
UNIVERSIDAD DE MURCIA

Facultad de Informática

Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores

Microarchitectural Approaches

for Hardware Fault Mitigation

in Multicore Processors

A dissertation submitted in fulfillment of

the requirements for the degree of

DOCTOR EN INFORMÁTICA

by

Daniel Sánchez

Advised by:

Juan Luis Aragón

José Manuel Garćıa

Murcia, June, 2011

http://www.um.es
http://www.um.es/informatica/index.php
http://ditec.um.es

U N I V E R S I D A D
D E M U R C I A

DEPARTAMENTO DE INGENIERÍA Y TECNOLOGÍA DE COMPUTADORES

D. Juan Luis Aragón Alcaraz, Profesor Titular de Universidad del Área de
Arquitectura y Tecnoloǵıa de Computadores en el Departamento de Ingenieŕıa y
Tecnoloǵıa de Computadores de la Universidad de Murcia

y

D. José Manuel Garćıa Carrasco, Catedrático de Universidad del Área de Ar-
quitectura y Tecnoloǵıa de Computadores en el Departamento de Ingenieŕıa y
Tecnoloǵıa de Computadores de la Universidad de Murcia

AUTORIZAN:

La presentación de la Tesis Doctoral titulada ≪Diseño de Arquitecturas para
la Mitigación de Fallos Hardware en Procesadores Multinúcleo≫, realizada por
D. Daniel Sánchez Pedreño, bajo su inmediata dirección y supervisión, y que pre-
senta para la obtención del grado de Doctor Europeo por la Universidad de Murcia.

En Murcia, a 8 de Abril de 2011.

Fdo: Dr. Juan Luis Aragón Alcaraz

Fdo: Dr. José Manuel Garćıa Carrasco

D. Antonio Fernando Gómez Skarmeta, Catedrático de Universidad del Área
de Ingenieŕıa Telemática y presidente de la Comisión Académica del Programa
de Postgrado de Tecnoloǵıas de la Información y Telemática Avanzadas de la
Universidad de Murcia, INFORMA:

Que la Tesis Doctoral titulada ≪Diseño de Arquitecturas para la Mitigación de
Fallos Hardware en Procesadores Multinúcleo≫, ha sido realizada por D. Daniel
Sánchez Pedreño, bajo la inmediata dirección y supervisión de D. Juan Luis Aragón
Alcaraz y de D. José Manuel Garćıa Carrasco, y que la Comisión Académica ha
dado su conformidad para que sea presentada ante la Comisión de Doctorado.

En Murcia, a 8 de Abril de 2011.

Fdo: Dr. Antonio Fernando Gómez Skarmeta

Dedicado a H

Abstract

So far, improvements in the CMOS scaling fabrication technology has permitted

to exponentially increase the number of transistors per chip. For some time, this

increasing count of transistors was employed for the design of more aggressive out-

of-order single-core processors. However, at the time that proposed techniques were

not able to exploit the Instruction Level Parallelism (ILP), architectural designs

were forced to move towards multi-core architectures to exploit Thread Level Par-

allelism (TLP), as a way of delivering an increased performance while maintaining

power and design complexity at manageable levels. Nonetheless, as a counterpart,

miniaturization trends are increasing the susceptibility of integrated circuits to a

variety of hardware errors such as soft errors, wear-out related permanent faults

and process variations.

In this Thesis, we have focused on architectural level mechanisms to deal with

this increasing fault rate and variation. First, we deal with the arise of transient

faults in shared-memory architectural designs. To that end, based on Redundant

Multi Threading previous approaches, we propose Reliable Execution of Paral-

lel ApplicationS in tiled-CMPs (REPAS). In this approach, redundant threads

are executed in the same SMT core as a way to reduce the hardware overhead

while incurring into a moderate performance slowdown. In REPAS, we address

the under-explored support for the correct execution of shared-memory parallel

applications.

Afterwards, as a way to minimize the increased complexity, hardware and

performance overhead, we present Log-Based Redundant Architecture (LBRA), a

highly decoupled redundant architecture based on a hardware transactional mem-

ory implementation. We leverage the already introduced hardware of LogTM-SE

to provide a consistent view of the memory between master and slave threads

through a virtualized memory log, both transient fault detection and recovery,

more scalability, higher decoupling and lower performance overhead than previous

proposals.

Finally, we study the impact of hard faults on cache memories. To this end,

we develop an analytical model for determining the implications of word/block

disabling techniques due to random cell failure on cache miss rate behaviour.

The proposed model is distinct from previous work in that it is an exact model

rather than an approximation. Besides, it is simpler than previous experimental

frameworks which are based on the use of fault maps as a brute force approach to

statistically approximate the effect of random cell failure on caches.

Agradecimientos

Nadie dijo que fuera a ser fácil.

Nadie dijo que fuese a ser aśı de dif́ıcil.

Después de mucho trabajo a lo largo de estos años, al fin puedo decir bien alto:

¡lo hice!. Aśı que, tras la escitura de esta Tesis, y comoquiera que ya he plantado

un árbol, parece que ya solo queda por solventar el tema del hijo... . En fin, todo

se andará.

En primer lugar me gustaŕıa agradecer la confianza que hace ya algunos años

mis directores José Manuel y Juan Luis depositaron en mı́. A lo largo de estos años

han sido a la vez una gúıa y una fuente de est́ımulo. También queŕıa agradecerles su

comprensión cuando las cosas no saĺıan a la primera y por el aliento que recib́ı de

ellos para intentar hacer las cosas cada vez mejor.

En cualquier caso, todo esto nunca hubiera sido posible sin el inestimable

apoyo, en todos los sentidos, que me han dado mis padres. Sin la educación que

he recibido de vosotros jamás habŕıa llegado hasta aqúı. Ya se que nunca he sido

el hijo más comunicativo del mundo (más bien todo lo contrario), por eso quiero

que sirvan estas palabras para agradeceros todo lo que habéis hecho por mi y

deciros que siempre vais a ser un referente. De la misma forma querŕıa acordarme

de mi hermana, que ha tenido que lidiar conmigo desde que nació. También un

recuerdo especial para toda mi familia: t́ıos, t́ıas, primos, primas, y especialmente

a mi abuela, que ya tiene un nieto doctor (aunque sea de los de “mentira”).

Apartado especial merece mi novia Helena, a la que dedico esta Tesis. Mi

familia no tiene más remedio que aguantarme, claro, pero lo tuyo es de traca.

Siempre has estado ah́ı, incluso a pesar de los kilómetros. Sabiendo cómo estaba

con tan solo pronunciar una palabra. Haciéndome feliz, vaya. Pero, además, tu

contribución a esta Tesis ha ido un paso más allá, ya que por tus manos han

pasado todos mis art́ıculos para pulirme esos fallos tan grotescos que cometo con

el inglés. Aśı que gracias dobles, por lo personal y lo profesional.

xi

También me gustaŕıa acordarme de mis mejores amigos: Jesula, Chavo, Laura,

Guillermo, Jon y el resto del grupo (vosotros sabéis quienes sois), que desde el

instituto e incluso antes forman una parte muy importante de mi vida. Y por

supuesto, a todos mis amigos y compañeros del laboratorio que, en realidad, son

como una segunda familia: Juan Manuel, Rubén, Kenneth, Chema, Antonio y

Ginés. Y también a Ricardo y Alberto, que nos han ido abriendo camino y haciendo

que las cosas sean más fáciles para los que hemos ido detrás.

De la misma manera, querŕıa recordar a toda la gente que conoćı durante mi

estancia en Chipre. Thank you Yanos for your valuable support. It was just three

months but I learned a lot. I would also like to give my best regards to my fellows

Isidoros, Bushra, Nikolas, Lorena and all the people I met in the UCY. Thank you

all for treating me so well.

No me olvidaré tampoco de toda la gente que ha contribuido a mi formación,

desde mis “maestros” del C.P. “La Concepción” y los distintos profesores del

Instituto “Jiménez de la Espada” de Cartagena aśı como de mis profesores y

compañeros de la Facultad de Informática de la Universidad de Murcia. Vuestro

esfuerzo y dedicación, parece, ha dado recompensa.

¡Qué no se me olviden tampoco los agradecimientos oficiales!. Esta Tesis ha sido

financiada por el Ministerio de Educación y Ciencia de España y por fondos de la

Comisión Europea FEDER en los programas “Consolider Ingenio-2010 CSD2006-

00046” y “TIN2009-14475-C04-02”. Daniel Sánchez ha sido financiado mediante

una beca de investigación del Ministerio de Educación y Ciencia de España en

el programa “Consolider Ingenio-2010 CSD2006-00046”. Además, parte de esta

Tesis fue elaborada durante una estancia pre-doctoral HiPEAC (FP7 Network of

Excellence) de Daniel Sánchez en la Universidad de Chipre.

Y por último gracias a los anonymous reviewers por sus comentarios y suge-

rencias durante todos estos años. Quienquiera que sean.

Contents

Abstract ix

Acknowledgements xi

Table of Contents xiii

List of Figures xvii

List of Tables xix

Abbreviations xxi

1 Introduction 3

1.1 Hardware Faults . 4

1.1.1 Transient Faults . 5

1.1.2 Intermittent Faults . 6

1.1.3 Permanent Faults . 6

1.2 Motivation . 7

1.3 Contributions of this Thesis . 9

1.4 Organization of this Thesis . 11

2 Background and Related Work 13

2.1 Process-Level Measures . 13

2.2 Circuit-Level Mechanisms . 14

2.3 Architectural-Level Mechanisms . 16

2.3.1 Core-Level Mechanisms . 18

2.3.2 Coherence-Level Mechanisms 22

xiii

Contents xiv

2.4 Software and Hybrid Approaches 23

2.5 Symptom Based Approaches . 24

3 Simulation Environment and Methodology 27

3.1 Simulation Tools . 27

3.1.1 Simics . 27

3.1.2 GEMS . 28

3.1.3 McPAT . 29

3.1.3.1 CACTI . 29

3.2 Simulated System . 30

3.3 Evaluation Metrics . 30

3.4 Benchmarks . 31

3.4.1 SpecCPU2000 . 31

3.4.2 SPLASH-2 . 33

3.4.3 Parsec 2.1 . 36

3.4.4 Other Scientific Applications 37

3.4.5 ALPbench . 38

3.4.6 Server Applications . 39

4 REPAS: Reliable Execution of Parallel ApplicationS in tiled-CMPs 41

4.1 Introduction . 42

4.2 RMT Previous Approaches . 45

4.2.1 Moving Dynamic Core Coupling to a Direct Network Envi-
ronment . 45

4.2.1.1 DCC in a Shared-Bus Scenario 46

4.2.1.2 DCC in a Direct-Network Scenario 48

4.2.2 CRTR as a Building Block for Reliability 51

4.2.2.1 Memory Consistency in LVQ-Based Architectures . 53

4.3 REPAS Architecture . 57

4.3.1 Sphere of Replication in REPAS 57

4.3.2 Caching Unverified Blocks 58

4.3.3 Fetch and ROB Occupancy Policies 60

4.3.4 Reliability in the Forwarding Logic 61

4.4 Evaluation Results & Analysis . 62

4.4.1 Simulation Environment . 62

4.4.2 Slack Size Analysis . 64

4.4.3 Execution Time Overhead of the Fault-Free Case 65

4.4.4 Performance in a Faulty Environment 67

4.4.5 Sharing Unverified Blocks 69

4.4.6 L1 Cache Size Stress . 71

4.5 Concluding Remarks . 73

Contents xv

5 LBRA: A Log-based Redundant Architecture 75

5.1 Introduction . 76

5.2 HTM Support for Reliable Computation 78

5.2.1 Version Management . 78

5.2.1.1 Input Replication 79

5.2.1.2 Output Comparison 79

5.2.2 Dependence Tracking . 81

5.3 LBRA Implementation Details . 82

5.3.1 Accessing the Log . 82

5.3.1.1 Master Access . 83

5.3.1.2 Slave Access . 83

5.3.1.3 Log Content & Fault Detection Granularity 83

5.3.2 Circular Log . 85

5.3.3 In-order Consolidation . 86

5.3.3.1 Cycle Avoidance 87

5.3.4 Fault Recovery in LBRA . 87

5.3.4.1 Local Recovery . 87

5.3.4.2 Global Recovery 88

5.4 Performance enhancements via Spatial Thread Decoupling 89

5.4.1 Decoupling Thread Execution into Different Cores 91

5.5 Evaluation . 93

5.5.1 Simulation Environment . 93

5.5.2 p-XACT Size Analysis . 94

5.5.3 Overhead of the Fault-Free Case 96

5.5.4 Comparison Against Previous Work 99

5.6 Concluding Remarks . 102

6 Modelling Permanent Fault Impact on Cache Performance 105

6.1 Introduction . 106

6.2 Related Work . 110

6.3 Analytical Model for Cache Miss Rate Behaviour with Faults 111

6.3.1 Assumptions and Definitions 111

6.3.2 EMR and SD MR . 112

6.3.3 EMR Probability Distribution 114

6.4 Methodology . 116

6.4.1 Generating Maps of Accesses 116

6.4.2 Random Fault-Maps . 117

6.5 Evaluation . 118

6.5.1 Yield Analysis . 119

6.5.2 Methodology Validation . 121

6.5.3 EMR and SD MR for Sequential Benchmarks 121

Contents xvi

6.5.4 EMR Probability Distribution for Sequential Applications . 126

6.5.5 Cache Performance Trade-Offs for Sequential Applications . 128

6.5.6 EMR Impact of Block Disabling and Word Disabling 130

6.5.7 EMR and SD MR for Shared Caches in Parallel Benchmarks 132

6.5.8 Implication of the Number of Threads in EMR and SD MR 132

6.6 Concluding Remarks . 135

7 Conclusions and Future Ways 137

7.1 Conclusions . 137

7.2 Future Ways . 140

Bibliography 143

List of Figures

1.1 Radiation particle strike [49]. 5

2.1 Implementation of a memory cell with 6, 8 and 10 transistors. . . . 15

2.2 Redundant execution framework [92]. 17

2.3 Slipstream architecture overview [95]. 19

3.1 Simics-GEMS simulator framework. 28

3.2 Organization of a tile and a tiled-CMP system architecture. 30

4.1 DCC master-slave consistency. 48

4.2 Potential consistency error in DCC. 50

4.3 Synchronization and checkpoint creation. 51

4.4 Violation of the atomicity and isolation of a critical section without
proper support. 55

4.5 REPAS core architecture overview. 57

4.6 Transition diagram with the states involved with Unverified blocks. 59

4.7 Sensitivity analysis for the optimal size of the slack. 64

4.8 Execution time overhead over a non fault-tolerant 16-core architec-
ture. 66

4.9 REPAS overhead under different fault rates (in terms of faulty in-
structions per million per core). 68

4.10 Normalized execution time with and without the speculative mech-
anism. 70

4.11 Normalized execution time for different L1 cache sizes with and
without a Victim Buffer. 72

5.1 LBRA hardware overview. Shadowed boxes represent the added
structures. 82

5.2 LogTM-SE and LBRA log management. 85

5.3 Fault recovery mechanism in LBRA. 90

xvii

List of Figures xviii

5.4 Sensitivity analysis for p-XACT size and number of in-flight p-
XACTs. 95

5.5 LBRA performance in a fault-free scenario. 97

5.6 LBRA miss rate and log size. 98

5.7 Performance comparison of LBRA versus REPAS and DCC. 100

5.8 Execution time overhead for several fault rates. 101

6.1 Yield versus percentage of faulty blocks for different pfails in 32KB
and 512KB caches. 120

6.2 Probability distribution of the number of faulty blocks per cache
obtained analytically and by randomly generated maps. 122

6.3 EMR and SD MR relative increase for sequential applications. . . . 123

6.4 EMR and SD MR for different applications in a 8-way associative
32KB L1 cache with different pfails. 124

6.5 PD MR for different applications and pfails in a 8-way associative
32KB L1 cache. 127

6.6 Trade-off among different scaling technologies and cache configura-
tions. 129

6.7 EMR for block-disabling and wdis in a 32KB L1 Cache. 131

6.8 EMR and SD MR for different applications in a 8-way 512KB L2
cache with different pfails. 133

6.9 Results for a 8-way 512KB L2 cache for parallel applications. 134

List of Tables

2.1 Main characteristics of several redundant architectures. 22

4.1 Characteristics of the evaluated architecture and used benchmarks. 62

4.2 Average normalized execution time for the studied benchmarks. . . 67

4.3 Number of speculative sharings and time needed to verify those
blocks. 71

5.1 Alternatives in log content for loads and stores. 84

5.2 Simulation parameters. 93

6.1 Predicted pfail for different types of circuits and technologies [57]. . 107

6.2 EMR calculation after all-associativity algorithm execution. 117

6.3 Evaluated applications and input sizes. 119

6.4 Average for the Pearson Coefficient Matrix for every benchmark. . . 125

xix

Abbreviations

BER Backward Error Recovery

CARER Cache Aided Rollback Error Recovery

CMP Chip Multi Processor

CRC Cyclic Redundancy Code

DAG Directed Acyclic Graph

DMR Dual Modular Redundancy

DRAM Dynamic Random Access Memory

ECC Error Correcting Code

EMR Expected Miss Ratio

FIFO First In First Out

HTM Hardware Transactional Memory

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

LRU Last Recently Used

MTTF Mean Time To Failure

RMT Redundant Multi Threading

SDC Silent Data Corruption

SD MR Standard Deviation for Miss Ratio

SECDED Single Error Correction / Double Error Detection

xxi

Abbreviations xxii

SER Soft Error Rate

SEU Single Event Update

SOI Silicon On Insulator

SMN Static Magnetic Noise

SMT Simultaneous Multi Thread

SRAM Static Random Access Memory

TLP Thread Level Parallelism

TMR Triple Modular Redundancy

TSO Total Store Order

“We have forty million reasons for failure, but not a single excuse..”

Rudyard Kipling

Chapter1

Introduction

Nowadays, hardware reliability is considered a first-class issue in processor ar-

chitecture along with performance and energy efficiency. The increasing scaling

technology and subsequent supply voltage reductions, together with temperature

fluctuations, augment the susceptibility of architectures to errors.

As systems grow in size and capacity, the transistors employed in their con-

struction become surprisingly smaller, something which makes them more prone

to errors. In the past 50 years, improvements in transistor shrinking have allowed

to double the capacity and speed of computers every 18 months, according to

Moore’s Law [52]. However, this has come to a cost: today and tomorrow’s tran-

sistors have a greater erratic behaviour than their predecessors had. This issue

limits, in general terms, the performance of all kinds of computers, from those

running applications which require high availability and reliability to even com-

modity systems. Thus, fault tolerance has a paramount importance in the design

and implementation of microarchitectures in the short, medium and long term.

There is a vast amount of work dealing with reliability issues and proposals

which, in fact, have been implemented in very specific environments in which the

incurred cost, which is either economic, performance slowdown, power increase,

or all of them, may be fully justified. However, the arising of hardware faults

is no longer just an issue for high specialized domains but for general-purpose

3

Chapter 1. Introduction 4

computing systems as well. Thus, we need to find cheaper reliability solutions to

avoid these faults or, at least, mitigate their impact.

1.1 Hardware Faults

Hardware structures are subject to faults due to defects, imperfections or interac-

tions with the external environment. When a fault has user-visible effects, we call

it an error. Luckily, not all faults manifest themselves like errors (meaning that

outputs of affected devices continue being correct). However, other aspects such

as the performance or power dissipation can be affected. We call these hardware

faults benign faults or masked faults. One example of these faults are those regard-

ing prediction units, which have an impact on the performance by miss-predicting

a branch, although not affecting the output of the program.

Faults effects can be classified in different ways. One classification distin-

guishes between logical and parametric faults [76].

• Logical Faults. These faults produce errors in the boolean state of devices.

Among them, we find stuck-at faults, in which devices always provide the

same logical value (0 or 1); von Neumann faults, in which the output is

inverted from the correct value, and bridging faults, in which the output of

one or more adjacent devices is changed with the value of others due to signal

crosstalking.

• Parametric Faults. These faults are related to timing issues, which may

not induce errors like benign faults. Other faults in this category are current

faults, in which the leakage of devices grows abnormally.

Traditionally, hardware errors have been divided into three main categories

according to their nature and duration: transient faults, intermittent faults and

permanent faults.

Chapter 1. Introduction 5

1.1.1 Transient Faults

Transient faults are radiation-induced faults which can manifest themselves as

transient errors (also known as soft errors or SEU). Due to their nature, the

occurrence of this kind of faults can be considered as random. Transient faults can

be induced by a variety of sources such as transistor variability, thermal cycling,

erratic fluctuations of voltage and radiation external to the chip [54]. Radiation-

induced events include alpha-particles from packaging materials and neutrons from

the atmosphere.

It is well established that the charge of an alpha particle or a neutron strike over

a logical device can overwhelm the circuit inducing its malfunction [6, 49]. Strikes

create a cylindrical track of electron-hole pairs with very high carrier concentration

as is depicted in Figure 1.1. As a result of this impact, extra electrons are collected

in the depletion region. When this charge exceeds the Qcrit (critical charge), the

value stored within the affected memory cell or a transistor can flip [88], inducing

a transient fault. After this event, the affected device may continue working

properly.

GATE GATE

P WELL

N WELL

P SUBSTRATE

P+

DRAIN DRAIN

-PARTICLE

N+DEPLETION

REGION
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

� �

�

�

�

�

�

FUNNEL

DIFFUSION

NMOS

PMOS

ISOLATION

�

Figure 1.1: Radiation particle strike [49].

At the same time, it is also known that the intensity of cosmic rays (high

energy radiation striking the Earth from outer space) increases with altitude and

Chapter 1. Introduction 6

varies with latitude [118]. This, together with their inherent critically, has made

that equipment on board of planes and satellites had been traditionally protected

to deal with this kind of faults. For instance, the chances of suffering a soft error

increases 100 times at 10 km of altitude with respect to the sea level [49, 118].

The occurrence of transient faults in current technologies is the most predom-

inant source for errors in microarchitectures [90]. The use of smaller devices and

the decrease of voltage for power dissipation reasons reduces the Qcrit, which make

them even more prone to transient faults [6, 46, 82].

1.1.2 Intermittent Faults

Intermittent faults are faults which appear and disappear repeatedly but not con-

tinuously in time. As well as transient faults, these faults are non-permanent.

Errors induced by transient and intermittent faults manifest similarly, although

there exists some differences. On the one hand, errors induced by intermittent

faults usually occur in bursts when the fault is activated. On the other hand,

replacement of the affected device eliminates an intermittent fault, whereas tran-

sient faults cannot be fixed or avoided by repair. We find the origin of intermittent

faults in voltage peaks, falls and/or temperature fluctuations. As shown recently,

intermittent faults are an indicative of prefailure component wear-out [17].

1.1.3 Permanent Faults

Finally, permanent faults, also called hard faults, induce permanent errors due to

irreversible physical changes. These faults are either occasioned during fabrication

process and/or chip operation. Until disabled or repaired, a permanently damaged

component will continue producing erroneous results.

Sources for permanent faults can be classified into three main categories [88]:

• Physical wear-out. There are several factors which can emphasize aging-

related problems. Electromigration [16, 33] is caused by a current flowing

Chapter 1. Introduction 7

in a conductor moving metal ions until they form voids. These voids can

either derive into opens or shorts. The oxide gate breakdown is another

relevant problem [91]. This is defined as the time when there is a conduction

path from the anode to the cathode through the gate oxide as a result of

the reduced dimensions of gates, which result thinner in every new scale

generation in order to facilitate power reduction. Finally, there exists other

physical events which can reduce the reliability of devices such as mechanical

stress or temperature variations.

• Fabrication defects. Fabrication is not a perfect process. Indeed, the

number of fabrication defects grows exponentially with every scale generation

due to the reduced dimensions of transistors. Defects at manufacturing time

causes the same problems as wear-out faults but from the very first moment.

• Design bugs. As well as the fabrication process, chips are not perfect

in design. Although they are subject to a large amount of tests before

arriving to market, sometimes, bugs which were committed during design

are not detected. Some bugs which do not affect the behaviour of processors

dramatically are sometimes simply ignored or patched by firmware/software

solutions. But, in the case of serious bugs, e.g. those related to the correction

of computation, vendors have no solution but to retire the shipped products.

1.2 Motivation

The increasing device density offers designers the opportunity to place more func-

tionality per unit area. Billions of transistors are available within a single chip but

existing techniques are not available to exploit even more the Instruction Level

Parallelism (ILP). The solution designers have adopted is to use this vast amount

of transistors to the integration of large caches and many cores into the same chip

or Chip Multi Processors (CMP) [62, 77] to exploit the Thread Level Parallelism

(TLP). These CMPs are usually implemented around a shared-memory environ-

ment, in which some levels of the memory hierarchy are private (typically the L1

Chapter 1. Introduction 8

cache) although coherent and the rest of the levels are shared. First implementa-

tions connect the cores by means of shared-buses and/or crossbars. However, as

the number of cores grows, these networks result in non-scalable due to area and

power constraints [34]. The most promising approach to provide efficiency and

scalability are directory-based cache coherence protocols [14, 18] which operate in

direct network environments.

Unfortunately, device area scaling has been accompanied by, at least, two

negative consequences: a slowdown in both voltage scaling and frequency increase

due to slower scaling of leakage current as compared to area scaling [9, 22, 101],

and a shift to probabilistic design and less reliable silicon primitives due to static

[10] and dynamic [11] variations.

These alarming trends are leading to forecast that the performance and cost

benefits from area scaling will be hindered unless scalable techniques are developed

to address power and reliability challenges. In particular, it will be impossible to

operate all on-chip resources, even at the minimum voltage for safe operation, due

to power constraints, and/or the growing design and operational margins used to

provide silicon primitives with resiliency against variations which will consume the

scaling benefits.

A modern computer is formed by the processor core logic, main memory (usu-

ally DRAM), embedded memory (registers and caches, built with SRAM), an

interconnection network and several I/O components. In spite of the random na-

ture of hardware faults, components like the core logic and memories are more

affected by faults because they occupy a considerable portion of the total chip

area.

The core logic in high-performance systems has traditionally been protected

from transient faults by means of TMR approaches. However, this solution is not

feasible for wider markets. Industry is aware of the growing trend of transient

faults but, so far, few new designs seriously address this problem, since appro-

priate mechanisms would imply performance degradation, additional circuitry to

detect faults and increased manufacturing costs. Therefore, this performance/re-

liability challenge is addressed by means of new architectural-level designs based

Chapter 1. Introduction 9

on redundancy. At this level, more flexibility can be provided in comparison to

circuit-level, in which measures introduce fixed hardware overheads and limit the

implementation in real designs.

On the other hand, embedded memory uses inexpensive ECC codes to detect

and correct soft-errors. However, ECC is not a performance friendly mechanism

for permanent errors because every access to a faulty block incurs the ECC repair

overhead. Furthermore, ECC soft-error capabilities are reduced when some bits

protected by the ECC code are already faulty. Thus, ECC may not be the best

option to repair permanent or wear-out faults in the cache. It seems then that a

better solution for hard fault mitigation in memory structures may be disabling

techniques, which try to obtain a benefit from the capacity/performance trade-off.

1.3 Contributions of this Thesis

In this Thesis, we focus on the impact of faults in the core logic and embedded

memory. Specifically, we study a) transient fault detection and correction in the

core logic, and b) the effect of permanent faults in SRAM arrays. In both cases,

the main goal is to reduce both the performance impact and area overhead of

different mechanisms in current architectures. In order to mitigate the impact

of transient faults, we propose two hardware mechanisms in which computation

is checked by means of Redundant Multi Threading (RMT) solutions, a special

case of DMR in which fault tolerant computation is accomplished by redundant

threads. For dealing with permanent faults in caches, we study the implications of

cell/block disabling mechanisms, techniques which rely on the disabling of faulty

portions whenever a permanent error is detected.

In summary, the main contributions of this Thesis are:

• We have identified the major drawbacks of previous RMT approaches. In

particular, we point out how the support to reliably execute shared-memory

applications is not well suited for some previous approaches. In order to

avoid inconsistencies in memory accesses between redundant computations,

Chapter 1. Introduction 10

additional measures must be taken. Unfortunately, these measures have an

impact on the overall performance of the architecture.

• A novel hardware RMT mechanism called REPAS which, based on a 2-way

Simultaneous Multi Threading (SMT) core architecture, is able to detect and

correct transient faults affecting the program output. Previous approaches

stall the memory updates until values to store are successfully verified. This

imposes several problems regarding the correct execution of shared-memory

workloads. Thus, we propose to update memory without verification under

the assumption that memory updates are correct (common case). If a fault

is detected, affected values in the cache are restored to the state prior to the

error.

• Another RMT hardware approach based on a Hardware Transactional Mem-

ory (HTM) architecture called LBRA. In this proposal, two redundant threads

successfully detect and recover from transient faults, assuring a consistent

view of the memory by means of a pair-shared cacheable virtual memory

log. The log keeps the computation results and allows a bigger decoupling

between redundant threads. This provides better performance than previous

approaches while maintaining a relatively simple hardware implementation.

• An analytical model for determining the implications of block-disabling due

to random cell failure on cache miss rate behaviour. While previous work

rely on simulating a great number of random fault maps to determine the

impact of faults in caches, we provide a precise measure for the expected

miss ratio and its deviation by applying our analytical off-line model to an

application memory trace.

• We have implemented and evaluated the proposed mechanisms as well as

previous proposals by using a full system simulator. Therefore, results are

presented in a common framework in which comparisons can be easily made.

We have found that our mechanisms to provide detection and correction to

transient faults improve the performance of previous approaches, at the cost

of some extra hardware. Finally, the proposed analytical model for the

impact of permanent faults is also validated within this framework.

Chapter 1. Introduction 11

The contributions of this Thesis have been published in the international peer

reviewed conferences and workshops WDDD’08 [96], DPDNS’09 [97], EuroPAR’09

[99], HiPC’10 [98] and IOLTS’11 [100], or are currently being considered for pub-

lication in peer reviewed journals.

1.4 Organization of this Thesis

The rest of this Thesis is organized as follows:

• Chapter 2 reviews previous work on fault tolerance in relation with this

Thesis. Specifically, this Chapter discusses mechanisms at hardware and

software levels as well as hybrid approaches.

• Chapter 3 describes the common methodology used in the evaluation of the

different approaches presented in this Thesis. This Chapter discusses the

architecture, tools, workloads and metrics used in the evaluation.

• Chapter 4 faces the the major problems presented in previous proposals, i.e.

the performance degradation due to the migration to a direct-network envi-

ronment and several memory consistency issues. Then, our first fault tolerant

architecture design is proposed, addressing the aforementioned questions.

• Chapter 5 presents our second fault tolerant approach based on Hardware

Transactional Memory. Several mechanisms to reduce the performance pe-

nalty and reduce the implementation costs of previous approaches are de-

tailed.

• Chapter 6 addresses the implications of permanent faults in caches. To this

end, it is presented the analytical model cited above to evaluate the impact

of faults over the cache performance.

• Chapter 7 summarizes the main conclusions of the Thesis and points out

future lines of work.

Chapter2

Background and Related Work

SUMMARY:

In this Chapter we present a summary of previous related work.

Specifically, we make an overview of different previous approaches

implemented at different hardware levels with special emphasis on

architectural-level mechanisms, as well as other software and hybrid

approaches.

2.1 Process-Level Measures

As we have seen in Chapter 1, one of the most predominant source of errors

comes from the interaction between alpha particles and neutrons with transistor

devices. Manufacturers have introduced measures to reduce the SER by radiation-

hardened electronics technology. The behaviour of semiconductor devices is highly

dependent upon the concentration of impurity elements. Because of that, in the

fabrication of semiconductors, extremely high purity materials such as quartz,

graphite and other specialized materials like enriched Boron-11 (which is largely

immune to radiation damage) are used. Other measures include the separation

of high alpha-emission materials from sensitive components and the shielding by

13

Chapter 2. Background and Related Work 14

means of polyimide layers [6]. Finally, techniques such as Silicon on Insulator

(SOI), in which the substrate is replaced by different insulator-semiconductor-

insulator layers, are used to enhance previous techniques.

2.2 Circuit-Level Mechanisms

Circuit-level measures usually rely on the use of some form of redundancy. Other

mechanisms include special circuits to detect peaks or voltage falls or special codes

to detect and/or correct errors.

SRAM cells are commonly implemented with a conventional 6-Transistor struc-

ture. This design provides enough stability at normal voltage levels. However,

measures to decrease power consumption attempt to reduce the supply voltage.

In this case, the SNM (Static Noise Margin) decreases significantly and the arise of

soft errors is a fact. Some studies reveal that voltage cannot be scaled down to 0.7

V for an SRAM cell at 65nm to work properly [113, 117]. To mitigate the effects

of minimum supply voltage in SRAM cells, engineers have proposed new designs

in which more transistors per cell are used. This is the case of 8T [106], in which

2 additional transistors are introduced to obtain higher read SNM, together with

10T [32] designs, which consist of a conventional 6T structure and four decoupled

read access transistors. 8T and 10T designs can tolerate voltage scaling to 350mV

and 200mV, respectively. In Figure 2.1 we can see the schematic of a 6T, an 8T

and a 10T memory cell. Obviously, the major drawback of these designs is the

amount of extra hardware that they add. For this reason, the use of these cells is

reserved for devices whose reliability is mandatory.

A less aggressive mechanism in terms of hardware requirements is the use

of error coding techniques. Parity codes, checksums, Cyclic Redundancy Codes

(CRC) and Error Correcting Codes (ECC) fall within this category. When only

detection is required, low-cost mechanisms such as parity or checksum are used.

Therefore, in the case of a fault, the affected data is invalidated and requested

again. However, in other cases in which no other copies of the data exist, error

correction is needed. This is the case of memory devices such as caches or main

Chapter 2. Background and Related Work 15

(a) 6T memory cell [117]

(b) 8T memory cell [106]

(c) 10T memory cell [32]

Figure 2.1: Implementation of a memory cell with 6, 8 and 10 transistors.

Chapter 2. Background and Related Work 16

memory, which must implement, as a consequence, more expensive ECC codes.

Typically, implemented ECC codes are able to detect up to 2 bit errors and correct

1 error. We can find implementations in modern processors by manufacturers like

IBM [103], Intel [79] and AMD [3]. Nonetheless, ECC is not a power/performance-

friendly mechanism given the cost of the decoding (in reads) and coding (in writes).

Additionally, ECC is not a good solution for permanently damaged components

since every access will incur in the ECC repair overhead.

For the same reasons cited above, parity and ECC are not usually employed

to protect the functional units. Instead, several techniques have been proposed

to provide error detection and correction to specific units of the architecture. In

[38, 50, 105] different self-checking and self-correcting mechanisms for adders based

on residue codes and parity prediction are presented. Basically, these mechanisms

rely on special properties of the operations they perform (additions in this case) or

the use of TMR and temporal redundancy. By using the same principles to protect

adders, another body of work [58, 59] addresses fault detection for multipliers.

In general, structures like the register file which holds the architectural state,

are more vulnerable to soft errors [54]. In [12], Carretero et al. propose several

signature-based techniques to protect the rename tables, wake-up logic, select

logic, input multiplexors, operand read and writeback, the register free list, and

the replay logic with the goal of assuring the correctness of data consumed through

registers.

2.3 Architectural-Level Mechanisms

Architectural mechanisms seem a good approach to overcome the major limitations

of circuit-level techniques. Previously mentioned mechanisms are able to mitigate

the arise of hardware errors but do not provide a full coverage. This is the case of

ECC codes, which are limited to detect and correct a few errors. Furthermore, they

introduce a fixed hardware overhead which limits, in general, its implementation

in real designs. On the contrary, architectural measures provide a more flexible

Chapter 2. Background and Related Work 17

framework in which multiple hardware structures are covered in comparison to

circuit-level techniques which are focused on single units.

One of the most straightforward and studied mechanisms to support fault

tolerance is the use of physical and/or time redundancy, in which programs are

executed multiple times and compared to detect errors. In Figure 2.2 we can see

a conceptual framework for redundant execution.

Figure 2.2: Redundant execution framework [92].

There are four main characteristics that can be used to classify approaches

which rely on redundant execution. These characteristics are the sphere of repli-

cation, the input replication, the output comparison and the synchronization.

• Sphere of replication or SoR [70]. The SoR determines the components

in the architecture whose functionality is replicated, i.e., all faults that occur

within the sphere will be detected. The size of the sphere of replication could

include from whole processors to specific parts of them like the pipelines,

include or not the memory, etc...

• Input replication. In order to assure that redundant copies perform ex-

actly the same work, they must be provided with the same view of the

memory. If not, although redundant executions perform correct computa-

tions, they may follow different paths. In tight lock-stepped execution [5],

in which redundant streams are in sync and execute the same instructions

cycle-by-cycle, input replication is trivial. However, in loose lock-stepped

Chapter 2. Background and Related Work 18

execution it is necessary the design of specific mechanisms to deal with data

races.

• Output comparison. The output comparison defines the error detection

latency. Generally, a lower latency increases the pressure over the hardware,

e.g. comparing the register updates, while a higher latency increases the

recovery time after a fault.

• Synchronization. Related to the input replication and output comparison

is referred the interval of synchronization among redundant computations.

2.3.1 Core-Level Mechanisms

AR-SMT [78] is one of the first proposals which exploits SMT threads for relia-

bility purposes. In AR-SMT, two redundant threads execute the same program

instructions. The first thread, or A-thread (Active Thread), runs ahead of the

second one, the R-thread (Redundant Thread), by an amount of time determined

by the size of a delay buffer. The A-thread pushes the result of register commits

and load values in the delay buffer, which are used by the R-thread to compare

the correct execution of the program instructions. This way, the A-thread acts

like a prefetcher for the R-thread. In case of a fault, the architectural state of the

R-stream is used as a safe point and is used to initialize the A-stream to resume ex-

ecution. AR-SMT, however, requires doubling the physical memory of the system

(each stream manage its own memory system), which results very expensive.

Austin proposes the use of a heterogeneous physical redundancy in a CMP with

DIVA [4]. DIVA architecture is formed by two different processor units. On the

one hand, it has a speculative, superscalar core, the DIVA core. On the other hand,

there exists the DIVA checker, a much simpler in-order core with no optimizations

which runs slower than the DIVA core but, at the same time, it is almost fault-free.

In the absence of faults both cores provide the same results. After verification,

instruction results are committed to the architectural state. If a fault is detected,

though, the result provided by the DIVA checker is considered as valid, since it

Chapter 2. Background and Related Work 19

is assumed to be implemented with large and more reliable transistors. However,

any fault affecting the checker would pass as undetected in this architecture.

The Slipstream [95] architecture is also based on the execution of redundant

threads either in different cores of a CMP or in different contexts in a SMT, pro-

viding improved performance and partial fault tolerance. We can see a schematic

of the proposed pipeline in Figure 2.3. The A-stream performs a speculative

execution of all program instructions and, therefore, in a fastest way than a sin-

gle equivalent processor. The R-stream, which runs slightly later, executes non-

speculatively and checks the correct execution of the A-stream. If a mismatch is

detected, the R-stream repairs the architectural state of the A-stream and execu-

tion is resumed from that point. The execution of the A-stream is guided by the

Instruction Removal predictor (IR-predictor), a component which removes from

execution non-effect instructions such as those that write non-consumed values,

overwrite the same values or those generating deterministic flows. This mechanism

makes the execution of the A-stream go faster. At the same time, the performance

of the R-stream is also improved since it is able to use the near-perfect predictions

of the A-stream. If a fault affects any of the two streams, this will be reflected as a

mismatch between the two computations, something solved by resuming execution

from the affected point. Unfortunately, since not all the instructions are executed

redundantly, the coverage is partial.

Pred. I-cache

D-cache

Branch

Core

Buffer
Reorder

Execute

Branch

Pred.I-cache

D-cache

Execute
Core

Buffer
Reorder

from IR-detector

to IR-predictor

A-stream R-stream

Delay Buffer

Recovery

Controller

IR-detector

IR-predictor

Figure 2.3: Slipstream architecture overview [95].

Chapter 2. Background and Related Work 20

Simultaneous and Redundantly Threaded processors (SRT)[70] and Simultane-

ous and Redundantly Threaded processors with Recovery (SRTR)[107] implement

a fault tolerant design in a SMT processor. To provide input replication between

the two redundant threads (leading and trailing thread), SRT proposes two al-

ternative mechanisms, the Active Load Address Buffer (ALAB) and the Load

Value Queue (LVQ). Both mechanisms guarantee that corresponding values from

redundant threads obtain the same values from the data cache. The ALAB is an

associative table which keeps the data blocks read by the leading thread. When

a block is about to be replaced or invalidated from the cache, the controller first

checks for it in the ALAB. If the block has not been read by the trailing thread yet,

the replacement or invalidation for that block is denied. This assures the trailing

thread to read the correct value from the cache. The LVQ, however, is much easier

to implement. The leading thread keeps committed loaded values and addresses

in the LVQ to bypass data to the trailing thread. This way, the data cache is

only accessed by loads of the leading thread. Since the LVQ is a FIFO queue,

trailing loads need to be performed in program order, which limits, in general,

the performance. Additionally, the memory subsystem remains unprotected since

load accesses are performed only once. SRTR extends SRT by providing error

correction. For that, leading thread commit is stalled until trailing thread check

the instructions for faults. Thus, the leading thread is stalled eventually, which

increases the performance degradation with respect to SRT.

Gomaa et al. [26] improve SRT performance by exploiting partial coverage.

They proposed two different execution modes, the Single Execution Mode (SEM)

mode, in which leading thread is provided with all processor resources, and the

Redundancy Execution Mode (REM), which provides full redundancy. In low ILP

phases in which resources are available, REM is activated since the leading thread

performance is not affected. In high ILP phases redundancy is switched off to

avoid performance degradation. To provide some coverage in SEM, IRTR [85],

which exploits dynamic instruction reuse, is proposed.

Slick [63] also reduces SRT degradation by reducing the amount of instructions

executed by the trailing thread. For that purpose, it predicts the result of backward

slices of verifiable computations (high-confidence branches or easily predictable

Chapter 2. Background and Related Work 21

stores). In the same fashion, SpecIV [35] makes use of value prediction to avoid

trailing thread execution and improve overall performance.

Chip Redundantly Threaded processors (CRT)[55] and Chip Redundantly

Threaded processors with Recovery (CRTR)[25] are the adaption to CMP pro-

cessors of SRT and SRTR, respectively. In these proposals, contrarily to SRT and

SRTR, leading and trailing threads are executed within different processor cores.

The main benefits obtained are the reduced performance impact because resources

are not shared, and the extended coverage, since the same fault cannot affect both

executions as a result of spatial distance. However, all the information bypassed

between threads increases the inter-core communication traffic. Thus, new wide

datapaths are required.

Reunion [83] introduces relaxed input replication. The authors rely on the ob-

servation that, without additional support, redundant threads which access mem-

ory independently, obtain the same memory values most of the time. Thus, instead

of relying on strict input replication by means of LVQ or ALAB structures like

SRT, they propose to detect divergences between threads and then treat them as

the occurrence of transient faults. In Reunion, redundant threads run in different

processor cores (as in CRT and CRTR). In order to detect faults, cores frequently

interchange fingerprints [84], small compressed signatures of the current archi-

tectural state. Unfortunately, Reunion requires dedicated point-to-point buses to

interchange fingerprints, and the length of checking intervals is reduced to hundred

of instructions to avoid excessive penalties because of violations of input replica-

tion. Furthermore, these buses must be very fast since Reunion does not commit

instructions after comparison. As a consequence, the processor pipeline is stalled

frequently, impacting on performance if comparisons are not fast enough.

Dynamic Core Coupling (DCC) [37] avoids the use of special communication

channels. For that, DCC increases checking intervals to the order of thousands

of cycles while allows instruction commit before checking. The only constraint

it imposes is avoiding memory updates to go outside the L1 cache, something

which is achieved by adding an unverified bit in memory blocks. When blocks

are written in cache, the unverified bit is set and the update of lower levels is not

allowed. At the end of the checking interval, if execution is correct, all unverified

Chapter 2. Background and Related Work 22

bits are cleared. Given the length of these intervals, relaxed input replication is not

well suited since it would very frequently lead to violations. Instead, DCC adds a

mechanism called consistency window to provide input replication. Unfortunately,

this mechanism introduces an undesirable amount of complexity to the coherence

protocol. Furthermore, it relies on the use of a shared-bus as interconnection

network, which limits the scalability of the design [34]. Alternatively, Rashid

et al. introduce Highly-Decoupled Thread-Level Redundancy [69] in which the

unverified memory updates are buffered in a new structure called Post Commit

Buffer (PCB). This way, the consistency window is avoided. Only after checking,

PCB buffered values update on-chip caches.

To summarize the above, Table 2.1 shows the main redundant architectures

discussed in this Section, and classified according to their SoR, input replication,

output comparison and synchronization methods.

Table 2.1: Main characteristics of several redundant architectures.

SoR Synchronization
Input Output

Replication Comparison
SRT(R) Pipeline, Staggered Strict Instruction by
CRT(R) Registers execution (Queue-based) instruction

Reunion
Pipeline,

Loose coupling
Relaxed input
replication

FingerprintsRegisters,
L1Cache

DCC
Pipeline,

Thousands of
instructions

Consistency
window

Fingerprints,
Checkpoints

Registers,
L1Cache

HDTLR
Pipeline,

Thousands of
instructions

Sub-epochs
Fingerprints,
Checkpoints

Registers,
L1Cache

2.3.2 Coherence-Level Mechanisms

The interconnection network is also prone to transient faults. First because it

occupies a significant part of the total chip area, which increases the probability of

particles strikes. And second, because it is built with longer wires which exacerbate

crosstalking effects.

Chapter 2. Background and Related Work 23

Sorin et al. [87] propose to dynamically verify cache coherence as a measure

to detect faults. They introduce end-to-end invariants of the cache coherence

protocol and the interconnection network. However, it is limited to snooping

coherence protocols and it cannot detect all errors in coherence. Meixner et al.

[51] extend previous work for any kind of cache coherence protocol, although they

do not propose any recovery mechanism. Finally, Fernandez-Pascual et al. [21]

propose a scheme based on timers set at the start of coherence actions. If a timer

expires, it is indicative of an error, something which is usually solved by means of

a reply action. This provides the coherence protocol with the ability of recovering

itself.

2.4 Software and Hybrid Approaches

Other proposals address fault tolerance at software-level. Although software mech-

anisms are generally slower, they allow larger flexibility and can be combined with

existing solutions in hardware. First approaches like CFCSS [60], EDDI [61] and

ACFC [68] rely on the introduction of redundant instructions and asserts that

check the correctness of the execution. In the same fashion SWIFT [72] is pro-

posed. SWIFT duplicates all the program instructions but stores. Additionally,

it introduces explicit code for checking the control flow.

CRAFT [73], implements RMT in software with hardware support. In con-

trast to SWIFT, all instructions including loads and stores are duplicated and

checked by means of hardware structures, which makes CRAFT a hybrid ap-

proach. Original loads access memory and write a new entry in a Load Value

Queue (LVQ). Once the redundant load checks that the destination address is the

same, both loads are committed. For the treatment of stores the Checking Store

Buffer (CSB) is introduced, which keeps the address and value to write. Only

when both copies match, the store instruction is issued to memory. Finally, Spot

[71] also implements RMT in software with the particularity that allows the user

to employ different fault coverage degrees in different parts of the program.

Chapter 2. Background and Related Work 24

The use of software checkpoints has also been studied in depth since it is

relatively easy to deploy in common server hardware. The information kept in the

checkpoint includes the core architectural state but also a recent copy for the values

of caches and memory. Checkpoints are stored within the memory hierarchy, which

reduces the implementation costs and performance overhead. CARER [30] was

one the first approaches for uniprocessor systems. CARER holds modified lines in

cache until verification. If an error occurs, modified lines are discarded whereas

clean lines and memory represent the recovery point. However, in a multiprocessor

environment, checkpoints need to be consistent since recovery dependencies may

be created as a result of core interactions. Thus, several policies can be taken.

The most straightforward one is to take global checkpoints which require complete

synchronization. This is the case of proposals such as [23, 50, 53]. Revive [66],

additionally performs a memory-based distributed parity protection to recover

even from faults affecting the checkpoint. Alternatively, some approaches take

coordinated local checkpoints like SafetyNet [89]. In this case, processors take

their own checkpoints but eventual interactions with other processors may force

to take new checkpoints. This way, independent computations are not forced

to sync. Finally, in other approaches cores take uncoordinated local checkpoints

[19, 20, 93, 94]. In this case, interactions are recorded. If an error occurs, a register

of interactions is used to recover consistently.

2.5 Symptom Based Approaches

Other approaches to fault detection follow a scheme based on symptoms. Symp-

toms indicate, at different levels, the anomalous behaviour of one or more com-

ponents of the system. Racunas et al. [67] propose several mechanisms to detect

data value anomalies caused by faults. These mechanisms are based on invariants

or data history values. At microarchitectural level, ReStore [108] detects transient

faults based on the observation of abnormal events such as exceptions, cache misses

or page faults. Once a fault is detected, the execution is rolled-back to a previous

safe state. Finally, Li et al. [42] propose to detect faults at software level by

capturing events like fatal hardware traps, abnormal application exits, OS hangs,

Chapter 2. Background and Related Work 25

etc. Unfortunately, this scheme presents several drawbacks. First, faults which do

not affect the behaviour but the semantic of applications can go undetected, e.g.

faults affecting arithmetic units. And second, the latency of fault detection can

be very high since it may take a long time between the occurrence of a fault and

its manifestation.

Chapter3

Simulation Environment and

Methodology

SUMMARY:

We have based our studies on the implementation and evaluation of

the proposed mechanisms through computer architecture simulators. This

brings along the opportunity to parametrize, control and study the targeted

system to extract accurate performance metrics whereas maintaining a short

development time. Specifically, we have used the Simics-GEMS framework

which provides full-system simulation as well as detailed performance anal-

ysis.

3.1 Simulation Tools

3.1.1 Simics

Simics [45] is a full-system functional simulator used to run unchanged production

binaries of the target hardware at high-performance speeds. Simics can simulate

systems such as Alpha, x86-64, IA-64, ARM, MIPS (32- and 64-bit), MSP430,

PowerPC (32- and 64-bit), POWER, SPARC-V8 and V9, and x86 CPUs. Many

27

Chapter 3. Simulation Environment and Methodology 28

operating systems can run in Simics including MS-DOS, Windows, VxWorks, OSE,

Solaris, FreeBSD, Linux, QNX, and RTEMS. The purpose of simulation in Simics

is often to develop software for a particular type of embedded hardware, using

Simics as a virtual platform.

3.1.2 GEMS

However, while Simics is able to run any program, it is unable to obtain perfor-

mance metrics. For that purpose, we have used GEMS [47] simulator, provided by

Wisconsin-Madison University. GEMS is a multiprocessor cycle-to-cycle accurate

open-source simulator which, coupled to Simics, provides with accurate perfor-

mance metrics including simulated time, cache hit/miss ratio or network traffic

among others. GEMS is formed by different modules leveraging the potential of

Virtutech Simics to simulate a Sparc multiprocessor system. Ruby models the

memory hierarchy and Opal models an out-of-order speculative pipeline based on

the SPARCv9 ISA. Figure 3.1 shows the Simics-GEMS framework. In the elabo-

ration of this thesis we have used Simicsv3.01 and GEMSv2.1.

Figure 3.1: Simics-GEMS simulator framework.

Ruby implements the interconnection network and the cache/memory sub-

system. Additionally, it includes a language to specify cache coherence proto-

cols called SLICC (Specification Language for Implementing Cache Coherence).

Chapter 3. Simulation Environment and Methodology 29

SLICC allows us to implement new protocols or manipulate the existing ones by

adding new coherence actions and/or states to modify the behaviour of the mem-

ory hierarchy. Ruby also models a HTM model based on LogTM [115].

Opal features include a superscalar, pipelined processor core allowing multiple

execution units and load/store queues to allow out-of-order memory operations

and memory bypassing. The major goal of Opal is to generate multiple memory

requests to Ruby. Additionally, it supports the simulation of SMT cores.

3.1.3 McPAT

McPAT (Multicore Power, Area, and Timing) [44] is an integrated power, area,

and timing modeling framework for multithreaded, multicore, and manycore ar-

chitectures. It supports comprehensive early stage design space exploration for

multicore and manycore processor configurations ranging from 90nm to 12nm and

beyond. McPAT includes models for the components of a complete chip multi-

processor, including in-order and out-of-order processor cores, networks-on-chip,

shared caches, and integrated memory controllers. McPAT models timing, area,

and dynamic, short-circuit, and leakage power for each of the device types fore-

cast in the ITRS roadmap including bulk CMOS, SOI, and double-gate transistors.

McPAT has a flexible XML interface to facilitate its use with different performance

simulators.

3.1.3.1 CACTI

CACTI [104] is an integrated cache and memory access time, cycle time, area,

leakage, and dynamic power model. By integrating all these models together, users

can have confidence that trade-offs between time, power, and area are all based

on the same assumptions and, hence, are mutually consistent. CACTI is intended

for use by computer architects to better understand the performance trade-offs

inherent in memory system organizations. In this Thesis we have used the last

version of CACTI, CACTI 6.5 which is included within McPAT v0.8 simulator.

Chapter 3. Simulation Environment and Methodology 30

3.2 Simulated System

We use the Simics-GEMS framework to evaluate the performance impact of our

proposals in shared-memory CMPs. It is our belief that future many core designs

will be organized in tiled-CMPs around a point-to-point network to maintain the

scalability that other designs cannot provide [62, 77]. Thus, our base system is

formed by a 16-core tiled-CMP organized in a 4x4 2D-mesh. Each tile is formed

by a processor core, a private L1 cache and a portion of the shared L2 cache,

maintaining a non-inclusive policy between them which provides with a better

use of the total available cache capacity. Besides, each tile includes a portion of a

distributed directory which is used to provide the coherence of blocks in L1 caches.

In Figure 3.2 we can see a diagram of the simulated tiled-CMP architecture.
��� ����� ��������� 	��
���

��������

�	
��	��

�
�

������

�
���
����

R
o
u
te
r

��������

����� ���� ������������ �� � ���� ��� � ��� ����� ����

� ������� ��� ������ � ����� ���! ��� ��!��" !�		��� �������! �� 	������! #���

$��"��� ���
�� �� ����!% ��������� ��� �	���� �� ���������� �����	�� !�	������"

��!��� ��� !	����
����� ���! #����� � !����� 	��&���� ���������% �� !���! ����

���" #���
� ��� ������ ��� ������ ���"����� ���!�

���! ���!�! �!!���! � ����� ��� ����� !������ �� ��� ��� ��	����� ��
�����

���
��� ��� �'	������� ��� 	��	�!�� ����! ��� ��� �$�������� �����

(������� ��� ������������! ��� $��" !����
�� ��� �������	�� ���	�����)*+,

#���� !�$���� ����	������ 	������! ��� �� ��������� ����!% ��� !����!! �� ���!

��!� �����! �� ��� �
����" �� 	���������! ��� 	������! �� �'����� ���������$��

	��������!�� -�����������" �����	����!!��! ��� .���� 	�	���� !���� ��� ����

���������� ����� ��� ��������� ����! ���� ������� ��� ������� �����! ��	����

���" �! � ��!��� �� ���$�������� �����" ����!! ��!��������! �����% ����! ��� !����! %

#���� ��&�! ���� ��!��� �� 	������ ���� ��!!����	�!!��� �����	����!!��!� /�

���! #�"% ��� 	����!!��� ����! ��� ���� ��� #���� �� ��� !��� !����� �����!!

!	��� ��� ���" #��� �$�������" !�� ������! ����
" ����� 	����!!��!% ���������

�� � 	��������� �����" ���!�!����" �����)�,�

���������% ��!� ��� !"!���! 	��$��� 	���������! #��� ��� �������$�

!�����������" 	���������� �����% #���� �! $��" �������� �� ����� /� ����%

��!� 	������� !���#��� �� ��� ���������� ���&�� �����! �� ���! 	����������

������ 0����% #� ����& ���� !�����������" �����	����!!��! #��� ������ ���

�������� ������������ ��� � ���� �����

�1

Figure 3.2: Organization of a tile and a tiled-CMP system architecture.

3.3 Evaluation Metrics

Basically, we have measured the performance impact of our proposals in terms

of execution time. Since the vast majority of evaluated benchmarks are parallel

workloads running in a multiprocessor environment, metrics like IPC or CPI are

not appropriate as a way to evaluate the performance given the existence of syn-

chronization mechanisms. Instead, we use as main performance metric the number

of cycles spent in the execution of the benchmarks.

Chapter 3. Simulation Environment and Methodology 31

The synchronization mechanisms are also responsible for the variability of the

execution of the evaluated benchmarks, i.e., the results of several simulations are

not deterministic (although semantically identical). For that reason, we have taken

several runs per benchmark and configuration. Thus, reported results show the

average execution time for different runs per benchmark including, additionally,

the standard deviation to provide an insight for this variability.

3.4 Benchmarks

The Simics machine emulates a SunFire 6800 server with a UltraSPARC-III pro-

cessor running Solaris 10 as OS. On top of this system we have evaluated several

applications from different benchmark suites ranging from scientific, multimedia

and server applications. Specifically, bzip2, gap, gzip, parser, twolf and vpr are

sequential benchmarks from the SpecCPU2000 suite [28]. Barnes, cholesky, fft,

ocean, radix, raytrace, waternsq and watersp are scientific multithreaded applica-

tions from the SPLASH-2 [112] benchmark suite. Unstructured is a fluid dynamic

application. Em3d models the propagation of electromagnetic waves through ob-

jects. Blackscholes, canneal, swaptions and fluidanimate are applications from the

PARSEC [7] benchmark suite. Apache, jbb and tomcatv are server applications.

Finally, facerec, MPGdec, MPGenc and speechrec are multimedia applications

from the ALPbench [43] benchmark suite.

3.4.1 SpecCPU2000

256.bzip2

Bzip2 compresses files using the Burrows-Wheeler block-sorting text compression

algorithm, and Huffman coding. Bzip2 is built on top of libbzip2, a flexible library

for handling compressed data in the bzip2 format. The implemented version is

based on Julian Seward’s bzip2 version 0.1. The only difference between bzip2 0.1

and SpecINT2000 bzip2 is that SPEC’s version of bzip2 performs no file I/O other

than reading the input. All compression and decompression happens entirely in

Chapter 3. Simulation Environment and Methodology 32

memory. This is to help isolate the work done by only the CPU and memory

subsystem.

254.gap

Gap is a system for computational discrete algebra, with particular emphasis on

computational group theory. It provides a programming language, a library of

thousands of functions implementing algebraic algorithms written in the gap lan-

guage as well as large data libraries of algebraic objects. Gap is used in research

and teaching for studying groups and their representations, rings, vector spaces,

algebras, combinatorial structures, and more.

164.gzip

Gzip (GNU zip) is a popular data compression program written by Jean-Loup

Gailly for the GNU project. It uses Lempel-Ziv coding (LZ77) as its compression

algorithm. SPEC’s version of gzip performs no file I/O other than reading the

input. All compression and decompression happens entirely in memory in order

to isolate the work done to by the CPU.

197.parser

The link grammar parser is a syntactic parser of English, based on link grammar,

an original theory of English syntax. Given a sentence, the system assigns it a

syntactic structure, which consists of a set of labeled links connecting pairs of

words. The parser has a dictionary of about 60000 word forms. It has coverage of

a wide variety of syntactic constructions, including many rare and idiomatic ones.

The parser is able to handle unknown vocabulary and make intelligent guesses

from context about the syntactic categories of unknown words.

300.twolf

The TimberWolfSC placement and global routing package is used in the process of

creating the lithography artwork needed for the production of microchips. Specifi-

cally, it determines the placement and global connections for groups of transistors

which constitute the microchip. The placement problem is a permutation. There-

fore, a simple or brute force exploration of the state space would take an execution

Chapter 3. Simulation Environment and Methodology 33

time proportional to the factorial of the input size. Instead, the TimberWolfSC

program uses simulated annealing as a heuristic to find very adequate solutions

for the row-based standard cell design style. The simulated annealing algorithm

has found the best known solutions to a large group of placement problems. The

global router which follows the placement step interconnects the microchip design.

It employs a constructive algorithm followed by iterative improvement.

175.vpr

Vpr is a placement and routing program. It automatically implements a technology-

mapped circuit (i.e. a netlist, or hypergraph, composed of FPGA logic blocks and

I/O pads and their required connections) in a Field-Programmable Gate Array

(FPGA) chip. Placement consists of determining which logic block and which

I/O pad within the FPGA should implement each of the functions required by

the circuit. The goal is to place pieces of logic which are connected (i.e. must

communicate) close together in order to minimize the amount of wiring required

and to maximize the circuit speed. This is basically a slot assignment problem.

Vpr uses simulated annealing to place the circuit. An initial random placement is

repeatedly modified through local perturbations in order to increase the quality of

the placement, in a method similar to the way metals are slowly cooled to produce

strong objects.

3.4.2 SPLASH-2

Barnes

The barnes application simulates the interaction of a system of bodies in 3-D over

a number of time steps, using the Barnes-Hut hierarchical N-body method. Each

body is modeled as a point mass and exerts forces on all the other bodies in the

system. To speed up the interbody force calculations, groups of bodies which

are sufficiently far away are abstracted as point masses. In order to facilitate

this clustering, physical space is divided recursively, forming an octree. The tree

representation of space has to be traversed once for each body and rebuilt after

each time step to account for the movement of bodies.

Chapter 3. Simulation Environment and Methodology 34

The main data structure in barnes is the tree itself, which is implemented as

an array of bodies and space cells which are linked together. Bodies are assigned

to processors at the beginning of each time step in a partitioning phase. Each

processor calculates the forces exerted on their own subset of bodies. The bodies

are then moved under the influence of those forces. Finally, the tree is regenerated

for the next time step. There are several barriers for separating different phases of

the computation and successive time steps. Some phases require exclusive access to

tree cells and a set of distributed locks is used for this purpose. The communication

patterns are dependent on the particle distribution and are quite irregular.

Cholesky

The blocked-sparse-cholesky-factorization-kernel factors a sparse matrix into the

product of a lower triangular matrix and its transpose. It is similar in structure

and partitioning to the LU factorization kernel, but it presents two major differ-

ences: first, it operates on sparse matrices, which have a larger communication

to computation ratio for comparable problem sizes, and second, it is not globally

synchronized between steps.

FFT

The fft kernel is a complex one-dimensional version of the radix
√
x six-step fft

algorithm, which is optimized to minimize interprocessor communication. The

dataset consists of the n complex data points to be transformed, and other n com-

plex data points referred to as the roots of unity. Both sets of data are organized

as
√
x x

√
x partitioned matrices so that every processor is assigned a contiguous

set of rows which are allocated in its local memory.

Ocean

The ocean application studies large-scale ocean movements based on eddy and

boundary currents. The algorithm simulates a cuboidal basin using discretized

circulation model which takes into account wind stress from atmospheric effects

and the friction with ocean floor and walls. The algorithm performs the simulation

for many time steps until the eddies and mean ocean flow attain a mutual balance.

The work performed every time step essentially involves setting up and solving

Chapter 3. Simulation Environment and Methodology 35

a set of spatial partial differential equations. For this purpose, the algorithm

discretizes the continuous functions by second-order finite-differencing. After that,

it sets up the resulting difference equations on two-dimensional fixed-size grids

representing horizontal cross-sections of the ocean basin. Finally, it solves these

equations using a red-black Gauss-Seidel multigrid equation solver. Each task

performs the computational steps on the section of the grids that it owns, regularly

communicating with other processes.

Radix

The radix program sorts a series of integers, called keys, using the popular radix

sorting method. The algorithm is iterative, performing one iteration for each

radix r digit of the keys. In each iteration, a processor passes over its assigned

keys and generates a local histogram. The local histograms are then accumulated

into a global one. Finally, each processor uses the latter to permute its keys

into a new array for the next iteration. This permutation step requires all-to-all

communication. The permutation is inherently a sender determined one, so keys

are communicated through writes rather than reads.

Raytrace

This application renders a 3-D scene using ray tracing. A hierarchical uniform

grid is used to represent the scene and early ray termination is implemented. A

ray is traced through each pixel in the image plane and it produces other rays

as it strikes the objects of the scene, resulting in a tree of rays per pixel. The

image is partitioned among processors in contiguous blocks of pixel groups, and

distributed task queues are used with task stealing. The data accesses are highly

unpredictable in this application. Synchronization in raytrace is done by using

locks. This benchmark is characterized for having very short critical sections and

very high contention.

Water-nsq

The water-nsq application performs an N-body molecular dynamics simulation of

the forces and potentials in a system of water molecules. It is used to predict some

of the physical properties of water in the liquid state. Molecules are statically split

Chapter 3. Simulation Environment and Methodology 36

among the processors and the main data structure in water-nsq is a large array

of records which is used to store the state of each molecule. At each time step,

the processors calculate the interaction of the atoms within each molecule and

the interaction of the molecules with one another. For each of them, the owning

processor calculates the interactions with only half of the molecules ahead of it in

the array. Since the forces between the molecules are symmetric, each pair-wise

interaction between them is thus considered only once. The state associated with

the molecules is then updated. Although some portions of the molecule state are

modified at each interaction, others are only changed between time steps.

Water-sp

This application solves the same problem as water-nsq but using a more efficient

algorithm. It imposes a uniform 3-D grid of cells on the problem domain, and

uses an O(n) algorithm which is more efficient than water-nsq for large numbers

of molecules. The advantage of the grid of cells is that processors which own a cell

only need to look at neighboring cells to find molecules that might be within the

cutoff radius of molecules in the box it owns. The movement of molecules going

in and out of cells causes cell lists to be updated which results in communication.

3.4.3 Parsec 2.1

Blackscholes

This application is an Intel RMS benchmark. It calculates the prices for a port-

folio of European options analytically with the Black-Scholes partial differential

equation (PDE). There is no closed-form expression for the Black-Scholes equation

and, as such, it must be computed numerically. The program divides the portfolio

into a number of work units equal to the number of threads and processes them

concurrently. Each thread iterates through all derivatives in its contingent and

compute the price for each of them.

Chapter 3. Simulation Environment and Methodology 37

Canneal

This kernel was developed by Princeton University. It uses cache-aware simulated

annealing (SA) to minimize the routing cost of a chip design. Canneal pseudo-

randomly picks pairs of elements and tries to swap them. To increase data reuse,

the algorithm discards only one element during each iteration which effectively

reduces cache capacity misses. Canneal uses a very aggressive synchronization

strategy that is based on data race recovery instead of avoidance. Pointers to the

elements are dereferenced and swapped atomically, but no locks are held while a

potential swap is evaluated. This can cause disadvantageous swaps if one of the

relevant elements has been replaced by another thread during that time. This

equals a higher effective probability to accept swaps which increase the routing

cost, and the SA method automatically recovers from it. The swap operation

employs lock-free synchronization which is implemented with atomic instructions.

Fluidanimate

This Intel RMS application uses an extension of the Smoothed Particle Hydrody-

namics (SPH) method to simulate an incompressible fluid for interactive animation

purposes. The scene geometry employed by fluidanimate is a box in which the fluid

resides. All collisions are handled by adding forces in order to change the direction

of movement of the involved particles instead of modifying the velocity directly.

Swaptions

The application is an Intel RMS workload which uses the Heath-Jarrow-Morton

(HJM) framework to price a portfolio of swaptions. Swaptions employs Monte

Carlo (MC) simulation to compute the prices.

3.4.4 Other Scientific Applications

Em3d

Em3d models the propagation of electromagnetic waves through objects in three

dimensions. The problem is framed as a computation on a bipartite graph with

Chapter 3. Simulation Environment and Methodology 38

directed edges from nodes, representing electric fields to nodes representing mag-

netic fields and conversely. The sharing patterns found in this application are

static and repetitive.

Unstructured

Unstructured is a computational fluid dynamics application that uses an unstruc-

tured mesh to model a physical structure, such as an airplane wing or body. The

mesh is represented by nodes, edges that connect two nodes, and faces that con-

nect three or four nodes. The mesh is static, so its connectivity does not change.

The mesh is partitioned spatially among different processors using a recursive co-

ordinate bisection partitioner. The computation contains a series of loops that

iterate over nodes, edges and faces. Most communication occurs along the edges

and faces of the mesh.

3.4.5 ALPbench

Facerec

FaceRec is a benchmark based on the Colorado State University face recognizer.

Face recognition can be used for authentication, security and screening. Similar

algorithms can be used in other image recognition applications. The ALPBench

version has been modified to compare a separate input image with all the images

contained in a database. The application has an offline training phase, but only

the recognition phase has been considered in our evaluation.

MPGdec

The MPGdec benchmark is based on the MSSG MPEG decoder. It decompresses

a compressed MPEG-2 bit-stream. Many recent video decoders use similar algo-

rithms. The execution comprises four phases: variable length decoding, inverse

quantization, inverse discrete cosine transform (IDCT) and motion compensation.

In this application threads are created and finished in a staggered fashion as con-

tiguous rows of blocks are identified by the main thread.We have divided this

benchmark in transactions, where each one is the decoding of one video frame.

Chapter 3. Simulation Environment and Methodology 39

MPGenc

This benchmark is based on the MSSG MPEG-2 encoder. It converts video frames

into a compressed bit-stream. The ALPBench version has been modified to use an

intelligent three-step motion search algorithm instead of the original exhaustive

search algorithm, and to use a fast integer discrete cosine transform (DCT) but-

terfly algorithm instead of the original floating point matrix based DCT. Also, the

rate control logic has been removed to avoid a serial bottleneck. This application

is divided in the same phases as MPGdec, but they are performed in the reverse

order. We have divided this benchmark in transactions, where each transaction is

the encoding of one video frame. MPGdec and MPGenc perform complementary

functions. In fact, we use the output of MPGdec as the input of MPGenc.

Speechrec

The SpeechRec benchmark uses CMU SPHINX speech recognizer version 3.3.

Speech recognizers are used with communication, authentication and word pro-

cessing software and are expected to become a primary component of the human-

computer interface. The application has three phases: feature extraction, Gaussian

scoring and searching in the language dictionary. The feature extraction phase is

not parallelized. Thread barriers are used for synchronization between phases and

fine-grain locking is used during the search phase.

3.4.6 Server Applications

Apache

This is a static web serving benchmark using Apache version 2.2.4. Requests

are made by a Surge client running on the same machine, simulating 500 clients

making random requests to 2000 different HTML files. Each client waits 10ms

between requests (think time). The server uses 16 processes and 25 threads per

process. It also has all logging functionality disabled. This benchmark is divided

in transactions, where each transaction is an HTTP request. We simulate 100,000

transactions without the detailed timing model to warm up the main memory, 500

Chapter 3. Simulation Environment and Methodology 40

transactions with the timing model enabled to warm up the caches and 10,000

transactions to obtain results.

Jbb

SpecJbb is based on SPEC JBB2000. It is a Java based server workload that

emulates a 3-tier system. In this benchmark, the work of the middle tier, which is

the business logic and object manipulation, predominates. We use Sun’s HotSpot

Java virtual machine version 1.5.0 for Solaris. Our benchmark uses 24 warehouses.

This benchmark is divided in transactions. We simulate 1,000,000 transactions

without the detailed timing model to warm up main memory, 300 transactions

with the timing model enabled to warm up the caches and 8,000 transactions to

obtain the results.

Tomcatv

Tomcatv is a parallel version of the SPEC CFP95 - 101.tomcatv benchmark. The

program is a vectorized mesh generation program part of Prof. W. Gentzsch’s

benchmark suite.

Chapter4

REPAS: Reliable Execution of

Parallel ApplicationS in

tiled-CMPs

SUMMARY:

In this Chapter we present our first fault-tolerant architecture de-

sign which we call REPAS: Reliable Execution of Parallel ApplicationS

in tiled-CMPs. With the development of CMPs, the interest in using

parallel applications has increased. Previous proposals for providing

fault detection and recovery have been mainly based on redundant ex-

ecution over different cores. RMT (Redundant Multi-Threading) is a

family of techniques in which two independent threads, fed with the

same inputs, redundantly execute the same instructions in order to

detect faults by checking their outputs. In this Chapter, we study the

under-explored architectural support of RMT techniques to reliably

execute shared-memory applications in tiled-CMPs.

Initially, we show how atomic operations induce serialization points

between redundant threads which impacts seriously on execution time.

To address this issue, we introduce REPAS, a novel RMT mechanism

41

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 42

to provide reliable execution of shared-memory applications in environ-

ments prone to transient faults. REPAS architecture only needs lit-

tle extra hardware since the redundant execution is performed within

2-way SMT cores in which the majority of hardware is shared. Ex-

perimental results show that REPAS is able to provide fault tolerance

against soft-errors with a lower execution time overhead than previ-

ous proposals in comparison to a non-redundant system, while using

less hardware resources. Additionally, we show that REPAS supports

huge fault ratios with negligible impact on performance, even for highly

unrealistic fault rates.

4.1 Introduction

The advance in the scale of integration allows to increase the number of transis-

tors in a chip, which are used to build powerful processors such as CMPs (Chip

Multiprocessors) [102]. But, at the same time, manufacturers have started to no-

tice that this trend, along with voltage reduction and temperature fluctuation, is

challenging CMOS technology because of several reliability issues. Among others,

we can cite the increasing appearance of hardware errors and other related topics

such as process-related cell instability, process variation or in-progress wear-out.

Another fact to take into account is that the fault ratio increases due to alti-

tude. Therefore, reliability has become a major design problem in the aerospace

industry.

As introduced in Chapter 1, hardware errors are classified as transient, in-

termittent or permanent [27, 54]. On the one hand, permanent faults, which are

usually caused by electromigration, remain in the hardware until the damaged

component is replaced. On the other, voltage variation and thermal emergencies

are the main cause of intermittent faults.

Transient faults, also known as soft-errors, appear and disappear by them-

selves. They can be induced by a variety of reasons such as transistor variability,

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 43

thermal cycling, erratic fluctuations of voltage and radiation external to the chip

[54]. Radiation-induced events include alpha-particles from packaging materials

and neutrons from atmosphere. As we have shown in Chapter 1, it is well estab-

lished that the charge of an alpha particle or a neutron strike over a logical device

can overwhelm the circuit inducing its malfunction.

It is hard to find documented cases concerning soft errors in commercial sys-

tems. This is as result of both the difficulty which involves detecting a soft er-

ror and the convenient silence of manufacturers about their reliability problems.

However, several studies show how soft errors can heavily damage industry. For

instance, in 1984 Intel had certain problems delivering chips to AT&T as a result

of alpha particle contamination in the manufacturing process [54]. In 2000, a re-

liability problem was reported by Sun Microsystems in its UltraSparc-II servers

deriving from insufficient protection in the SRAM [54]. A report from Cypress

Semiconductor showed how a car factory had to be halted once a month because

of soft errors [119].

Nowadays, several measures have been introduced in microarchitectural de-

signs in order to detect and recover from transient errors such as error detection

and correction codes. They are created by specific rules of construction to avoid

information loss in the transmission of data. ECC codes are commonly used in

dynamic RAM. However, these mechanisms cannot be extensively used across all

hardware structures. Instead, at the architecture level, DMR (Dual Modular Re-

dundancy) or TMR (Triple Modular Redundancy) have been proposed. In these

approaches, fault detection is provided by means of dual and triple execution re-

dundancy.

In this fashion, we find RMT (Redundant Multi-Threading), a family of tech-

niques in which two threads redundantly execute the program instructions. Simul-

taneous and Redundantly Threaded processors (SRT) [70] and SRT with Recovery

(SRTR) [107] are two of them (see Section 2.3.1), implemented over SMT proces-

sors in which two independent and redundant threads are executed with a delay

respect to the other which speeds up their execution. These early approaches are

attractive since they do not require many design changes in a traditional SMT

processor. In addition, they only add some extra hardware for communication

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 44

purposes between the threads. However, the major drawback of SRT(R) is the

inherent non-scalability of SMT processors as the number of threads increases.

In order to provide more scalability, several approaches were designed on top

of CMP architectures, such as Reunion [83], Dynamic Core Coupling (DCC) [37]

or High Decoupled Thread Level Redundancy (HDTLR) [69], as cited in Chapter

2. However, solutions using this kind of redundancy achieve a severe degradation

in terms of power, performance and especially in area, since they use twice the

number of cores to support DMR. Therefore, these approaches are not well suited

for general markets, as the industry claims that a fault tolerant mechanism should

not impose more than 10% of area overhead in order to be effectively deployed

[74]. Hence, solutions based on redundant multithreading using SMT cores seem

a good approach to achieve fault tolerance without sacrificing too much hardware

[42].

Although there are different proposals based on SRTR with either sequential

or independent multithreaded applications [107][35], the architectural support for

redundant execution with shared-memory workloads is not well suited. As we will

show in Section 4.2.2, in shared-memory parallel applications, the use of atomic

operations may induce serialization points between master and slave threads, af-

fecting performance in a grade which depends on the memory consistency model

provided by the hardware.

To address all these issues, in this Chapter we propose REPAS, Reliable Ex-

ecution of Parallel ApplicationS in tiled-CMPs. The main contributions of this

work are: a) a performance problem of traditional RMT implementations has been

identified; b) to address this issue, a scalable RMT solution built on top of dual

SMT cores to form a reliable CMP has been designed; and c) a proposal has been

implemented in a full-system simulator to measure its effectiveness and execution

time overhead. We show that REPAS is able to reduce the execution time overhead

down to 25% with respect to a non fault-tolerant architecture, while outperforming

a traditional RMT mechanism by 13%. Previous proposals, such as DCC, obtain a

better performance for specific environments such as Multimedia and Web Server

applications. However, REPAS achieves the same goal by using half the hardware

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 45

(cores) used in DCC. Additionally, our mechanism is able to recover from transient

faults with negligible performance impact even with extremely high fault rates.

The rest of the Chapter is organized as follows: Section 4.2 reviews some

related work. In Section 4.2.1 we further detail DCC, a previous related fault

tolerant mechanism, for comparison purposes. Section 4.2.2 introduces CRTR

and presents its major drawbacks in a parallel shared-memory environment. We

present REPAS’s architecture in Section 4.3. Section 4.4 analyzes the performance

of REPAS in both fault-free and faulty environments. Finally, Section 4.5 sum-

marizes the main conclusions of this work.

4.2 RMT Previous Approaches

As mentioned before, in this Chapter we compare REPAS with two state-of-the-

art related proposals aimed at providing fault tolerant execution in a CMP en-

vironment: Chip Redundantly Threaded processors with Recovery (CRTR) [25]

and Dynamic Core Coupling (DCC) [37]. Although both proposals were briefly

sketched in Chapter 2, this Section shows a more extensive and detailed explana-

tion of their peculiarities in order to provide a more comprehensive view of each

one so as to show their benefits and drawbacks.

4.2.1 Moving Dynamic Core Coupling to a Direct Network

Environment

Dynamic Core Coupling (DCC) [37] is a fault tolerant mechanism for both se-

quential and parallel applications. DCC implements dual modular redundancy

(DMR) by binding pairs of cores in a CMP connected by a shared-bus. To provide

fault tolerance, paired cores redundantly execute program instructions to verify

each other’s execution. In this Section, we deeply analyze the major benefits and

drawbacks of DCC. In particular, we focus on the impact over the coherence and

consistency systems of DCC when it is ported from a shared-bus to a more scalable

direct-network.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 46

4.2.1.1 DCC in a Shared-Bus Scenario

In DCC, a pair is formed by two cores, the master core and the slave core, which

redundantly execute all the program instructions. To verify the correct execu-

tion, at the end of a checkpoint interval each master-slave pair interchange the

compressed state of their register file and all the updates performed to memory.

In order to amortize the compression time and save bandwidth these checkpoints

intervals are in the order of 10,000 cycles.

Both, master and slave cores are allowed to read memory. However, only

the master is permitted to modify and share memory values. Writes to memory

are marked in L1 cache by means of an unverified bit [48]. This bit indicates

that the modification of the block has not been verified yet. In order to avoid the

propagation of errors, the update of unverified values in lower levels of the memory

hierarchy (L2 and beyond) is not allowed. At the end of each checkpoint interval

all the unverified bits are cleared.

To provide a correct execution of parallel applications, DCC needs several

changes to both the coherence and consistency system. As said before, the master

core is the responsible of sharing unverified data. From the point of view of

coherence, this means that the slave core is not allowed to response to forwarded

requests (request from other cores), although invalidations must be performed

accordingly by evicting blocks from cache (without updating lower levels of the

memory hierarchy). The constraints that DCC should address to provide a correct

execution increase noticeably the complexity of the coherence protocol. These

constraints include:

• To assure forward progress, writes to verified dirty cache blocks force a write-

back to L2 in master cores. Contrarily, slave cores never update L2.

• A reader marks its line as unverified if in the original holder the line is

unverified.

• Slave cores never supply data on a request to a remote core1.

1A remote core is any core different from its master pair.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 47

• The coherence protocol should be MOESI (or similar), to provide datablock

sharing among nodes without updates in memory.

• Slave reads could downgrade block states by accesses in remote caches but

never could cause invalidations.

• Master reads to unverified lines could cause invalidations in a remote master,

only in the case that their slave-pairs keep a copy of the line, which is marked

as unverified to prevent eviction. If the slave has no copy of the line, by using

the capability offered by the shared bus, it will read the message directed to

the remote core to get the line. The same happens with master upgrades.

• The replacement of unverified blocks in L1 cache causes a buffering over-

flow. To avoid the propagation of unverified data a new checkpoint must be

created.

The major difficulty, however, is to provide the master-slave consistency to

assure than both cores obtain the same view of the memory at all times. The

pair consistency is violated if between the time a master’s read is performed an

intervening write modifies the value, preventing the slave’s (redundant) read from

obtaining the same value as the first one. This problem is solved in DCC by a

set of constraints referred to as the master-slave consistency window. Logically,

a consistency window represents a time interval in which any remote intervention

could cause a violation of the consistency. For example, a consistency read window

is open on any master read and is closed once the slave core commits the same

read. To avoid consistency violations, it must be assured that no write windows

are opened for an address in which another window has been previously open.

DCC implements this mechanism by means of an age table. The age table

keeps, for every load and store, the number of committed loads and stores since

the last checkpoint. In Figure 4.1(a) we can see how this mechanism works. A node

requests an upgrade or a read-exclusive for a block through the shared-bus (the

request is seen by all nodes) (1). Each core checks its LSQ in case a speculative

load has been issued. If this is the case, the request in NACKed (2). Parallelly,

each core accesses its age table and reports it to its pair (2). In the following

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 48

(a) Shared-bus (b) Direct-network

Figure 4.1: DCC master-slave consistency.

cycle, every master core checks its own age with the slave’s one. In case of a

mismatch, it means that a window is open and, therefore, the request is NACKed

to avoid a master-slave inconsistency (3). If no mismatch is found the request can

be satisfied.

4.2.1.2 DCC in a Direct-Network Scenario

As the number of cores in a system grows, we observe undesirable effects impacting

on the scalability of systems. One of the affected elements is the interconnection

network. As shown in [34], the area required by a shared-bus (or a crossbar)

increases to the point of becoming impractical as the number of cores grows.

Therefore, one of the first works we perform in this Thesis is the analysis and

evaluation of moving DCC towards a point-to-point unordered network, a more

scalable alternative for CMP designs.

In order to accommodate the behaviour of DCC to a direct-network, we should

introduce several changes in both the coherence and consistency mechanisms. In

both cases the problem is the same: without additional support, slave cores are

unaware of coherence actions because of the loss of the shared-bus and its “broad-

cast” capabilities. We solve this issue by redirecting coherence messages (upgrade,

read-exclusive and invalidation requests) which arrive to master cores to their slave

pairs, introducing, unfortunately, additional traffic and a delay in the communi-

cation.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 49

We can see how this problem affects the way in which the consistency window

works in Figure 4.1(b). Upgrade, read-exclusive or invalidations are now sent to

master cores which are the visible cores in the system (1). These requests can be

directly NACKed in case a speculative load is performed in the master (2). In

parallel, the request needs to be sent to the slave core which, so far, was unaware

of the coherence action. The slave core can deny the request through the master

core in case a speculative load is found in its LSQ (3). Otherwise, it sends its age

to its master pair. Finally, the master core checks for a window violation and then

informs the requestor (4). As we can see, an additional hop is introduced in the

communication for every coherence action.

As we can see in Figure 4.2, there is another problem related to inconsistencies

when replacing verified data blocks. After the replacement of block A in Master1,

another core, Master2, acquires the block and eventually modifies it. When Slave1

executes the redundant load, it will perceive a different value. In the original

DCC proposal with a shared-bus, the consistency window is able to resolve this

conflict. In spite of having the block replaced, Master1 and/or Slave1 can see

through the bus that an external core (Master2) has issued a read-exclusive or an

upgrade request, therefore, aborting the request. However, in a direct network,

the redundant pair is unaware of the fact that another core wants to acquire the

block for writing purposes, since there is no information to guide the message from

the requestor (Master2) to the previous owner which replaced the block.

If we would like to imitate the shared-bus DCC behaviour to avoid these con-

sistency errors, requests should be flooded all over the network. This solution,

however, creates a large amount of network traffic with a big latency. Hence, we

propose a simpler solution which consists of extending the consistency window

concept to cache replacements. For that purpose, on every replacement, the lead-

ing core must check that its pair has read the block. If the partner possesses the

block, the replacement can be executed. If not, it will be delayed until the pair

reads the block some cycles later, causing a necessary latency overhead in L1 re-

placements. In this way, potential consistency errors between masters and slaves

will be solved.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 50

�������� ���	���������
�

�������

���	���

�������

�������

�������

��
��

Figure 4.2: Potential consistency error in DCC.

Finally, another relevant aspect when using a direct network to fit the original

DCC proposal is synchronization when creating checkpoints, as illustrated in Fig-

ure 4.3. The synchronization request is issued at the end of a scheduled interval or

when events such as buffering overflows occur. In a direct network, the responsible

for sending a synchronization request is called Initiator. The Initiator has to send

a message to every master in the system. When the request is received, each mas-

ter tries to sync with its slave-pair, creating and exchanging its architectural state

using a fingerprint [84]. If fingerprints match with each other, an acknowledgment

is sent back to the Initiator. Once all the acknowledgements have been received,

the Initiator finally sends a message to each core in the system, giving the or-

der to save the current state as the last checkpoint and, finally, all cores resume

execution. Besides, if one core finds a mismatch when comparing fingerprints, a

NACK indicating a transient fault detection will be sent to the Initiator, which

will expand the information, causing every core in the system to rollback to its

previously saved checkpoint.

This mechanism for creating new checkpoints exhibits a variable latency di-

rectly dependent on the distance and the network congestion between the Initiator

and the furthermost core. Thus, the Initiator will not send the save-state request

until all ACKs confirming the synchronization have arrived. If any message could

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 51

������� ���	��

������������
��

����������������
��

��
�
�����

�������
���

����

������������

���������

�������
���

����

������

������������

�����������

���������������

����
�����

������

Figure 4.3: Synchronization and checkpoint creation.

not arrive due to a permanent fault in one core, the Initiator would be waiting

in an infinite loop. To avoid this situation, a timeout is set up when waiting for

ACKs. The impact of these measures over the performance is studied and analyzed

in Section 4.4.3.

4.2.2 CRTR as a Building Block for Reliability

As opposed to DCC in which the redundancy is taken by using master-slave pairs

in different cores (increasing the hardware overhead), another alternative consists

of the use of dual SMT cores. This way we can reduce both the hardware overhead

and the delay caused by the communications between redundant pairs through the

network. Among different alternatives using SMT cores we focus on Chip-level

Redundantly Threaded multiprocessors with Recovery (CRTR).

CRTR is a fault-tolerant architecture proposed by Gomaa et al. [25], an ex-

tension of SRTR [107] for CMP environments. In CRTR, two redundant threads

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 52

are executed on separate SMT processor cores, providing transient fault detec-

tion. These threads are called master (or leading) and slave (or trailing) threads,

since one of them runs ahead the other by a number of instructions determined by

the slack. As in a traditional SMT processor, each thread owns a PC register, a

renaming map table and a register file, whereas all the other resources are shared.

In CRTR, the master thread is responsible for accessing memory to load data.

After a master load commits, it bypasses it to the slave thread along with the

accessed address through a FIFO structure called Load Value Queue (LVQ) [70].

This structure is accessed by the slave thread, avoiding to observe different values

from those the master did, a phenomenon called input incoherence. To avoid

associative searches in the LVQ, the slave thread executes loads in program order

so it only has to lookup the head of the queue. Fortunately, this handicap does

not impact on the slave’s performance in comparison to the master’s, because the

possible slowdown is compensated with a speedup resulting from two factors:

• The memory latency of a slave load is very low since data is provided by the

LVQ (slave’s loads behave as cache hits).

• Branch mispredictions are completely avoided thanks to the Branch Outcome

Queue (BOQ) [70]. Therefore, the slave thread executes less instructions

than the master.

The master uses the BOQ to bypass the outcome of a committed branch. Then,

the slave accesses the BOQ at a branch execution obtaining accurate predictions

(perfect outcomes, in fact). Availability for these hints is assured thanks to the

slack since, by the time the slave needs to predict a branch, the master has already

logged its correct destination of the branch in the BOQ.

To avoid data corruptions, CRTR never updates cache before values are veri-

fied. To accomplish this, when a store instruction is committed by the master, the

value and accessed address are bypassed to the slave through a structure called

Store Value Queue (SVQ) [70]. When a store commits in the slave, it verifies the

SVQ and, if the check succeeds, the L1 cache is updated. Finally, another struc-

ture used in CRTR is the Register Value Queue (RVQ) [107]. The RVQ is used

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 53

to bypass register values of every committed instruction by the master, which are

needed for checking correctness.

Whenever a fault is detected, the recovery mechanism is triggered. The slave

register file is a safe point since no updates are performed on it until a successful

verification. Therefore, the slave bypasses the contents of its register file to the

master, pipelines of both threads are flushed and, finally, execution is restarted

from the detected faulty instruction.

As commented before, separating the execution of a master thread and its

corresponding slave in different physical SMT cores adds the ability to tolerate

permanent faults. However, it requires a wide datapath between cores in order

to bypass all the information required for checking. Furthermore, although wire

delays may be hidden by the slack, cores exchanging data must be close to each

other to avoid stalling.

4.2.2.1 Memory Consistency in LVQ-Based Architectures

Although CRTR was originally evaluated with sequential applications [25, 55], the

authors argue that it could be used for multithreaded applications, too. In LVQ-

based systems such as CRTR in which loads are performed by the master thread

and stores are performed by the slave thread, there is a significant reordering in the

memory instructions from an external perspective. In a sequential environment,

it does not represent any problem. However, for shared-memory workloads in a

CMP scenario, though, if no additional measures are taken, CRTR can lead to

severe performance degradation due to consistency model constraints.

Our evaluated architecture is a SPARC V9 [109] implementing the Total Store

Order (TSO) consistency model. In this consistency model, stores are buffered on

a store miss while loads are allowed to bypass them. As a measure to improve

the performance, stores to the same cache block are coalesced in the store buffer.

Finally, atomic instructions and memory fences stall retirement until the store

buffer is drained.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 54

In shared-memory applications such as those which can be found in either

scientific SPLASH-2 [112] or multimedia workloads, the access to critical sections

is granted by acquisition primitives relying on atomic instructions and memory

fences. We have noticed that, in this environment, CRTR could lead to perfor-

mance loss because of the constraints of the consistency model to assure mutual

exclusion.

The key point is that, in CRTR, memory is never updated by the master

thread. Therefore, when a master executes the code to access a critical section, the

acquisition is not made visible until the slave executes and verifies the correctness

of the instructions involved. This means that, for the rest of master threads, the

lock remains free for an undetermined period of time, enabling two (or more)

of these threads to access a critical section as illustrated in Figure 4.4. In the

Figure, two master threads M0 and M1, and one slave thread S0 are presented

(the corresponding slave for M1 has been omitted for simplicity). Part 4.4(a)

shows a snapshot of the program execution. M0 runs ahead of S0 by an amount

of instructions determined by the slack. A stripped portion of a bar means that

updates to memory have not been performed yet. Part 4.4(b) shows the situation

when M0 acquires a lock and enters the critical section it protects. None of the

modifications are visible yet. Part 4.4(c) shows that M1 also acquires the lock

some cycles later. This is because M0 has not updated memory so the lock seems

free for the rest of the nodes in the system. M1 enters the critical section at the

same time as M0. Finally, part 4.4(d) shows that when S0 validates the execution

of M0 and updates memory values, it is too late, since atomicity and isolation of

the critical section have been violated.

To address this issue which appears in CRTR without modifying the memory

consistency model, we propose to implement and evaluate two different alterna-

tives: atomic synchronization and atomic speculation.

CRTR with Atomic Synchronization

In order to preserve the underlying consistency model (TSO) and, therefore, the

correct program execution, the most straightforward solution is to synchronize

the master and slave threads whenever atomic instructions or memory fences are

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 55

(a) (b)

(c) (d)

Figure 4.4: Violation of the atomicity and isolation of a critical section without
proper support.

executed. This way, only when the slave thread catches up with the master and the

SVQ drains, the instruction is issued to memory. Therefore, the master thread

is not allowed to enter into a critical section without making the results of the

acquisition mechanism visible.

Note that this is a conservative approach which introduces a noticeable perfor-

mance degradation because the retirement on every atomic/memory fence instruc-

tion is stalled by the master. The duration of this stall depends on two factors:

(1) the size of the slack, which determines how far the slave thread is; and (2) the

number of write operations in the SVQ, which must be written in L1 prior to the

atomic operation to preserve consistency.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 56

CRTR with Atomic Speculation

One could argue that the previous alternative is not fair to competition. To

this end, we have evaluated a mechanism, which we called Atomic Speculation to

relax even more the consistency constraints imposed by TSO through the use of

speculation. Memory ordering speculation has been previously studied in [8, 24,

110] in order to increase the performance of different consistency models.

What we try to accomplish with Atomic Speculation is to avoid the costly

synchronizations that atomic instructions and memory fences impose over CRTR.

For this, we allow loads and stores to bypass these instructions speculatively.

In the same fashion as in [24], the list of speculated blocks is maintained in a

hardware structure in the core2. A hit in the table upon a coherence message

from other core indicates that the current speculation could potentially lead to

a consistency violation. In this situation, a conflict manager decides whether to

roll-back the receiver or the requestor because of the miss-speculation. Eventually,

if no violations have been detected, the slave thread will catch up with the master.

Then, the speculation table is flushed and the speculative mode is finished.

In benchmarks with low to medium synchronization time this kind of spec-

ulative mechanism results in a good approach. However in other scenarios with

highly contended locks the frequency of rollbacks severely impacts on performance.

Nonetheless, this mechanism comes at an additional cost, such as the hardware

needed to rollback the architecture upon a consistency violation. Additionally,

this solution requires a change in the way atomicity is implemented since these

accesses cannot perform the memory update to avoid fault propagation. Finally,

there exists a power consumption overhead due to the need of checking the spec-

ulation table for every coherence request in the speculative mode. Note, however,

that we have not considered these overheads in the evaluation of this approach.

2The same goal could be accomplished by means of signatures as in certain hardware ap-
proaches of Hardware Transactional Memory.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 57

4.3 REPAS Architecture

At this point, we present Reliable Execution for Parallel ApplicationS in tiled-

CMPs (REPAS) [99]. We create the reliable architecture of REPAS by adding

CRTR cores to form a tiled-CMP. However, instead of separating master and

slave threads in different cores, we rely on the use of 2-way SMT cores. This way,

the architecture avoids the use of the expensive inter-core datapaths whereas still

offers fault tolerance to soft errors and adequate performance.

An overview of the core architecture is depicted in Figure 4.5. As in a tra-

ditional SMT processor, issue queues, register file, functional units and L1-cache

are shared among the master and slave threads. The shaded boxes in Figure 4.5

represent the extra hardware introduced by CRTR and REPAS as explained in

Section 4.2.2.

�

������ !�"����� #�$�%��

%���

��&���

��

%���

��&���

��

��

��

��

��

��

��

����#'(�

!

�

���

��

��

��

)

�

�

�

��

*+)�

��

��

������

��

#���
����

�����

��

�,
� -(�

�'%"�#��

�'%%!��

�+)�

��

��������������

#���
���������

��������������

#���
���������

%�

��

%�

%� %�
%�

%�
%�

�� ��

��

%�

%�

%�

��

��

��

��

��

(')�

%�

��

��

��

#+)�

��

%�

��

Figure 4.5: REPAS core architecture overview.

4.3.1 Sphere of Replication in REPAS

In benchmarks with high contention resulting from synchronization, the approaches

described in Section 4.2.2 for CRTR may increase the performance degradation of

the architecture due to atomic synchronizations or too frequent rollbacks because

of miss-speculations. To avoid frequent master stalls derived from consistency, we

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 58

propose an alternative management of stores in REPAS. Instead of updating mem-

ory only after verification, a more suitable approach is to allow updates in L1 cache

without checking. This measure implies that unverified data could go outside the

SoR while the master thread will not be stalled as a result of synchronizations.

Additionally, with this new behaviour we effectively reduce the pressure on

the SVQ queue. In the original CRTR implementation, a master’s load must look

into the SVQ to obtain the value produced by an earlier store. This implies an

associative search along the structure for every load instruction. In REPAS, we

eliminate these searches since the up-to-date values for every block are stored in

L1 cache where they can be accessed as usual.

However, this change in the SoR with regards to CRTR entails an increase in

the complexity of the recovery mechanism and the management of verified data.

In our approach, in contrast to CRTR, when a fault is detected, the L1 cache may

have unverified blocks. The recovery mechanism involves the invalidation of all the

unverified blocks in L1. In order to maintain L2 updated with the most up-to-date

versions of blocks, when stores are correctly checked by the slave, the values in

the SVQ must be written-back into L2. This way, the L2 cache remains consistent

even if the block in L1 is invalidated as a result of the mechanism triggered because

of a fault. To perform these writebacks we use a small coalescing buffer to mitigate

the increase of the SVQ-to-L2 traffic in the same fashion as in [69]. Despite the

increasing SVQ-to-L2 traffic, there is no noticeable impact on performance.

4.3.2 Caching Unverified Blocks

To avoid error propagation in REPAS as a consequence of an incorrect result

stored in L1 cache by the master, unverified blocks in cache must be identified.

To accomplish this, we make use of an additional bit per L1 cache block called

Unverified bit which is activated on any master write (as already proposed by

DCC [37]). In our proposed REPAS, when the Unverified bit is set on a cache

block, it cannot be displaced or shared with other nodes, effectively avoiding the

propagation of a faulty block. Eventually, the Unverified bit will be cleared when

the corresponding slave thread verifies the correct execution of the memory update.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 59

This mechanism is controlled at the coherence protocol level by adding a new state

(M Unv) to the base MOESI protocol as we can see in Figure 4.6. Modified blocks

remain in M Unv state until a positive verification is performed by the slave. Upon

this verification, the state of the block transitions from M Unv to M state where

it can be shared or replaced normally.

�

������

�� ��

������

������

.����/� ���0#�

������

.�����

Figure 4.6: Transition diagram with the states involved with Unverified
blocks.

However, clearing the Unverified bit is not a trivial task. We might find a prob-

lem when a master thread updates a cache block several times before verification

takes place. If the first check performed by the slave is successful, it means that

the first memory update was valid. However, this does not imply that the whole

block is completely verified since the rest of the updates have not been checked

yet. We propose two different mechanisms in order to address this issue.

The first mechanism is based on counters per L1-cache block. Each time that

the master thread updates a block it increments the counter which is eventually

decremented when a verification is performed. When the counter is 0, the state of

the blocks moves from M Unv to M, meaning that the block has been successfully

verified. However, these counters have a deep impact in hardware overhead. With

small 4-bit counters (which can only record up to 15 consecutive updates) the area

overhead becomes around 6% with a 64KB L1 cache and 64-byte blocks.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 60

Thus, we have adopted a more lightweight mechanism based on the following

observation regarding the SVQ: we also know that a block needs more slave checks

before clearing the unverified bit by checking if the block appears more than once

in the SVQ. If it does, more verifications need to be performed. Yet, this measure

implies an associative search in the SVQ. Nonetheless, as we said before, we elim-

inate much of the pressure produced by master’s loads. In quantitative terms, in

the original CRTR proposal there was an associative search every master’s load,

but now in REPAS we have an associative search every slave’s store. This results

in a significant reduction of associative searches within the SVQ, given the fact

that the load/store ratio for the studied benchmarks is almost 3 to 1. Further-

more, as this operation is performed in parallel to the access to L1 cache, we do

not expect an increase in the L1-cache access latency.

4.3.3 Fetch and ROB Occupancy Policies

The most common fetch policy for SMT processors is round-robin in which each

thread fetches instructions in alternative cycles. In REPAS, the fetch policy needs

to interact with the slack mechanism, which significantly differs from the require-

ments in a typical SMT processor. As in CRTR, we have adopted a slightly dif-

ferent policy. When the distance between the two threads is below the threshold

imposed by the slack, only the master thread is allowed to fetch new instructions.

Contrarily, when the distance is above the threshold, the fetch priority is given to

the slave. However, in order to use all the available bandwidth, if the slack is not

satisfied but for some reasons the master thread cannot fetch more instructions,

we allow the slave thread to fetch. In the remaining stages of the pipeline such as

decode, issue, execution and commit, the used policy is FIFO.

We can also experience a noticeable performance degradation if the master

thread fetches enough instructions to completely fill the shared ROB. This hap-

pens since the master thread runs some instructions ahead of the slave. In this

scenario, the master thread cannot fetch more instructions because of the previ-

ously described fetch policy, neither does the slave because the ROB is full. So,

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 61

until any ROB entry is released, the two threads are stalled and cannot fetch new

instructions.

We address this problem by keeping a percentage of free entries in the shared

ROB for the slave. This way, we avoid both threads to stall due to ROB contention.

Our experimental results show that 20% of total ROB’s free entries is the best case

in order to reduce this penalty.

An alternative approach would be to use a private ROB for each thread (or

a static partitioning). However, the requirements of the master and slave threads

are changing constantly due to the slack mechanism, branch mispredictions and

long latency memory operations. In this scenario, a static partitioning is not able

to maximize the use of all the available ROB entries. Therefore, a fully shared

ROB is the best approach to the architecture presented in REPAS.

4.3.4 Reliability in the Forwarding Logic

In our design, the integrity of the information within structures as caches or ad-

ditional buffers is protected by means of ECC codes. However, a traditional issue

derived from the use of queues to bypass data are the potential problems arising

from errors in the forwarding logic. An error in the LSQ forwarding logic in the

master executing a load instruction might cause an incorrect bypass to the cor-

responding slave’s load. If this happens, the slave thread would consume wrong

values from the LVQ leading to a SDC (Silent Data Corruption).

To address this potential problem, in REPAS we use a double check: the

slave thread compares the load values obtained by means of its own LSQ with the

corresponding values in the LVQ. This way, if either the forwarding logic of the

master or the slave fail, this check will detect a mismatch in the values signaling

a fault. This mechanism results appropriate to assure the correction of the data

forwarding in the LSQ. Nevertheless, there are some environments in which the

coverage could not be considered good enough. In those cases, another mechanism

at micro-architecture level as proposed in [13] could be applied, achieving almost

a 100% AVF reduction while affecting performance in just 0.3%.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 62

4.4 Evaluation Results & Analysis

4.4.1 Simulation Environment

The methodology used in the evaluation of this work is based on full system simula-

tion. We have implemented all the previously described proposals by extending the

multiprocessor simulator GEMS [47] from the University of Wisconsin-Madison.

Table 4.1: Characteristics of the evaluated architecture and used benchmarks.

(a) System characteristics

16-Way Tiled CMP System Cache Parameters
Processor Speed 2 GHz Cache line size 64 bytes
Execution Mode Out-of-order L1 cache

Max. Fetch / retire rate 4 instructions / cycle Size 64KB
ROB 128 entries Associativity 4 ways

FUs
6 IALU, 2 IMul

Hit time 1 cycle
4 FPAdd, 2 FPMul

Consistency model Total Store Order (TSO) Shared L2 cache
Memory parameters Size 512KB/tile

Coherence protocol Directory-based MOESI Associativity 4 ways
Write Buffer 64 entries Hit time 15 cycles

Memory access time 300 cycles Fault tolerance parameters
Network parameters LVQ 64 entries

Topology 2D mesh SVQ 64 entries
Link latency (one hop) 4 cycles RVQ 80 entries

Flit size 4 bytes BOQ 64 entries
Link bandwidth 1 flit/cycle Slack Fetch 256 instructions

(b) SPLASH-2 + Scientific Benchmarks

Benchmark Size Benchmark Size
Barnes 8192 bodies, 4 time steps Raytrace 10Mb, teapot.env scene
Cholesky tk16.0 Tomcatv 256 points, 5 iterations
FFT 256K complex doubles Unstructured Mesh.2K, 5 time steps
Ocean 258 x 258 ocean Water-NSQ 512 molecules, 4 time steps
Radix 1M keys, 1024 radix Water-SP 512 molecules, 4 time steps

(c) ALPBench + Server Applications

Benchmark Size Benchmark Size
FaceRec ALPBench training input Speechrec ALPBench training input
MPGDec 525 tens 040.mv2 Apache 100,000 HTTP transactions
MPGEnc Output from MPGDec SpecJBB 8,000 transactions

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 63

Our study has been focused on a 16-core CMP in which each core is a dual-

threaded SMT, which has its own private L1 cache, a portion of the shared L2

cache and a connection to the on-chip network. The architecture follows the Total

Store Order (TSO). The coherence protocol is a directory-based MOESI. The main

parameters of the architecture are shown in Table 4.1(a). Among them, it is worth

mentioning the 2D-mesh topology used, as well as the 256-instruction slack fetch

as a result of the sensitivity analysis performed in Section 4.4.2.

The sizes and parameters for the studied applications are reflected in Table

4.1(b) and Table 4.1(c), respectively. We have performed all the simulations with

different random seeds for each benchmark to account for the variability of multi-

threaded execution. This variability is represented by the error bars in the figures,

enclosing the confidence interval of the results. Among the evaluated benchmarks

we have applications from SPLASH-2 and ALPBench and other server applica-

tions. We refer to Chapter 3 for further details.

For comparison purposes we have implemented several previous proposals. As

explained in Section 4.2.1, DCC incurs in an additional performance degradation

when it is ported from a shared-bus to a direct-network. The use of shared-buses

will be no longer possible in future CMP architectures due to area, scalability

and power constraint issues. Therefore, we compare our proposed REPAS with

DCC when a direct network such as a 2D-mesh is used. Additionally, we compare

REPAS with the performance of SMT-dual and DUAL. SMT-dual models a coarse-

grained redundancy approach which represents a 16-core 2-way SMT architecture

executing two copies (A and A’) of each studied application. Within each core, one

thread of A and one thread of A’ are executed. As mentioned in [70], this helps

to illustrate the performance degradation occurred within a SMT processor when

two copies of the same thread are running within the same core. DUAL represents

a 16-core non-SMT architecture executing two copies of the same program. In the

case of 16-threaded applications it means that each processor executes 2 threads

(1 thread of every application). In DUAL, the OS is responsible for the schedule

of the different software threads among the different cores.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 64

4.4.2 Slack Size Analysis

Before moving on to the performance study of REPAS, firstly, this subsection

analyses the size of the slack parameter in REPAS.

As explained before, the slack fetch mechanism maintains a constant delay be-

tween master and slave threads. This delay results in a performance improvement

(due to thread-pairs cooperation) because of factors such as the reduction of the

stall time for L1 cache misses in the slave and the better accuracy in the execution

of slave’s branches thanks to the BOQ. From this perspective, we would choose to

use a slack as big as possible.

However, a larger size of the slack also requires an increase in the size of

structures like the SVQ or the LVQ to avoid stalls. Furthermore, in a shared-

memory environment, a large slack causes the average life latency of a store (the

time spent between the execution of the store and its validation) to be increased.

Ã��

Ã��

Ã��

�

���

���

���

���

���

��	

���

���

���

�

���

�
�

�
�

�
�
�
��
�
�
� ��
�

�
�
�
�

��
�
��

��
�
��
�
�
�

��
�
�
�
��

�

�
��
�
�
��
��
�

�
�
��
�

�
�

�
�
��
��

!
"
#

�

�
�
�
�

��
�
�
��
�

$

�

%
�
�
�

�

%
�

�

�

�
�
�
�
��
�

!
"
#

&'(!&)*�+,+&���
����� -���������+,+.�
+&������

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

������� �����	� ������	Ã �������	 �������� ��������

Figure 4.7: Sensitivity analysis for the optimal size of the slack.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 65

This negatively affects performance because unverified blocks cannot be shared

or replaced from cache. Figure 4.7 shows a sensitivity analysis for different sizes of

the slack. The slack is measured in a number of fetched instructions between the

master and the slave thread. The bars are normalized with respect to a 32 slack

size. As it is shown, the increase of the slack size to 256 instructions results in

a noticeable performance improvement. However, further increasing of the slack

size, results counterproductive. On average, a slack of 256 instructions is 7% better

than a slack of 32. Therefore, for subsequent experiments we will use 256 as our

target slack.

4.4.3 Execution Time Overhead of the Fault-Free Case

We compare our proposed REPAS architecture with CRTR by using the alterna-

tive mechanisms, atomic synchronization and atomic speculation, as explained in

Section 4.2.2. As many other previous proposals [37, 55, 83], we initially present

the performance results of our mechanism in a fault-free environment in order to

quantify the execution time overhead for the common case.

Figure 4.8 plots the results of REPAS normalized with respect to a 16-core

system in which there is not a fault tolerant mechanism. CRTR sync refers to

the atomic synchronization mechanism for CRTR, and CRTR spec does to the

atomic speculation mechanism. As derived from Figure 4.8, REPAS outperforms

CRTR sync for both groups of benchmarks (scientific and multimedia/web) by

13% and 6% respectively, whereas the execution time overhead rises to 25%, on

average, for all the studied benchmarks.

The main source of degradation in CRTR sync comes from the frequent syn-

chronizations between master and slave threads as a result of the execution of

atomic instructions and memory fences. This effect can be better observed in

those benchmarks with more synchronizations such as Ocean, Raytrace and Un-

structured, in which the performance exhibited by CRTR sync is even worst.

As it was expected, CRTR spec outperforms CRTR sync because of the ef-

fectiveness of the speculative mechanism. However, in benchmarks with highly

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 66

�

���

���

��	

���

�

���

���

�
�

�
�

�
�
�
��
�
�
� ��
�

�
�
�
�

��
�
��

��
�
��
�
�
�

��
�
�
�
��

�

�
��
�
�
��
��
�

�
�
��
�

�
�

�
�
��
��

!
"
#

�

�
�
�
�

��
�
�
��
�

$

�

%
�
�
�

�

%
�

�

�

�
�
�
�
��
�

!
"
#

&'(!&)*�+,+&���
����� -���������+,+.�
+&������

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

/0'!&+1�	+�����2 3/4/5��
�+1�	+�����2 3/4/*� ��+1�	+�����2 633+1��+�����2

Figure 4.8: Execution time overhead over a non fault-tolerant 16-core archi-
tecture.

contended locks such as Ocean, Raytrace and Unstructured, the number of roll-

backs due to miss-speculation has a significant impact on performance in relation

to REPAS. On average, REPAS is 6% faster than CRT spec for SPLASH-2 bench-

marks, although for Multimedia and Web Server applications CRTR spec shows a

performance similar to REPAS, benefited from the low synchronization exhibited

by these applications.

The performance degradation reported for DCC when evaluated within a

shared-bus is roughly a 5% for several parallel applications [37]. However, as

explained in Section 4.2.1, this overhead is increased when a direct-network is

used. As explained, the major source of degradation is related to the mechanism

to assure the master-slave consistency which allows to avoid input incoherences.

As we can see in Figure 4.8, REPAS is able to outperform DCC by 27%

for scientific applications. However, for multimedia and web servers benchmarks,

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 67

the performance exhibited by DCC is better than the performance of REPAS by

4%. The reason for this behaviour is explained by the poor performance of these

applications in SMT architectures with respect to CMP architectures, a result

which results consistent with the one by Sasanka et al. [80].

In any case, we have to remind that whereas REPAS uses SMT cores to provide

fault-tolerance, DCC uses twice the number of cores as REPAS (in this evalua-

tion, DCC uses 32 cores whereas REPAS uses 16 cores). This reduces the overall

throughput of a system implementing DCC in more than 100% over a non fault-

tolerant base case.

Finally, as we can see in Table 4.2, REPAS is 20% faster than SMT-dual on

average which, at the same time, is slower than CRTR sync and CRTR spec by

10% and 17%, respectively. The performance degradation of SMT-dual is such

because of the inadequate interaction of different threads in the same core. Never-

theless, in REPAS and CRTR threads collaborate (LVQ, SVQ, BOQ) in SMT-dual

threads compete against one another for the resources of the core affecting perfor-

mance. In the same way, DUAL affects performance noticeably. This is because

in DUAL, threads must be re-scheduled by the OS to be executed in each core

(note that we have 16 cores but 32 threads, 16 threads for every application). This

adds an extra overhead of almost 2X in the computation. As a final remark, we

can conclude that SMT approaches could benefit from a better performance than

non-SMT approaches.

Table 4.2: Average normalized execution time for the studied benchmarks.

REPAS CRTR sync CRTR spec DCC SMT-dual DUAL
(16 cores) (16 cores) (16 cores) (32 cores) (16 cores) (16 cores)

Normalized
Exec. Time 1.25 1.35 1.28 1.40 1.45 1.88

4.4.4 Performance in a Faulty Environment

We have shown that REPAS introduces an overhead in a fault-free scenario despite

of outperforming several previous proposals. Nonetheless, REPAS guarantees the

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 68

correct execution of shared memory applications even in the presence of soft er-

rors. The failures and the necessary recovery mechanisms introduce an additional

overhead that we study now.

Figure 4.9 shows the execution time overhead of REPAS under different fault

rates normalized with respect to a non-faulty environment case. Failure rates

are expressed in terms of faulty instructions per million of cycles per core. For

a realistic fault ratio, the performance of REPAS is barely affected so, for this

experiment, we have used fault rates which are much higher than expected in a

real scenario in order to show the kindness of the proposed architecture3.

Ã��

Ã���

�

��Ã�

���

����

���

����

���

����

���

�
�

�
�

�
�
�
��
�
�
� ��
�

�
�
�
�

��
�
��

��
�
��
�
�
�

��
�
�
�
��

�

�
��
�
�
��
��
�

�
�
��
�

�
�

�
�
��
��

!
"
#

�

�
�
�
�

��
�
�
��
�

$

�

%
�
�
�

�

%
�

�

�

�
�
�
�
��
�

!
"
#

&'(!&)*�+,+&���
����� -���������+,+.�
+&������

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

�Ã �ÃÃ ��Ã �ÃÃ �ÃÃÃ

Figure 4.9: REPAS overhead under different fault rates (in terms of faulty
instructions per million per core).

As we can see, REPAS is able to tolerate rates of 100 faulty instructions per

million cycles per core with an average performance degradation of 1.6% in the

execution time in comparison to REPAS in a non-faulty environment. Only when

3E.g., a ratio of 10 failures per million cycles per core is equivalent to a MTTF of 3, 125∗10−6

sec. for the proposed architecture.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 69

the fault ratio is increased to the huge (and unrealistic) amount of 1000 failures per

million cycles, performance shows a noticeable degradation of 8.6%. As expected,

performance degradation rises almost linearly with the increase of the fault ratio,

although it still allows the correct execution of all the studied benchmarks.

The time spent on every recovery varies across the executed benchmark. This

time includes the invalidation of all the unverified blocks and the rollback (bypass

the safe state of the slave thread to the master) of the architecture up to the point

where the fault was detected. On average this time is 80 cycles. In contrast,

other proposals such as DCC spend thousands of cycles to achieve the same goal

(10,000 cycles in a worst-case scenario). This clearly shows the greater scalability

of REPAS in a faulty environment.

4.4.5 Sharing Unverified Blocks

As initially implemented, REPAS does not allow the sharing of unverified blocks.

This conservative constraint avoids the propagation of errors among cores. How-

ever, it is not expected that it imposes a high performance degradation, since

the verification of blocks is quite fast (in the order of hundred cycles). On the

contrary, DCC [37] is based on a speculative sharing policy. Given that blocks

are only verified at checkpointing creation intervals (i.e., 10,000 cycles), avoiding

speculative sharing in DCC would degrade performance in an unacceptable way.

For comparison purposes, we have studied the effect of sharing unverified

blocks in REPAS. The mechanism is straightforward to implement: accept forward

requests for blocks in unverified state. However, since we do not support check-

pointing capabilities as DCC, to avoid unrecoverable situations, cores obtaining

speculative data cannot commit. This way, if a fault is detected by the producer of

the block, all the consumer cores can recover by flushing their pipeline in a similar

way as it is done when a branch is mispredicted. An additional disadvantage is

that the producer of the block must send a message indicating whether the shared

block is faulty or not, increasing the network traffic. Luckily, the sharing informa-

tion is gathered from the sharers list as in a conventional MOESI protocol, so we

do not need additional hardware to keep track of speculative sharings.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 70

�

��Ã�

���

����

���

����

���

����

���

����

���

�
�

�
�

�
�
�
��
�
�
� ��
�

�
�
�
�

��
�
��

��
�
��
�
�
�

��
�
�
�
��

�

�
��
�
�
��
��
�

�
�
��
�

�
�

�
�
��
��

!
"
#

�

�
�
�
�

��
�
�
��
�

$

�

%
�
�
�

�

%
�

�

�

�
�
�
�
��
�

!
"
#

&'(!&)*�+,+&���
����� -���������+,+.�
+&������

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

/0'!&+ /0'!&*& ���������

Figure 4.10: Normalized execution time with and without the speculative
mechanism.

Finally, we have not considered to migrate unverified data speculatively, since

an expensive mechanism would be necessary to keep track of the changes in the

ownership, the sharing chains as well as the original value of the data block (for

recovery purposes).

As we can see in Figure 4.10, the performance improvement for the speculative

mechanism is negligible (around 1% on average). Only benchmarks such as Ocean,

Raytrace, Unstructured and MPGEnc, speculation obtains a noticeable improve-

ment (up to 10% for MPGEnc). Table 4.3 reflects that speculations are highly

uncommon. Furthermore, if we consider the time to verification of speculative

blocks it can be seen that, on average, we could benefit from around 100 cycles,

although they cannot be fully amortized because pipeline is closed at commit. This

explains why speculative sharings do not obtain many benefits in REPAS. Overall,

the speculative sharing mechanism seems inadequate for the studied benchmarks,

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 71

Table 4.3: Number of speculative sharings and time needed to verify those
blocks.

BENCHMARK Speculations Time to Verification

Barnes 12860 92.5
Cholesky 5758 161.5
FFT 128 94.5
Ocean 13786 94.5
Radix 710 82

Raytrace 37031 92
Tomcatv 250 91

Unstructured 223524 107
Water-NSQ 1585 98
Water-SP 339 89.5
Apache 135 99.5
Facerec 0 -
JBB 877 94.5

MPGDec 0 -
MPGEnc 48997 123.5
Speechrec 0 -

AVG - 101.875

since it is not worth the incremented complexity in the recovery mechanism of the

architecture.

4.4.6 L1 Cache Size Stress

An unverified block cannot be evicted from L1 cache since potentially faulty blocks

would go out of the SoR (Sphere of Replication). In an environment with high

pressure over the L1 cache, this can cause a performance degradation due to the

unavailability of replacements to be completed. In this Section, we study how

REPAS behaves with different configurations.

It could be expected that the stress of cache size would impact negatively on

the performance of REPAS. However, the results show that this forecast is not

fulfilled. Figure 4.11 represents the execution time of REPAS for different L1

cache configurations. Each set of bars is normalized with respect to the case base

with the same configuration.

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 72

�

��Ã�

���

����

���

����

���

����

�78 �78 �78 �78 �	78 ��78 	�78

¹�	�����	����

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

/0'!& /0'!&*"8

Figure 4.11: Normalized execution time for different L1 cache sizes with and
without a Victim Buffer.

Contrarily to expected, smaller caches do not degrade performance in REPAS

but even improve it in comparison with the base case (1KB, 2KB and 4KB perform

better than the 64KB configuration in comparison with the base case with the

same configuration). The reason for this behaviour is subtle but it can be easily

explained if we consider to the REPAS mechanism. As we said before, a smaller

cache penalizes REPAS because of the increased latency of the L1 replacements.

However, a smaller cache also penalizes the architecture due to the increased L1

cache miss ratio. The key point here is that, whereas the processor is stalled on a

cache miss in the base case, in REPAS, L1 misses (or master stalls in general) are

used by the slave thread to continue executing program instructions, thus making

forward progress.

Finally, an approach to allow the eviction of unverified blocks from L1 to L2

is to use a small Victim Buffer. With this mechanism, L1 cache replacements

of these blocks are performed out of the critical path. As we can see in Figure

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 73

4.11, the Victim Buffer improves the performance for 1KB, 2KB and 4KB. For

the rest of configurations there are not any noticeable gains because the number

of unverified blocks to replace from L1 cache is very low. Experimental results

show that the maximum size needed for the VB is 14 entries which we consider

acceptable without devoting too much hardware.

4.5 Concluding Remarks

Processors are becoming more susceptible to transient faults due to several factors

such as technology scaling, voltage reduction, temperature fluctuations, process

variation or signal cross-talking. Although there are many approaches exploring

reliability for single-threaded applications, shared-memory environments have not

been thoroughly studied.

Proposals like DCC or Reunion use DMR (Dual Modular Redundancy) to

provide fault tolerance in microarchitectures. However, they impose a 2X hard-

ware overhead, an unacceptable result for manufacturers which claim for a 10%

maximum extra area impact. Hence, in this Chapter we propose REPAS: Reli-

able Execution for Parallel ApplicationS in tiled-CMPs, a novel RMT approach

to provide transient fault detection and recovery in parallel and shared-memory

applications.

Whereas other proposals use large amounts of extra hardware, other RMT ar-

chitectures perform reliable computation by redundant thread execution (master

and slave) in SMT cores. Therefore, the hardware overhead is kept low. However,

the architectural support for shared-memory applications has remained under-

explored so far. In this work, we show that atomic operations induce a serializa-

tion point between master and slave threads, a problem which may be minimized

by means of speculation in the consistency model. Although this solution requires

both a change in the way atomicity is implemented and a hardware increase to

support the speculation, the degradation in low-to-medium contention benchmarks

remains moderate. However, in scenarios with high contention the performance

Chapter 4. Reliable Execution of Parallel ApplicationS in tiled-CMPs 74

is severely affected. In REPAS we effectively avoid this overhead due to synchro-

nization or miss-speculations by eager updates of the L1 cache.

We have implemented our solution in a full-system simulator and presented

the results compared to a system in which no fault-tolerant mechanisms have

been introduced. We show that, in a fault-free scenario, REPAS reduces the

execution time overhead down to 25%, outperforming CRTR, a traditional RMT

implementation. We have also compared REPAS with DCC, showing some gains

in certain applications but looses in others. Nonetheless, REPAS uses half the

number of cores than DCC, providing a better throughput. We have also evaluated

the performance of REPAS in a faulty environment, showing an increase of just

2% of execution time with a huge fault ratio of 100 faults per million of cycles

per core. This ratio is much higher than expected in a real scenario, so negligible

slowdown is reported in a realistic faulty environment.

Finally, we have performed a L1 cache size stress in order to study the be-

haviour of REPAS due to its inability to evict blocks from cache until verification.

Results show that even with smaller cache sizes, the performance degradation of

REPAS is kept in acceptable margins. Additionally, a Victim Buffer to hold un-

verified blocks has been used in REPAS showing slight performance improvement

(up to 4%) for configurations which highly stress the L1 cache.

Chapter5

LBRA: A Log-based Redundant

Architecture

SUMMARY:

CMOS scaling exacerbates hardware errors making reliability a big con-

cern for recent and future microarchitecture designs. Mechanisms to provide

fault tolerance in architectures must accomplish several objectives such as

low performance degradation, power dissipation and area overhead. Several

studies have been already proposed to provide fault tolerance for parallel

codes. However, these proposals are usually implemented over non-realistic

environments including the use of shared-buses among processors or modi-

fying highly optimized hardware designs such as caches.

Our attempt to address this multiple challenge is an architectural design

called LBRA (Log-Based Redundant Architecture). Based on a Hardware

Transactional Memory architecture, LBRA executes redundant threads which

communicate through a pair-shared virtual memory log located in cache.

Our initial version of LBRA executes these redundant threads in SMT cores.

To avoid the performance penalty inherent to this architecture, we propose

to decouple their execution in different cores, solving the inter-core commu-

nication by means of a log buffer empowered by a simple prefetch strategy.

Simulation results using a variety of scientific and multimedia applications

show that the execution time overhead of our best design is less than 7%

over a base case without fault tolerance. Additionally, we show that LBRA

75

Chapter 5. LBRA: A Log-based Redundant Architecture 76

outperforms previous proposals that we have implemented and evaluated in

the same framework.

5.1 Introduction

Being reliability a major concern for hardware architects, several mechanisms to

detect and recover from faults have already been implemented in microarchitec-

tures. This is the case of ECC, which is nowadays applied in large CAM arrays

such as caches or RAM memories. Unfortunately, ECC cannot be extensively used

through out all hardware structures. On the contrary, architectural-level mech-

anisms provide a more flexible framework in which multiple hardware structures

are covered in comparison to cycle-level techniques which are focused on single

units.

As we showed in Chapter 2, one of the most straightforward and studied mech-

anisms to provide fault tolerance is the use of physical and/or time redundancy,

in which programs are executed multiple times and outputs are compared in or-

der to detect errors. Among these works we can distinguish two different trends:

(1) those in which memory is not updated until the values have been satisfactory

checked like the CRT(R) family [25, 55, 70, 107]; and (2) those in which, once a

fault is detected, the state of the architecture in rolled-back to a previous known-

to-be-safe checkpoint like DCC [37] or HDTLR [69]. In the first case, performance

is affected given the fact that forward progress may be stalled until verification

is accomplished. In the second case, the major drawback is the synchronization

between redundant executions, which includes stopping execution, sharing and

comparing architectural states and, finally, resuming execution.

In order to be feasible, a fault tolerant architecture should degrade perfor-

mance as less as possible and should also require an area overhead not larger than

10% [74]. With these goals as motivation, in this Chapter we explore the use of

already existing log-based hardware transactional memory (HTM) systems as a

Chapter 5. LBRA: A Log-based Redundant Architecture 77

novel way to provide fault tolerance. Thus, we present LBRA: Log-Based Redun-

dant Architecture for reliable parallel computation. What we propose is to build

a fault tolerant architecture by using a current state-of-the-art HTM system with

slight modifications, something which, to the best of our knowledge, has not been

previously studied. The main idea is to execute redundant copies of the same

software thread in two different hardware contexts which are executed within the

same SMT core. In this work we have chosen LogTM-SE [115], an elegant HTM

design which performs both eager version management, by updating memory in

place and keeping the old values in a virtual memory space called log, and eager

conflict detection.

The proposed LBRA provides high flexibility, allowing the programmer to

manually declare areas of the program to be protected or not. Program in-

structions in these areas are divided into virtual execution groups called pseudo-

transactions (p-XACTs) or chunks [15]. The master thread executes p-XACTs

as regular instructions but, additionally, it keeps the results of its progress in a

pair-shared log. By means of this log, the slave verifies that the results produced

by the master are correct. We provide a highly decoupled environment since the

master is allowed to execute multiple p-XACTs without verification, something

which is carried out off the critical path by the slave thread. This high decoupling

allows the latencies to be hidden, due to memory or inter-core communication.

The major contributions of the LBRA proposal are:

• An architecture design which, on top of a Hardware Transactional Memory

system and SMT cores, provides fault tolerance in a parallel point-to-point

network environment.

• A study of the implications of running redundant threads in different cores.

Thus, we avoid performance degradation due to resource contention associ-

ated to SMT-based proposals running pairs of redundant threads.

• A set of hardware mechanisms to reduce and/or hide the inter-core commu-

nication latency. These mechanisms include a log buffer combined with a

simple prefetch strategy and slight modifications of coherence actions.

Chapter 5. LBRA: A Log-based Redundant Architecture 78

• A detailed comparison among the already proposed architecture design and

state-of-the-art proposals within the same framework. For this evaluation,

we make use of a great variety of parallel benchmarks executed in both SMT

and non-SMT cores.

The remainder of this Chapter is organized as follows: Section 5.2 briefly

introduces Hardware Transactional Memory and explains how it can be adapted

for fault tolerance purposes. In Section 5.3 we discuss the implementation details

of LBRA in 2-way SMT cores, whereas in Section 5.4 we extend it to redundant

regular cores as a way to reduce the performance penalty inherent to the use of

simultaneous multithreading. The evaluation setup and analysis are described in

Section 5.5. Finally, Section 5.6, summarizes the main conclusions of this work.

5.2 HTM Support for Reliable Computation

Our proposed LBRA approach is built upon the top of a LogTM-SE [115] system,

a hardware implementation of Transactional Memory. This Section describes how

we may provide fault tolerance to the system by adding several modifications to

its behaviour with a modest hardware overhead.

5.2.1 Version Management

LogTM-SE offers an eager version management. This means that the values pro-

duced by transactions are directly updated in cache, where they become visible

to the rest of the system. A lazy version management, on the contrary, does not

expose updated values until commit. Generally speaking, an eager mechanism

performs better than a lazy one in case rollbacks are infrequent. Thus, since we

would only apply a rollback in case of a detected fault, it seems that the use of an

eager version management is the most appropriate one for our purposes.

Chapter 5. LBRA: A Log-based Redundant Architecture 79

5.2.1.1 Input Replication

LBRA could be classified as a Redundant Multi-Threading (RMT) approach. In

RMT systems, two hardware threads (commonly called master and slave), redun-

dantly execute the program instructions to provide fault tolerance within SMT

or independent processor cores. Note that, unlike true software threads, each

redundant thread pair appears to the operating system as a single one.

As we explained in Chapter 2, in RMT systems one of the most important

issues is input replication which defines how redundant threads or executions ob-

serve the same data. Since master and slave thread execution is not lockstepped

[5], the execution of redundant memory instructions would probably lead to in-

put incoherences. In order to solve this problem, in our proposal we extend the

functionality of the log (a memory space allocated in virtual memory already im-

plemented in LogTM-SE) as follows: for each load instruction, the master thread

keeps the result of its execution in the log. This way, slave load instructions are

served through the log where they obtain the same values as its master-pair, avoid-

ing thus input incoherences. Note that, as the log is written at instruction commit,

it will only keep instructions of the correct execution path and in program order.

5.2.1.2 Output Comparison

The output comparison defines how the correctness of the computation is assured

in RMT systems. In our LBRA approach, we define the output comparison gran-

ularity at a pseudo-transaction (p-XACT) level. A p-XACT defines the unit of

work which is considered to be either incorrect or correct, depending on whether

faults have been detected within its execution or not.

The semantic and execution of a p-XACT is quite different from a regular

transaction (XACT) in LogTM-SE. Firstly, whereas traditional XACTs are man-

ually coded in the application, p-XACTs are dynamically created in execution

time and their length is variable, as we will see later. This provides a great flexi-

bility, making redundancy easy to turn on and off. Secondly, a p-XACT does not

ensure isolation and/or atomicity. This way, dirty memory blocks are shared as

Chapter 5. LBRA: A Log-based Redundant Architecture 80

in a non-transactional environment, relying on other synchronization mechanisms

such as locks or barriers to assure correction.

The execution of a program in LBRA is as follows. First, the master starts

the execution of a new p-XACT. This implies the allocation of a new section in

the log and the initialization of the registers which hold R/W signatures. These

signatures summarize the read and write sets, and are used to determine, for a

given address, if a block was previously accessed or not. Eventually, a mechanism

would trigger a signal indicating the end of the current p-XACT. We define this

event as the commit of the p-XACT. The commit is completely local and it does

not require communication outside the actual core, what enables this mechanism

to be remarkably fast. However, unlike in the original LogTM-SE implementation,

this mechanism does not clear the R/W signatures or resets the log pointer (this

will be carried out by the slave thread). Finally, the active transaction is considered

as finished and the following program instructions are executed within a new p-

XACT.

The task of the slave is to assure the correct execution of all the work done

by the master. To accomplish this, the slave thread redundantly executes the

p-XACTs committed by the master obtaining memory values from the log. At

the end of the p-XACT, the slave performs what we called the consolidation. In

the consolidation process, the architectural state of master and slave threads are

compared to assure that the produced values are correct. For this purpose, we

follow a similar approach as in [37], where signatures summarizing the computa-

tional work are compared. The master thread creates an in-flight signature which

is saved in the Verification Signature at commit for every p-XACT (see Figure

5.1 for additional implementation details). Then, in the consolidation, the slave

compares its own signature with the Verification Signature. Upon a match, the

execution of the p-XACT is correct. Therefore, the signature registers and the log

pointer can be cleaned out. Finally, the slave performs a backup of its register

file which is now considered correct. On the contrary, if the consolidation process

results in a mismatch, the recovery mechanism must be triggered. The last backup

of the registers would be used to restore the architectural state of the machine.

Note, though, that faults can be detected before consolidation. This happens if

Chapter 5. LBRA: A Log-based Redundant Architecture 81

the slave detects a mismatch in the addresses accessed in the log by load or store

instructions, as we will further describe in Section 5.3.1.3.

5.2.2 Dependence Tracking

p-XACTs rely on software mechanisms to ensure atomicity and isolation. As blocks

are allowed to be shared, potential faults could be spread across the system, so

we need to keep track of these interactions. Although conflict detection is not

engaged in p-XACTs, we find this mechanism already implemented in LogTM-SE

very suitable to keep track of potential faulty shared blocks.

LogTM-SE provides eager conflict detection by means of the coherence pro-

tocol, decoupling the mechanism from caches by using R/W signatures. External

requests arriving to a core are checked through these signatures and, on a possi-

ble conflict1, requests are NACKed. What we propose is to use these signatures

to maintain a pair of per-transaction registers called Producer Register and Con-

sumer Register, see Figure 5.1. The Producer and Consumer registers keep the

transaction identifiers involved in the data sharing of all the cores in the system.

The proposed mechanism works as follows. A core receiving a forward request

checks its write signatures from all active p-XACTs (those which have been already

committed by the master or are still in execution). For a positive match in an

active p-XACT, the core updates the Producer Register storing the transaction id

for the involved core. In the same way, the requestor of the block, when obtaining

a response, updates its Consumer Register indicating the core and transaction

id produced by the previously obtained block. All the required information is

obtained from memory request messages.

The functionality of these registers is twofold. First, when a fault is detected

the Producer Register is used in the recovery process to abort all the p-XACTs

involved since their states are potentially corrupted, as we will see later. Secondly,

the Consumer Register is used to provide an order in the consolidation mechanism,

1A conflict occurs when an address appears in the write-set of two transactions or the write-set
of one and the read-set of another [115].

Chapter 5. LBRA: A Log-based Redundant Architecture 82

needed to avoid SDCs (Silent Data Corruptions). We will address this issue in

Section 5.3.3.

5.3 LBRA Implementation Details

One of the major drawbacks in previous RMT approaches is the synchronization

between redundant threads. As a measure to amortize the latency of comparing

redundant executions, long checkpoint intervals are needed. Our goal is to elim-

inate these latencies, independently of whether synchronizations are common or

not. To achieve this, we use a decoupled approach by means of the capabilities of

LogTM-SE and the ability to execute multiple p-XACTs before verification. The

hardware additions needed to accomplish these goals are depicted in Figure 5.1.

Figure 5.1: LBRA hardware overview. Shadowed boxes represent the added
structures.

5.3.1 Accessing the Log

To provide access to the same log, both master and slave threads should share

the memory space. To this end, unlike in true SMT threads, master and slave

Chapter 5. LBRA: A Log-based Redundant Architecture 83

threads appear to the OS as a single one as in [70]. The access to the log by both

redundant threads is as follows.

5.3.1.1 Master Access

The master thread writes in the log through the Master Log Pointer as in a

traditional LogTM-SE system. Note that this pointer is local to every p-XACT.

At every memory operation, the master generates a new store instruction whose

destination address is indicated by this pointer. This new store allows the system

to satisfy input replication and output comparison as explained before in Section

5.2.1. As memory operations are logged in commit, the content of the log is

structured in program order.

5.3.1.2 Slave Access

The slave accesses to the log are more complex and require a special treatment.

In order to ensure input replication, each load access must be redirected to the

log. For that purpose, at memory access time, the destination address of loads are

switched with the Log Slave Pointer which indicates the location of the memory

value previously read by the master thread. Then, the memory access is performed

as usual and the log pointer is set to the next entry in the log.

In the case of stores, the mechanism differs slightly. Since slaves do not update

memory, their stores become reads to the log. For this reason, the destination

address is switched with the Log Slave Pointer address and the data value is

retrieved from the log.

5.3.1.3 Log Content & Fault Detection Granularity

The size of the log is a major concern in our approach since its growth affects the

available cache space for the application and, therefore, its performance. In this

Section, we discuss how to decrease the size of the log by reducing the amount of

Chapter 5. LBRA: A Log-based Redundant Architecture 84

data to store, something which also affects the detection granularity. The different

alternatives can be seen in Table 5.1.

Table 5.1: Alternatives in log content for loads and stores.

Address Value Old-value Provides

Loads
Yes Yes -

Input replication
Fault detection in address calculation

No Yes - Input replication

Stores
Yes Yes Yes

Fault detection in address calculation
Fault detection in value calculation
Fault recovery

Yes No Yes
Fault detection in address calculation
Fault recovery

Faults in load address

To satisfy input replication, it is mandatory to include in the log every data value

read by the master thread. However, the address of the load is optional. If we

include it, we could detect faults affecting address calculation. But this presents

two major drawbacks. First, the log size increases. And second, we increase the

hardware pressure by adding an additional master-slave check on every load. Since

our first goal is to reduce performance penalty, we choose to store the minimum

information possible, i.e. only data values, and rely on the consolidation process

to determine the correct execution of all the p-XACT.

Faults in store address

Likewise, we try to reduce the information we keep from stores to decrease the log

size as much as possible. In order to recover from a fault, we rely on the LogTM-SE

handler which restores modified memory values. For this purpose, we need to keep

the address and the old value for every memory update in the log. Additionally,

we could keep the current value to be stored. If so, a fault in the calculation of

this value could be detected when the slave thread accesses the log. However, for

the same reasons as for loads, we avoid to store the new value, waiting for faults

to be detected at the consolidation phase.

Chapter 5. LBRA: A Log-based Redundant Architecture 85

5.3.2 Circular Log

LBRA provides a high decoupled execution of redundant threads. As a result, the

forward progress of the master is rarely interrupted since the latencies inherent to

the verification process are virtually hidden. For this purpose, the master thread is

allowed to execute and commit several p-XACTs without verification. Meanwhile,

the slave thread checks the correct execution of already committed p-XACTs and,

as a final step, performs consolidations.

In order to allow multiple p-XACTs to be committed without verification, each

one needs its own architectural support. This support includes R/W registers,

verification signatures and log pointers as depicted in Figure 5.1. The amount

of extra hardware is determined by the maximum number of in-flight p-XACTs

allowed.

(a) (b)

Figure 5.2: LogTM-SE and LBRA log management.

But the major implication derived from this support affects the management

of the log. LogTM-SE only allows one transaction to be executed at a time 2.

After commit, signatures are cleared and log pointers are reset. Thus, the next

XACT will start writing the log from the beginning of the reserved memory space,

as we can see in Figure 5.2(a). However, in LBRA the log must be preserved for

the slave thread. Therefore, instead of resetting log pointers, after the commit of a

p-XACT, the following one starts writing from the last entry used by the previous

2It also allows several XACTs to be merged, becoming a logical one.

Chapter 5. LBRA: A Log-based Redundant Architecture 86

p-XACT, as we can see in Figure 5.2(b). Only when the pointer reaches the limit

of the memory reserved for the log, it is set to its beginning. In a nutshell, in

LBRA the log grows circularly through all the virtual space reserved for it.

5.3.3 In-order Consolidation

In our approach, memory blocks are updated in place (L1 cache) and allowed to

be shared even before consolidation takes place. This eager approach allows fast

commits and adequate performance, since faults can be considered as the uncom-

mon case. However, this mechanism affects the consolidation order of p-XACTs

since, if additional mechanisms are not implemented, faults could be spread all

around the system.

It is clear that if a p-XACT pi has consumed data produced from another p-

XACT pj , the consolidation of pi cannot take place before the consolidation of pj .

Otherwise, a faulty block produced in pj would be silently consolidated in pi. To

keep track of these dependencies, we introduce the Consumer and Consolidated-

Ids registers, as explained in Section 5.2.2, which gather the information provided

by the coherence protocol. To achieve this, memory coherence messages in our

approach are extended to include the p-XACT identifier providing the data, which

are used by the requestor to fill the Consumer register, and the last consolidated

p-XACT identifier.

The in-order consolidation process works as follows. After completing the

verification of state, the slave thread checks the Consumer vector for the current p-

XACT. If it is empty, it means that this p-XACT has not consumed data from any

other p-XACT, so the consolidation process may take place without any additional

checks. If the Consumer register is not empty, then, for every dependence, the

slave checks if the producer p-XACT has already been consolidated by checking

the Consolidated register. If all the dependencies satisfy this condition, then the

p-XACT is finally consolidated. If not, we initiate a lookup mechanism. The

slave thread requests its producers to supply the last consolidated id until all the

dependencies are satisfied.

Chapter 5. LBRA: A Log-based Redundant Architecture 87

5.3.3.1 Cycle Avoidance

There exists a danger of deadlock in the consolidation process if we allow cycles to

be formed. For example, let us consider the case in which pi is the producer of pj

which, at the same time, is the producer of pk and, finally, pi consumes data from

pk. In this case, none of the three p-XACT could be consolidated since a cycle

has been created. Although this case is rare, we need to present a mechanism to

avoid it.

Our goal is to create a DAG (Directed Acyclic Graph). DAGs assure that a

topological order exists although this order, in general, is not unique. Therefore,

we implement a simple policy: we disallow situations in which a p-XACT is both

producer and consumer of other p-XACTs at the same time. When a master

thread which is already a producer receives data produced by a p-XACT, the

active p-XACT is forced to commit and a new one is started before consuming these

data. Likewise, if a consumer p-XACT is requested to provide data (becoming a

producer), it is forced to commit and the dependence is created in a new p-XACT.

This guarantees that no cycles can be created avoiding consolidation deadlocks.

5.3.4 Fault Recovery in LBRA

Upon fault detection the recovery mechanism is triggered. In our approach, this

mechanism is taken by a combination of both software and hardware processes for

local and global recovery which act on the youngest p-XACT of the core. The

correctness of the proposed mechanism is proved since dependencies form a DAG,

so a topological order can be established.

5.3.4.1 Local Recovery

The local recovery is the rollback to a safe state previous to the execution of a faulty

p-XACT in a core. For this process we rely on the software approach proposed in

LogTM-SE to abort transactions. This software mechanism writes back the old

values to their appropriate addresses from the log. After that, the transactional

Chapter 5. LBRA: A Log-based Redundant Architecture 88

hardware of the current p-XACT is reset. Additionally, if this mechanism were

triggered by an external request, it would be acknowledged by the requestor.

5.3.4.2 Global Recovery

Given the fact that blocks are shared before consolidation, potential faults could

be spread among cores. In case that a p-XACT is detected as faulty, the recovery

mechanism is also responsible for notifying its consumers (including the lower p-

XACTs of the same node). Thus, upon fault detection, the mechanism carries out

different actions, depending on whether the affected p-XACT is either a consumer

or a producer:

• Consumer. If the current p-XACT is a consumer, the produced values

were not previously shared, therefore potential faults have not been spread

outside the core. In this case, a local recovery of the current p-XACT is

performed. If the recovery process is initiated by an external request, an

ACK is sent back to the source of the request. Likewise, the mechanism is

repeated for the upper p-XACT.

• Producer. In this case, the process sends a rollback request to all the con-

sumers of the current p-XACT (indicated by its Producer Register). When

all the ACKs are collected, a local recovery of the current p-XACT is initi-

ated and this mechanism is repeated for the upper p-XACT.

The recovery process finishes when all the p-XACTs in a core have been re-

covered. As as a final step, the register checkpoint is written back to both master

and slave, and the execution is resumed. Hence, on the one hand, the described

method assures that, for a faulty core, a younger p-XACT is “undone” before an

older one. On the other hand, consumers are restored before producers, in case

of dependencies among different cores. We can see an example of a fault recovery

in Figure 5.3. In this example, four cores C0, C1, C2 and C3 have executed four

p-XACTs p0, p1, p2 and p3. In the figures, the data sharing is represented by a

solid line and an arrow, while the order of precedence is indicated by a dotted line.

Chapter 5. LBRA: A Log-based Redundant Architecture 89

In (a), a fault is detected in p0 from C2, which initiates the recovery mechanism.

In (b) the recovery mechanism proceeds with p3 from C2, the youngest p-XACT

of the core. As p3 has no consumers, it is locally recovered. C2 repeats the same

process with p2 and p1, which are also locally recovered. As p0 in C2 is producer,

it cannot be recovered yet. In (c), C2 sends invalidations to its consumers C1 and

C3 and waits for the corresponding ACKs. In (d), C1 performs the recovery for

p3. As p3 is producer of C2, it sends a rollback request which is acknowledged by

C2 since p3 has already been recovered. Then, p3 and p2 from C1 are rolled-back.

Given the fact that p2 recovery was requested by C2, C1 informs it that the recov-

ery for the affected p-XACT has been performed. In the same way, C3 recovers

from p3, p2, p1 and p0. As p0 is the oldest p-XACT, the registered checkpoint is

also recovered and finally, C3 acks C2. In (e), C2 has received all the ACKs, thus

performing the rollback of p0 and restoring the backup of the register file. Mean-

while, C1 sends an abort request to C0 since p0 is its producer. C0 recovers from

p3, p2, p1, p0, restores the register file checkpoint and acknowledges C1. Finally,

in (f), C1 receives the acknowledgement from C0 and performs the rollback from

p0 and recovers the register file backup.

5.4 Performance enhancements via Spatial Thread

Decoupling

So far we have focused our discussion on the execution of redundant pair threads

in 2-way SMT cores. The benefits of having both threads in the same core include

a better use of the resources, the hiding of latencies (e.g., cache misses) and the

avoidance of additional hardware. However, the major problem this design entails

is performance degradation due to resource contention associated with SMT archi-

tectures. To avoid this penalty and provide a low-overhead solution, we propose

to execute redundant threads in different individual (non-SMT) cores rather than

in different SMT contexts.

Chapter 5. LBRA: A Log-based Redundant Architecture 90

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(a)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(b)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(c)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(d)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(e)

C0 C1 C2 C3

p0

p1

p2

p3

p0p0p0

p1 p1 p1

p2 p2 p2

p3 p3 p3

(f)

Figure 5.3: Fault recovery mechanism in LBRA.

Chapter 5. LBRA: A Log-based Redundant Architecture 91

5.4.1 Decoupling Thread Execution into Different Cores

The support for the execution of redundant threads in different cores is pretty

straightforward given the software nature of threads. This support includes the

creation of the redundant thread by the OS and the initialization of all the registers

and related hardware structures including the log pointers.

However, the major drawback we face in this new scenario is the inter-core

communication. Proposals like Reunion [83] rely on the use of dedicated fast lines

to communicate redundant cores since the latency of the messages is crucial for

its performance. Nonetheless, this measure is not desirable given the fact that it

reduces the flexibility and adds a considerable hardware overhead.

Instead of that, our approach uses the interconnection network to communi-

cate redundant cores. The major implication of this approach, thus, is the increase

of the latency when accessing the log. This additional delay results from the travel

across the chip of log blocks from master to slave cache. Eventually, if the latency

is too high, the performance of the slave thread may be affected considerably.

Nonetheless, this decreased slave thread performance slightly impacts on the mas-

ter thread forward progress because of the temporal decoupling inherent to LBRA,

which allows the master thread to commit several p-XACTs without the need of

slave consolidations. If this buffering results insufficient, we can still adopt mea-

sures like allowing a higher number of in-flight p-XACTs, something which requires

more hardware, or increasing the p-XACT size, which impacts directly on the total

log size and reduces the effective capacity of the cache.

Leveraging coherence actions

However, as we will see in the evaluation Section, the overall performance of some

applications in the spatially decoupled (non-SMT) environment results worse than

in the coupled (using 2-way SMT cores) one. This behaviour is a consequence of

the increased cache miss ratio of the master thread when accessing the log data

blocks. In a coupled environment the log is allocated in the L1 cache and, virtually,

all its accesses result in hits for both master and slave threads due to temporal

locality. In a decoupled environment, though, the log blocks are written by the

Chapter 5. LBRA: A Log-based Redundant Architecture 92

master in its private cache and requested by the slave thread. This implies a

cache-to-cache request and a transfer of the block permissions from M to S 3. This

extra latency only affects slave performance as we noted before. But the major

problem results when the master thread eventually reuses a portion of the log.

Since the last state of the log block is S, the master thread must re-acquire the

write permissions, something which implies an invalidation message to the sharers

(the slave thread in this case) and a subsequent acknowledgement. This results in

an increase of log latency in the master which may affect the forward progress of

the application.

In order to avoid this issue and given the singularity of this producer-consumer

pattern, we have added a small hardware structure on the slave side together with

the use of non-coherent requests to access the log. We call this structure the

log buffer, a FIFO queue which stores log blocks. Slave accesses are performed

through it. When the requested data is not present in the log buffer, the slave

thread performs a cache-to-cache request which does not alter the coherence state

of the memory subsystem. The size of the log buffer may be as small as a single

block. However, being able to buffer multiple blocks brings on another opportunity.

Given the fact that the log is accessed sequentially, a prefetch mechanism is very

easy to implement. This can be used to obtain the log blocks the slave is going to

use, hiding, most of the times, the latency when the slave accesses the log. Finally,

note that master-slave consistency is assured since the blocks are frequently evicted

from the log buffer because of its small capacity. This prevents the slave thread

from reading an old version of a log block.

3Provided that the cache coherence protocol is MESI.

Chapter 5. LBRA: A Log-based Redundant Architecture 93

5.5 Evaluation

5.5.1 Simulation Environment

To evaluate the proposed LBRA architecture, we have simulated a tiled-CMP

by means of Virtutech Simics [45] and GEMS [47]. Simics is a functional sim-

ulator executing a Solaris 10 Unix distribution simulating the UltraSPARC-III

ISA. GEMS is a timing simulator which, coupled to Simics, supplies a hardware

implementation of a transactional memory model called LogTM-SE [115].

Table 5.2: Simulation parameters.

16-way Tiled-CMP

Processor
Speed

2GHz

Memory and Cache

Mem. Size 4GB

Mem.
Latency

300 cycles

Cache Line
Size

64 bytes

L1 cache 32KB, 1 cycle/hit

L2 cache 512KB/core, 15 cycles/hit

Network

Topology 2D-Mesh

Protocol MESI directory

Link latency 4 cycles

Flit Size 4 bytes

Link
bandwidth

1 fit/cycle

LogTM-SE

Signatures Perfect

Log contents
Loads: data (4 bytes)
Stores: data + address (8
bytes)

Table 5.2 shows the main parameters of the evaluated architecture. Each core

of our 16-core CMP is a dual-threaded SMT with private L1 cache and a shared

portion of the L2 cache. We conduct our experiments by executing several appli-

cations from SPLASH-2 [112] (barnes, fft, radix, raytrace, waternsq and watersp),

ALPBench [43] (facerec, mpgdec and mpgenc) and PARSECv2.1 [7] (blackscholes,

Chapter 5. LBRA: A Log-based Redundant Architecture 94

canneal and swaptions) benchmark suites (refer to Chapter 3 for further details).

The experimental results reported here correspond to the parallel phase of each

program. Each experiment has been run with several random seeds as to take into

account the variability of the multithreaded execution. Although LBRA allows

the programmer to explicitly activate the redundancy in specific program parts,

in this Chapter we assume full protection. Thus, every program instruction is

redundantly executed.

5.5.2 p-XACT Size Analysis

The size of a p-XACT is a key parameter in the architecture. A bigger size helps

to increase the decoupling between master and slave threads. Unfortunately, this

also increases the size of the log, incurring in a greater occupancy of the cache.

Figure 5.4(a) shows a sensitivity analysis of the p-XACT base size in terms of

memory instructions. The bars are normalized with respect to the case in which

p-XACT length is 25 memory instructions. As we can see, decreasing p-XACT size

from 1000 instructions to 100 instructions achieves performance gains. However,

further decreasing the p-XACT size below 50 instructions it is not worthwhile. On

average, 50-instruction size performs 3%, 2% and 3% better than 25 instruction size

for SPLASH-2, PARSEC and ALP studied benchmarks, respectively. For smaller

p-XACT sizes, the performance is even worse (not shown here for clarity), for

the overhead incurred in every p-XACT creation (register initializations mostly)

becomes more valuable.

Another interesting parameter is the maximum number of p-XACTs which the

master can commit without consolidation. At one end, a higher number of in-flight

p-XACTs facilitates decoupling, but it also adds more hardware as illustrated in

Figure 5.1. In addition, the size of the log grows, increasing thus the cache miss

ratio of the architecture. At the other end, if the number of in-flight p-XACTs

is low, in situations in which the slave thread is unable to keep up with the

master (because of dependencies in consolidations, for example), this turns into a

bottleneck since the master must be stalled. This behaviour can be observed in

Figure 5.4(b), which shows the execution time normalized with respect to using

Chapter 5. LBRA: A Log-based Redundant Architecture 95

Ã

Ã��

�

���

�

���

�
�

�
� ��
�

��
�
��

��
�
��
�
�
�

�
�
��
�

�
�

�
�
��
��

!
"
#

��
�
�
�
�
�
�
��
�

�
�

�
�
�

�
�
�

��
�

�

!
"
#

��
�
�
��
�

�

%
�
�
�

�

%
�

�

!
"
#

!
"
#

&'(!&)*� '!/&03 !(' !((

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

'*9!345�� '*9!345�Ã '*9!345�ÃÃ '*9!345�ÃÃ '*9!345�ÃÃÃ

(a)

Ã

Ã��

�

���

�

���

�

���

�
�

�
� ��
�

��
�
��

��
�
��
�
�
�

�
�
��
�

�
�

�
�
��
��

!
"
#

��
�
�
�
�
�
�
��
�

�
�

�
�
�

�
�
�

��
�

�

!
"
#

��
�
�
��
�

�

%
�
�
�

�

%
�

�

!
"
#

!
"
#

&'(!&)*� '!/&03 !(' !((

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

�+'*9!34� �+'*9!34� �Ã+'*9!34� �Ã+'*9!34�

(b)

Figure 5.4: Sensitivity analysis for p-XACT size and number of in-flight p-
XACTs.

Chapter 5. LBRA: A Log-based Redundant Architecture 96

5 p-XACTs. For 4 in-flight p-XACTs, the stalls of the master execution are

responsible for a performance degradation of 16% in SPLASH-2 and 2% for ALP

(almost no degradation for PARSEC benchmarks) in relation to 5 in-flight p-

XACTs, which is the best configuration for the studied benchmarks. For a higher

number of in-flight p-XACTs, the overhead specially increases in benchmarks such

as blackscholes and canneal, in which the cache miss ratio raises significantly.

5.5.3 Overhead of the Fault-Free Case

In this Section we compare LBRA architecture with a base case composed by a

16-core CMP running the 16-threaded applications mentioned in Section 5.5.1.

We quantify the performance in a fault-free scenario, which is usually considered

as the common case. Although LBRA allows the programmer to select specific

program parts to protect while leaving the rest unprotected, for this evaluation,

we provide redundant execution for all the program instructions.

Three different factors are responsible for the performance degradation of

LBRA. First and foremost, the cost of redundancy itself (note that the use of

dual SMT cores aggravates this performance degradation as a result of the higher

resource contention of master-slave pair threads). Second, the capacity of the L1

cache, which is reduced because of the the log used to bypass data between master

and slave threads and to provide a backup. For this reason, smaller p-XACTs

normally achieve better performance. And finally, the stalls in the consolidation

phase due to dependencies among two or more p-XACTs. Fortunately, these con-

solidation stalls are uncommon (virtually non existent). Furthermore, the master

thread is rarely stalled as a result of the proposed mechanism which allows to

execute several p-XACTs without consolidation.

Figure 5.5 depicts the behaviour of the coupled LBRA approach labeled as

LBRA C (the first version of LBRA proposed in Section 5.3). As we can see,

the performance degradation in our first approach ranges between 38% (facerec)

and 16% (radix) with an average of 24%. Although the experimented degradation

is noticeable across all the studied benchmarks, it is worth noting the impact

on ALP benchmarks because of the inherent SMT degradation, something which

Chapter 5. LBRA: A Log-based Redundant Architecture 97

�

��Ã�

���

����

���

����

���

����

���

����

�
�

�
� ��
�

��
�
��

��
�
��
�
�
�

�
�
��
�

�
�

�
�
��
��

!
"
#

��
�
�
�
�
�
�
��
�

�
�

�
�
�

�
�
�

��
�

�

!
"
#

��
�
�
��
�

�

%
�
�
�

�

%
�

�

!
"
#

!
"
#

&'(!&)*� '!/&03 !(' !((

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

(8/!53 (8/!56 (8/!56,(:#58;<<0/

Figure 5.5: LBRA performance in a fault-free scenario.

is consistent with related studies such as Sasanka et al. [80], with claim a better

performance of CMP architectures compared to SMT architectures for multimedia

workloads.

To overcome this issue, in Section 5.4 we proposed to decouple redundant

threads in different non-SMT cores. Thus, we avoid degradation due to resource

sharing but we increase the hardware costs. Specifically, the number of cores

increases to 32 distributed in a 4x8 2D-mesh in which master and slave cores are

placed at a 1-link distance. Figure 5.5 depicts the overhead of this approach,

labeled as LBRA D which ranges from 32% (raytrace) to 2% (blackscholes) with

an average of 11%, clearly outperforming LBRA C (24% on average). But, besides

the hardware overhead, LBRA D results in a noticeable increase of the L1 cache

miss ratio as we can see in Figure 5.6(a). However, the size of the log remains

constant with an average of 1KB (up to 2.4KB) for all the studied benchmarks as

we can see in Figure 5.6(b). Thus, it is clear that the miss ratio increase is due to

the conflicts between master and slave cores when accessing the log.

To reduce the miss ratio in LBRA D we incorporate to the architecture a log

Chapter 5. LBRA: A Log-based Redundant Architecture 98

�

���

�

���

�

���

�

���

�

���

�
�

�
� ��
�

��
�
��

��
�
��
�
�
�

�
�
��
�

�
�

�
�
��
��

��
�
�
�
�
�
�
��
�

�
�

�
�
�

�
�
�

��
�

�

��
�
�
��
�

�

%
�
�
�

�

%
�

�

&'(!&)*� '!/&03 !('

F
�
�
�
�
��
�
�
�
	�
��
�
	�
�
��
�
	�
�
�
�
�
�
�
�

(8/!53 (8/!56 (8/!56,(:#58;<<0/

(a) LBRA L1 miss rate increase.

Ã

�ÃÃ

�ÃÃÃ

��ÃÃ

�ÃÃÃ

��ÃÃ

�ÃÃÃ

�
�

�
� ��
�

��
�
��

��
�
��
�
�
�

�
�
��
�

�
�

�
�
��
��

!
"
#

��
�
�
�
�
�
�
��
�

�
�

�
�
�

�
�
�

��
�

�

!
"
#

��
�
�
��
�

�

%
�
�
�

�

%
�

�

!
"
#

!
"
#

&'(!&)*� '!/&03 !(' !((

�
�
��
�

(8/!53 (8/!56 (8/!56,(:#58;<<0/

(b) LBRA average and maximum log size.

Figure 5.6: LBRA miss rate and log size.

Chapter 5. LBRA: A Log-based Redundant Architecture 99

buffer which is used by the slave thread to obtain log blocks without affecting their

coherence state, as explained in Section 5.4. The capacity of the log buffer can be

as small as 1 entry. Nonetheless, our experimental analysis shows that with a ca-

pacity of 3 blocks, we obtain the optimum performance by using a simple prefetch

mechanism. The prefetch strategy we follow consists of requesting the next logical

log block whenever there is, at least, one free entry in the buffer. This approach is

labeled in Figure 5.5 as LBRA D+LOG BUFFER. In this case, the time overhead

is reduced to the range between 17% (raytrace) and 1% (radix) with an average of

6.5% for all the studied benchmarks. The performance improvement in compari-

son to LBRA D is easily explained due to the reduction in the cache misses, as we

can see in Figure 5.6(a). In conclusion, the benefit of LBRA D+LOG BUFFER is

twofold. First, we avoid performance degradation thanks to the redundant threads

in the same SMT core. And second, we decrease the impact over the L1 miss ratio

by leveraging the coherence for log blocks.

5.5.4 Comparison Against Previous Work

In this Section, we evaluate the performance impact of previous approaches in a

common framework, i.e. a direct-network environment and using 2-way SMT core

redundancy or simply core redundancy.

Whereas LBRA C uses the cache to communicate log values between redun-

dant threads, REPAS (as proposed in Chapter 4) uses specialized hardware, some-

thing which imposes a considerable complexity overhead. Besides, as we can see

in Figure 5.7, LBRA C reduces the execution time overhead of REPAS for the

majority of studied benchmarks with a 8% on average with respect to the base

case. For applications that lay more pressure over the LVQ and SVQ queues such

as watersp and swaptions, REPAS incurs in noticeable overheads, since the leading

thread must be stalled until resources are available. LBRA C does not suffer from

this problem since all the data communication is produced through the cache.

In the same Figure 5.7, we can see the execution time overhead of DCC and

LBRA D implementing the log buffer. In these two cases, redundant threads are

executed in different cores, eliminating thus the degradation inherent to the SMT

Chapter 5. LBRA: A Log-based Redundant Architecture 100

execution. The counterpart, however, is that the number of cores is doubled. The

consistency mechanism is the major degradation source in DCC, as we explained

in Section 4.2.1, increasing time overhead in 31% on average with respect to the

base case.

�

���

���

���

���

���

��	

���

���

���

�

���

���

�
�

�
� ��
�

��
�
��

��
�
��
�
�
�

�
�
��
�

�
�

�
�
��
��

!
"
#

��
�
�
�
�
�
�
��
�

�
�

�
�
�

�
�
�

��
�

�

!
"
#

��
�
�
��
�

�

%
�
�
�

�

%
�

�

!
"
#

!
"
#

&'(!&)*� '!/&03 !(' !((

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

/0'!&+ (8/!53 633 (8/!56,(:#58;<<0/

Figure 5.7: Performance comparison of LBRA versus REPAS and DCC.

Finally, in Figure 5.8 we can see the execution time overhead for LBRA D

(with the log buffer), REPAS and DCC under different fault rates expressed in

number of faults per million of execution cycles. Since realistic rates barely affect

the performance of mechanisms, in this experiment we have used rates which are

higher than those expected in a real scenario so as to show the kindness of the

different approaches. The time to recover from a fault depends on the speed

to detect the fault and to undo all the potentially affected work. REPAS is the

fastest mechanism to detect and correct an error because of the small delay between

redundant threads (less than 200 cycles). On the contrary, DCC spends roughly

10,000 cycles to recover because of its long checkpoint intervals. The overhead of

LBRA D is between the other two. As depicted in Figure 5.8, while the fault rate is

less than 10 faults per million of cycles, LBRA D is still the most suitable approach

but, whenever the fault rate increases to 100, the small overhead introduced by

Chapter 5. LBRA: A Log-based Redundant Architecture 101

����

Ã�ÃÃ

��ÃÃ

��ÃÃ

��ÃÃ

��ÃÃ

��ÃÃ

	�ÃÃ

(
8
/
!
5
6
,

/
0
'
!
&

6
3
3

(
8
/
!
5
6
,

/
0
'
!
&

6
3
3

(
8
/
!
5
6
,

/
0
'
!
&

6
3
3

(
8
/
!
5
6
,

/
0
'
!
&

6
3
3

(
8
/
!
5
6
,

/
0
'
!
&

6
3
3

� � �Ã �ÃÃ �ÃÃÃ

F
�
�
�
�
��
�
�
�
	

�
�
�

��
�
�
	�
��
�

<����� 8���

Figure 5.8: Execution time overhead for several fault rates.

REPAS makes it the best choice. DCC’s performance is always the less advisable

in a faulty environment as a result of the long recovery latency caused by its long

checkpoint intervals.

To sum up, we have shown that both LBRA C and LBRA D are able to

outperform previous approaches in the same environment with several advantages.

First, we avoid the use of queues to bypass data values between threads as in

REPAS, something which augments considerably the complexity of the design.

Second, the modifications over the memory system are minimum whereas DCC

induces virtually to the creation of a specific and new coherence protocol [37] and

requires special measures to deal with master-slave inconsistencies. In the same

way, in a faulty environment with realistic fault rates, LBRA D is also the most

adequate approach in terms of performance degradation.

Chapter 5. LBRA: A Log-based Redundant Architecture 102

5.6 Concluding Remarks

CMOS scaling exacerbates hardware errors making reliability a considerable con-

cern for present and future microarchitecture designs. However, mechanisms to

provide fault tolerance in architectures must accomplish several objectives such as

low performance degradation, energy consumption and area overhead.

In this Chapter we have presented a novel low-overhead mechanism to deal

with transient faults in present and future architectures. To this end, we in-

troduce LBRA, an architecture design based upon LogTM-SE, a well-established

hardware implementation of Transactional Memory. LBRA executes redundant

threads which communicate through a virtual memory log placed in cache. The

goal of the log is twofold. First, it provides input replication for both threads and,

second, it is used to recover the architectural state of the system after a fault is

detected.

LBRA main features include: a) a consistent view of the memory between mas-

ter and slave thread, avoiding input incoherences; b) both transient fault detection

and recovery; c) more scalability and higher decoupling than previous proposals;

d) low-performance overhead.

LBRA is presented in two flavours. In the first approach, redundant threads

are executed in the same dual-threaded SMT core. This provides a low-hardware

overhead but imposes a noticeable performance degradation as a counterpart. To

solve this issue, we have proposed a second approach in which redundant threads

are executed in different cores, increasing, thus, the hardware requirements. To

address the inter-core communication latency, we rely on the use of a simple yet

effective mechanism comprised of a log buffer, a prefetch strategy and slight mod-

ifications of specific coherence actions.

We have compared and evaluated the proposed designs using full system sim-

ulation to measure the performance degradation in a fault-free environment with

parallel benchmarks. We have shown that our proposals address the fault-tolerant

goal imposing 24% and 7% execution time overhead for the coupled and decou-

pled mechanism, respectively. Furthermore, we have shown that LBRA presents

Chapter 5. LBRA: A Log-based Redundant Architecture 103

several advantages with respect to state-of-the-art approaches that we have also

evaluated in the same framework.

Chapter6

Modelling Permanent Fault

Impact on Cache Performance

SUMMARY:

The traditional performance-power benefits enjoyed for decades from

technology scaling are being challenged by reliability constraints. Increases

in static and dynamic variations have led to higher probability of parametric

and wear-out failures. This is particularly true for caches that dominate the

area of modern processors and are built with minimum sized but prone to

failure SRAM cells. It is, therefore, imperative to develop effective method-

ologies that facilitate the exploration of reliability techniques for processor

caches.

Our attempt, presented in this Chapter, to address the cache reliabil-

ity challenge is an analytical model for studying the implications of block-

disabling approaches due to random cell failure on the cache miss rate be-

haviour. The proposed model is distinct from previous works in that is

an exact model rather than an approximation and yet it is simpler than

previous methodologies. Its simplicity stems from the lack of the use of

fault-maps in the analysis. As far as we know, all previous related works

rely on the continued use of some number of fault-maps which is not jus-

tified why it is representative of the expected behaviour, and therefore, it

questions the generality of the conclusions of such studies.

105

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 106

The analytical model capabilities are illustrated through a study of the

expected and standard deviation of the miss-rate trends in future technology

nodes. The model is also used to determine the accuracy of the random fault

map methodology. The analysis reveals, for the assumptions, programs and

cache configuration used in this study, a surprising result: a relative small

number of fault maps, 100-1000, is sufficient to provide accurate average

and standard deviation estimations. Additional investigation revealed that

the causes of this behaviour is the high correlation between the number of

accesses and the access distribution between cache sets.

6.1 Introduction

For the past 50 years, technological advances have enabled the continuous minia-

turization of circuits and wires. The increasing device density offers designers the

opportunity to place more functionality per unit area and, in recent years, has

allowed the integration of large caches and many cores into the same chip. Unfor-

tunately, the scaling of device area has been accompanied by at least two negative

consequences: a slowdown of both voltage scaling and frequency increase due to

slower scaling of leakage current as compared to area scaling [9, 22, 101], and a

shift to probabilistic design and less reliable silicon primitives due to static [10]

and dynamic [11] variations.

These alarming trends are leading to forecast that the performance and cost

benefits from area scaling will be hindered unless scalable techniques are developed

to address the power and reliability challenges. In particular, it will be impossible

to operate all on-chip resources (even at the minimum voltage for safe operation)

due to power constraints, and/or the growing design and operational margins used

to provide silicon primitives with resiliency against variations which may consume

the scaling benefits.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 107

A recently published resilience roadmap underlines the magnitude of the prob-

lem we are confronting [57]. Table 6.1 shows the pfail (probability of failure) pre-

dicted in [57] for inverters, latches and SRAM cells due to random dopant fluctu-

ations as a function of technology node (the trends for negative-bias-temperature-

instability are similar [116]). The trends clearly show that for all types of circuits

the pfail increases at a much faster rate than the scaling rate. However, not all

circuits are equally vulnerable; SRAM cells which are usually built with minimum

sized devices are more likely to fail. Furthermore, if we resort to voltage operation

below safety margins the SRAM pfail increases exponentially [111].

Technology Inverter Latch SRAM

45nm ≈ 0 ≈ 0 6.1e-13

32nm ≈ 0 1.8e-44 7.3e-09

22nm ≈ 0 5.5e-18 1.5e-06

16nm 2.4e-58 5.4e-10 5.5e-05

12nm 1.2e-39 3.6e-07 2.6e-04

Table 6.1: Predicted pfail for different types of circuits and technologies [57].

These trends render essential the development of reliability techniques for fu-

ture processors which are both scalable and performance-effective. This is espe-

cially important for caches that take most of the real-estate in processors and

contain numerous, vulnerable-to-failure, SRAM cells.

In the past, when variations issues were less dominant, it may have been

acceptable during post-manufacturing tests to discard chips even with a single

faulty cache bit. Nowadays, this is not a viable approach as reflected by the use

of extensive spare columns and rows in contemporary cache SRAM arrays [39].

However, the amount of spares needed to ensure a fault-free cache can grow faster

than area scaling rate and, consequently, diminish scaling benefits. An approach

that can reduce the amount of spares needed, to address parametric variations and

power constraints, is the use of more robust cells [2]. These cells have lower pfail

but each typically require more transistors and larger area, which result in longer

overall cache access time. Another approach is frequency and voltage binning that

results in operating a chip at lower frequency or higher voltage than intended, so

that all cells can be accessed correctly [10]. This ensures functional correctness

but it either reduces performance or increases power/temperature.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 108

The approaches above aim at providing fault-free caches by mitigating man-

ufacturing and static parametric faults. This is desirable but pretty unrealistic

to accomplish cost-effectively for future caches due to the mismatch between the

cell pfail versus area rate of scaling. Furthermore, wear-out faults that occur in

the field, are becoming more common [57]. Consequently, we may be forced to

ease the requirement of shipping only chips with fault-free caches and replacing

parts that experience a wear-out fault. But this requires performance-cost effective

mechanisms to deal with permanent faults in a cache during operation.

One inexpensive option is to rely on the error-correction-codes (ECC) already

in place to detect and correct soft-errors. However, ECC is not a performance

friendly mechanism for permanent errors because, potentially, every access to a

faulty block will incur in the ECC repair overhead, e.g., for a typical SEC-DED

implementation the decoding process latency is around 2x times the encoding

one [56]. Furthermore, ECC soft-error capabilities are reduced when some bits

protected by the ECC code are already faulty. Finally, the more faults, the stronger

the ECC code required, and its overhead. Thus, ECC may not be the best option

to repair permanent or wear-out faults for caches.

Another approach is to disable blocks [64, 86] which contain faulty bits upon

permanent error detection (at manufacturing time or in the field). Such disabled

blocks are not replaced with a spare1. Therefore, the cache capacity is reduced.

Block disabling is an attractive option because it has low overhead, e.g. 1 bit per

cache block2, but its reduced cache capacity may degrade performance. Therefore,

it is important to determine the performance implications of block disabling to

assess its usefulness.

Block disabling is not a new concept. It has been proposed and evaluated

before [31, 40, 41, 65, 75, 81], for example, as a way to improve manufacturing

yield [41, 65, 86], and to enable cost-effective operation below Vcc-min [36].

All these previous disabling-based studies rely on on a specific number (small

or large) of random fault-maps. The random fault-maps indicate the location of

1Disabling can be employed after spares have been exhausted.
2This logical bit needs to be resilient either through circuit design or extra protection because,

if faulty, it would render the whole cache faulty.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 109

faulty cache cells and determine the disabled faulty cache blocks. They are used

to either obtain the performance degradation of a program through cycle-accurate

simulation or to determine the impact on miss-rate of a program’s address trace

through an analytical model proposed by [65]. We claim that all these studies

are limited because they do not provide a justification as to why the particular

number of fault maps they use, which is typically a very small subset of the

actual number of possible mappings, is representative of the expected behaviour.

Therefore, it remains unclear whether the conclusions reached in these studies are

representative.

Our proposition to address this shortcoming is an analytical model that cal-

culates the Expected Miss Ratio (EMR) for a given application memory address

trace, along with a cache configuration and random probability of permanent cell

failure (pfail). Furthermore, we show how to obtain the standard deviation for the

EMR (SD MR) which provides an indication for the range of expected degrada-

tion of the cache. Finally, we explain how to produce a probability distribution

for the EMR for a given number of faulty blocks. All this is accomplished without

producing or using any fault-maps.

Our model capabilities are demonstrated through an analysis of the trends of

the mean and standard deviation of the cache miss rate with smaller feature size

(and pfail) for L1 and L2 cache. This analysis reveals that, for the programs and

cache configurations used in this study, the random fault methodology provides

highly accurate mean and standard deviation estimations with 1000 maps for the

L1 cache and with 100 for the L2 cache. These surprising results are investigated

through correlation analysis revealing a very high degree of correlation between

the number of accesses and the access distribution across sets which mean that a

relative small number of fault maps is sufficient to capture the mean and standard

deviation of the cache miss rate.

Furthermore, we study the EMR, access time, power, and area trade-offs

of different cache architectures. Finally, we compare block-disabling with word-

disabling, showing that, for higher pfails, word-disabling is more adequate due to

its reduced EMR, although with the mayor drawback of increasing cache latency

access.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 110

The remainder of this Chapter is organized as follows: Section 6.2 reviews

related work. Section 6.3 presents our model to calculate the EMR and SD MR. In

Section 6.4 we describe the methodology we follow in the evaluation Section which

is presented in Section 6.5. Finally, Section 6.6 summarizes the main conclusions

of this work.

6.2 Related Work

There have been several previous proposals studying the impact of permanent

faults on caches and the ways to mitigate them.

Sohi [86] studied the performance implications of caches with disabled portions

such as blocks and sets. In that work, the expected miss-rate increase is obtained

using several random fault-maps which are evaluated using trace-driven simulation.

Pour and Hill [65] extended Sohi’s work with a more accurate methodology by

introducing the use of the all-associativity simulation to determine within a single

run all possible access patterns for an address trace over a cache. In fact, this

study provides an expectation for the miss ratio of faulty caches in a similar way

as our model does. However, the problem they try to solve in [65] is to estimate

the EMR for a fixed number of faults. For that, they generate all the possible

distributions of these faults over the cache sets. This is a well known problem

called partition problem which falls within the category of NP-complete problems.

In this Chapter, we present an analytical model, showing that the methodology

in [65] can be applied to the study of the EMR and SD MR for a given pfail

without the need to generate fault maps. Furthermore, we also show that we

can approximate a fixed number of faults with a pfail analytically and generate

probability distributions for the EMR.

Lee et al. [41] study the performance impact on IPC and miss ratio of faulty

caches. However, their study still relies on the execution of random maps which

are generated by means of Monte Carlo method. Finally, there are several other

studies [1, 31, 36, 75, 81] studying the impact of faults over caches using random

maps.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 111

6.3 Analytical Model for Cache Miss Rate Be-

haviour with Faults

In this Section, we present an analytical model that can determine the expected

Miss Ratio (EMR), standard deviation of the Miss Ratio (SD MR), and a prob-

ability distribution of miss-ratios (PD MR) for a given program address trace,

cache configuration and random probability of permanent cell failure (pfail). The

EMR captures the average performance degradation due to random faulty cells.

The SD MR provides indication about the range of the performance degradation,

whereas PD MR reveals the shape (distribution) of the performance degradation.

These characteristics can be used to assess the implications of faults in a cache

and compare different cache reliability schemes.

The model key novelty is that it does not rely on fault-maps and is exact rather

than an approximation, i.e., it determines the above as if all possible fault-maps

for a given random pfail have been considered. Previous studies that relied on

fault-maps may not have produced representative conclusions because they can

not generate and evaluate, in general, all possible cache fault-maps for a given

pfail in a reasonable amount of time. We investigate the accuracy of the random

fault-map methodology in Section 6.5.2.

6.3.1 Assumptions and Definitions

The model assumes that the permanent faulty cells occur randomly (uncorrelated)

with probability pfail. This random fault behaviour is indicative of faults due

to random-dopant-fluctuations and line-edge-roughness, two prevalent sources of

static variations.

A cache configuration is defined by the number of sets (s), ways per set (n), and

block size in bits (k). We consider a block containing one or more permanent faulty

bits as faulty. In that case, the faulty block is disabled and reduces the capacity

of the cache. The faults are assumed to be detected with post-manufacturing and

boot time tests, ECC, and built in self tests.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 112

The model is suited for any deterministic replacement policy. However, with-

out loss of generality we have focused on a basic LRU policy.

Each program address trace is simulated through a cache simulator to obtain

for a given cache configuration the vector M . This vector contains n+1 elements,

one element more than the number of cache ways. Mi corresponds to the total

misses when there are only n − i valid ways in each set in the cache. More

specifically, Mi equals to the sum of all references that hit on the i least recently

used blocks in each set, plus the misses of the fault free cache. For example, M0

equals to the misses of a fault-free cache; Mn represents the misses of a cache

where all ways are entirely faulty, meaning that all accesses are misses; and M1

equals to the misses of the fault-free plus all the hits in the LRU position.

6.3.2 EMR and SD MR

This Section shows how the model obtains the EMR and SD MR given a cell pfail,

cache configuration and the miss vector of an address trace. The model obtains

the probability for a cache block failure using the following expression (based on

well known binomial probability):

pbf = 1− (1− pfail)
k (6.1)

Although pbf gives information about the fraction of blocks that are expected

to fail in the cache, the impact on the miss ratio is unknown as it depends on the

fault location and amount of accesses that map faulty block locations. However,

with the pbf we can obtain the probability distribution pei for the number of faulty

ways in a set:

pei =

(

n

i

)

pibf(1− pbf)
n−i (6.2)

which provides, for every possible value of i [0...n], the probability of having

n − i non-faulty ways. This distribution is very useful because it provides the

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 113

complete picture about how likely to loose a given number of ways is in a set, and

what is more, it can be used to obtain the expected number of misses.

The expectation of a random variable X = x0, x1..., xm for which each possible

value has probability p = p0, p1, ..., pm can be calculated as:

E[X] =
m
∑

i=0

xi · pi (6.3)

In our case, the random variable X corresponds to the total number of misses

for a cache with faults, xi to the total misses when there are only n− i valid ways

in each set in the cache, and pi the probability of having i faulty ways in a set.

Therefore, we can express the expectation of the number of misses of cache with

disabled blocks as:

Emisses =

n
∑

i=0

Mi · pei (6.4)

and obtain the expected miss ratio of the cache using:

EMR =
Emisses

accesses
(6.5)

This simple formula can be used to obtain the exact EMR without using fault-

maps. The key insight behind this formula, expressed better in Eq. 6.2, is that

caches have a useful property: for the same number of faulty blocks f in a set the

reduced associativity will be the same n − f . I.e., for analyzing block-disabling

approaches, what matters is the number of faulty-ways in a set, not which specific

ways in the set are faulty. As a result, this reduces the complexity problem.

The EMR provides a useful indication of the average case performance for a

given pfail. However, we have no information about the variation in the miss ratio.

Variation information is useful for assessing whether disabled blocks lead to caches

with wide variation (less predictable) miss rate.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 114

One way to measure this variation is through the standard deviation of the

miss ratio or SD MR. Unfortunately, the standard deviation cannot be directly

obtained for the whole cache. However, given that we already know the probability

distribution of faulty blocks in a set, we can calculate its variance as follows:

∀j[0...s], V AR Emissesj =
n

∑

i=0

pei · (xij − Emissesj)
2 (6.6)

where xij is the number of misses obtained when having n− i non-faulty ways

in the jth set.

Although the total EMR is equal to the sum of individual sets EMRj :

EMR =

s
∑

j=1

EMRj (6.7)

we cannot combine the variation of each set in the same way. Instead, we

compute the deviation for the misses of the whole cache SD MR by using the

root mean square in the form:

SD MR =

√

s
∑

j=1

V AR EMRj

accesses
(6.8)

6.3.3 EMR Probability Distribution

The SD MR only provides the range of deviation of the expected miss ratio (EMR).

However, it may also be useful to know the probability distribution of cache misses

(PD MR) within the deviation range.

We propose to build a probability distribution of misses in a stepwise manner.

We first calculate the EMR for every possible number of faulty blocks (0 to the

number of cache blocks), and then combine this information with the probability

of that given number of faulty blocks to occur.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 115

Equation 6.9, similar to Equation 6.2, gives the probability of x number of

faulty blocks, for a given block probability failure:

(

s · n
x

)

pxbf(1− pbf)
s·n−x (6.9)

This equation can be evaluated for different x to obtain a probability distri-

bution. Then, we need to calculate the EMR for every possible number of faults.

This problem has traditionally been solved by means of random fault maps [65].

For a given number of faults this problem is analogous to selecting at random

n balls from an urn that contains dk balls without replacement, where d is the

number of unique colours and k is the number of balls of each color. The urn

represents the cache, the variable n the faults, d is the number of blocks and k the

number of bits in each block. The mean number of distinct blocks, u, that contain

at least one faulty cell in a cache with n faulty cells can be calculated with very

high accuracy [114]:

u = d− d(1− pfail)
k (6.10)

This means that we can obtain the PD MR analytically, without fault-maps.

Simply use Equation 6.10 to convert the number of faulty blocks to pfail. This

gives the expression:

pfaili = 1− k

√

s · n− xi

s · n (6.11)

This way, what pfail results in xi faults in the cache is calculated. Then, every

pfaili can be used to calculate the EMR associated to each number of faulty blocks.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 116

6.4 Methodology

We have shown in Section 6.3 how our model for estimating the EMR works.

In this Section we explain the methodology we use to extract the behaviour of

applications to test our model and how to produce random fault maps.

6.4.1 Generating Maps of Accesses

The input to our analytical model is a map of accesses to the cache for every

application. With no additional support, we would not need to run the application

for every possible cache configuration. In order to avoid this cost, we have used

an algorithm called all-associativity simulation [29], previously used in [65].

This algorithm takes as input a trace of memory accesses which is converted to

a map of accesses to a cache of any desired configuration (sets and ways) following

a deterministic replacement policy (LRU in our case). This allows us to obtain

the number of accesses per way and per set without the need of new simulation

runs. The output of the algorithm is a matrix in which each row corresponds to a

set and each column to a position in the LRU sequence. Each value of the matrix

indicates the number of accesses to every position in the LRU sequence for every

set. This information is highly useful for offline analysis given that we can extract

the number of misses for a given number of ways w in our cache by simply adding

the accesses for the last n− w columns of the matrix.

We can see an example of how this mechanism works in Table 6.2 for a cache

with 4 ways and 4 sets. The first column from the left (way3) refers to the accesses

to the first position in the LRU sequence for each set. Last column (cold misses)

refers to accesses to data not previously accessed or with a position in the LRU

sequence greater than our threshold, meaning a capacity miss. In order to calculate

the number of misses of the cache in a fault-free environment, we simply need to

sum the accesses which appear in the last column. The number of misses of this

example would be 570 (100 + 90 + 200 + 180).

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 117

(a)

way3 way2 way1 way0 cold misses

set0 120 100 110 60 100
set1 150 140 110 55 90
set2 180 134 80 50 200
set3 220 200 100 30 180

(b)

way3 way2 way1 way0 cold misses

set0 490 370 270 160 100
set1 545 395 255 145 90
set2 644 464 330 250 200
set3 730 510 310 210 180

(c)

way3 way2 way1 way0 cold misses

cache 2409 1739 1165 765 570

Table 6.2: EMR calculation after all-associativity algorithm execution.

But we can also use this table to compute the misses in a faulty environment.

For this, and according to our model formulated in Equation 6.5, we need to

calculate the number of misses we will obtain if a given number of ways (from 0 to

4 in our example) were disabled in the cache due to permanent faults. First, we

accumulate the number of accesses in every position per set. The result of this is

Table 6.1(b). Finally, we perform the same operation per set to get the vector in

Table 6.1(c). This vector indicates exactly the number of misses our cache would

suffer as a result of losing from 0 to w ways. Finally we can use this vector to

apply our model and get the EMR and SD EMR for a faulty cache.

6.4.2 Random Fault-Maps

A way to compare our model is by means of random maps of faults. Each one

of these maps reflect a number of disabled ways for every set in our architecture,

regardless of the location of these faults in the set. This is so because the position

does not alter the number of misses in the cache because of associativity.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 118

To generate these random maps we have used the GNU Scientific Library

(GSL). We generate random numbers in the interval [0,1] to mark the faulty blocks

in terms of a given pfail. Notice that we are not interested in the position of the

block in the set but in the location of these blocks across all sets. Finally, we

compute the number of misses produced by a faulty map by using the access maps

obtained with the all-associativity algorithm.

6.5 Evaluation

For our experiments, we have simulated a processor architecture by means of

Virtutech Simics [45] and GEMS [47]. We have performed several modifications

to the simulator in order to extract memory address traces. Then, we have used

these traces to generate the map of accesses for every possible cache configuration

by means of the all-associativity algorithm as explained in Section 6.4.

The studied benchmarks and input sizes are reflected in Table 6.3. As we can

see, we conduct our experiments by executing both sequential applications from

SPECcpu-2000 [28], and parallel applications from SPLASH-2 [112] and PAR-

SECv2.1 [7]. In the case of parallel benchmarks, the experimental results reported

here correspond to the parallel phase of each program. Benchmarks are executed

in a CMP with private L1 caches and a shared L2. The number of cores in each

case depends on the number of threads. In all cases, the warming up of caches

has been taken into account. For the evaluation of L1 caches, benchmarks have

been executed for 1 billion of cycles, whereas for the evaluation of the L2 cache,

benchmarks have been run to completion.

The different pfails used for the evaluation of the caches are depicted in Section

6.1 with the exception of the 6.1e-13 pfail, which produces virtually no faulty

blocks in our experiments. All these pfails are predictions for the fault probability

of SRAM cells for different scales of integration. Additionally, we have used other

pfail such as 1e-03, which is usually studied in related works.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 119

SPEC
bzip2 reference
gap test
gzip reference
parser test
twolf test
vpr test

SPLASH-2

Barnes 8192 bodies, 4 time steps
Cholesky tk16.O
EM3D 38240 objects
FFT 256K complex doubles
Ocean 258x258 ocean
Radix 1M keys, 1024 radix
Raytrace 10Mb, teapot.env scene
Tomcatv 256 points, 5 iterations
Unstructured mesh.2k, 5 time steps
Waternsq 512 molecules, 4 time steps
Watersp 512 molecules, 4 time steps

PARSEC
Blackscholes simmedium
fluidanimate simmedium
Swaptions simmedium

Table 6.3: Evaluated applications and input sizes.

6.5.1 Yield Analysis

One important tool to understand the behaviour of a cache prone to permanent

faults is yield analysis. The yield is a statistical metric referred to as the proportion

of valid caches (or other components) from a population. In our case, we argue

that a cache is invalid when, at least, all the blocks forming a set are disabled

because of permanent faults.

In Figure 6.1 we can see a yield analysis for 32KB and 512KB caches for the

different technology pfails as depicted in Table 6.1. The study shows that, for a

given pfail, the yield increases with the number of ways. This is reasonable since

the probability of having a disabled set (all blocks are faulty) is lower if the number

of ways is higher. Despite the fact that for low pfails the yield remains virtually

imperturbable, we start to notice a dangerous trend for a pfail of 2.6e-04 (expected

for a 12nm technology) and more in a 32KB cache (a typical L1 configuration).

Additionally, we can see in the graphs the percentage of faulty blocks in relation

to the pfail. As expected, this percentage clearly grows with the increase of the

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 120

pfail. However, this estimation is not useful to determine the impact over the cache

since it depends on the location of the faults. Finally, it is worthy to mention than

Yield is barely affected if associativity is increased over 8 ways.

Ã

Ã��

Ã��

Ã��

Ã��

Ã��

Ã�	

Ã��

Ã��

Ã��

�

���Ã0*Ã� ���Ã0*Ã� ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

ö����

�
��
��

�*���

�*���

�*���

�*���

<�����+8�����

(a) 32KB cache

Ã

Ã��

Ã��

Ã��

Ã��

Ã��

Ã�	

Ã��

Ã��

Ã��

�

���Ã0*Ã� ���Ã0*Ã� ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

ö����

�
��
��

�	*���

�*���

�*���

�*���

<�����+8�����

(b) 512KB cache

Figure 6.1: Yield versus percentage of faulty blocks for different pfails in 32KB
and 512KB caches.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 121

6.5.2 Methodology Validation

Before proceeding to extract the EMR using our methodology, we first need to

assure that it is valid. For that purpose, we compare our analytical model against

the use of randomly generated maps of faults.

In Figure 6.2 we can see the probability distribution of the number of faulty

blocks for different pfails (we omitted 6.1e-13 because it offers around 0 and 1 faulty

block) in a 32KB 8-way associative cache with 615 bits per block3. Results show

the estimated faulty blocks provided by our model (analytical) and by different

numbers of faulty maps (from 100 to 10 millions). As it is observed, few faulty

maps are not able to catch the exact behaviour of the analytical model. However,

we can see that when the number of maps is increased (10K maps or more) the

number of faulty blocks per cache is accurately obtained. Nonetheless, this study

cannot conclude how adequate approximation random maps are to estimate the

expected misses of a cache since they directly depend on the location of faults in

the different sets of the cache.

6.5.3 EMR and SD MR for Sequential Benchmarks

In this Section we show the estimated EMR for several sequential benchmarks in a

8-way 32KB L1 cache which is subjected to permanent faults with different pfails.

Figure 6.3(a) shows the relative EMR for different applications depending on

the pfail of the architecture as provided by our model. EMR relative increases

are highly application-dependant. For instance, we can see that twolf starts to

degrade cache performance in a 14% with respect to a base case without faults

when the pfail is 5.5e-05, while others like gap are barely affected. At the same

time, we notice that SD MR also grows in relation to the pfail and that this growth

is application-dependant as well. This trend is more clearly seen with a pfail of

2.6e-04 which corresponds to a 12nm technology. In Figure 6.3(b) we can see the

EMR and SD MR for the same benchmarks in a 8-way 512KB L2 cache4. The

3We consider L1 cache blocks comprised of: 64 bytes for data and 8 bytes for its ECC, 28
bits for the tag and 1 byte for its ECC, and 3 control bits for valid, disable and dirty states.

4L2 blocks are comprised of 645 bits, which include the directory information and its ECC.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 122

ö����	�	�������

Ã�ÃÃ

Ã��Ã

Ã��Ã

Ã��Ã

Ã��Ã

Ã��Ã

Ã�	Ã

Ã��Ã

Ã � � 	

�	��	��
���	������

�
�
�
�
�
��
��
�

�
��������

�ÃÃ

�7

�Ã7

�ÃÃ7

�-+

�Ã-

(a)

ö����	�	�������

Ã�ÃÃ

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��Ã

Ã���

Ã���

Ã��	

Ã���

Ã��Ã

Ã � � 	 � �Ã �� �� �	 �� �Ã �� �� �	 �� �Ã �� ��

�	��	��
���	������

�
�
�
�
�
��
��
�

�
��������

�ÃÃ

�7

�Ã7

�ÃÃ7

�-+

�Ã-

(b)

ö����	�	!�����"

Ã�ÃÃ

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã��Ã

�� �Ã �� 	Ã 	� �Ã �� �Ã �� �Ã �� �ÃÃ �Ã�

�	��	��
���	������

�
�
�
�
�
��
��
�

�
��������

�ÃÃ

�7

�Ã7

�ÃÃ7

�-+

�Ã-

(c)

ö����	�	����#

Ã�ÃÃ

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã��Ã

��Ã �ÃÃ ��Ã ��Ã ��Ã ��Ã ��Ã �	Ã ��Ã ��Ã

�	��	��
���	������

�
�
�
�
�
��
��
�

�
��������

�ÃÃ

�7

�Ã7

�ÃÃ7

�-+

�Ã-

(d)

Figure 6.2: Probability distribution of the number of faulty blocks per cache
obtained analytically and by randomly generated maps.

first thing we notice is that EMR relative increases reflected for the L1 are not the

same for the L2. This clearly shows that the EMR is dependant of the pattern

of accesses of every application to every cache. Finally, we can see that the EMR

relative increase is more moderate in L2. This is explained because of the effect of

associativity, which is able to absorb most of the penalty because of cache capacity

reduction.

In Section 6.5.2 we showed how fault maps can approximate the number of

faulty blocks per cache. Nonetheless, it is still unknown how adequate they are

to approximate to the EMR provided by our model. The answer can be found in

Figure 6.4, which presents the EMR for different applications in a 8-way 32KB

L1 cache. With 10 faulty maps, applications such as bzip or twolf, are not able

to capture the behaviour of the model for the highest pfails, while differences are

barely noticeable with the smallest pfails. This is due to the fact that the number

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 123

of affected blocks is very small and the effect over the total number of misses is

negligible. However, with a higher number of maps the EMR and SD MR converge

to the one provided by the analytical model. In general, we can state that 1,000

maps are able to produce acceptable approximated values for both EMR and

SD MR.

Ã

Ã��

�

���

�

���

�

���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

ö����

�
�
��
��
$
�
	

�
�
	�
�
�
�
�
�
�
�

8=>' #!' #=>' '!/&0/ 4.:(< "'/

(a) 8-way 32KB L1 cache

Ã

Ã��

�

���

�

���

�

���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

ö����

�
�
��
��
$
�
	

�
�
	�
�
�
�
�
�
�
�

8=>' #!' #=>' '!/&0/ 4.:(< "'/

(b) 8-way 512KB L2 cache

Figure 6.3: EMR and SD MR relative increase for sequential applications.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 124

?� �

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(a)

%�

Ã���

Ã���

Ã��	

Ã���

Ã���

Ã���

Ã��

Ã���

���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(b)

%?�

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(c)

 �����

Ã

Ã�ÃÃ�

Ã�Ã�

Ã�Ã��

Ã�Ã�

Ã�Ã��

Ã�Ã�

Ã�Ã��

Ã�Ã�

Ã�Ã��

���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(d)

�����

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã	

���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(e)

� �

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã��

���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(f)

Figure 6.4: EMR and SD MR for different applications in a 8-way associative
32KB L1 cache with different pfails.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 125

Surprisingly, this study shows that even a low number of faulty maps are

enough to approximate the EMR. The reason for this is the access homogeneity to

the different sets of the cache. In other words, for real-world applications as the

ones we have evaluated, there are no particular sets that are clearly more accessed

than others along the overall execution of the benchmark. This makes the EMR

virtually independent of the allocation of the faults and that is the reason why

fault maps are able to provide such satisfactory estimations.

In order to prove the cache access homogeneity we refer to, we have performed

a study of the correlation of accesses between all the sets in our cache. In this case

we have used the Pearson correlation coefficient. Given X and Y , two different

sets of our cache with different accesses per way

X = x1...xn, Y = y1...yn (6.12)

The Pearson correlation coefficient is calculated as:

rxy =

N
∑

i=1

(xi − x̄) · (yi − ȳ)

√

N
∑

i=1

(xi − x̄)2 ·

√

N
∑

i=1

(yi − ȳ)2

(6.13)

Benchmark Mean Pearson Coeff. DEV

bzip .997 .007

gap .995 .009

gzip .998 .005

parser .998 .002

twolf .995 .007

vpr .998 .004

Table 6.4: Average for the Pearson Coefficient Matrix for every benchmark.

When rxy is close to 0 it means that there is no correlation between variables,

whereas when it is close to 1 there exist a relation between them. We have cal-

culated the matrix of correlations for the number of accesses to a 8-way 32KB L1

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 126

cache for the SPEC benchmarks. Table 6.4 reflects the average value for the Pear-

son coefficients as well as its standard deviation. As we can see, all coefficients are

very close to 1, which means that the accesses among sets are highly correlated.

But still we can study the significance of the Pearson correlation coefficient to

asses the correlation among the variables is true as was not produced arbitrarily.

For that, we can calculate Student’s t as:

t =
rxy

√

1−r2xy
N−2

(6.14)

in which N is the number of values for the variables. In our example, for a 8-

way cache, we have that N = 8+1 taking into account the number of cold misses.

For the worst correlation exhibited by the studied benchmarks, which is twolf with

.995, we have that t = 10.63. By means of a calculator for the t distribution, for

a degree of liberty N = 7, we can determine that our sets are correlated with a

maximum risk of 1e− 5 corroborating our hypothesis.

The lesson we extract from this study is that because of the high correlation,

the amount of random fault maps necessary to approximate our model is low. In

the case that data accesses among sets were not so correlated, a few fault maps

would not be able to extract the behaviour of miss ratio in faulty caches.

6.5.4 EMR Probability Distribution for Sequential Appli-

cations

As explained in Section 6.3.3 we have developed a mechanism to calculate a prob-

ability distribution for the expected values for the EMR, which we call PD MR.

To afford this, we follow a constructive approach. On the one hand, there is the

probability of having n faulty blocks in our cache, which we already know. On the

other hand, we calculate for every possible number of faults in the cache (from 0

to the total number of blocks in the cache) which one is the most likely pfail to

obtain that amount of faults. Then, we can calculate the EMR for that pfail. This

way, we have all the necessary elements to plot the PD MR distribution.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 127

���ö!

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

Ã���

Ã��	

Ã���

Ã��

Ã Ã�Ã� Ã�� Ã��� Ã�� Ã��� Ã�� Ã���

����	�����

�
�
�
�
�
��
��
�

���0*Ã�

���0*Ã	

���0*Ã�

��	0*Ã�

��Ã0*Ã�

(a)

f�ö

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

Ã���

Ã��	

Ã���

Ã��

Ã Ã�Ã� Ã�� Ã��� Ã�� Ã��� Ã�� Ã���

����	�����

�
�
�
�
�
��
��
�

���0*Ã�

���0*Ã	

���0*Ã�

��	0*Ã�

��Ã0*Ã�

(b)

f��ö

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

Ã���

Ã��	

Ã���

Ã��

Ã Ã�Ã� Ã�� Ã��� Ã�� Ã��� Ã�� Ã���

����	�����

�
�
�
�
�
��
��
�

���0*Ã�

���0*Ã	

���0*Ã�

��	0*Ã�

��Ã0*Ã�

(c)

ö�����

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

Ã���

Ã��	

Ã���

Ã��

Ã Ã�Ã� Ã�� Ã��� Ã�� Ã��� Ã�� Ã���

����	�����

�
�
�
�
�
��
��
�

���0*Ã�

���0*Ã	

���0*Ã�

��	0*Ã�

��Ã0*Ã�

(d)

�%���

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

Ã���

Ã��	

Ã���

Ã��

Ã Ã�Ã� Ã�� Ã��� Ã�� Ã��� Ã�� Ã���

����	�����

�
�
�
�
�
��
��
�

���0*Ã�

���0*Ã	

���0*Ã�

��	0*Ã�

��Ã0*Ã�

(e)

$ö�

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

Ã���

Ã��	

Ã���

Ã��

Ã Ã�Ã� Ã�� Ã��� Ã�� Ã��� Ã�� Ã���

����	�����

�
�
�
�
�
��
��
�

���0*Ã�

���0*Ã	

���0*Ã�

��	0*Ã�

��Ã0*Ã�

(f)

Figure 6.5: PD MR for different applications and pfails in a 8-way associative
32KB L1 cache.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 128

In Figure 6.5 we can see the PD MR distributions for all the SPEC benchmarks

studied for a 8-way associative 32KB L1 cache (the same configuration used in the

previous Section). As it can be observed, the calculated distribution matches

perfectly with the EMR calculated by our first model as can be seen in Figure 6.4.

This shows the accuracy of our probability distribution model.

However, the probability distribution model provides a more valuable infor-

mation: we can clearly see how bad the effect of permanent faults could be. This

PD MR model could be used by chip manufacturers to analytically see what the

percentage of chips which should be discarded resulting from of a too damaged

cache is, for example.

6.5.5 Cache Performance Trade-Offs for Sequential Appli-

cations

Figure 6.6 plots the EMR for a 32KB L1 cache with different associativity and

scaling technologies in comparison to its access time, area and power dissipation,

as extracted from the cache simulator CACTI [104]. In general, a lower scaling

technology effectively reduces the access time, power and area requirements for

a given cache whereas it increases the EMR, due to the higher pfail. This effect

is more clearly seen in a 2-way cache like in Figure 6.6(a), in which a technology

of 12nm increases the EMR with respect to 16nm in 22%, whereas the latter

increases the required area in 43%, the power dissipation in 24%, at the same time

it achieves a similar access time. In case that the primary goal is to reduce the

performance impact on the cache, 16nm offers a better EMR/access-time trade-off

than 12nm.

However, with the use of a higher associativity the EMR is decreased. E.g., as

depicted in Figures 6.6(b) and 6.6(c), for 4-way and 8-way associative caches, the

EMR difference between 16nm and 12nm technologies is 5.6% and 3.5%, whereas

the difference in the access time is 1.2% and 0.1% respectively. To sum up, this

EMR/access-time trade-off study suggests that the use of the smallest scaling

technology is advisable only with a relatively high associativity which is able to

hide the increased pfail.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 129

Ã

Ã��

Ã��

Ã�	

Ã��

�

!����+4���

'����

!���

0-/

��
�

��
�

��
�

�	
�

��
�

(a) 2-way L1 32KB cache.

Ã

Ã��

Ã��

Ã�	

Ã��

�

!����+4���

'����

!���

0-/

��
�

��
�

��
�

�	
�

��
�

(b) 4-way L1 32KB cache.

Ã

Ã��

Ã��

Ã�	

Ã��

�

!����+4���

'����

!���

0-/

��
�

��
�

��
�

�	
�

��
�

(c) 8-way L1 32KB cache.

Figure 6.6: Trade-off among different scaling technologies and cache configu-
rations.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 130

6.5.6 EMR Impact of Block Disabling and Word Disabling

In this Section, we compare the performance implications of word-disabling (wdis),

a technique proposed by Wilkerson et al. [111] to enable correct cache operation

in the presence of faults.

The wdis technique tracks faulty data cells at word granularity by means of

fault masks. These masks are kept at every line’s tag and contain as many bits

as words, each one indicating whether the corresponding word is disabled or not.

When the wdis technique is deactivated the fault mask is ignored. However, when

it is active, every pair of consecutive blocks in a set are combined to form one logical

block. The effect of this mechanism is that both the capacity and associativity of

the cache are reduced by half.

In order to obtain a logical block in aligned form, wdis introduces a shift-

multiplexer network which is controlled by each block’s fault mask, which has the

effect of discarding the defective words. This way, wdis tolerates up to n/2 faulty

words in a logical block with n words. Unfortunately, the alignment network

increases the access latency of the cache. Specifically, for 8-word blocks, wdis

requires a line to pass through 4 different multiplexers (to discard up to 4 faulty

words), something which increases the latency of the cache in one cycle, as reported

in [111].

In Figure 6.7 we can see the EMR of block-disabling and word-disabling pro-

vided by our model, for a 32KB L1 cache with a different number of ways for the

SPEC applications. The first thing which is worth of notice is that word-disabling

tolerates all introduced faults without additional performance cost (despite of the

reduced cache capacity and associativity). Therefore, the EMR for the different

pfails remains constant.

As we can see in Figure 6.7, up to the pfail of 5.5e-05, which corresponds to a

technology of 16nm (according to Table 6.1), block-disabling obtains lower EMR

than word-disabling for each configuration. However, with a pfail of 2.6e-04 word-

disabling results in a lower EMR for 2-way caches. Furthermore, the deviation

starts to grow noticeably in block-disabling, whereas in word-disabling remains

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 131

Ã

Ã�Ã�

Ã��

Ã���

Ã��

Ã���

Ã��

Ã���

Ã��

Ã���

	��Ã0*�� ���Ã0*Ã� ���Ã0*Ã	 ���Ã0*Ã� ��	Ã0*Ã� ��ÃÃ0*Ã�

��
� ��
� ��
� �	
� ��
� *

ö����

�
�

��*
��� ��*���� ��*
��� ��*���� ��*
��� ��*����

Figure 6.7: EMR for block-disabling and wdis in a 32KB L1 Cache.

constant, as explained before. Finally, with a pfail of 1.0e-03, word-disabling

obtains lower EMR than block-disabling for each configuration.

In conclusion, we can remark that, for low pfails block-disabling is an attrac-

tive design in terms of EMR impact, whereas for high pfails word-disabling behaves

better. Nonetheless, for a medium to high number of ways, the performance of

both techniques is quite similar. In any case, we have to remind that, while the

block-disabling technique does not incur in any latency overhead, word-disabling

increases latency and needs to include additional hardware for the shift-multiplexer

network, which could make block-disabling more suitable to deploy in real envi-

ronments.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 132

6.5.7 EMR and SD MR for Shared Caches in Parallel Bench-

marks

Figure 6.8 shows the EMR for several parallel benchmarks in an 8-way 512KB L2

cache. We have omitted some of them for the sake of visibility and we mereley show

the most characteristic ones. As it is observed once again, randomly generated

maps are able to capture the trend of our analytical model.

In this case, the homogeneity of accesses to the L2 is even higher than in the

case of the L1 cache, so the behaviour of the faulty maps is expected. The reason

is twofold: firstly, because the L2 accesses were already filtered by the L1 cache.

Frequently accessed memory locations tend to remain in the L1 (due to locality).

Therefore the existence of hot blocks in the L2 is even more unlikely than in the L1.

Secondly, due to the high associativity, which limits the impact of faults increasing

the accuracy of fault maps.

6.5.8 Implication of the Number of Threads in EMR and

SD MR

Another use-case example for our analytical model is to study how the EMR is

affected when varying the number of threads per application. In this study, each

thread runs in a different core of a CMP. This way, both the number of cores

and the number of private L1 caches increase at the same time as the number of

threads. The size of the shared L2 cache remains constant.

Figure 6.9(a) depicts the EMR and SD MR for all the studied parallel bench-

marks. The general trend is that the EMR increases with the number of threads.

This is explained by the fact that the number of L2 accesses decreases with the

number of threads due to the increased L1 capacity, as depicted in Figure 6.9(b).

Thus, since the input size of the different benchmarks remains constant, the misses

per access ratio (EMR) increase with the number of threads. As derived from Fig-

ure 6.9(a), this trend remains constant for all the studied pfails and the relative

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 133

��
��

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã�Ã�

Ã�Ã�

���0*Ã� ���0*Ã	 ���0*Ã� ��	0*Ã� ��Ã0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(a)

����

Ã

Ã�Ã�

Ã��

Ã���

Ã��

Ã���

Ã��

���0*Ã� ���0*Ã	 ���0*Ã� ��	0*Ã� ��Ã0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(b)

��������

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã�Ã�

Ã�Ã�

���0*Ã� ���0*Ã	 ���0*Ã� ��	0*Ã� ��Ã0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(c)

�
����������

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã��

Ã���

Ã���

���0*Ã� ���0*Ã	 ���0*Ã� ��	0*Ã� ��Ã0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(d)

�����
��

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã�Ã�

Ã�Ã�

���0*Ã� ���0*Ã	 ���0*Ã� ��	0*Ã� ��Ã0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(e)

��� ���
�

Ã

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã�Ã	

Ã�Ã�

Ã�Ã�

Ã�Ã�

Ã��

���0*Ã� ���0*Ã	 ���0*Ã� ��	0*Ã� ��Ã0*Ã�

 ����

-
��
�
+/
�
��
�

�Ã

�ÃÃ

��

�Ã�

0-/

(f)

Figure 6.8: EMR and SD MR for different applications in a 8-way 512KB L2
cache with different pfails.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 134

EMR increases 1.3 for 2 threads, 1.5-1.7 for 4 threads, 2.1-2.4 for 8 threads and

3-3.4 for 16 threads, with respect to the EMR for 1 thread. Therefore, we can

conclude that, in the presence of faults, applications will experience a higher per-

formance impact as the number of threads increases.

Ã

Ã�Ã�

Ã��

Ã���

Ã��

Ã���

Ã��

Ã���

Ã��

Ã���

Ã��

�
+�
�
��
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
	
+�
�
��
�
�
�

�
+�
�
��
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
	
+�
�
��
�
�
�

�
+�
�
��
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
	
+�
�
��
�
�
�

�
+�
�
��
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
	
+�
�
��
�
�
�

�
+�
�
��
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
+�
�
��
�
�
�

�
	
+�
�
��
�
�
�

���0*Ã� ���0*Ã	 ���0*Ã� ��	0*Ã� ��Ã0*Ã�

ö����

�
�

(a) EMR and SD MR.

Ã�	�

Ã��Ã

Ã��� Ã���

��ÃÃ

Ã���

Ã�Ã	
Ã�Ã�

Ã���

��ÃÃ

Ã

Ã��

Ã��

Ã��

Ã��

Ã��

Ã�	

Ã��

Ã��

Ã��

�

�+������ �+������� �+������� �+������� �	+�������

@������?��+(�+��������

@������?��+0�������
+4���

(b) Normalized execution time and L2 accesses count in a fault-free environment.

Figure 6.9: Results for a 8-way 512KB L2 cache for parallel applications.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 135

6.6 Concluding Remarks

In the past years, technology scaling has enabled continuous miniaturization of

circuits and wires offering designers the opportunity to place more functionality per

unit area. Furthermore, the increased device density has allowed the integration

of large caches and many cores into the same chip. However, this trend has a

major drawback in the growth of the failure ratio in every new scale generation. In

particular, SRAM cells are very susceptible to the use of decreasing voltages, higher

frequencies and temperature, and other events such as power supply noise, signal

cross-talking and process variation which eventually result in severely affecting the

reliability of caches.

There is a body of literature on dealing with the occurrence of permanent

faults in caches. However, all these previous studies rely on the use of random

fault maps, typically a small subset of the actual number of possible mappings.

Therefore, it remains unclear whether the results presented in these studies are

representative and/or accurate enough.

In this Chapter, it is proposed an analytical model to determine the Expected

Miss Ratio (EMR) for a given application whenever it is executed in a cache

with a random probability of cell failure (pfail). This analytical model allows

designers to perceive the real impact of faults in caches, including the standard

deviation of the EMR, without the need of executing any iterative analysis with

random maps. We have also presented a second analytical model which provides

the probability distribution for the EMR which represents even more valuable

information for designers about the deployment of faulty cache units for a given

process technology.

In the evaluation we show how, for the benchmarks and configurations used,

the random fault map methodology provides high accuracy when using 1000 and

100 maps for the L1 and L2 caches, respectively. This is due to the high data

access homogeneity to the different sets of a cache which makes the EMR virtually

independent of the allocation of faults, and resulting in a not very high number

of random faulty maps able to capture the mean and standard deviation for the

EMR.

Chapter 6. Modelling Permanent Fault Impact on Cache Performance 136

Additionally, we have studied the EMR, access time, power, and area trade-offs

of different cache configurations. The main conclusion extracted is that the use of

very low scaling technologies (which results in increasing pfails) is not advisable

for low associative caches, e.g. 2-way caches, because of the the impact on EMR.

Finally, we have compared block-disabling with word-disabling. Results show

that, for higher pfails, word-disabling is more adequate due to its reduced EMR.

Nonetheless, for highly associative caches the performance of block-disabling ap-

proaches the word-disabling one, whereas the former does not increase cache la-

tency.

Chapter7

Conclusions and Future Ways

7.1 Conclusions

Over the last decades we have benefited from the scaling technology to improve

the performance of computer systems. However, increasing device-level variation,

unpredictability and failures will surely challenge this performance-cost trade-off in

the next 10-20 years. According to Moore’s law, industry has grown exponentially

in every new scale generation. But this has taken its toll: increased variability

and fault rates. The problem is that, if an increasing part of the new hardware

must be devoted to implement fault tolerant techniques, the imposed performance

goals may not be satisfied and the growth of computer industry may no longer be

sustained.

This multi-variable trade-off has two major implications. First, the increasing

fault rate and variation, which is avoiding traditional solutions to provide with

enough reliability and increasing the hardware costs. And second, the effect of

power constraints, which are motivating aggressive mechanisms to reduce supply

voltage below safe margins at the cost of a system’s reliability decrease.

In this upcoming scenario, some previous mechanisms address the fault toler-

ance challenge at circuit level. However, this requires a complete redesign of cir-

cuits increasing complexity design and degrading performance due to the collateral

137

Chapter 7. Conclusions and Future Ways 138

effects over critical paths. Thus, in this Thesis we have focused on architectural-

level measures which avoid most of the aforementioned drawbacks. Traditionally,

at this level, fault tolerance has been achieved by means of some sort of redun-

dancy. Specifically, there is a large body of literature which focuses on Redundant

Multi Threading (RMT), in which instructions are executed twice and outputs are

compared in order to detect faults. Whereas previous works focused on monocore

environments and sequential benchmarks, the architectural support for shared-

memory applications in parallel and scalable environments has remained under-

explored.

The major problems which we have identified in previous RMT approaches are

memory consistency and performance related. In order to solve these issues, in this

Thesis we address the performance-cost challenge by means of two different mech-

anisms which are specifically deployed in scalable direct-network environments

which will constitute future multi-core architectures.

We have analyzed previous proposals in Chapter 4. We found that, without

proper support, CRT(R) approaches could lead to memory consistency violations

because of their cache update policy. In order to avoid the propagation of er-

rors, CRT(R) only updates memory after a successful verification of data values.

But this represents a risk in shared-memory applications because, if not properly

treated, the access to shared-memory regions in isolation must be compromised.

Additionally, we studied the impact of moving Dynamic Core Coupling (DCC)

into a direct-network environment. The result is that the indirection caused by

this kind of interconnection network dramatically affects DCC’s performance due

to the extra communication overhead. To solve these issues, we proposed an al-

ternative RMT approach based on CRT(R) called REPAS, in which redundant

threads run in a 2-way SMT cores in a tiled-CMP. As a way to eliminate mem-

ory consistency related problems, we proposed to update memory speculatively

(before redundant verification), although buffering memory values to avoid fault

propagation.

We showed through our simulated experiments that our REPAS approach is

able to outperform CRT(R) and DCC (which uses twice the amount of hardware).

REPAS reduces the total overall execution overhead with respect to a base case

Chapter 7. Conclusions and Future Ways 139

with no fault tolerant mechanisms down to 25% in a fault-free environment. Addi-

tionally, we showed that the performance of REPAS is barely affected in a faulty

environment, even if extremely high fault rates are employed. The two major

drawbacks of REPAS are, first, the performance degradation resulting from the

resource sharing between redundant pair threads in SMT cores and, second, the

added complexity derived from the implementation of different buffers to commu-

nicate redundant threads.

In Chapter 5 we address these shortcomings based on an already proposed

Hardware Transactional Memory (HTM) architecture, LogTM-SE. In our pre-

sented mechanism, LBRA, redundant threads communicate through a virtual

memory log placed in cache to provide both input replication and recovery af-

ter the detection of a fault. LBRA avoids increased hardware complexity by using

the already present hardware in LogTM-SE. Furthermore, LBRA allows the pro-

grammer to explicitly enable and disable specific portions of the program to be

protected by means of redundancy.

In our initial LBRA approach, redundant threads are executed in the same

dual-threaded SMT core, providing a low-resource overhead solution. The coun-

terpart is the performance degradation inherent to SMT architectures. Our second

approach avoids this pitfall by executing redundant threads in different (non-SMT)

cores. In this environment, the major drawback is related to the inter-core com-

munication. We solve this issue by means of a set of measures such as a log buffer,

a prefetch strategy and slight modifications of specific coherence actions.

Our analysis showed that LBRA outperforms both REPAS and DCC in the

same environment. Specifically, the execution time overhead of LBRA is 20%

for the coupled approach and 7% for the decoupled one, with respect to a base

case without fault tolerance mechanisms in a fault-free environment. At the same

time, we show that LBRA performs better in a faulty environment than previous

proposals, when injecting random faults even at a rate of 100 faults per million of

cycles.

Miniaturization has a major drawback in the growth of the failure ratio in

every new scale generation. Specifically, SRAM cells are remarkably susceptible

Chapter 7. Conclusions and Future Ways 140

to the use of decreasing voltages and higher frequencies and temperatures, which

decreases significantly the reliability of cache memories. While the use of ECC

codes is commonly extended to solve this issue, in the presence of a large number of

hard faults ECC is not an advisable solution because of its performance limitations.

Instead, in Chapter 6 we study the impact of word/block disabling techniques,

which avoid the use of faulty portions of the cache. For this, we present an

analytical model to determine the implications of block-disabling due to random

cell failure on cache miss rate behaviour. Contrarily to previous proposals based

on the execution of a large number of fault maps, the presented analytical model

provides an exact calculation for the expected miss ratio by a single pass over an

application memory access trace, probability of cell failure and cache configuration.

7.2 Future Ways

The results presented in this Thesis open a number of interesting new research

paths which we detail now:

• The performance overhead of REPAS is directly related to resource sharing,

something inherent to the use of SMT architectures. However, it is our belief

that smarter fetch policies could obtain a noticeable benefit. For instance,

one idea is the design of a mechanism to detect the execution of critical

path instructions. This way, affected threads could increase their priority,

which would result in the improvement of overall performance. Another

interesting approach would consist of using master thread results for critical

path instructions as value predictions for the slave thread. This way we

could obtain a noticeable performance speedup at the expense of decreasing

fault coverage.

• Whereas we make use of an eager-eager (version management-conflict detec-

tion) policy in LBRA, as a future work we plan to study the behaviour of

lazy-lazy and lazy-eager policies. When using a lazy version management,

memory updates are buffered in a hardware structure which holds memory

values during the execution of a transaction. The benefit for this approach

Chapter 7. Conclusions and Future Ways 141

is twofold. First, memory remains unmodified until a successful verification,

something which avoids the use of other mechanisms to bypass memory val-

ues between redundant threads. And second, in case of fault, the rollback

recovery mechanism simply discards the buffered memory values. However,

although this approach would be enough for the correct execution of single-

threaded applications, the support for shared-memory applications needs

additional mechanisms to avoid input incoherences, something which should

be addressed by means of active conflict detection policies. Finally, we plan

to extend the presented mechanisms to also work with transactional memory

applications. For that, we need to add the support to distinguish between

real transactions and pseudo-transactions and treat them accordingly, i.e.

activating conflict detection mechanisms and aborting transactions when

necessary.

• The presented analytical model focuses on random variations. However,

several studies reveal that defects in ICs appear in clusters. This event

impacts on both the yield and performance of affected devices. As future

work, we plan to develop our model to take into account the behaviour of

systematic variations which occur in clusters. Additionally, we would like to

adapt the model to estimate the EMR when considering both L1 and L2 as

faulty at the same time. We would also like to use our cache model to derive

a performance model for the whole processor.

Bibliography

[1] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy. Process variation in

embedded memories: failure analysis and variation aware architecture. IEEE

Journal of Solid-State Circuits, 40(9):1804 – 1814, 2005.

[2] K. Agarwal and S. Nassif. Statistical analysis of sram cell stability. In

Proceedings of the 43rd annual Design Automation Conference, pages 57–

62. ACM, 2006.

[3] AMD. Bios and kernel developer’s guide for amd athlonTM64 and amd

opteronTMprocessors. Publication #26094, Revision 3.14, April 2004.

[4] T. M. Austin. Diva: a reliable substrate for deep submicron microarchitec-

ture design. In Proceedings of the 32nd Annual ACM/IEEE International

Symposium on Microarchitecture, pages 196–207. IEEE Computer Society,

1999.

[5] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in tandem computer

systems. In The Evolution of Fault-Tolerant Systems, pages 55–76. Springer-

Verlag, 1987.

[6] R. Baumman. Soft errors in advanced computer systems. IEEE Design and

Test of Computers, 22:258–266, May 2005.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:

characterization and architectural implications. In Proceedings of the 17th

143

Bibliography 144

International Conference on Parallel Architectures and Compilation Tech-

niques, pages 72–81. ACM, 2008.

[8] C. Blundell, M. M. Martin, and T. F. Wenisch. Invisifence: performance-

transparent memory ordering in conventional multiprocessors. In Proceed-

ings of the 36th Annual International Symposium on Computer Architecture,

pages 233–244. ACM, 2009.

[9] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23

–29, 1999.

[10] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.

Parameter variations and impact on circuits and microarchitecture. In Pro-

ceedings of the 40th annual Design Automation Conference, pages 338–342.

ACM, 2003.

[11] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De, and

S. Borkar. Circuit techniques for dynamic variation tolerance. In Proceedings

of the 46th Annual Design Automation Conference, pages 4–7. ACM, 2009.

[12] J. Carretero, P. Chaparro, X. Vera, J. Abella, and A. Gonzalez. Implement-

ing end-to-end register data-flow continuous self-test. IEEE Transactions on

Computers, 99(PrePrints), 2010.

[13] J. Carretero, X. Vera, P. Chaparro, and J. Abella. On-line failure detection

in memory order buffers. In IEEE International Test Conference, pages 1

–10, 2008.

[14] L. M. Censier and P. Feautrier. A new solution to coherence problems in

multicache systems. IEEE Transactions on Computers, 27:1112–1118, 1978.

[15] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. Bulksc: bulk enforcement

of sequential consistency. In Proceedings of the 34th Annual International

Symposium on Computer Architecture, pages 278–289. ACM, 2007.

[16] J. Clement. Electromigration modeling for integrated circuit interconnect

reliability analysis. IEEE Transactions on Device and Materials Reliability,

1(1):33 –42, Mar. 2001.

Bibliography 145

[17] C. Constantinescu. Trends and challenges in vlsi circuit reliability. IEEE

Micro, 23(4):14 – 19, 2003.

[18] D. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kauffman, 1998.

[19] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of

rollback-recovery protocols in message-passing systems. ACM Computing

Surveys, 34:375–408, 2002.

[20] E. N. Elnozahy and W. Zwaenepoel. Manetho: transparent roll back-

recovery with low overhead, limited rollback, and fast output commit. IEEE

Transactions on Computers, 41(5):526 –531, 1992.

[21] R. Fernández. Fault-tolerant Cache Coherence Protocols for CMPs. PhD.

Thesis, 2009.

[22] D. J. Frank. Power-constrained CMOS scaling limits. IBM Journal of Re-

search and Development, 46(2/3):235–244, 2002.

[23] A. Gefflaut, M. Banatre, A. Kermarrec, and C. Morin. Coma: An oppor-

tunity for building fault-tolerant scalable shared memory multiprocessors.

In 23rd Annual International Symposium on Computer Architecture, pages

56–65, 1996.

[24] C. Gniady and B. Falsafi. Speculative sequential consistency with little

custom storage. In Proceedings of the 2002 International Conference on

Parallel Architectures and Compilation Techniques, pages 179–188, 2002.

[25] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz. Transient-

fault recovery for chip multiprocessors. In Proceedings of the 30th Interna-

tional Symposium on Computer Architecture, pages 98 – 109, 2003.

[26] M. A. Gomaa and T. N. Vijaykumar. Opportunistic transient-fault de-

tection. In Proceedings of the 32nd Annual International Symposium on

Computer Architecture, pages 172–183. IEEE Computer Society, 2005.

[27] A. González, S. Mahlke, S. Mukherjee, R. Sendag, D. Chiou, and J. J. Yi.

Reliability: Fallacy or reality? IEEE Micro, 27(6):36–45, 2007.

Bibliography 146

[28] J. Henning. Spec cpu2000: measuring cpu performance in the new millen-

nium. Computer, 33(7):28 –35, July 2000.

[29] M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE

Transactions on Computers, 38:1612–1630, December 1989.

[30] D. Hunt and P. Marinos. A general purpose cache-aided rollback error recov-

ery (carer) technique. In In Proceedings of the 17th International Symposium

on Fault-Tolerant Computing Systems, pages 170 –175, 1987.

[31] T. Ishihara and F. Fallah. A cache-defect-aware code placement algorithm

for improving the performance of processors. In IEEE/ACM International

Conference on Computer-Aided Design, pages 995 – 1001, Nov 2005.

[32] T.-H. Kim, J. Liu, J. Keane, and C. Kim. A 0.2 v, 480 kb subthreshold sram

with 1 k cells per bitline for ultra-low-voltage computing. IEEE Journal of

Solid-State Circuits, 43(2):518 –529, 2008.

[33] S. Krumbein. Metallic electromigration phenomena. IEEE Transactions on

Components, Hybrids, and Manufacturing Technology, 11(1):5 –15, 1988.

[34] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in multi-core

architectures: Understanding mechanisms, overheads and scaling. In Pro-

ceedings of the 32th International Symposium on Computer Architecture.

ACM, 2005.

[35] S. Kumar and A. Aggarwal. Speculative instruction validation for

performance-reliability trade-off. In Proceedings of the IEEE 14th Interna-

tional Symposium on High Performance Computer Architecture, pages 405

– 414, 2008.

[36] N. Ladas, Y. Sazeides, and V. Desmet. Performance-effective operation

below vcc-min. In IEEE International Symposium on Performance Analysis

of Systems Software, pages 223 –234, 2010.

[37] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar. Utilizing dynamically

coupled cores to form a resilient chip multiprocessor. In Proceedings of the

Bibliography 147

37th International Conference on Dependable Systems and Networks, pages

317–326, 2007.

[38] G. G. Langdon and C. K. Tang. Concurrent error detection for group look-

ahead binary adders. IBM Journal of Research and Development, 14:563–

573, 1970.

[39] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J.

Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. Ibm power6

microarchitecture. IBM Journal of Research and Development, 51(6):639

–662, 2007.

[40] H. Lee, S. Cho, and B. Childers. Exploring the interplay of yield, area,

and performance in processor caches. In 25th International Conference on

Computer Design, pages 216 –223, 2007.

[41] H. Lee, S. Cho, and B. Childers. Performance of graceful degradation for

cache faults. In IEEE Computer Society Annual Symposium on VLSI, pages

409 –415, 2007.

[42] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and

Y. Zhou. Understanding the propagation of hard errors to software and

implications for resilient system design. In Proceedings of the 13th Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems, pages 265–276. ACM, 2008.

[43] M.-L. Li, R. Sasanka, S. V. Adve, Y. kuang Chen, and E. Debes. The alp-

bench benchmark suite for complex multimedia applications. In Proceedings

of the IEEE International Symposium on Workload Characterization, pages

34–45, 2005.

[44] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, and D. M. T. andNorman

P. Jouppi. Mcpat: an integrated power, area, and timing modeling frame-

work for multicore and manycore architectures. In 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 469–480, 2009.

Bibliography 148

[45] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, B. Werner, and B. Werner. Simics: A

full system simulation platform. Computer, 35(2):50–58, 2002.

[46] A. Maheshwari, W. Burleson, and R. Tessier. Trading off transient fault

tolerance and power consumption in deep submicron (dsm) vlsi circuits.

IEEE Transactions onVery Large Scale Integration Systems, 12(3):299 – 311,

2004.

[47] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,

A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s

general execution-driven multiprocessor simulator (gems) toolset. SIGARCH

Computer Architecture News, 33(4), 2005.

[48] J. F. Mart́ınez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas.

Cherry: Checkpointed early resource recycling in out-of-order microproces-

sors. In Proceedings of the 35th International Symposium on Microarchitec-

ture, pages 3 – 14, 2002.

[49] R. Mastipuram and E. C. Wee. Soft error’s impact on system reliability.

Electronics Design, Strategy, News (EDN), pages 69–74, September 2004.

[50] Y. Masubuchi, S. Hoshina, T. Shimada, B. Hirayama, and N. Kato. Fault

recovery mechanism for multiprocessor servers. In 27th Annual International

Symposium on Fault-Tolerant Computing, pages 184 –193. IEEE Computer

Society, 1997.

[51] A. Meixner and D. J. Sorin. Error detection via online checking of cache co-

herence with token coherence signatures. In Proceedings of the IEEE 13th In-

ternational Symposium on High Performance Computer Architecture, pages

145–156. IEEE Computer Society, 2007.

[52] G. Moore. Cramming more components onto integrated circuits. Electronics,

38(8):114–117, 1965.

[53] C. Morin, A.-M. Kermarrec, M. Banatre, and A. Gefflaut. An efficient and

scalable approach for implementing fault-tolerant dsm architectures. IEEE

Transactions on Computers, 49(5):414 –430, 2000.

Bibliography 149

[54] S. Mukherjee. Architecture design for soft errors. Morgan Kauffman, 2008.

[55] S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed design and evalu-

ation of redundant multithreading alternatives. In Proceedings of the 29th

International Symposium on Computer Architecture, pages 99–110. ACM,

2002.

[56] R. Naseer and J. Draper. Dec ecc design to improve memory reliability in

sub-100nm technologies. In 15th IEEE International Conference on Electron-

ics, Circuits and Systems, pages 586 –589. IEEE Computer Society, 2008.

[57] S. R. Nassif, N. Mehta, and Y. Cao. A resilience roadmap. In Design,

Automation, and Test in Europe, pages 1011–1016, 2010.

[58] M. Nicolaidis and R. Duarte. Fault-secure parity prediction booth multipli-

ers. IEEE Design Test of Computers, 16(3):90 –101, 1999.

[59] M. Nicolaidis, R. Duarte, S. Manich, and J. Figueras. Fault-secure parity

prediction arithmetic operators. IEEE Design Test of Computers, 14(2):60

–71, 1997.

[60] N. Oh, P. Shirvani, and E. McCluskey. Control-flow checking by software

signatures. IEEE Transactions on Reliability, 51(1):111 –122, 2002.

[61] N. Oh, P. Shirvani, and E. McCluskey. Error detection by duplicated instruc-

tions in super-scalar processors. IEEE Transactions on Reliability, 51(1):63

–75, mar 2002.

[62] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The

case for a single-chip multiprocessor. In Proceedings of the 7th International

Conference on Architectural Support for Programming Languages and Oper-

ating Systems, pages 2–11. ACM, 1996.

[63] A. Parashar, A. Sivasubramaniam, and S. Gurumurthi. Slick: slice-based

locality exploitation for efficient redundant multithreading. In Proceedings of

the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems, volume 34-5, pages 95–105. ACM, 2006.

Bibliography 150

[64] D. A. Patterson, P. Garrison, M. Hill, D. Lioupis, C. Nyberg, T. Sippel, and

K. V. Dyke. Architecture of a vlsi instruction cache for a risc. In Proceed-

ings of the 10th Annual International Symposium on Computer Architecture,

pages 108–116. ACM, 1983.

[65] A. Pour and M. Hill. Performance implications of tolerating cache faults.

IEEE Transactions on Computers, 42(3):257 –267, 1993.

[66] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: cost-effective architectural

support for rollback recovery in shared-memory multiprocessors. In Proceed-

ings of the 29th Annual International Symposium on Computer Architecture,

pages 111–122. IEEE Computer Society, 2002.

[67] P. Racunas, K. Constantinides, S. Manne, and S. Mukherjee. Perturbation-

based fault screening. In IEEE 13th International Symposium on High Per-

formance Computer Architecture, pages 169 –180, 2007.

[68] B. M. Rajesh Venkatasubramanian, J.P. Hayes. Low-cost on-line fault detec-

tion using control flow assertions. In Proceedings of the 9th IEEE On-Line

Testing Symposium, pages 137–143. IEEE Computer Society, 2003.

[69] M. Rashid and M. Huang. Supporting highly-decoupled thread-level redun-

dancy for parallel programs. In Proceedings of the 14th International Sym-

posium on High Performance Computer Architecture, pages 393–404. IEEE

Computer Society, 2008.

[70] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via simul-

taneous multithreading. In Proceedings of the 27th Annual International

Symposium on Computer Architecture, pages 25–36. ACM, 2000.

[71] G. A. Reis, J. Chang, D. I. August, R. Cohn, and S. S. Mukherjee. Config-

urable transient fault detection via dynamic binary translation. In Proceed-

ings of the 2nd Workshop on Architectural Reliability, 2006.

[72] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.

SWIFT: Software implemented fault tolerance. In Proceedings of the 3rd In-

ternational Symposium on Code Generation and Optimization, March 2005.

Bibliography 151

[73] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.

Mukherjee. Design and evaluation of hybrid fault-detection systems. In

Proceedings of the 32nd Annual International Symposium on Computer Ar-

chitecture, pages 148–159. IEEE Computer Society, 2005.

[74] S. . F. Remarks. Selse 2 reverie. 2006.

[75] D. Roberts, N. S. Kim, and T. Mudge. On-chip cache device scaling limits

and effective fault repair techniques in future nanoscale technology. In 10th

Euromicro Conference on Digital System Design Architectures, Methods and

Tools, pages 570 –578, 2007.

[76] G. R. Roelke. Fault and Defect Tolerant Computer Architectures: Reliable

Computing With Unreliable Devices. PhD. Thesis, 2006.

[77] A. Ros, M. E. Acacio, and J. M. Garćıa. A scalable organization for dis-

tributed directories. Journal of Systems Architecture, 56(2-3):77–87, 2010.

[78] E. Rotenberg. Ar-smt: A microarchitectural approach to fault tolerance in

microprocessors. In Proceedings of the 29th Annual International Symposium

on Fault-Tolerant Computing, pages 84–. IEEE Computer Society, 1999.

[79] S. Rusu, H. Muljono, and B. Cherkauer. Itanium 2 processor 6m: higher

frequency and larger l3 cache. IEEE Micro, 24(2):10 – 18, 2004.

[80] R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The energy efficiency

of cmp vs. smt for multimedia workloads. In Proceedings of the 18th annual

international conference on Supercomputing, pages 196–206. ACM, 2004.

[81] P. P. Shirvani and E. J. McCluskey. Padded cache: A new fault-tolerance

technique for cache memories. In Proceedings of the 17TH IEEE VLSI Test

Symposium, pages 440–. IEEE Computer Society, 1999.

[82] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Modeling

the effect of technology trends on the soft error rate of combinational logic.

In Proceedings of the 2002 International Conference on Dependable Systems

and Networks, pages 389–398. IEEE Computer Society, 2002.

Bibliography 152

[83] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:

Complexity-effective multicore redundancy. In Proceedings of the 39th An-

nual IEEE/ACM International Symposium on Microarchitecture, pages 223–

234. IEEE Computer Society, 2006.

[84] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk.

Fingerprinting: Bounding soft-error-detection latency and bandwidth. IEEE

Micro, 24(6), 2004.

[85] A. Sodani and G. S. Sohi. Dynamic instruction reuse. In Proceedings of

the 24th Annual International Symposium on Computer Architecture, pages

194–205. ACM, 1997.

[86] G. S. Sohi. Cache memory organization to enhance the yield of high perfor-

mance vlsi processors. IEEE Transactions on Computers, 38:484–492, April

1989.

[87] D. Sorin, M. Hill, and D.Wood. Dynamic verification of end-to-end multipro-

cessor invariants. In Proceedings of International Conference on Dependable

Systems and Networks, pages 281 – 290, 2003.

[88] D. J. Sorin. Fault Tolerant Computer Architecture. Synthesis Lectures on

Computer Architecture. Morgan & Claypool Publishers, 2009.

[89] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safetynet:

improving the availability of shared memory multiprocessors with global

checkpoint/recovery. In Proceedings of the 29th Annual International Sym-

posium on Computer Architecture, pages 123–134. IEEE Computer Society,

2002.

[90] L. Spainhower and T. A. Gregg. Ibm s/390 parallel enterprise server g5 fault

tolerance: a historical perspective. IBM Journal of Research and Develop-

ment, 43:863–873, September 1999.

[91] J. Stathis. Physical and predictive models of ultrathin oxide reliability in

cmos devices and circuits. IEEE Transactions on Device and Materials Re-

liability, 1(1):43 –59, Mar. 2001.

Bibliography 153

[92] P. Subramanyan. Efficient Fault Tolerance in Chip Multiprocessors Using

Critical Value Forwarding. PhD. Thesis, 2010.

[93] F. Sultan, L. Iftode, and T. Nguyen. Scalable fault-tolerant distributed

shared memory. In Proceedings of the 2000 ACM/IEEE Conference on Su-

percomputing. IEEE Computer Society, 2000.

[94] D. Sunada, M. Flynn, and D. Glasco. Multiprocessor architecture using an

audit trail for fault tolerance. In Proceedings of the 29th International Sym-

posium on Fault-Tolerant Computing, pages 40–. IEEE Computer Society,

1999.

[95] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream processors:

improving both performance and fault tolerance. In Proceedings of the 9th

Conference on Architectural Support for Programming Languages and Oper-

ating Systems, pages 257–268. ACM, 2000.

[96] D. Sánchez, J. L. Aragón, and J. M. Garćıa. Evaluating dynamic core cou-

pling in a scalable tiled-cmp architecture. In Proceedings of the 7th In-

ternational Workshop on Duplicating, Deconstructing, and Debunking. In

conjunction with ISCA’08, 2008.

[97] D. Sánchez, J. L. Aragón, and J. M. Garćıa. Extending srt for parallel

applications in tiled-cmp architectures. In 14th IEEE Worshop on Depend-

able Parallel, Distributed and Network-Centric Systems, in conjuction with

IEEE International Symposium on Parallel Distributed Processing, pages 1

–8, 2009.

[98] D. Sánchez, J. L. Aragón, and J. M. Garćıa. A log-based redundant archi-

tecture for reliable parallel computation. In 17th International Conference

on High Performance Computing, 2010.

[99] D. Sánchez, J. L. Aragón, and J. M. Garćıa. Repas: Reliable execution for

parallel applications in tiled-cmps. In Proceedings of the 15th International

European Conference on Parallel and Distributed Computing, pages 321–333,

2009.

Bibliography 154

[100] D. Sánchez, Y. Sazeides, J. L. Aragón, and J. M. Garćıa. An analytical

model for the calculation of the expected miss ratio in faulty caches. In 17th

International On-Line Testing Symposium, 2011.

[101] Y. Taur. CMOS design near to the Limit of Scaling. IBM Journal of Research

and Development, 46(2/3):213–222, 2002.

[102] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,

H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,

N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal.

The raw microprocessor: A computational fabric for software circuits and

general-purpose programs. IEEE Micro, 22(2):25–35, 2002.

[103] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. Power4

system microarchitecture. IBM Journal of Research and Development, 46:5–

25, 2002.

[104] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi.

A comprehensive memory modeling tool and its application to the design

and analysis of future memory hierarchies. In Proceedings of the 35th An-

nual International Symposium on Computer Architecture, pages 51–62. IEEE

Computer Society, 2008.

[105] W. J. Townsend, J. A. Abraham, and E. E. Swartzlander, Jr. Quadruple

time redundancy adders. In Proceedings of the 18th IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, pages 250–.

IEEE Computer Society, 2003.

[106] N. Verma and A. Chandrakasan. A 256 kb 65 nm 8t subthreshold sram

employing sense-amplifier redundancy. IEEE Journal of Solid-State Circuits,

43(1):141 –149, 2008.

[107] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault recovery

using simultaneous multithreading. In Proceedings of the 29th Annual In-

ternational Symposium on Computer Architecture, pages 87–98, 2002.

[108] N. J. Wang and S. J. Patel. Restore: Symptom based soft error detection

in microprocessors. In Proceedings of the 2005 International Conference on

Bibliography 155

Dependable Systems and Networks, pages 30–39. IEEE Computer Society,

2005.

[109] D. L. Weaver and T. Germond. The SPARC Architecture Manual. SPARC

International, Inc., 1992.

[110] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms for

store-wait-free multiprocessors. In Proceedings of the 36th Annual Interna-

tional Symposium on Computer architecture, pages 266–277. ACM, 2007.

[111] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L.

Lu. Trading off cache capacity for reliability to enable low voltage operation.

In Proceedings of the 35th Annual International Symposium on Computer

Architecture, pages 203–214, 2008.

[112] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2

programs: characterization and methodological considerations. In Proceed-

ings of the 22nd Annual International Symposium on Computer Architecture,

pages 24–36. ACM, 1995.

[113] M. Yamaoka, K. Osada, R. Tsuchiya, M. Horiuchi, S. Kimura, and T. Kawa-

hara. Low power sram menu for soc application using yin-yang-feedback

memory cell technology. In Symposium on VLSI Circuits, pages 288 – 291,

2004.

[114] S. B. Yao. Approximating block accesses in database organizations. ACM

Communications, 20:260–261, April 1977.

[115] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.

Swift, and D. A. Wood. Logtm-se: Decoupling hardware transactional mem-

ory from caches. In Proceedings of the 19th International Symposium on High

Performance Computer Architecture, pages 261–272, 2007.

[116] S. Zafar, B. Lee, J. Stathis, A. Callegari, and T. Ning. A model for negative

bias temperature instability (nbti) in oxide and high kappa. In Symposium

on VLSI Technology, pages 208 – 209, 2004.

Bibliography 156

[117] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray,

N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr. Sram design on 65nm

cmos technology with integrated leakage reduction scheme. In Symposium

on VLSI Circuits, pages 294 – 295, 2004.

[118] J. Ziegler and W. A. Lanford. The effect of sea level cosmic rays on electronic

devices. Journal of Applied Physics, 52:4305–4312, 1981.

[119] J. F. Zielger and H. Puchner. SER-History, Trends and Challenges. Cypress

Semiconductor Corporation, 2004.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Hardware Faults
	1.1.1 Transient Faults
	1.1.2 Intermittent Faults
	1.1.3 Permanent Faults

	1.2 Motivation
	1.3 Contributions of this Thesis
	1.4 Organization of this Thesis

	2 Background and Related Work
	2.1 Process-Level Measures
	2.2 Circuit-Level Mechanisms
	2.3 Architectural-Level Mechanisms
	2.3.1 Core-Level Mechanisms
	2.3.2 Coherence-Level Mechanisms

	2.4 Software and Hybrid Approaches
	2.5 Symptom Based Approaches

	3 Simulation Environment and Methodology
	3.1 Simulation Tools
	3.1.1 Simics
	3.1.2 GEMS
	3.1.3 McPAT
	3.1.3.1 CACTI

	3.2 Simulated System
	3.3 Evaluation Metrics
	3.4 Benchmarks
	3.4.1 SpecCPU2000
	3.4.2 SPLASH-2
	3.4.3 Parsec 2.1
	3.4.4 Other Scientific Applications
	3.4.5 ALPbench
	3.4.6 Server Applications

	4 REPAS: Reliable Execution of Parallel ApplicationS in tiled-CMPs
	4.1 Introduction
	4.2 RMT Previous Approaches
	4.2.1 Moving Dynamic Core Coupling to a Direct Network Environment
	4.2.1.1 DCC in a Shared-Bus Scenario
	4.2.1.2 DCC in a Direct-Network Scenario

	4.2.2 CRTR as a Building Block for Reliability
	4.2.2.1 Memory Consistency in LVQ-Based Architectures

	4.3 REPAS Architecture
	4.3.1 Sphere of Replication in REPAS
	4.3.2 Caching Unverified Blocks
	4.3.3 Fetch and ROB Occupancy Policies
	4.3.4 Reliability in the Forwarding Logic

	4.4 Evaluation Results & Analysis
	4.4.1 Simulation Environment
	4.4.2 Slack Size Analysis
	4.4.3 Execution Time Overhead of the Fault-Free Case
	4.4.4 Performance in a Faulty Environment
	4.4.5 Sharing Unverified Blocks
	4.4.6 L1 Cache Size Stress

	4.5 Concluding Remarks

	5 LBRA: A Log-based Redundant Architecture
	5.1 Introduction
	5.2 HTM Support for Reliable Computation
	5.2.1 Version Management
	5.2.1.1 Input Replication
	5.2.1.2 Output Comparison

	5.2.2 Dependence Tracking

	5.3 LBRA Implementation Details
	5.3.1 Accessing the Log
	5.3.1.1 Master Access
	5.3.1.2 Slave Access
	5.3.1.3 Log Content & Fault Detection Granularity

	5.3.2 Circular Log
	5.3.3 In-order Consolidation
	5.3.3.1 Cycle Avoidance

	5.3.4 Fault Recovery in LBRA
	5.3.4.1 Local Recovery
	5.3.4.2 Global Recovery

	5.4 Performance enhancements via Spatial Thread Decoupling
	5.4.1 Decoupling Thread Execution into Different Cores

	5.5 Evaluation
	5.5.1 Simulation Environment
	5.5.2 p-XACT Size Analysis
	5.5.3 Overhead of the Fault-Free Case
	5.5.4 Comparison Against Previous Work

	5.6 Concluding Remarks

	6 Modelling Permanent Fault Impact on Cache Performance
	6.1 Introduction
	6.2 Related Work
	6.3 Analytical Model for Cache Miss Rate Behaviour with Faults
	6.3.1 Assumptions and Definitions
	6.3.2 EMR and SD_MR
	6.3.3 EMR Probability Distribution

	6.4 Methodology
	6.4.1 Generating Maps of Accesses
	6.4.2 Random Fault-Maps

	6.5 Evaluation
	6.5.1 Yield Analysis
	6.5.2 Methodology Validation
	6.5.3 EMR and SD_MR for Sequential Benchmarks
	6.5.4 EMR Probability Distribution for Sequential Applications
	6.5.5 Cache Performance Trade-Offs for Sequential Applications
	6.5.6 EMR Impact of Block Disabling and Word Disabling
	6.5.7 EMR and SD_MR for Shared Caches in Parallel Benchmarks
	6.5.8 Implication of the Number of Threads in EMR and SD_MR

	6.6 Concluding Remarks

	7 Conclusions and Future Ways
	7.1 Conclusions
	7.2 Future Ways

	Bibliography

