-type inequality for log-concave functions, Bull. Lond. Math. Soc. 50 (4) (2018): 745-752.
[16] S. Myroshnychenko, M. Stephen and N. Zhang, Grünbaum's inequality for sections, J. Funct. Anal. 275 (9) (2018): 2516-2537.
[17] R. Schneider, Convex bodies: The Brunn-Minkowski theory, 2nd expanded ed., Encyclopedia of Mathematics and its Applications, 151. Cambridge University Press, Cambridge, 2014.
[18] M. Stephen and V. Yaskin, Applications of Grünbaum-type inequalities, Trans. Amer. Math. Soc. 372 (9) (2019): 6755-6769.
[19] M. Stephen and N. Zhang, Grünbaum's inequality for projections, J. Funct. Anal. 272 (6) (2017): 2628-2640.

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100-Murcia, Spain

E-mail address: francisco.marin7@um.es
E-mail address: jesus.yepes@um.es

[^0]: 2010 Mathematics Subject Classification. Primary 26B25, 52A38, 52A40; Secondary 52A20.

 Key words and phrases. Grünbaum's inequality, p-concave function, log-concave function, Brunn's concavity principle, sections of convex bodies, centroid.

 The work is partially supported by MICINN/FEDER project PGC2018-097046-B-I00 and by "Programa de Ayudas a Grupos de Excelencia de la Región de Murcia", Fundación Séneca, 19901/GERM/15.

