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Abstract. Given a compact set K ⊂ R
n of positive volume, and fixing

a hyperplaneH passing through its centroid, we find a sharp lower bound
for the ratio vol(K−)/vol(K), depending on the concavity nature of the
function that gives the volumes of cross-sections (parallel to H) of K,
where K− denotes the intersection of K with a halfspace bounded by
H . When K is convex, this inequality recovers a classical result by
Grünbaum. To this respect, we also show that the log-concave case is
the limit concavity assumption for such a generalization of Grünbaum’s
inequality.

1. Introduction

Let K ⊂ R
n be a compact set with positive volume vol(K) (i.e., with

positive n-dimensional Lebesgue measure). The centroid of K is the affine-
covariant point

g(K) :=
1

vol(K)

∫

K
xdx.

According to a classical result by Grünbaum [8], if K is convex with
centroid at the origin, then

(1.1)
vol(K−)

vol(K)
≥

(

n

n+ 1

)n

,

where K− = K ∩{x ∈ R
n : 〈x, u〉 ≤ 0} and K+ = K ∩{x ∈ R

n : 〈x, u〉 ≥ 0}
represent the parts of K which are split by the hyperplane H = {x ∈
R
n : 〈x, u〉 = 0}, for any given u ∈ S

n−1. Equality holds, for a fixed
u ∈ Sn−1, if and only if K is a cone in the direction u, i.e., the convex hull
of {x} ∪ (K ∩ (y +H)), for some x, y ∈ R

n.

Grünbaum’s result was extended to the case of sections [5, 16] and pro-
jections [19] of compact convex sets, and generalized to the analytic setting
of log-concave functions [15] (see also [2, Lemma 2.2.6]) and p-concave func-
tions [16], for p > 0. Other Grünbaum type inequalities involving volumes
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of sections of compact convex sets through their centroid, later generalized
to the case of classical and dual quermassintegrals in [18], can be found in
[4, 13].

The underlying key fact in the original proof of (1.1) (see [8]) is the follow-
ing classical result (see e.g. [2, Section 1.2.1] and also [14, Theorem 12.2.1]):

Theorem A (Brunn’s concavity principle). Let K ⊂ R
n be a non-empty

compact and convex set and let H be a hyperplane. Then, the function
f : H⊥ −→ R≥0 given by f(x) = voln−1

(

K∩(x+H)
)

is (1/(n−1))-concave.

In other words, for any given hyperplane H, the cross-sections volume
function f to the power 1/(n− 1) is concave on its support, which is equiv-
alent (due to the convexity of K) to the well-known Brunn-Minkowski in-
equality (see (2.1)). Although this property cannot be in general enhanced,
one can easily find compact convex sets for which f satisfies a stronger
concavity, for a suitable hyperplane H; similarly, the Brunn-Minkowski in-
equality can be refined when dealing with restricted families of sets (see e.g.
[10, 11] and the references therein). Thus, on the one hand, it is natural to
wonder about a possible enhanced version of Grünbaum’s inequality (1.1)
for the family of those compact convex sets K such that (there exists a hy-
perplane H for which) f is p-concave, with 1/(n − 1) < p. On the other
hand, one could expect to extend this inequality to compact sets K, not
necessarily convex, for which f is p-concave (for some hyperplane H), with
p < 1/(n − 1).

Observing that the equality case in Grünbaum’s inequality (1.1) is char-
acterized by cones, that is, those sets for which f is (1/(n − 1))-affine (i.e.,

such that f1/(n−1) is an affine function), the following sets of revolution, as-
sociated to p-affine functions, arise as natural candidates to be the extremal
sets, in some sense, of these inequalities.

Definition 1.1. Let p ∈ R and let c, γ, δ > 0 be fixed. Then

i) if p 6= 0, let gp : I −→ R≥0 be the non-negative function given by

gp(t) = c(t + γ)1/p, where I = [−γ, δ] if p > 0 and I = (−γ, δ] if
p < 0;

ii) if p = 0, let g0 : (−∞, δ] −→ R≥0 be the non-negative function
defined by g0(t) = ceγt.

Let u ∈ S
n−1 be fixed. By Cp we denote the set of revolution whose section

by the hyperplane {x ∈ R
n : 〈x, u〉 = t} is an (n − 1)-dimensional ball of

radius (gp(t)/κn−1)
1/(n−1) with axis parallel to u (see Figure 1). (We warn

the reader that, in the following, we will use the word “radius” to refer to

such a generating function (gp(t)/κn−1)
1/(n−1) of the set Cp, for short.)

In other words, one may speculate whether, among all compact sets K
with centroid at the origin such that f is p-concave (for some hyperplane
H), Cp gives the infimum for the ratio vol(K−)/vol(K). We note that, in
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Figure 1. Sets Cp in R
3, with centroid at the origin, and

C −
p (coloured), for p = 1 (left) and p = 1/4 (right).

this way, we would have a general family of inequalities depending on a real
parameter p (with extremal sets varying continuously on it), and having
Grünbaum’s inequality (1.1) as the particular case p = 1/(n − 1).

Here we study the above-mentioned problem and show that it has a posi-
tive answer in the full range of p ∈ [0,∞] (in the following, σH⊥ denotes the
Schwarz symmetrization with respect to H⊥; see Section 2 for the precise
definition):

Theorem 1.1. Let K ⊂ R
n be a compact set with non-empty interior and

with centroid at the origin. Let H be a hyperplane such that the function
f : H⊥ −→ R≥0 given by f(x) = voln−1

(

K ∩ (x + H)
)

is p-concave, for
some p ∈ [0,∞). If p > 0 then

(1.2)
vol(K−)

vol(K)
≥

(

p+ 1

2p+ 1

)(p+1)/p

with equality if and only if σH⊥(K) = Cp. If p = 0 then

(1.3)
vol(K−)

vol(K)
≥ e−1.

The inequality is sharp; that is, the quotient vol(K−)/vol(K) comes arbi-
trarily close to e−1.

We point out that Theorem 1.1 can be obtained from recent involved
results in the functional setting (more precisely, the case p > 0 is derived
from [16, Theorem 1] whereas the case p = 0 follows from [15, Theorem
in p. 746] -see also [2, Lemma 2.2.6]). Our goal here is to provide with a
simpler geometric proof, inspired by the role of Brunn’s concavity principle
and comparing with the sets Cp, in the spirit of Grünbaum’s approach in [8].
In this paper we also consider the range of p ∈ [−∞, 0) and we prove that
[0,∞] is the largest set (where the parameter p lies) in which Cp provides
us with the infimum value for such a Grünbaum type inequality.
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The paper is organized as follows: in Section 2 we recall some preliminaries
and we establish an auxiliary result that will be needed later on, whereas
the proofs of our main results will be established in Section 3.

2. Background material and auxiliary results

We work in the n-dimensional Euclidean space Rn endowed with the stan-
dard inner product 〈·, ·〉, and we write ei to represent the i-th canonical
unit vector. We denote by Bn the n-dimensional Euclidean (closed) unit
ball and by S

n−1 its boundary. Given a unit direction u ∈ S
n−1, an or-

thonormal basis of Rn (u1, u2, . . . , un) with u1 = u, and a vector x ∈ R
n,

we write [x]1 for the first coordinate of x with respect to this basis. For
any hyperplane H = {x ∈ R

n : 〈x, u〉 = c}, c ∈ R, we represent by
H− = {x ∈ R

n : 〈x, u〉 ≤ c} and H+ = {x ∈ R
n : 〈x, u〉 ≥ c} the cor-

responding halfspaces bounded by H.

The Grassmannian of k-dimensional linear subspaces of Rn is denoted by
G(n, k), and for H ∈ G(n, k), the orthogonal projection of a subset M ⊂ R

n

onto H is denoted by M |H, whereas the orthogonal complement of H is
represented by H⊥. The k-dimensional Lebesgue measure of M , provided
that M is measurable, is denoted by volk(M) and we will omit the index k
when it is equal to the dimension n of the ambient space. When integrating
dx stands for dvol(x), and we write κn = vol(Bn).

Relating the volume of the Minkowski addition of two sets in terms of
their volumes, one is led to the famous Brunn-Minkowski inequality (for
extensive survey articles on this and related inequalities we refer the reader
to [1, 7]; for a general reference on Brunn-Minkowski theory, we also refer
to the updated monograph [17]). One form of it asserts that if K and L are
non-empty compact convex subsets of Rn, and λ ∈ (0, 1), then

(2.1) vol
(

(1− λ)K + λL
)1/n

≥ (1− λ)vol(K)1/n + λvol(L)1/n,

with equality, if vol(K)vol(L) > 0, if and only if K and L are homothetic.
Here + is used for the Minkowski sum, i.e., A+B = {a+ b : a ∈ A, b ∈ B}
for any non-empty sets A,B ⊂ R

n.
In other words, due to the convexity of K and L, the above result states

that the function λ 7→ vol
(

(1 − λ)K + λL
)

, λ ∈ [0, 1], is (1/n)-concave. We
recall that a function f : Rn −→ R≥0 is p-concave, for p ∈ R ∪ {±∞}, if

f
(

(1− λ)x+ λy
)

≥ Mp

(

f(x), f(y), λ
)

for all x, y ∈ R
n such that f(x)f(y) > 0 and any λ ∈ (0, 1). Here Mp denotes

the p-mean of two non-negative numbers a, b:

Mp(a, b, λ) =



















(

(1− λ)ap + λbp
)1/p

, if p 6= 0,±∞,

a1−λbλ if p = 0,

max{a, b} if p = ∞,

min{a, b} if p = −∞.
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Note that if p > 0, then f is p-concave if and only if fp is concave on its
support {x ∈ R

n : f(x) > 0} and thus, in particular, 1-concave is just
concave (on its support) in the usual sense. A 0-concave function is usually
called log-concave whereas a (−∞)-concave function is referred to as quasi-
concave. Moreover, Jensen’s inequality for means (see e.g. [9, Section 2.9]
and [3, Theorem 1 p. 203]) implies that if −∞ ≤ p < q ≤ ∞ then

Mp(a, b, λ) ≤ Mq(a, b, λ),

with equality for ab > 0 and λ ∈ (0, 1) if and only if a = b; thus, a q-concave
function is also p-concave, whenever q > p.

Another important technique in the original proof of (1.1) is the Schwarz
symmetrization (see [12, Chapter IV], [6, Page 62]) of a compact set K,
which is defined as follows: given a hyperplane H ∈ G(n, n−1), for any x ∈
K|H⊥ let Bn−1(x, rx) ⊂ x+H be the (n−1)-dimensional Euclidean ball with
center x and radius rx such that voln−1

(

Bn−1(x, rx)
)

= voln−1

(

K∩(x+H)
)

;
then σH⊥(K) =

⋃

x∈K|H⊥ Bn−1(x, rx) is the Schwarz symmetral of K with

respect to H⊥.

The aim of this paper is to provide with both a refinement and an
extension of Grünbaum’s inequality (1.1) in terms of the concavity na-
ture of the cross-sections volume function f : H⊥ −→ R≥0 defined by
f(x) = voln−1

(

K ∩ (x + H)
)

, for a given hyperplane H ∈ G(n, n − 1),
when dealing with compact sets K ⊂ R

n. Although in general, when K is
convex, f is (1/(n−1))-concave (see Theorem A), it is easy to find other ex-
amples of concavity. Indeed, given H = {x ∈ R

n : 〈x, u〉 = 0} ∈ G(n, n− 1),
u ∈ S

n−1, and H ′ ∈ G(n, n− 2) with H ′ ⊂ H, let K0 ⊂ H and K1 ⊂ u+H
be compact sets with K0|H

′ = K1|H
′. Then the Brunn-Minkowski in-

equality (2.1) admits the enhanced version voln−1

(

(1 − λ)K0 + λK1

)

≥
(1 − λ)voln−1(K0) + λvoln−1(K1) (see e.g. [10, Theorem A] and the refer-
ences therein). This implies that, defining K as the convex hull of K0 ∪K1,
the function f : H⊥ −→ R≥0 given by f(x) = voln−1

(

K ∩ (x + H)
)

is
concave.

Remark 2.1. The concavity nature of the cross-sections volume function f
depends on the choice of the hyperplane H. Indeed, given H1 = {x ∈ R

3 :
〈x, e1〉 = 0} and H2 = {x ∈ R

3 : 〈x, e2〉 = 0}, and considering the set

C1 =
{

x = (x1, x2, x3) ∈ R
3 : x1 ∈ [0, 1], x22 + x23 ≤ r(x1)

2
}

of radius r(t) = t1/2 (cf. Definition 1.1), we have vol2
(

C1∩(te1+H1)
)

= κ2t
and

vol2
(

C1 ∩ (te2 +H2)
)

= vol2
({

x ∈ R
3 : x1 ∈ [t2, 1], x23 ≤ r(x1)

2 − t2
})

=
4

3
(1− t2)3/2,
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for any t ∈ [0, 1]. Therefore, the function f1 : H⊥
1 −→ R≥0 defined by

vol2
(

C1 ∩ (x + H1)
)

is 1-concave whereas the function f2 : H⊥
2 −→ R≥0

given by vol2
(

C1 ∩ (x+H2)
)

is not 1-concave.

For the sake of simplicity, in the following we consider H = {x ∈ R
n :

〈x, u〉 = 0}, for a given direction u ∈ S
n−1 that we extend to an orthonormal

basis (u1, u2, . . . , un) of Rn, with u1 = u. Moreover, given a compact set
K ⊂ R

n with non-empty interior, we denote by K(t) = K ∩ (tu + H) for
any t ∈ R. We notice that, if K|H⊥ ⊂ [au, bu], Fubini’s theorem implies
(provided that a ≤ 0) that

(2.2) vol(K) =

∫ b

a
f(t) dt and vol(K−) =

∫ 0

a
f(t) dt,

where, as usual, we are identifying the linear subspace spanned by u with
R. Since the set {t ∈ R : f(t) > 0} is convex whenever f is quasi-concave,
from now on we will assume, without loss of generality, that f(t) > 0 for all
t ∈ [a, b]. Furthermore, by Fubini’s theorem, we get

(2.3) [g(K)]1 =
1

vol(K)

∫ b

a
tf(t) dt

and thus, in particular, a < [g(K)]1 < b (cf. (2.2)).

As mentioned in the introduction, the sets Cp associated to (cross-sections
volume) functions that are p-affine (see Definition 1.1) seem to be possible
extremal sets of such expected inequalities. So, we start by computing the
ratio vol(·−)/vol(·) for the sets Cp.

Lemma 2.1. Let p ∈ (−∞,−1) ∪ [0,∞) and let H ∈ G(n, n − 1) be a
hyperplane with unit normal vector u ∈ S

n−1. Let gp and Cp, with axis
parallel to u, be as in Definition 1.1, for any fixed c, γ, δ > 0. If Cp has
centroid at the origin then

(2.4)
vol

(

C −
p

)

vol(Cp)
=

(

p+ 1

2p+ 1

)(p+1)/p

where, if p = 0, the above identity must be understood as

(2.5)
vol

(

C −
0

)

vol(C0)
= lim

p→0+

(

p+ 1

2p+ 1

)(p+1)/p

= e−1.

Proof. First we assume that p 6= 0 and show (2.4). On the one hand, by
Fubini’s theorem, we get

vol(Cp) =

∫ δ

−γ
gp(t) dt =

c p(δ + γ)(p+1)/p

p+ 1
.
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On the other hand, from (2.3), we have

[

g(Cp)
]

1
=

1

vol(Cp)

∫ δ

−γ
tgp(t) dt =

p+ 1

p(δ + γ)(p+1)/p

∫ δ+γ

0
(s− γ)s1/p ds

=
(p + 1)(δ + γ)

2p+ 1
− γ.

Therefore, from the hypothesis g(Cp) = 0, we obtain that γ/(δ + γ) =
(p+ 1)/(2p + 1), and hence

vol
(

C −
p

)

vol(Cp)
=

1

vol(Cp)

∫ 0

−γ
gp(t) dt =

(

γ

δ + γ

)(p+1)/p

=

(

p+ 1

2p + 1

)(p+1)/p

,

as desired.
Now we assume that p = 0 and show (2.5). Again, by Fubini’s theorem

and (2.3), respectively, we get

vol(C0) =

∫ δ

−∞
g0(t) dt =

ceγδ

γ

and

[

g(C0)
]

1
=

1

vol(C0)

∫ δ

−∞
tg0(t) dt = δ −

1

γ
.

In particular, g(C0) = 0 implies that δ = 1/γ, and hence

vol
(

C −
0

)

vol(C0)
=

1

vol(C0)

∫ 0

−∞
g0(t) dt = e−1.

This concludes the proof. �

Although the value
(

(p + 1)/(2p + 1)
)(p+1)/p

obtained in (2.4) is also
defined for any p ∈ (−1/2, 0), the corresponding sets Cp present remarkable
differences with those of the range p ≥ 0, as we will see next. So, we will
study this case separately.

To this aim, let p ∈ (−1/2, 0) and let ε > 0 be fixed. Let Cp,ε be the set of

revolution, with axis parallel to u, of radius (gp,ε(t)/κn−1)
1/(n−1) associated

to the p-affine function gp,ε : [−γ+ε, δ] −→ R≥0 given by gp,ε(t) = c(t+γ)1/p,
for some c, γ, δ > 0 (for our purpose we may assume that γ > ε).

On the one hand, by Fubini’s theorem, we get

vol(Cp,ε) =

∫ δ

−γ+ε
gp(t) dt =

c p
(

(δ + γ)(p+1)/p − ε(p+1)/p
)

p+ 1
.
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Then we notice first that vol(Cp,ε) → ∞ as ε → 0+. On the other hand,
from (2.3), we have

[

g(Cp,ε)
]

1
=

1

vol(Cp,ε)

∫ δ

−γ+ε
tgp(t) dt

=
p+ 1

p
(

(δ + γ)(p+1)/p − ε(p+1)/p
)

∫ δ+γ

ε
(s− γ)s1/p ds

=
(p+ 1)α(ε)

2p + 1
− γ,

where

α(ε) =
(δ + γ)(2p+1)/p − ε(2p+1)/p

(δ + γ)(p+1)/p − ε(p+1)/p
.

We note that α(ε) → 0 as ε → 0+, and moreover that α(ε) > 0 because of
the direct relation −γ + ε ≤ [g(Cp,ε)

]

1
jointly with (p + 1)/(2p + 1) > 0.

Hence, we get

vol
(

Cp,ε ∩
(

g(Cp,ε) +H
)+)

vol(Cp,ε)
=

1

vol(Cp,ε)

∫ δ

−γ+(p+1)α(ε)/(2p+1)
gp(t) dt

=
(δ + γ)(p+1)/p −

(

p+1
2p+1

)(p+1)/p
α(ε)(p+1)/p

(δ + γ)(p+1)/p − ε(p+1)/p
.

Therefore, although lim
ε→0+

vol(Cp,ε) = ∞, we have

(2.6) lim
ε→0+

vol
(

Cp,ε ∩
(

g(Cp,ε) +H
)+)

vol(Cp,ε)
=

(

p+ 1

2p+ 1

)(p+1)/p

.

Thus, the value
(

p + 1)/(2p + 1)
)(p+1)/p

is asymptotically attained by the
sets Cp,ε. The main difference with the case p ≥ 0 is that it is now reached
by their parts given by the positive halfspace (with respect to the normal
direction u ∈ S

n−1) bounded by the hyperplane through their centroid.

3. Grünbaum type inequalities

Grünbaum’s inequality (1.1) can also be expressed by saying that if K is
a compact convex set, of positive volume, with centroid at the origin, then

min

{

vol(K−)

vol(K)
,
vol(K+)

vol(K)

}

≥

(

n

n+ 1

)n

.

We start this section by showing that, if the cross-sections volume function
f associated to a compact set K is increasing in the direction of the nor-
mal vector of H, then the above minimum is attained at vol(K−)/vol(K),
independently of the concavity nature of f .
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Proposition 3.1. Let K ⊂ R
n be a compact set with non-empty interior

and with centroid at the origin. Let H ∈ G(n, n − 1) be a hyperplane, with
unit normal vector u ∈ S

n−1, such that the function f : H⊥ −→ R≥0 given
by f(x) = voln−1

(

K∩(x+H)
)

is quasi-concave with f(bu) = maxx∈H⊥ f(x),

where [au, bu] = K|H⊥. Then

vol(K+)

vol(K)
≥

1

2
.

Proof. Let g : [−γ, δ] −→ R≥0 be the constant function given by g(t) = f(0),
where

(3.1) γ =
1

f(0)

∫ 0

a
f(t) dt and δ =

1

f(0)

∫ b

0
f(t) dt.

Since f is quasi-concave with f(b) = maxt∈R f(t), f is increasing on [a, b]
and thus (from (3.1)) we have a ≤ −γ < 0 < b ≤ δ. Hence, since g(K) = 0
(and using (2.3)), from (3.1) we get

f(0)
γ2 − δ2

2
= −

∫ δ

−γ
tg(t) dt =

∫ b

a
tf(t) dt−

∫ δ

−γ
tg(t) dt

=

∫ −γ

a
(t+ γ)f(t) dt+

∫ 0

−γ
(t+ γ)

(

f(t)− g(t)
)

dt

+

∫ b

0
(t− b)

(

f(t)− g(t)
)

dt+

∫ δ

b
(t− b)

(

−g(t)
)

dt ≤ 0,

which yields γ ≤ δ, or equivalently vol(K−) ≤ vol(K+). This concludes the
proof. �

We are now ready to prove our main theorem.

Proof of Theorem 1.1. First we assume that p > 0 and show (1.2). We
assert that there exists a (p-affine) function gp : [−γ, δ] −→ R≥0 given by

gp(t) = c(t+ γ)1/p, for some γ, δ, c > 0, such that gp(0) = f(0),

(3.2)

∫ 0

−γ
gp(t) dt =

∫ 0

a
f(t) dt and

∫ δ

0
gp(t) dt =

∫ b

0
f(t) dt.

Indeed, taking

γ =
p+ 1

pf(0)

∫ 0

a
f(t) dt, c =

f(0)

γ1/p
and δ =

(

p+ 1

pc

∫ b

a
f(t) dt

)p/(p+1)

−γ,

elementary computations show (3.2). We also note that, since

γ =

(

p+ 1

pc

∫ 0

a
f(t) dt

)p/(p+1)

,

we actually have δ > 0.
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In other words, for the set of revolution Cp of radius (gp(t)/κn−1)
1/(n−1),

we have Cp(0) = σH⊥

(

K(0)
)

,

(3.3) vol
(

C −
p

)

= vol(K−) and vol
(

C +
p

)

= vol(K+).

And thus, in particular, vol(Cp) = vol(K).
From the concavity of fp, together with the relations gp(0) = f(0) and

(3.2), we get on the one hand that −γ ≤ a < 0 < δ ≤ b. On the other hand,
defining the functions f̄ , ḡp : [−γ, b] −→ R≥0 given by

f̄(t) =

{

f(t) if t ∈ [a, b],
0 otherwise,

and ḡp(t) =

{

gp(t) if t ∈ [−γ, δ],
0 otherwise,

we may conclude that there exists x0 ∈ [a, 0) such that f̄(t) ≥ ḡp(t) for all
t ∈ [x0, 0] ∪ [δ, b] and f̄(t) ≤ ḡp(t) otherwise (see Figure 2). Hence, since
g(K) = 0 (and using (2.3)), from (3.2) we have

−

∫ δ

−γ
tgp(t) dt =

∫ b

a
tf(t) dt−

∫ δ

−γ
tgp(t) dt =

∫ b

−γ
t
(

f̄(t)− ḡp(t)
)

dt

=

∫ 0

−γ
t
(

f̄(t)− ḡp(t)
)

dt+

∫ b

0
t
(

f̄(t)− ḡp(t)
)

dt

=

∫ 0

−γ
(t− x0)

(

f̄(t)− ḡp(t)
)

dt+

∫ b

0
(t− δ)

(

f̄(t)− ḡp(t)
)

dt ≥ 0,

with equality if and only if f = gp. Thus, we have [g(Cp)]1 ≤ 0, and equality
holds if and only if f = gp. Then, from (3.3) and Lemma 2.1,

vol(K−)

vol(K)
=

vol
(

C −
p

)

vol(Cp)
≥

vol
(

Cp ∩
(

g(Cp) +H
)−)

vol(Cp)
=

(

p+ 1

2p+ 1

)(p+1)/p

,

with equality if and only if f = gp, that is, if and only if σH⊥(K) = Cp.

x0−γ δ

gpp

fp

Figure 2. Relative position of the functions fp and gpp.

Now we assume that p = 0 and show (1.3). We assert that there exists an
exponential function g0 : (−∞, δ] −→ R≥0 given by g0(t) = ceγt, for some
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γ, δ, c > 0, such that g0(0) = f(0),

(3.4)

∫ 0

−∞
g0(t) dt =

∫ 0

a
f(t) dt and

∫ δ

0
g0(t) dt =

∫ b

0
f(t) dt.

Straightforward computations show that the above relations are equivalent
to take

c = f(0), γ = f(0)

(
∫ 0

a
f(t) dt

)−1

and δ =
1

γ
log

(

γ

f(0)

∫ b

a
f(t) dt

)

;

note that, indeed, δ > 0.

Again, the set of revolution C0 of radius (g0(t)/κn−1)
1/(n−1) satisfies that

C0(0) = σH⊥

(

K(0)
)

,

(3.5) vol
(

C −
0

)

= vol(K−) and vol
(

C +
0

)

= vol(K+),

and thus, in particular, vol(C0) = vol(K).
Now the concavity of log f , jointly with the relations g0(0) = f(0) and

(3.4), implies that (g0(t) ≥ f(t) for all t ∈ [0, δ] and so) δ ≤ b. Moreover,
for the functions f̄ , ḡ0 : (−∞, b] −→ R≥0 given by

f̄(t) =

{

f(t) if t ∈ [a, b],
0 otherwise,

and ḡ0(t) =

{

g0(t) if t ∈ (−∞, δ],
0 otherwise,

we conclude that there exists x0 ∈ [a, 0) such that f̄(t) ≥ ḡ0(t) for all
t ∈ [x0, 0] ∪ [δ, b] and f̄(t) ≤ ḡ0(t) otherwise (cf. Figure 2). Arguing as in
the case p > 0, using (3.4) and g(K) = 0, we have that [g(C0)]1 ≤ 0. Then,
from (3.5) and Lemma 2.1,

vol(K−)

vol(K)
=

vol
(

C −
0

)

vol(C0)
≥

vol
(

C0 ∩
(

g(C0) +H
)−)

vol(C0)
= e−1.

Finally we notice that if we consider an unbounded set L with centroid at
the origin and such that σH⊥(L) = C0, for a given g0 : (−∞, δ] −→ R≥0

of the form g0(t) = ceγt, with γ, δ, c > 0, then vol(L−)/vol(L) = e−1 (cf.
(2.5)). Hence, considering Ka = L ∩ {x ∈ R

n : 〈x, u〉 ≥ a}, a < δ, we have
[g(Ka)]1 → 0 and vol

(

K −
a

)

/vol(Ka) → e−1, as a → −∞. This proves the
final statement of the theorem. �

Note that the “limit case” p = ∞ in Theorem 1.1 is also trivially fulfilled.
Indeed, if f is ∞-concave then f is constant on [a, b] and thus 0 = [g(K)]1 =
b+ a (see (2.3)), which yields that a = −b and hence

vol(K−)

vol(K)
=

1

2
= lim

p→∞

(

p+ 1

2p+ 1

)(p+1)/p

.

Remark 3.1. Grünbaum’s inequality (1.1), jointly with its equality case, is
collected in the case p = 1/(n−1) of Theorem 1.1. Indeed, on the one hand,
Theorem A implies that the cross-sections volume function f is (1/(n −
1))-concave, and thus (1.2) yields (1.1). On the other hand, regarding the
equality case of (1.1), we note that the fact that f is (1/(n − 1))-affine,
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combined with the convexity of K jointly with the equality case of the Brunn-
Minkowski inequality (2.1), implies that K must be a cone in the direction
of the normal vector of H.

Let K ⊂ R
n be a compact set with non-empty interior and with centroid

at the origin, such that its cross-sections volume function f is p-concave, with
respect to a given hyperplane H. Moreover, if p ∈ (−∞,−1) ∪ (−1/2,∞),
we write for short

αp :=

(

p+ 1

2p + 1

)(p+1)/p

,

where, if p = 0, α0 is the value that is obtained “by continuity”, that is,

α0 = lim
p→0

(

p+ 1

2p + 1

)(p+1)/p

= e−1.

In Theorem 1.1 we have shown that, whenever p ≥ 0, αp is a sharp
lower bound for the ratio vol(K−)/vol(K), as a consequence of the fact that
[g(Cp)]1 ≤ 0 for the (suitable) set Cp such that vol

(

C −
p

)

= vol(K−) and

vol
(

C +
p

)

= vol(K+). Next we point out that, in fact, these two conditions
are equivalent.

Corollary 3.1. Let p ∈ (−∞,−1) ∪ [0,∞) and let H ∈ G(n, n − 1) be a
hyperplane with unit normal vector u ∈ S

n−1. Let K ⊂ R
n be a compact set

with non-empty interior and with centroid at the origin. If Cp, given as in
Definition 1.1, with axis parallel to u, is such that

vol
(

C −
p

)

= vol(K−) and vol
(

C +
p

)

= vol(K+),

then the following assertions are equivalent:

(a) vol(K−)/vol(K) ≥ αp;

(b) [g(Cp)]1 ≤ 0.

Proof. From Lemma 2.1, we have

vol
(

Cp ∩
(

g(Cp) +H
)−)

vol(Cp)
= αp.

Moreover, by hypothesis, we get

vol(K−)

vol(K)
=

vol
(

Cp ∩H−
)

vol(Cp)
.

Therefore, the result now follows from the fact that, for any x, y ∈ R
n such

that {x, y}|H⊥ ⊂ Cp|H
⊥, vol

(

Cp ∩ (x+H)−
)

≤ vol
(

Cp ∩ (y +H)−
)

if and
only if [x]1 ≤ [y]1. �

Next we show that Theorem 1.1 cannot be extended to the range of p ∈
(−∞,−1). In fact, we prove a more general result:
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Proposition 3.2. Let p ∈ (−∞,−1). There exists no positive constant βp
such that

min

{

vol(K−)

vol(K)
,
vol(K+)

vol(K)

}

≥ βp

for all compact sets K ⊂ R
n with non-empty interior and with centroid

at the origin, for which there exists H ∈ G(n, n − 1) such that f(x) =
voln−1

(

K ∩ (x+H)
)

, x ∈ H⊥, is p-concave.

Proof. By Lemma 2.1, for any q ∈ (−∞,−1) we have αq = vol
(

C −
q

)

/vol(Cq),

provided that Cq has centroid at the origin. Since αq → 1 as q → −1−, we
obtain

lim
q→−1−

min

{

vol
(

C −
q

)

vol(Cq)
,
vol

(

C +
q

)

vol(Cq)

}

= lim
q→−1−

(1− αq) = 0.

The proof is now concluded from the fact that any q-concave function is also
p-concave, whenever q > p. �

We conclude the paper by showing that the statement of Theorem 1.1
cannot be extended to the range of p ∈ (−1/2, 0) either. To this aim, note
that if p < q are parameters for which βp and βq are such sharp lower bounds
for the ratio vol(K−)/vol(K) (i.e., in the cases in which f is respectively p-
concave and q-concave) then βp ≤ βq, because every q-concave function is
also p-concave. We notice however that, if p ∈ (−1/2, 0), the value obtained
by Cp is not αp but 1− αp (cf. (2.6)), and then 1 − αp ≥ 1 − α0 > 1/2 for
any p ∈ (−1/2, 0) whereas αp ≤ 1/2 for all p ≥ 0.

Therefore, this fact (jointly with the case in which p ∈ (−∞,−1), col-
lected in Proposition 3.2) gives that [0,∞] is the largest subset of the real
line (with respect to set inclusion) for which Cp provides us with the infi-
mum value for the ratio vol(·−)/vol(·), among all compact sets with (cen-
troid at the origin and) p-concave cross-sections volume function. However,
since αp is increasing in the parameter p on (−1/2,∞), and αp → 0 as
p → (−1/2)+, it is still possible to expect αp to be a lower bound for
min

{

vol(K−)/vol(K), vol(K+)/vol(K)
}

. Unfortunately, we do not know so
far whether this issue has a positive answer or not.
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