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Abstract. As a substraction counterpart of the well-known p-sum of
convex bodies, we introduce the notion of p-difference. We prove several
properties of the p-difference, introducing also the notion of p-(inner)
parallel bodies. We prove an analog of the concavity of the family of
classical parallel bodies for the p-parallel ones, as well as the continuity
of this new family, in its definition parameter. Further results on inner
parallel bodies are extended to p-inner ones; for instance, we show that
tangential bodies are characterized as the only convex bodies such that
their p-inner parallel bodies are homothetic copies of them.

1. Preliminaries

Let Kn be the set of all convex bodies, i.e., non-empty compact convex
sets in the Euclidean space R

n, endowed with the standard scalar product
〈·, ·〉 and the Euclidean norm | · |, and let Kn

0 be the subset of Kn consisting
of all convex bodies containing the origin. Let Bn be the n-dimensional unit
ball and {e1, . . . , en} the canonical basis in R

n.
We will denote by h(K,u) = max

{
〈x, u〉 : x ∈ K

}
the support function

of K ∈ Kn in the direction u of the (n − 1)-dimensional unit sphere S
n−1

in R
n. For a set M ⊆ R

n, let bdM , clM , intM and relintM denote its
boundary, closure, interior and relative interior. The convex hull and the
positive hull of M are represented by convM and posM . The dimension
of M , i.e., the dimension of its affine hull, is denoted by dimM . If M is
measurable, we write vol(M) to denote its volume, that is, its n-dimensional
Lebesgue measure. Finally, for u, v ∈ R

n, the notation [u, v] stands for the
convex hull of {u, v}, i.e., the line segment with end points u, v.

The vectorial or Minkowski addition of non-empty sets in R
n is defined as

A+B = {a+ b : a ∈ A, b ∈ B}.

We refer the reader to the books [5, 11] for a detailed study of the same.
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Minkowski difference (though it was not introduced by Minkowski) can
be regarded as the substraction counterpart of the Minkowski sum: for two
sets A,B ⊆ R

n, the Minkowski difference of A and B is defined by

A ∼ B = {x ∈ R
n : B + x ⊆ A},

this is, A ∼ B is the largest set such that (A ∼ B) + B ⊆ A (if B 6= ∅). If
B = ∅, then we set A ∼ B = R

n.
In 1962 Firey introduced the following generalization of the classical

Minkowski addition (see [4]). For p ≥ 1 and K,E ∈ Kn
0 the p-sum (or

Lp sum) of K and E is the convex body K +p E ∈ K
n
0 whose support

function is given by

(1.1) h(K +p E, u) =
(
h(K,u)p + h(E, u)p

)1/p
,

for all u in S
n−1. When p = 1, the latter defines the usual Minkowski sum

whereas for p =∞, h(K +∞ E, u) = max
{
h(K,u), h(E, u)

}
, i.e.,

(1.2) K +∞ E = conv(K ∪ E)

(see Figure 1). We notice also that when combining the p-sum with the
scalar multiplication µK = {µx : x ∈ K}, the following fact holds:

(1.3) µK +p µE = µ(K +p E),

for all K,E ∈ Kn
0 , µ > 0 and p ≥ 1.

Figure 1. [−2e1, 2e1] +p B2, where p = 1, 1.5, 10.

Moreover, in [4, Theorem 1] it is shown that

(1.4) K +q E ⊆ K +p E for all 1 ≤ p ≤ q.

We would like to observe a straightforward geometrically important differ-
ence between the Minkowski sum and the p-sum: the loss of the translation
invariance.



p-DIFFERENCE OF CONVEX BODIES 3

As we shall see later, Minkowski difference gives rise to the notion of in-
ner parallel bodies, a notion which has many applications in the geometry
of convex bodies: according to [11, Section 7.5] “some of the deeper investi-
gations of inequalities for mixed volumes make essential use of the method
of inner parallel bodies”; we refer the reader to [11, Note 2 for Section 7.5]
for further applications of inner parallel bodies.

The works [8, 9] of Lutwak, where a systematic study of means of con-
vex bodies is taken up, constitute the outstanding rising of the nowadays
known as Brunn-Minkowski-Firey theory. In the last years many important
developments of this theory have come out; for further details, as well as
detailed bibliography on the topic we refer the reader to [11, Chapter 9] and
the references therein.

Our aim in this work is to introduce a new operation, the p-difference of
convex bodies, which emulates the Minkowski difference in the framework of
the Lp-Brunn-Minkowski theory: for K,E ∈ Kn

0 , E ⊆ K, we will define the
p-difference of K and E as the largest convex body K ∼p E ∈ K

n
0 such that

(K ∼p E) +p E ⊆ K. Then, in Section 2 we will show that the following
equality of sets holds, providing two different expressions for the p-difference
of K and E:

K ∼p E =
⋃

M∈Fp
K;E

M =
⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤
(
h(K,u)p − h(E, u)p

)1/p}

where Fp
K;E = {M ∈ Kn

0 : M +p E ⊆ K}.
Next we prove suitable extensions of properties of the Minkowski sub-

straction for the p-difference. That is the content of Section 2.
Later, in Section 3 we discuss the necessity of introducing a subfamily of

Kn
0 where to work with the p-difference. We prove that the natural notion

of kernel (see Section 2 for details) of a convex body in the context of the p-
difference satisfies appropriate “p-versions” of the classical properties. More
precisely we prove that the p-kernel of K with respect to E may be larger
than the classical one, but remains always lower dimensional, i.e., contained
in a hyperplane. Finally, in the last section we introduce the notion of
p-inner parallel body, showing, among others, a concavity property of the
family of p-parallel bodies and the characterization of sets for which their
p-inner parallel bodies are homothetic copies of them.

2. p-difference of convex bodies. Definition and first
properties

There are several equivalent definitions of Minkowski difference, all of
which turn out to be equivalent (see [11, p. 146]). Next we provide the two
of them, which, in our investigation, settle down the basis for the definition
of p-difference of convex bodies.
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On the one hand, as mentioned already in the introduction, the Minkowski
difference of two sets A,B ∈ R

n can be defined by

(2.1) A ∼ B = {x ∈ R
n : B + x ⊆ A}.

On the other hand, if ψ : Sn−1 → [0,∞) is a non-negative continuous func-
tion, the Wulff-shape or Aleksandrov body of ψ is the set

WS(ψ) =
⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤ ψ(u)
}
.

For further details about Wulff-shapes we refer the reader to [11, Section 7.5]
and the references therein.

Remark 2.1. It is easy to see ([11, Section 7.5]) that for any such ψ, WS(ψ)
is a convex body containing the origin, and moreover,

h
(
WS(ψ), ·

)
≤ ψ(·).

Thus, for convex bodies K,E ∈ Kn, the Minkowski difference can be
defined as the Wulff-shape of the function ψ(u) = h(K,u) − h(E, u):

(2.2) K ∼ E =
⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤ h(K,u) − h(E, u)
}
.

Unlike what happens with the Minkowski sum and the p-sum, the support
function of the Minkowski difference of K,E cannot be given, in general, by
an easy combination of the support functions of K and E. Nevertheless,
Remark 2.1 provides a bound for the support function of the Minkowski
difference, namely,

h(K ∼ E, u) ≤ h(K,u) − h(E, u) for all u ∈ S
n−1.

We would like to point out that, in general, there is no equality in the above
inequality relating support functions (cf. Lemma 2.1 ii)).

Next lemma collects some useful rules which relate Minkowski addition
and substraction.

Lemma 2.1 ([11, p. 147]). Let A,B,C ⊆ R
n. Then

i) (A+B) ∼ B ⊇ A. If A,B ∈ Kn, then there is equality.
ii) (A ∼ B)+B ⊆ A, if B 6= ∅. If A,B ∈ Kn, equality holds if and only

if B is a summand of A, i.e., if there exists D ∈ Kn with A = D+B.
iii) (A ∼ B) + C ⊆ (A+ C) ∼ B.
iv) (A ∼ B) ∼ C = A ∼ (B + C).
v) A+B ⊆ C if and only if A ⊆ C ∼ B.

We have seen two equivalent geometric constructions giving rise to the
Minkowski difference, namely, equations (2.1) and (2.2). The first definition
makes use of the natural connection of the substraction with the Minkowski
sum: K ∼ E should be maximal among all convex bodies which (Minkowski)
added to E keep the result within K. The second definition takes advan-
tage of the connection of the Minkowski sum with the support function via



p-DIFFERENCE OF CONVEX BODIES 5

a Wulff-shape, since differences of support functions need not be support
functions.

These two constructions settle down the basis for describing the p-differen-
ce of convex bodies. As mentioned in the introduction we define this oper-
ation in the following way.

Definition 2.1. Let K,E ∈ Kn
0 , E ⊆ K, and let p ≥ 1. The p-difference of

K and E is the largest convex body K ∼p E ∈ K
n
0 such that

(2.3) (K ∼p E) +p E ⊆ K.

On the one hand, it is clear from the above definition that

(2.4) K ∼p E =
⋃

M∈Fp
K;E

M,

where

Fp
K;E =

{
M ∈ Kn

0 : M +p E ⊆ K
}
,

because
⋃

M∈Fp
K;E

M is a convex body. Indeed, if K1,K2 ∈ F
p
K;E then also

conv(K1 ∪K2) ∈ F
p
K;E, i.e., the above union is a convex set. Now given a

sequence of points (xn)n ⊂
⋃

M∈Fp
K;E

M with limn→∞ xn = x, there exists a

sequence (Mn)n ⊆ F
p
K;E with xn ∈Mn. By Blaschke Selection Theorem (see

e.g. [11, Theorem 1.8.6]) we can choose (Mn)n to be convergent to a convex
body M , and it is clear that M ∈ Fp

K;E. Therefore, x ∈M ⊆
⋃

M∈Fp
K;E

M .

Taking (1.2) into account, it is easy to check that K ∼∞ E = K, and for
p = 1 we obviously obtain the classical Minkowski difference of K and E.

On the other hand, and looking back to (2.2), one expects that such a kind
of expression also works for the p-difference, in order to use the powerful
Wulff-shape structure and its connection with the support function. The
following theorem shows that this is the case. First we will assume that
1 ≤ p <∞. The case p =∞ will be treated later.

Theorem 2.1. Let 1 ≤ p <∞ and let K,E ∈ Kn
0 with E ⊆ K. Then,

(2.5) K ∼p E =
⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤
(
h(K,u)p − h(E, u)p

)1/p}
.

Proof. We show (2.5) using the already known expression (2.4) for K ∼p E.
Let

L =
⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤
(
h(K,u)p − h(E, u)p

)1/p}
.

Remark 2.1 ensures that h(L, u) ≤
(
h(K,u)p − h(E, u)p

)1/p
and so we have

h(L, u)p + h(E, u)p ≤ h(K,u)p for all u ∈ S
n−1. It yields L ⊆ K ∼p E.

Conversely, if x ∈ K ∼p E, then there exists M ∈ Fp
K;E such that x ∈M ,

and from the definition of Fp
K;E, we obtain that

h(M,u)p + h(E, u)p ≤ h(K,u)p for all u ∈ S
n−1.
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It implies that 〈x, u〉 ≤
(
h(K,u)p−h(E, u)p

)1/p
for all u ∈ S

n−1, i.e., x ∈ L,
which shows the reverse inclusion and concludes the proof. �

We observe that by Remark 2.1, K ∼p E is a convex body whose support
function satisfies

(2.6) h(K ∼p E, u) ≤
(
h(K,u)p − h(E, u)p

)1/p
.

For p = ∞, the right-hand side in the defining inequality in (2.5) shall
be seen as the limit when p goes to infinity. Then, the case p = ∞ is not
achieved in the above result as the following example shows.

Example 2.1. Denoting by Cn = [−1, 1]n the n-dimensional cube of edge-
length 2 centered at the origin, we have

⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤ lim
p→∞

(
h(Cn, u)

p − h(Bn, u)
p
)1/p

}
= {0},

whereas Cn ∼∞ Bn = Cn using (2.4).

The problem relies on the fact that h(K,u) = h(E, u) for some u ∈ S
n−1

provokes a devastating geometrical effect on the intersection expression in
(2.5), whereas it is almost unseen by the union used in (2.4). Indeed, if
h(K,u) = h(E, u) holds for some u ∈ S

n−1 then

lim
p→∞

(
h(K,u)p − h(E, u)p

)1/p
= 0.

However, if bdK ∩ bdE = ∅, as E ⊆ intK, we have

lim
p→∞

(
h(K,u)p − h(E, u)p

)1/p
= h(K,u)

obtaining that
⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤ lim
p→∞

(
h(K,u)p − h(E, u)p

)1/p
}

= K.

Remark 2.2. From now on, we set
(
h(K,u)p − h(E, u)p

)1/p
= h(K,u) for p =∞,

which is the limit when p → ∞ except if h(K,u) = h(E, u) 6= 0. With this
convention, Theorem 2.1 remains true for p =∞ too.

Next we state the p-analogue of Lemma 2.1, whose proof is a direct ap-
plication of (2.5) and (1.1). Item i) of Lemma 2.1 will be included in Propo-
sition 2.1.

Lemma 2.2. Let K,E,M ∈ Kn
0 and p ≥ 1. Then, assuming the suitable

inclusions among the sets,

i) (K ∼p E)+pE ⊆ K. Equality holds if and only if E is a p-summand
of K, i.e., if there exists L ∈ Kn

0 with K = L+p E.
ii) (K ∼p E) +p M ⊆ (K +p M) ∼p E.
iii) (K ∼p E) ∼p M = K ∼p (E +p M).



p-DIFFERENCE OF CONVEX BODIES 7

iv) K +p E ⊆M if and only if K ⊆M ∼p E.

Further properties of the p-difference are collected in the following.

Proposition 2.1. Let K,E ∈ Kn
0 . Then, for 1 ≤ p <∞,

(2.7) (K +p E) ∼p E = K.

For all p ≥ 1 and 0 ≤ ε ≤ 1,

(2.8) K ∼p εK = (1− εp)1/pK.

If E ⊆ K then, for all p ≥ 1 and λ > 0,

(2.9) λ(K ∼p E) = (λK) ∼p (λE).

Proof. Since h
(
(K +p E) ∼p E, u

)p
≤ h(K,u)p for all u ∈ S

n−1 (cf. (2.6)),
we obtain that (K +p E) ∼p E ⊆ K. Now, Lemma 2.2 iv) for M = K +p E
yields K ⊆ (K +p E) ∼p E, and thus, K = (K +p E) ∼p E.

In order to prove (2.8), we first notice that the definition of p-sum (1.1)

implies that (1− εp)1/pK +p εK = K. Then, by (2.7) we get the result.
Now we show (2.9). Taking support functions and using (2.6), it is im-

mediate to see that
(
λ(K ∼p E)

)
+p λE ⊆ λK, which yields the inclusion

λ
(
K ∼p E

)
⊆ (λK) ∼p

(
λE

)
.

Then, applying this relation to λK, λE and 1/λ, we finally get

K ∼p E ⊆
1

λ

[
(λK) ∼p

(
λE

)]
⊆ K ∼p E. �

The following lemma is an easy consequence of (1.4) and (2.4).

Lemma 2.3. Let K,E ∈ Kn
0 , E ⊆ K, and let 1 ≤ p ≤ q ≤ ∞. Then

(2.10) K ∼p E ⊆ K ∼q E.

Remark 2.3. We observe that the inclusion (2.10) may be strict, as relation

(2.8) shows, because the map t 7→ (1−εt)1/t, 0 ≤ ε ≤ 1, is strictly increasing.

Finally we deal with the continuity of this new operation in Kn
0 . It is

known (see [11, Remark 3.1.12]) that Minkowski substraction is not contin-
uous with respect to the Hausdorff metric δH (see [11, Section 1.8] for the
definition). Next we prove that the same holds for the p-difference of convex
bodies, for any 1 < p <∞. For p =∞, the continuity holds trivially.

Proposition 2.2. Let 1 < p <∞. The p-difference is not continuous with
respect to the Hausdorff metric.

Proof. We consider the convex bodies

K = conv
(
B2 ∪

{
(2, 1)⊺, (2,−1)⊺

})
,

Ki = conv
(
B2 ∪

{
(2, 1)⊺, (2,−1 + 1/i)⊺

})
, i ∈ N.

Clearly, Ki converges to K with respect to the Hausdorff metric in K2
0.

Indeed, it can be seen that δH(Ki,K) ≤ 1/i.
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On the one hand, we have (see (2.10)) K ∼p B2 ⊇ K ∼ B2 = [0, e1] for
all p > 1. On the other hand, we claim that Ki ∼p B2 = {0} for every
i ∈ N and all p > 1, and hence we could conclude that Ki ∼p B2 does not
converge to K ∼p B2, as required.

In order to prove the claim, let i ∈ N and suppose, by contradiction, that
there exists u = (a, b)⊺ ∈ Ki ∼p B2, u 6= 0, which yields [0, u] +p B2 ⊆ Ki.
If b 6= 0 then

h
(
[0, u] +p B2,±e2

)
=

(
1 + |b|p

)1/p
> 1 = h(Ki, e2),

where the sign for e2 is chosen accordingly to the sign of b. Clearly it is not
possible, and therefore b = 0, i.e., u = ae1. Now, if a < 0 then

h
(
[0, ae1] +p B2,−e1

)
=

(
1 + |a|p

)1/p
> 1 = h

(
Ki,−e1

)
,

again a contradiction. Hence, a > 0.
Let ui = (cos θi, sin θi)

⊺ ∈ S
1 be the unit normal vector to Ki at the “in-

clined bottom edge”, i.e., the unique vector on S
1 with coordinates cos θi > 0,

sin θi < 0 (see Figure 2).

Figure 2. The p-difference is not continuous.

Then we have

h
(
[0, ae1] +p B2, ui

)
= (1 + ap cosp θi)

1/p > 1 = h(B2, ui) = h(Ki, ui),

which is impossible. Therefore, Ki ∼p B2 = {0}. �

We conclude the section with a brief observation on a Brunn-Minkowski
type inequality. The famous Brunn-Minkowski inequality states that for
K,E ∈ Kn,

vol(K + E)1/n ≥ vol(K)1/n + vol(E)1/n.

Using the monotonicity of the volume together with basic properties relating
the Minkowski sum and difference (see Lemma 2.1, ii)) one obtains the
following Brunn-Minkowski inequality for the Minkowski difference:

(2.11) vol(K ∼ E)1/n ≤ vol(K)1/n − vol(E)1/n.

In the setting of the Brunn-Minkowski-Firey theory, the p-Brunn-Minkowski
inequality, i.e., a Brunn-Minkowski type inequality for the p-sum, establishes
that if K,E ∈ Kn

0 , 1 ≤ p <∞, then

(2.12) vol(K +p E
)p/n

≥ vol(K)p/n + vol(E)p/n
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(see e.g. [11, Theorem 9.1.3]). Taking into account (2.12), the inclusion (2.3)
provides, in a straightforward manner, a Brunn-Minkowski type inequality
for the p-difference of two convex bodies (cf. (2.11)):

Proposition 2.3. Let K,E ∈ Kn
0 with E ⊆ K and let 1 ≤ p <∞. Then

vol(K ∼p E)p/n ≤ vol(K)p/n − vol(E)p/n.

Proof. Combining (2.3) with the monotonicity of the volume, we obtain that

vol
(
(K ∼p E) +p E

)p/n
≤ vol(K)p/n.

Now (2.12) together with (1.3) yields

vol
(
(K ∼p E) +p E

)p/n
≥ vol(K ∼p E)p/n + vol(E)p/n.

Joining both inequalities we finally obtain that

vol(K ∼p E)p/n ≤ vol(K)p/n − vol(E)p/n. �

The case p =∞ leads to a trivial inequality.

3. p-inradius and p-kernel

From now on we shall always assume that p 6=∞.
When dealing with the Minkowski difference, the notions of inradius and

kernel play a prominent role (see e.g. [2, 6, 10] and the references therein).
For two convex bodies K,E ∈ Kn, the relative inradius r(K;E) of K with
respect to E is defined by

r(K;E) = max
{
r ≥ 0 : x+ rE ⊆ K for some x ∈ R

n
}
,

whereas ker(K;E) = K ∼ r(K;E)E is the set of relative incenters of K,
usually called kernel of K with respect to E. The dimension of ker(K;E) is
strictly less than n (see [3, p. 59]). Moreover, the (relative) inradius at the
origin (cf. [1]) is defined as

ρ(K;E) = max{ρ ≥ 0 : ρE ⊆ K}.

Regarding (any of) the definitions of p-difference, one would be tempted
to introduce, for K,E ∈ Kn

0 , E ⊆ K, an analogue of the relative inradius,
i.e., a p-inradius of K relative to E as

max
{
r ≥ 0 :M +p rE ⊆ K for some M ∈ Kn

0

}
.

However, it is immediate to see that the above number, for p > 1, coincides
with the (relative) inradius at the origin ρ(K;E). Indeed, if there exists
M ∈ Kn

0 such that M +p ρE ⊆ K, then

ρE = {0}+p ρE ⊆M +p ρE ⊆ K,

as claimed.
We observe that since the “naturally defined” p-inradius does not depend

on p, and since, in general, r(K;E) 6= ρ(K;E), in order to develop a struc-
tured and systematic study of the p-difference, also valid for p = 1, we have
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the heuristic necessity of introducing a subfamily of Kn
0 where also the trivial

cases are avoided.
Thus, for E ∈ Kn

0 , we define the subfamily, strongly depending on the
geometry of the body E ∈ Kn

0 , given by

Kn
00(E) =

{
K ∈ Kn

0 : r(K;E) = ρ(K;E)
}

=
{
K ∈ Kn

0 : 0 ∈ ker(K;E)
}
.

(3.1)

The last equality of sets follows easily: if 0 ∈ ker(K;E) then r(K;E)E ⊆ K,
and thus r(K;E) ≤ ρ(K;E), being the reverse inequality a direct conse-
quence of the definition of inradius; conversely, if r(K;E) = ρ(K;E) then
r(K;E)E ⊆ K, which implies that 0 ∈ ker(K;E).

For K ∈ Kn
00(E) we define the p-kernel of K with respect to E as

kerp(K;E) = K ∼p r(K;E)E.

Then, using (2.10) it follows that, for 1 ≤ p ≤ q <∞,

(3.2) kerp(K;E) ⊆ kerq(K;E).

As in the case of the usual kernel, for which

(3.3) dim
(
ker(K;E)

)
≤ n− 1

([3, p. 59])), the following result shows that for any value of 1 ≤ p <∞, the
p-kernel of K ∈ Kn

00(E) is always a degenerated convex body.

Proposition 3.1. Let K ∈ Kn
00(E). Then, for any 1 ≤ p <∞,

dim
(
kerp(K;E)

)
≤ n− 1.

Proof. Without loss of generality, we may assume that r(K;E) = 1. Then
U =

{
u ∈ S

n−1 : h(K,u) = h(E, u)
}
6= ∅. We observe that if we show that

(3.4) dim
⋂

u∈U

{
x ∈ R

n : 〈x, u〉 ≤ 0
}
≤ n− 1,

then, using (2.5) we would get that

K ∼p E ⊆
⋂

u∈U

{
x ∈ R

n : 〈x, u〉 ≤ 0
}
,

which would finish the proof. Therefore, we have to prove (3.4).
Thus we assume, by contradiction, that

dim
⋂

u∈U

{
x ∈ R

n : 〈x, u〉 ≤ 0
}
= n.

Let v1, . . . , vn ∈ R
n be n linearly independent vectors so that

A = pos{v1, . . . , vn} ⊆ int
⋂

u∈U

{
x ∈ R

n : 〈x, u〉 ≤ 0
}
,

and let u1, . . . , un ∈ S
n−1 be n unit vectors such that

⋂

u∈{u1,...,un}

{
x ∈ R

n : 〈x, u〉 ≤ 0
}
=

⋂

u∈pos{u1,...,un}

{
x ∈ R

n : 〈x, u〉 ≤ 0
}
= A.
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Denoting by Ũ = pos{u1, . . . , un}, we clearly have that U ⊆ relint Ũ . Thus,

ε = min
{
h(K,u) − h(E, u) : u ∈ cl

(
S
n−1\Ũ

)}

is a positive real number and hence,

A ∩ εBn =




⋂

u∈Ũ

{
x ∈ R

n : 〈x, u〉 ≤ 0
}

 ∩




⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤ ε
}



=




⋂

u∈Ũ

{
x ∈ R

n : 〈x, u〉 ≤ 0
}

 ∩




⋂

u∈Sn−1\Ũ

{
x ∈ R

n : 〈x, u〉 ≤ ε
}



⊆
⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤ h(K,u) − h(E, u)
}
= K ∼ E.

This implies that K ∼ E has interior points (cf. (3.3)), a contradiction. It
shows (3.4) and hence the proposition. �

But moreover, for a given K ∈ Kn
00(E), the dimension of the p-kernel

depends on the parameter p. Before stating in a precise way this property,
we need the following result, which allows to determine directly the inradius
and the p-kernel in a special situation.

Lemma 3.1. For E ∈ Kn
0 , let K ∈ K

n
00(E). If K = L +p E with L ∈ Kn

0 ,
dimL < dim(L+ E), then r(K;E) = 1 and kerp(K;E) = L.

Proof. Since E ⊆ L +p E = K, then r(K;E) ≥ 1. Moreover, by (1.4)
we have that L +p E ⊆ L + E, and since dimL < dim(L + E), we get
1 ≤ r(K;E) ≤ r(L+ E;E) = 1, i.e., r(K;E) = 1. Finally, by (2.7),

kerp(K;E) = K ∼p r(K;E)E = K ∼p E = (L+p E) ∼p E = L. �

Proposition 3.2. For E ∈ Kn
0 , let K ∈ K

n
00(E) and 1 ≤ p ≤ q <∞. Then

dim
(
kerp(K;E)

)
≤ dim

(
kerq(K;E)

)
.

The inequality may be strict.

Proof. The statement is an immediate consequence of (3.2). The following
example shows that the inequality may be strict.

Let 1 ≤ p < q < ∞ and we take the convex body K = [−e1, e1] +q Bn.
Then, Lemma 3.1 ensures that kerq(K;Bn) = K ∼q Bn = [−e1, e1], and we
claim that kerp(K;Bn) = K ∼p Bn = {0}, which would show the statement.

Since K ∼p Bn ⊆ K ∼q Bn = [−e1, e1] (see Lemma 2.3), we suppose, by
contradiction, that there exists λe1 ∈ K ∼p Bn with 0 < λ ≤ 1. It implies
that [0, λe1] ⊆ K ∼p Bn, i.e., [0, λe1] +p Bn ⊆ K, and then

h
(
[0, λe1] +p Bn, u

)p
≤ h(K,u)p = h

(
[−e1, e1] +q Bn, u

)p

for all u ∈ S
n−1. In particular, taking

u =
(
λp/(q−p),

(
1− λ2p/(q−p)

)1/2
, 0, . . . , 0

)⊺

∈ S
n−1,
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the above inequality becomes λpq/(q−p) + 1 ≤
(
λpq/(q−p) + 1

)p/q
, which is a

contradiction because p < q and λ > 0.
Due to the symmetry, the same argument shows that for all −1 ≤ λ < 0,

λe1 6∈ K ∼p Bn. Therefore, K ∼p Bn = {0}, as claimed. �

4. p-inner parallel bodies

For two convex bodies K,E ∈ Kn, and a non-negative real number λ the
outer parallel body of K (relative to E) at distance λ is the Minkowski sum
K + λE. For −r(K;E) ≤ λ ≤ 0 the inner parallel body of K (relative to E)
at distance |λ| is the Minkowski difference K ∼ |λ|E. Inner parallel bodies
and their properties have been studied in [2, 6, 10], among others.

Joining outer and inner parallel bodies, for a fixed E ∈ Kn, the full system
of relative parallel bodies of K is defined as

Kλ =

{
K ∼ |λ|E if − r(K;E) ≤ λ ≤ 0,

K + λE if 0 ≤ λ <∞.

Obviously K0 = K and K−r(K;E) = ker(K;E). Moreover, for K,L ∈ Kn

and arbitrary µ ≥ −r(K;E), σ ≥ −r(L;E), the rule

(4.1) Kµ + Lσ ⊆ (K + L)µ+σ

is valid (see [11, (3.20)]). As a consequence, a very useful property of the full
system of relative parallel bodies of a convex set is obtained: the full system
µ 7→ Kµ is concave with respect to inclusion (see [11, Lemma 3.1.13]), i.e.,

(1− λ)Kµ + λKσ ⊆ K(1−λ)µ+λσ .

In this section we define a full system of p-parallel bodies of K for 1 < p <∞
and prove, in the above spirit, several properties of such a system. Since
we will work with convex bodies lying in Kn

00(E), the lower bound for the
parameters will be always (minus) the classical relative inradius (cf. (3.1)).

Let E ∈ Kn
0 and K ∈ Kn

00(E). We define the full system of p-parallel
bodies of K relative to E, 1 ≤ p <∞, as follows.

Definition 4.1. Let K ∈ Kn
00(E). Then, for any 1 ≤ p <∞,

Kp
λ =

{
K ∼p |λ|E if − r(K;E) ≤ λ ≤ 0,

K +p λE if 0 ≤ λ <∞.

We will refer to Kp
λ as the p-inner (respectively, p-outer) parallel body of K

at distance |λ| relative to E.

4.1. On the continuity and the concavity of the family of p-parallel
bodies. Next we show that, similarly as in the case p = 1, the full system
µ 7→ Kp

µ is, say, +p-concave, with respect to set inclusion. First we intro-
duce some notation for the p-sum of two real numbers, which will play an
important role in the following. Since negative real numbers are allowed,
this definition extends (up to a constant) the classical p-mean of positive
real numbers (see [7]).
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Let +p : R× R −→ R denote the binary operation defined by

(4.2) a+p b =




sgn2(a, b)

(
|a|p + |b|p

)1/p
if ab ≥ 0,

sgn2(a, b)
(
max

{
|a|, |b|

}p
−min

{
|a|, |b|

}p
)1/p

if ab ≤ 0,

being sgn2 : R× R −→ R the function given by

sgn2(a, b) =





sgn(a) = sgn(b) if ab > 0,

sgn(a) if ab ≤ 0 and |a| ≥ |b|,

sgn(b) if ab ≤ 0 and |a| < |b|,

where, as usual, sgn denotes the sign function.
We notice that for ab ≥ 0, this definition corresponds, up to maybe a

signed constant, to the classical p-mean ([7, Chapter II]) and does not cor-
respond to any of the more general φ-means considered in [7, Chapter III].

We point out two (easily proved) facts about this operation, which will
be used throughout the rest of the section without further special mention:

i) a+p b = b+p a for all a, b ∈ R, i.e., +p is commutative.
ii) (a+p b)+p c = a+p (b+p c) = (a+p c)+p b for all a, b, c ∈ R, i.e., +p

is associative.

In the setting of the Brunn-Minkowski-Firey theory, given a convex body
K ∈ Kn

0 , a p-scalar multiplication is usually defined by

λ ·K = λ1/pK for λ ≥ 0

(see e.g. [11, p. 490]). We use the analogous notation to the above one in
order to define, for λ ≥ 0 and a ∈ R, the numbers product

λ · a = λ1/pa.

With the above notation, the following result on the p-sum of (arbitrary)
real numbers shows that its behavior fits in the context of convexity.

Lemma 4.1. Let a, b ∈ R, a ≤ b and λ ∈ [0, 1]. Then, for all p ≥ 1,

(1− λ) · a+p λ · b ∈ [a, b].

Proof. First, if ab ≥ 0 then

(1− λ) · a+p λ · b =
[
(1− λ)1/pa

]
+p

[
λ1/pb

]

= sgn2

(
(1− λ)1/pa, λ1/pb

) (
(1− λ)|a|p + λ|b|p

)1/p

= sgn(a)
(
(1− λ)|a|p + λ|b|p

)1/p
,

and thus, in both cases a ≥ 0 and a ≤ 0, we get, from the above identity,

a ≤ (1− λ) · a+p λ · b ≤ b,

as required.
So, we assume ab ≤ 0, i.e., a ≤ 0 ≤ b, and we distinguish two cases.
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• If (1− λ)1/p|a| ≥ λ1/p|b|, then

sgn2

(
(1− λ)1/pa, λ1/pb

)
= sgn

(
(1− λ)1/pa

)
= −1,

and therefore (see (4.2)),

(1− λ) · a+p λ · b = sgn2

(
(1− λ)1/pa, λ1/pb

) (
(1− λ)|a|p − λ|b|p

)1/p

= −
(
(1− λ)|a|p − λ|b|p

)1/p
≤ 0 ≤ b

and

(1− λ) · a+p λ · b ≥ −
(
(1− λ)|a|p

)1/p
= −(1− λ)1/p|a| ≥ −|a| = a.

• If (1− λ)1/p|a| ≤ λ1/p|b|, then

sgn2

(
(1− λ)1/pa, λ1/pb

)
= sgn

(
λ1/pb

)
= 1,

which yields

(1− λ) · a+p λ · b =
(
λ|b|p − (1− λ)|a|p

)1/p
≤ λ1/p|b| ≤ |b| = b.

Obviously we also have (1− λ) · a+p λ · b ≥ 0 ≥ a. �

The defined p-sum of real numbers (4.2) turns out to be the right opera-
tion in order to describe the behavior of the system of p-parallel bodies, as
the following proposition shows. The proof is analogous to the proof of (4.1)
(see [11, pp. 148–149]), just interchanging the Minkowski sum and difference
of convex bodies by the p-sum and p-difference, and the usual sum of real
numbers by the p-sum defined in (4.2).

Proposition 4.1. For E ∈ Kn
0 , let K,L ∈ K

n
00(E), −r(K;E) ≤ µ <∞ and

−r(L;E) ≤ σ <∞. Then, for all 1 ≤ p <∞, we have

(4.3) Kp
µ +p L

p
σ ⊆ (K +p L)

p
µ+p σ.

As we already noticed when dealing with the p-difference, its combination
with the p-sum is not necessarily commutative if the difference is taken first
(cf. Lemma 2.2 and (2.7)). Next result shows how this fact is translated
into the setting of p-parallel bodies.

Proposition 4.2. For E ∈ Kn
0 , let K ∈ Kn

00(E), and let λ, µ ≥ 0. The
following relations hold for any 1 ≤ p <∞:

i)
(
Kp

λ

)p
µ
= Kp

λ+pµ
.

ii)
(
Kp

−λ

)p
µ
⊆ Kp

(−λ)+pµ
if λ ≤ r(K;E).

iii)
(
Kp

−λ

)p
−µ

= Kp
(−λ)+p(−µ) if λ

p + µp ≤ r(K;E)p.

iv)
(
Kp

λ

)p
−µ

= Kp
λ+p(−µ) if µ ≤ r(K;E) +p λ.

v) λKp
σ =

(
λK

)p
λσ

for all −r(K;E) ≤ σ <∞.
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Proof. For p = 1, i.e., for the usual relative parallel bodies, these relations
can be found in [6].

Items i), ii) and iii) follow directly from the definition of p-sum, relation
(4.3) with L = {0} and Lemma 2.2 iii), respectively, taking into account
that λE +p µE = (λ+p µ)E.

To prove iv) we notice first that if λ ≥ µ then, by i),

Kp
λ+p(−µ) +p µE = Kp

[λ+p(−µ)]+pµ
= Kp

λ,

and using (2.7) we obtain Kp
λ+p(−µ) = (Kp

λ)
p
−µ.

Now if λ < µ, ii) yields

Kp
λ+p(−µ) +p µE ⊆ K

p
[λ+p(−µ)]+pµ

= Kp
λ,

and again from (2.7) we deduce that Kp
λ+p(−µ) ⊆ (Kp

λ)
p
−µ. Moreover, using

Lemma 2.2 ii) and (2.7), we obtain

(Kp
λ)

p
−µ +p |λ+p (−µ)|E = (Kp

λ ∼p µE) +p |λ+p (−µ)|E

⊆ (Kp
λ +p |λ+p (−µ)|E) ∼p µE

= Kp
λ+p|λ+p(−µ)| ∼p µE

= Kp
µ ∼p µE = K,

which shows the opposite inclusion (Kp
λ)

p
−µ ⊆ K

p
λ+p(−µ).

Finally, v) is straightforward from the definition of p-sum if σ ≥ 0, and a
direct consequence of (2.9) if σ ≤ 0. �

From (4.3) and Proposition 4.2 v) we obtain the following result (cf. [11,
Lemma 3.1.13]).

Theorem 4.1. For E ∈ Kn
0 , let K ∈ K

n
00(E). The full system of p-parallel

sets of K relative to E, 1 ≤ p <∞, is +p-concave with respect to inclusion,
i.e., for λ ∈ [0, 1] and µ, σ ∈

[
−r(K;E),∞

)
,

(1− λ) ·Kp
µ +p λ ·K

p
σ ⊆ K

p
(1−λ)·µ+pλ·σ

.

Proof. We notice that, by Lemma 4.1, (1−λ) ·µ+p λ · σ ≥ −r(K;E). Then

(1− λ) ·Kp
µ +p λ ·K

p
σ =

(
(1− λ)1/pKp

µ

)
+p

(
λ1/pKp

σ

)

=
[
(1− λ)1/pK

]p
(1−λ)1/pµ

+p

[
λ1/pK

]p
λ1/pσ

⊆ Kp
(1−λ)·µ+p λ·σ. �

Next we show that the full system of p-parallel bodies is continuous in
the parameter λ with respect to the Hausdorff metric (cf. Proposition 2.2).

Proposition 4.3. For E ∈ Kn
0 , let K ∈ K

n
00(E) and let 1 ≤ p < ∞. Then

the function Φ :
[
−r(K;E),∞

)
−→ Kn

0 given by Φ(λ) = Kp
λ is continuous

with respect to the Hausdorff metric in Kn
0 .
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Proof. Let {λi}
∞
i=1 ⊆

[
−r(K;E),∞

)
be such that limi→∞ λi = λ. We have

to prove that limi→∞Φ(λi) = Φ(λ). We notice first that

Φ(λi) = Kp
λi

= WS(ϕλi
),

Φ(λ) = Kp
λ = WS(ϕλ),

where ϕµ : Sn−1 −→ [0,∞) is the (continuous) function given by

ϕµ(u) =
(
h(K,u)p + sgn(µ)|µ|ph(E, u)p

)1/p
.

From the continuity of the functions ϕλi
, ϕλ and the compactness of Sn−1

we deduce that there exist constants Mλi
,Mλ ≥ 0, i ∈ N, such that

ϕλi

(
S
n−1

)
= [0,Mλi

], ϕλ

(
S
n−1

)
= [0,Mλ].

Since limi→∞ λi = λ, the sequence {λi}
∞
i=1 is bounded, and then there exists

a constant M > 0 such that M ≥Mλ and M ≥Mλi
, i ∈ N.

If λ 6= 0, then sgn(λi) = sgn(λ) for i large enough, whereas if λ = 0, then
ϕp
λi
− ϕp

0 = sgn(λi)|λi|
ph(E, ·)p. Therefore we have, in both cases, that

∥∥ϕp
λi
−ϕp

λ

∥∥
∞

=
∥∥∥sgn(λi)

(
|λi|

p − |λ|p
)
h(E, ·)p

∥∥∥
∞
=

∣∣∣|λi|p − |λ|p
∣∣∣
∥∥h(E, ·)p

∥∥
∞
,

for i large enough, and thus, limi→∞

∥∥ϕp
λi
− ϕp

λ

∥∥
∞

= 0.

Since the function [0,M ] −→ R given by t 7→ t1/p, is uniformly continuous,
then limi→∞ ‖ϕλi

−ϕλ‖∞ = 0. Now, [11, Lemma 7.5.2] for Ω = S
n−1 implies

that limi→∞WS(ϕλi
) = WS(ϕλ), as desired. �

4.2. p-inner parallel bodies for special families of sets. As it occurs
when dealing with the p- and the Minkowski sums, for which the first one
happens to be more difficult to visualize, the p-difference is, in general, also
more difficult to deal with than the Minkowski difference. However, there
are particular cases in which the p-difference is easy to determine. In this
subsection we deal with special families of convex bodies, for which p-parallel
bodies can be explicitly determined.

Tangential bodies can be defined in several equivalent ways; here we will
use the following one: a convex body K ∈ Kn containing a convex body
E ∈ Kn, is called a tangential body of E, if through each boundary point
of K there exists a support hyperplane to K that also supports E. We
notice that if K is a tangential body of E, then r(K;E) = 1. The n-
dimensional cube is an example of this type of bodies for E = Bn. For an
exhaustive study of the more general defined p-tangential bodies we refer to
[11, Section 2.2 and p. 149].

The p-inner parallel bodies of a tangential body can be easily obtained
(see Figure 3, cf. (2.8)).

Proposition 4.4. Let E ∈ Kn
0 and let K ∈ Kn

0 be a tangential body of E.
Then, for all 1 ≤ p <∞ and any λ ∈ [0, 1],

(4.4) Kp
−λ = (1− λp)1/pK.



p-DIFFERENCE OF CONVEX BODIES 17

Figure 3. 1 and 2-difference of the square C2 and the ball (1/2)B2.

Proof. Let U ⊆ S
n−1 be the set of those outer normal vectors for which the

support hyperplane to K also supports E. Clearly, h(K,u) = h(E, u) for all
u ∈ U and

K =
⋂

u∈U

{
x ∈ R

n : 〈x, u〉 ≤ h(K,u)
}
.

Therefore we get, on the one hand,

Kp
−λ = K ∼p λE =

⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤
(
h(K,u)p − λph(E, u)p

)1/p}

⊆
⋂

u∈U

{
x ∈ R

n : 〈x, u〉 ≤ (1− λp)1/ph(K,u)
}
= (1− λp)1/pK.

On the other hand, since E ⊆ K, then

h
(
(1− λp)1/pK,u

)p
= (1− λp)h(K,u)p ≤ h(K,u)p − λph(E, u)p

for all u ∈ S
n−1, and hence

Kp
−λ =

⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤
(
h(K,u)p − λph(E, u)p

)1/p}

⊇
⋂

u∈Sn−1

{
x ∈ R

n : 〈x, u〉 ≤ h
(
(1− λp)1/pK,u

)}
= (1− λp)1/pK.

It concludes the proof. �

Moreover, tangential bodies can be characterized by (4.4), i.e., as the
only convex bodies such that their p-inner parallel bodies are homothetic
copies of them (see Figure 3). The case p = 1 was proved by Schneider,
see [11, Lemma 3.1.14]. In order to prove it we need the following auxiliary
result, which shows that p-inner parallel bodies are strongly related to the
classical inner ones when dealing with dilations. For the sake of brevity we
will assume that r(K;E) = 1.

Proposition 4.5. Let K,E ∈ Kn
0 with E ⊆ K and r(K;E) = 1. Let 1 ≤

p <∞ and λ ∈ [0, 1]. If Kp
−λ = θK for some θ ∈ [0, 1], then θ = (1− λp)1/p

and K−(1−θ) = θK.
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Proof. First we prove that

(4.5) if Kp
−λ = θK for 0 ≤ λ ≤ 1, then θ = (1− λp)1/p.

Indeed, since (1 − λp)1/pK +p λE ⊆ (1− λp)1/pK +p λK = K, then we get

(1 − λp)1/pK ⊆ K ∼p λE = θK, which yields θ ≥ (1 − λp)1/p. Moreover,
since r(K;E) = 1, there exists u ∈ S

n−1 such that h(K,u) = h(E, u) > 0
(see [3, p. 59]). Therefore,

θh(K,u) = h(θK, u) = h(K ∼p λE, u) ≤
(
h(K,u)p − λph(E, u)p

)1/p

= (1− λp)1/ph(K,u),

and since h(K,u) > 0, we get θ ≤ (1− λp)1/p, which shows (4.5).
Now we prove the proposition.
First we observe that θK + (1− θ)E ⊆ θK + (1− θ)K = K, which yields

θK ⊆ K ∼ (1− θ)E = K−(1−θ),

and we assume, by contradiction, that there exists x ∈ (K ∼ (1− θ)E)\θK.
In particular, x /∈ θK = Kp

−λ, and so (cf. (2.5)) there is ux ∈ S
n−1 such that

(4.6) 〈x, ux〉 >
(
h(K,ux)

p − λph(E, ux)
p
)1/p

.

Moreover, since x+ (1− θ)E ⊆ K, taking support functions we get

(4.7) 〈x, ux〉+ (1− θ)h(E, ux) ≤ h(K,ux),

and joining both inequalities (4.6) and (4.7), we obtain

(4.8)
(
h(K,ux)

p − λph(E, ux)
p
)1/p

< h(K,ux)− (1− θ)h(E, ux).

We notice that h(K,ux) > 0 (cf. (4.6), since h(K,ux) ≥ 〈x, ux〉 > 0), and
thus, writing α = h(E, ux)/h(K,ux) ∈ [0, 1], inequality (4.8) becomes

(4.9) (1− λpαp)1/p < 1− (1− θ)α.

In order to get the contradiction, let f(α) = (1− λpαp)1/p defined on [0, 1].
It can be checked that f ′′(α) ≤ 0, i.e., f is a concave function, with f(0) = 1

and f(1) = (1−λp)1/p = θ (cf. (4.5)), which implies that f(α) ≥ 1−(1−θ)α
for all α ∈ [0, 1]. It contradicts (4.9), and shows the result. �

Remark 4.1. Proposition 4.5 says that there is a bijection between p-inner
parallel bodies and the inner parallel bodies of K, when they all are homo-
thetic to K, given by

Kp
−λ ←→ K−1+(1−λp)1/p .

Theorem 4.2. Let K,E ∈ Kn
0 , intE 6= ∅, with E ⊆ K and r(K;E) = 1.

Let 1 ≤ p <∞ and λ ∈ [0, 1]. Then K is a tangential body of E if and only
if Kp

−λ is homothetic to K.
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Proof. IfK is a tangential body of E, thenKp
−λ = (1−λp)1/pK is homothetic

toK (see Proposition 4.4). Conversely, ifKp
−λ = θK for some θ ∈ [0, 1], then

by Proposition 4.5 we get K−(1−θ) = θK with θ = (1 − λp)1/p. Schneider’s
result [11, Lemma 3.1.14] shows that K is a tangential body of E. �

Other convex bodies for which their p-inner parallel bodies can be easily
determined are those which are obtained as p-outer parallel bodies of a lower
dimensional set.

Proposition 4.6. For E ∈ Kn
0 , let K ∈ K

n
00(E) be given by K = L+p µE,

with L ∈ Kn
0 , dimL < dim(L+ E), and µ ≥ 0. Then

Kp
λ = L+p (µ +p λ)E,

for all λ ∈
[
−µ,∞

)
.

Proof. For λ ≥ 0 the result follows directly from the definitions of p-sums
of convex bodies and numbers.

If −µ ≤ λ ≤ 0 and since r(L;E) = 0, we can use Proposition 4.2 iv) in
order to obtain that

Kp
λ = K ∼p |λ|E = (L+p µE) ∼p |λ|E = L+p (µ +p λ)E. �

We notice moreover that in this case kerp(K;E) = L and r(K;E) = µ
(see Lemma 3.1). Besides, if we remove the assumption dimL < dim(L+E),
then the result also holds, but in the appropriate range of λ.

Proposition 4.6 indicates that for some convex bodies, the whole family
of p-parallel bodies is made of only p-outer parallel bodies. We ask again
whether it is possible to characterize the convex bodies satisfying such a
property, i.e., whether a converse for the proposition is also true. This
question will be answered in Theorem 4.3.

When p = 1, this fact was studied by Sangwine-Yager, who introduced,
for a given convex body K and the particular case E = Bn, the set

S =
{
τ ∈

[
−r(K;Bn),∞

)
: Kτ + (λ− τ)Bn = Kλ, for all λ ≥ τ

}
,

proving in [10, Lemma 1.5] that it is always a left-hand closed interval,
namely, that there exists σ ∈

[
−r(K;Bn), 0

]
such that S = [σ,∞).

The natural extension of S to the case p ≥ 1 is considered in the next.
For E ∈ Kn

0 , let K ∈ K
n
00(E) and let 1 ≤ p <∞. We define the set

Sp =
{
τ ∈

[
−r(K;E),∞

)
: Kp

τ +p

(
λ+p (−τ)

)
E = Kp

λ, for all λ ≥ τ
}
.

Although Sp strongly depends on the convex bodies K,E, we shall write
just Sp for short. We observe that when E = Bn and p = 1 we recover S.
We also notice that, in general, Sp 6= Sq if p 6= q and thus, in particular,
Sp 6= S for all p > 1. Indeed, for K = [−e1, e1] +q Bn, Proposition 4.6
yields Sq = [−1,∞); however, for p < q, since kerp(K;Bn) = {0} (cf. proof
of Proposition 3.2), if Sp = Sq it would be K = kerp(K;Bn) +p Bn = Bn,
which is not possible.
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The following result shows, as it happened in Sangwine-Yager’s result
([10, Lemma 1.5]), that Sp is also a left-hand closed interval for all p ≥ 1.

Lemma 4.2. For E ∈ Kn
0 , let K ∈ K

n
00(E) and let 1 ≤ p <∞. Then there

exists σ ∈
[
−r(K;E), 0

]
such that Sp = [σ,∞).

Proof. First, we prove that [0,∞) ⊆ Sp. Clearly

Kp
0 +p

(
λ+p (−0)

)
E = K +p λE = Kp

λ for all λ ≥ 0,

and so 0 ∈ Sp. Now let τ > 0 and λ ≥ τ . Since λ+p (−τ) = (λp−τp)1/p > 0,
Proposition 4.2 i) ensures that

Kp
τ +

(
λ+p (−τ)

)
E = Kp

τ+p(λ+p(−τ)) = Kp
λ.

Hence, τ ∈ Sp for all τ ≥ 0 and thus, [0,∞) ⊆ Sp, as required.
Next we see that if τ ∈ Sp, τ < 0, then [τ, 0) ⊆ Sp. Indeed, for such a

value τ ∈ Sp, let µ ∈ (τ, 0) and λ ≥ µ. Clearly, both numbers

µ+p (−τ) =
(
| − τ |p − |µ|p

)1/p
> 0 and

λ+p (−µ) =

{ (
λp + | − µ|p

)1/p
≥ 0 if λ ≥ 0,(

| − µ|p − |λ|p
)1/p

≥ 0 if λ < 0,

and thus, since τ ∈ Sp and λ ≥ µ > τ , we get, from Proposition 4.2 i) and
the commutativity and associativity of the +p operation, that

Kp
µ +p

(
λ+p (−µ)

)
E =

[
Kp

τ +p

(
µ+p (−τ)

)
E
]
+p

(
λ+p (−µ)

)
E

= Kp
τ +p

[(
µ+p (−τ)

)
+p

(
λ+p (−µ)

)]
E

= Kp
τ +p

(
λ+p (−τ)

)
E = Kp

λ

for all λ ≥ µ. Hence, µ ∈ Sp.
At this point, we have shown that if τ ∈ Sp then [τ,∞) ⊆ Sp. Finally,

let σ = inf Sp, which clearly satisfies −r(K;E) ≤ σ ≤ 0. We have to prove
that σ ∈ Sp. For λ > σ let {τi}

∞
i=1 ⊆ Sp be a decreasing sequence with

limi→∞ τi = σ and τ1 ≤ λ. Since τi ∈ Sp for all i ∈ N we have

Kp
τi +p

(
λ+p (−τi)

)
E = Kp

λ,

and taking limits when i→∞, the continuity of the full system of p-parallel
bodies (Proposition 4.3) ensures that

Kp
σ +p

(
λ+p (−σ)

)
E = Kp

λ

for all λ ≥ σ, i.e., σ ∈ Sp. It concludes the proof. �

Lemma 4.2 and Proposition 4.6 allow to determine the convex bodies for
which Sp is maximal.

Theorem 4.3. For E ∈ Kn
0 let K ∈ Kn

00(E), and let 1 ≤ p < ∞. Then
K = kerp(K;E) +p r(K;E)E if and only if Sp =

[
−r(K;E),∞

)
.
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