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Abstract. We show a reverse isoperimetric inequality within the class of re-

lative outer parallel bodies, with respect to a general convex body E, along
with its equality condition. Based on the convexity of the sequence of quer-

massintegrals of Minkowski sums we also prove further inequalities.

1. Introduction

Let Kn denote the set of all convex bodies in Rn, i.e., the set of all non-empty
compact convex subsets of Rn. For two convex bodies K,E ∈ Kn and a non-
negative real number λ, the volume vol(·) (i.e., the Lebesgue measure) of the
Minkowski sum K+λE is expressed as a polynomial of degree at most n in λ, and
it is written as

(1.1) vol(K + λE) =

n∑
i=0

(
n

i

)
Wi(K;E)λi.

This expression is called Minkowski-Steiner formula or relative Steiner formula of
K. The coefficients Wi(K;E) are the relative quermassintegrals of K, and they
are a special case of the more general defined mixed volumes for which we refer to
[11, Chapter 6] and [16, Section 5.1]. In particular, we have W0(K;E) = vol(K),
Wn(K;E) = vol(E), Wi(λ1K;λ2E) = λn−i

1 λi2Wi(K;E) for λ1, λ2 ≥ 0 and, if E has
dimension dim(E) = n, Wi(K;E) = 0 if and only if dim(K) ≤ n− i−1. Moreover,
nW1(K;E) is the (relative) Minkowski content of K, which will be denoted by
S(K;E). Quermassintegrals admit also a Steiner formula, namely

(1.2) Wk(K + λE;E) =

n−k∑
i=0

(
n− k
i

)
Wk+i(K;E)λi,

for any 0 ≤ k ≤ n.

A finite sequence of real numbers (a0, . . . , am) is called concave (see e.g. [16,
Section 7.4]) if

(1.3) ai−1 − 2ai + ai+1 ≤ 0 for i = 1, . . . ,m− 1,

or equivalently, if
a0 − a1 ≤ a1 − a2 ≤ · · · ≤ am−1 − am.
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Moreover, a sequence (a0, . . . , am) is said to be convex if it satisfies the reversed
inequality to (1.3), i.e., ai−1 − 2ai + ai+1 ≥ 0, for 1 ≤ i ≤ m− 1.

As a consequence of this, a concave sequence satisfies the following inequality
[16, (7.59)]:

(1.4) (k − j)ai + (i− k)aj + (j − i)ak ≤ 0

for any 0 ≤ i < j < k ≤ m. In the latter, there is equality if and only if

ar−1 − 2ar + ar+1 = 0 for r = i+ 1, . . . , k − 1.

When the sequence (a0, . . . , am) contains only positive numbers, it is called log-
concave if the logarithm of the sequence, namely (log a0, . . . , log am) is concave,
which is equivalent to the following inequalities [16, Section 7.4]:

(1.5) a2
i ≥ ai−1ai+1 for i = 1, . . . ,m− 1.

For a convex body K ∈ Kn the fundamental inequalities

Wi(K;E)2 ≥Wi−1(K;E)Wi+1(K;E),

which are consequences of the more general Aleksandrov-Fenchel inequalities for
mixed volumes (see e.g. [16, Section 7.3]) do yield that the quermassintegrals of K
(relative to E) (W0(K;E), . . . ,Wn(K;E)) constitute a log-concave sequence, i.e.,
they satisfy (1.5). Furthermore, when dealing with n-dimensional convex bodies
K,E ∈ Kn with a common projection onto a hyperplane, then the sequence of
relative quermassintegrals (W0(K;E), . . . ,Wn(K;E)) is also concave and thus it
satisfies (1.4) (see [16, Theorem 7.7.1 and (7.190)]).

Here we show that, moreover, the reverse form of (1.4) holds when assuming
that E is a summand of K:

Theorem 1.1. Let M,E ∈ Kn with K = M+E and dim(E) = n. Then, for every
0 ≤ i < j < k ≤ n,

(1.6) (k − j)Wi(K;E) + (i− k)Wj(K;E) + (j − i)Wk(K;E) ≥ 0.

Equality holds if and only if dim(M) ≤ 1.

By taking i = 0, j = 1 and k = n in Theorem 1.1 we get the following result:

Corollary 1.1. Let M,E ∈ Kn with K = M + E and dim(E) = n. Then

vol(K) ≥ S(K;E)

n− 1
− vol(E)

n− 1
.

Equality holds if and only if dim(M) ≤ 1.

The latter inequality can be regarded as a reverse form of the well-known (rel-
ative) isoperimetric inequality for n-dimensional convex bodies K,E ∈ Kn (also
referred to in the literature as the Minkowski first inequality, see e.g. [16, Theo-
rem 7.2.1]):

S(K;E)n ≥ nnvol(K)n−1vol(E),

and equality holds if and only if K = rE (up to translations) for some r > 0.
Another result in this regard is the celebrated reverse isoperimetric inequality, due
to Ball [1] (with equality conditions later supplied by Barthe [3]), in the classical
setting (see also [2] and the references therein).

The case E =
(
1/λ
)
Bn of the Euclidean ball of radius 1/λ (for λ > 0) in both

Theorem 1.1 and Corollary 1.1 has been recently obtained in [8]. There, using
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Kubota’s formula [16, (5.72)] and induction on the dimension, the authors derive
the above relations for the classical quermassintegrals of K, i.e., when the relative
body E is the Euclidean unit ball Bn. Here we show, by using the Steiner formula
(1.2), that these relations can be extended to the setting of the so-called Minkowski
relative geometry, this is, when the functionals of convex bodies are evaluated in
relation to an arbitrary convex body E rather than Bn. This will be shown in
Section 2 of the present paper. Next, in Section 3 we prove further inequalities
involving quermassintegrals of Minkowski sums of convex bodies.

2. Relations for the quermassintegrals of relative outer parallel
bodies

We start this section by showing that the sequence (W0(K;E), . . . ,Wn(K;E))
of (relative) quermassintegrals is convex when E is a summand of K. This will be
proven by using the Steiner formula (1.2) jointly with the following property of the
binomial coefficients of the numbers n, k ∈ N ∪ {0}:

(2.1)

(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
,

where
(
n
k

)
:= 0 whenever k > n.

Lemma 2.1. Let M,E ∈ Kn with K = M+E and dim(E) = n. Then the sequence
(W0(K;E), . . . ,Wn(K;E)) is convex, i.e., for every 1 ≤ i ≤ n− 1,

(2.2) Wi−1(K;E)− 2Wi(K;E) + Wi+1(K;E) ≥ 0.

Equality holds if and only if dim(M) ≤ 1.

Proof. By the Steiner formula for the quermassintegrals (1.2) we get

Wi−1(K;E)− 2Wi(K;E) + Wi+1(K;E)

=

n−i+1∑
j=0

(
n− i+ 1

j

)
Wi−1+j(M ;E)− 2

n−i∑
j=0

(
n− i
j

)
Wi+j(M ;E)

+

n−i−1∑
j=0

(
n− i− 1

j

)
Wi+1+j(M ;E) = Wi−1(M ;E) + Wi(M ;E)(n− i− 1)

+

n−i−1∑
j=1

(
n− i− 1

j

)
Wi+j(M ;E)

((
n− i+ 1

j + 1

)
− 2

(
n− i
j

)
+

(
n− i− 1

j − 1

))
,

and thus, from (2.1), we have that

Wi−1(K;E)− 2Wi(K;E) + Wi+1(K;E) = Wi−1(M ;E) + Wi(M ;E)(n− i− 1)

+

n−i−2∑
j=1

(
n− i− 1

j

)(
n− i− 1

j + 1

)
Wi+j(M ;E) ≥ 0.

Moreover, from the latter identity we may assert that Wi−1(K;E)− 2Wi(K;E) +
Wi+1(K;E) = 0 if and only if Wn−2(M ;E) = 0. This completes the proof. �

At this point we would like to compare this result with Bonnesen’s inequality in
the plane, which establishes that

W0(K;E)− 2W1(K;E)r(K;E) + W2(K;E)r(K;E)2 ≤ 0,
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with equality if and only if K = L+ r(K;E)E for dimL ≤ 1. Here r(K;E) is the
relative inradius of K with respect to E, which is defined by

r(K;E) = sup{r ≥ 0 : ∃x ∈ Rn with x+ r E ⊂ K}.

Bonnesen proved this result for E = B2 [6], being the proof of the general case due to
Blaschke [4, Pages 33-36]. This inequality sharpens (in the plane) the Aleksandrov-
Fenchel and isoperimetric inequalities, and there is no known generalization of it to
higher dimension. Some Bonnesen style inequalities in arbitrary dimension n can
be found in e.g. [5, 7, 9, 10, 14, 15] (see also [16, Notes for Section 7.2] and the
references therein).

Remark 2.1. We notice that if K,E ∈ K2 are such that K = M + r(K;E)E,
which implies that dim(M) ≤ 1, then Lemma 2.1 for n = 2 (and such a pair of
convex bodies) is just a simple consequence of Bonnesen’s inequality.

Now we derive a more general result for three non-necessarily consecutive (rel-
ative) quermassintegrals. For the sake of clarity, we notice that along its proof we
are following the steps of [16, Pages 399, 400] (cf. (1.4)) (see also [8]). From now
on, and unless we say the opposite, Wi := Wi(K;E).

Proof of Theorem 1.1. Let 0 ≤ i < j < k ≤ n be fixed. From Lemma 2.1 it follows
that

(2.3) Wi −Wi+1 ≥Wj−1 −Wj ≥Wk−1 −Wk ≥ 0.

We notice that the latter inequality follows from the fact that K = M +E and the
monotonicity and translation invariance of mixed volumes.

Thus, (
Wj −Wj+1

)
+ · · ·+

(
Wk−1 −Wk

)
≤ (k − j)

(
Wj−1 −Wj

)(
Wi −Wi+1

)
+ · · ·+

(
Wj−1 −Wj

)
≥ (j − i)

(
Wj−1 −Wj

)
and hence,

0 ≤ Wj −Wk

k − j
≤Wj−1 −Wj ≤

Wi −Wj

j − i
,

which yields (1.6). Moreover, (1.6) holds with equality if and only if the same holds
for (2.2). Thus, the result follows from the equality case of Lemma 2.1. �

The following classical result provides us with a sufficient condition for a sequence
of positive real numbers to be the (relative) quermassintegrals of certain convex
bodies K,E ∈ Kn:

Proposition 2.1 ([17]). If the sequence of positive real numbers (a0, . . . , an) is log-
concave, then there exist simplices K,E ∈ Kn such that Wi(K;E) = ai, 0 ≤ i ≤ n.

A refined version of this result can be found in [13]. The most general problem
of characterizing whether a finite sequence of non-negative numbers are the mixed
volumes of m ∈ N convex bodies remains open, except the 2-dimensional case for
m = 3, which was solved by Heine in [12].

Using Proposition 2.1 we may assure on one hand that there exist convex bodies
in Rn for which (1.6) does not hold, and that there exist convex bodies, which are
not Minkowski sums one of each other, satisfying (1.6), on the other hand. We
collect the statement here, for the sake of completeness:
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Proposition 2.2.

i) There are convex bodies for which (1.6) does not hold.
ii) There exist pairs of convex bodies K,E ∈ Kn for which (1.6) does hold and

such that K 6= M + E for all M ∈ Kn.

Proof. The idea for both assertions is to use Proposition 2.1. To prove (i) it is
enough to find a log-concave sequence of positive real numbers which is not convex.
We consider (1, 2, 1), whose log-concavity (cf. (1.5)) is clearly fulfilled and thus, it
ensures the existence of planar simplices K,E ∈ K2 with W0(K;E) = W2(K;E) =
1 and W1(K;E) = 2, and for which (1.6) does not hold.

To prove (ii), we argue in the same way with the sequence (3/4, 1/2, 1/4), which
is both log-concave and convex. Since this sequence satisfies (2.2) with equality,
and vol(K) = 3/4 6= 1/4 = vol(E), the simplex E cannot be a summand of the
simplex K. �

Taking Theorem 1.1 into account, together with the log-concavity of the quer-
massintegrals of any convex body, it is natural to ask whether the log-concavity
together with the convexity (cf. Theorem 1.1) of the sequence of quermassinte-
grals of a Minkowski sum could provide us with better inequalities or, eventually,
equalities in some known inequalities. Unfortunately, so far we have no concluding
answers to this issue.

3. Further inequalities

In the following we will write, for K,E ∈ Kn,

fK;E(z) =

n∑
i=0

(
n

i

)
Wi(K;E)zi

to denote the (relative) Steiner polynomial of K, regarded as a formal polynomial
in a complex variable z ∈ C. Notice that, for z ≥ 0, fK;E(z) yields the volume of
K + zE (cf. (1.1)). Moreover, we consider the derivatives of Steiner polynomials
in the variable z, namely

f
(j)
K;E(z) = n(n− 1) · · · (n− j + 1)

n−j∑
k=0

(
n− j
k

)
Wj+k(K;E)zk,

for 0 ≤ j ≤ n. Of particular interest for our purposes will be the quantities f
(j)
i

given by

(3.1) f
(j)
i =

n−j∑
k=0

(
n− j
k

)
Wi+k(K;E)(−1)k

for any 0 ≤ i ≤ j ≤ n (and fixed K,E ∈ Kn), which can be regarded as formal
extensions (up to the constant n(n − 1) · · · (n − j + 1)) of the value at z = −1 of
the j-th derivative of the Steiner polynomial, since

f
(j)
j = n(n− 1) · · · (n− j + 1)f

(j)
K;E(−1).

Now we prove some generalizations of the inequalities we have dealt with in
the previous section. To avoid straightforward (but a bit lengthy) computations
throughout (the proof of) Proposition 3.1, first we collect here some direct relations
for combinatorial numbers.
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Lemma 3.1. Let N, I,m ∈ N ∪ {0}. If I ≥ m then(
N

I

)
−
(
N − 1

I − 1

)(
m

1

)
+· · ·+(−1)m−1

(
N −m+ 1

I −m+ 1

)(
m

m− 1

)
+(−1)m

(
N −m
I −m

)
≥ 0.

Moreover, if I < m then(
N

I

)
−
(
N − 1

I − 1

)(
m

1

)
+ · · ·+ (−1)I

(
N − I

0

)(
m

I

)
≥ 0.

Proof. Assume first that I ≥ m. Then, by using recursively (2.1), we have(
N

I

)
−
(
N − 1

I − 1

)(
m

1

)
+ · · ·+ (−1)m−1

(
N −m+ 1

I −m+ 1

)(
m

m− 1

)
+ (−1)m

(
N −m
I −m

)
=

(
N − 1

I

)
−
(
N − 2

I − 1

)(
m− 1

1

)
+ · · ·+ (−1)m−2

(
N −m+ 1

I −m+ 2

)(
m− 1

m− 2

)
+ (−1)m−1

(
N −m

I −m+ 1

)
= · · · =

(
N −m+ 1

I

)
−
(
N −m
I − 1

)
=

(
N −m
I

)
≥ 0.

Now, if I < m, and again using (2.1) recursively we get that(
N

I

)
−
(
N − 1

I − 1

)(
m

1

)
+ · · ·+ (−1)I

(
N − I

0

)(
m

I

)
=

(
N − 1

I

)
−
(
N − 2

I − 1

)(
m− 1

1

)
+ · · ·+ (−1)I−1

(
N − I + 1

1

)(
m− 1

I − 1

)
+ (−1)I

(
N − I − 1

0

)(
m− 1

I

)
= · · · =

(
N −m+ I

I

)
−
(
N −m+ I − 1

I − 1

)(
I

1

)
+ · · ·+ (−1)I−1

(
N −m+ 1

1

)(
I

I − 1

)
+ (−1)I

(
N −m

0

)
,

which, by the previous case, is non-negative. This finishes the proof. �

We note that, in terms of the quantities f
(j)
i (see (3.1)), Lemma 2.1 yields that

f
(n−2)
i ≥ 0

for every 0 ≤ i ≤ n − 2. Here we extend these inequalities to any value of j, with
0 ≤ i ≤ j ≤ n.

Proposition 3.1. Let M,E ∈ Kn with K = M + E and dim(E) = n. Then, for
every 0 ≤ i ≤ j ≤ n,

f
(j)
i ≥ 0.

Equality holds if and only if dim(M) ≤ n− j − 1.
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Proof. From the Steiner formula for quermassintegrals (1.2), and writing m = n−j,
we have

f
(j)
i =

m∑
k=0

(
m

k

)(n−i−k∑
r=0

(
n− i− k

r

)
Wi+k+r(M ;E)

)
(−1)k

=

n−i∑
r=0

(
n− i
r

)
Wi+r(M ;E)−m

n−i−1∑
r=0

(
n− i− 1

r

)
Wi+1+r(M ;E) + . . .

+ (−1)m
n−i−m∑
r=0

(
n− i−m

r

)
Wi+m+r(M ;E)

=

n−i−m∑
r=0

Wi+m+r(M ;E)

((
n− i
r +m

)(
m

0

)
−
(
n− i− 1

r +m− 1

)(
m

1

)
+ . . .

+(−1)m−1

(
n− i−m+ 1

r + 1

)(
m

m− 1

)
+ (−1)m

(
n− i−m

r

)(
m

m

))
+ Wi+m−1(M ;E)

((
n− i
m− 1

)(
m

0

)
−
(
n− i− 1

m− 2

)(
m

1

)
+ . . .

+(−1)m−2

(
n− i−m+ 2

1

)(
m

m− 2

)
+ (−1)m−1

(
n− i−m+ 1

0

)(
m

m− 1

))
+ · · ·+ Wi+1(M ;E)

((
n− i

1

)(
m

0

)
−
(
n− i− 1

0

)(
m

1

))
+ Wi(M ;E).

From Lemma 3.1 we obtain that all the summands in the above expression are
non-negative. Moreover, since the sole non-zero coefficients involved are those with

indexes between i and j, we have that f
(j)
i = 0 if and only if Wj(M ;E) = 0. This

completes the proof. �

Lemma 3.2. Let M,E ∈ Kn with K = M + E and dim(E) = n. Then, for every
0 ≤ i < j ≤ n,

f
(j)
i − f (j)

i+1 = f
(j−1)
i ≥ 0.

Proof. By using (2.1) we get that

f
(j)
i − f (j)

i+1 =

n−j∑
k=0

(
n− j
k

)
(−1)kWi+k −

n−j∑
k=0

(
n− j
k

)
(−1)kWi+1+k

= Wi +

n−j∑
l=1

(−1)lWi+l

[(
n− j
l

)
+

(
n− j
l − 1

)]
+ (−1)n−j+1Wi+1+n−j

= Wi +

n−j∑
l=1

(−1)lWi+l

(
n− j + 1

l

)
+ (−1)n−j+1Wi+1+n−j = f

(j−1)
i ,

which, jointly with Proposition 3.1, finishes the proof. �

We conclude the paper by showing an extension of Theorem 1.1. Indeed, the
latter is derived by setting l = n in the following result.

Theorem 3.1. Let M,E ∈ Kn with K = M+E and dim(E) = n. Then, for every
0 ≤ i < j < k ≤ l ≤ n,

(3.2) (k − j)f (l)
i + (i− k)f

(l)
j + (j − i)f (l)

k ≥ 0.
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Equality holds if and only if dim(M) ≤ n− l + 1.

Proof. The proof is completely analogous to the proof of Theorem 1.1, interchanging

every involved r-th quermassintegrals by f
(l)
r , and using Lemma 3.2 instead of

Lemma 2.1. Finally, (3.2) holds with equality if and only if the same holds for

f
(l)
j−1 − f

(l)
j = f

(l−1)
j−1 ≥ f (l−1)

j = f
(l)
j − f

(l)
j+1,

which is equivalent to f
(l−2)
j−1 ≥ 0. Then the result follows from the equality case of

Proposition 3.1. �
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