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1Universitat Politècnica de Catalunya 2Semidynamics Technology Services, Barcelona 3Universidad de Murcia

{manglada, jmanel, antonio}@ac.upc.edu

{enrique.delucas, pedro.marcuello}@semidynamics.com jlaragon@um.es

Abstract—GPUs are one of the most energy-consuming
components for real-time rendering applications, since a large
number of fragment shading computations and memory ac-
cesses are involved. Main memory bandwidth is especially
taxing battery-operated devices such as smartphones. Tile-
Based Rendering GPUs divide the screen space into multiple
tiles that are independently rendered in on-chip buffers, thus
reducing memory bandwidth and energy consumption. We
have observed that, in many animated graphics workloads, a
large number of screen tiles have the same color across adjacent
frames. In this paper, we propose Rendering Elimination (RE), a
novel micro-architectural technique that accurately determines
if a tile will be identical to the same tile in the preceding frame
before rasterization by means of comparing signatures. Since
RE identifies redundant tiles early in the graphics pipeline, it
completely avoids the computation and memory accesses of the
most power consuming stages of the pipeline, which substan-
tially reduces the execution time and the energy consumption of
the GPU. For widely used Android applications, we show that
RE achieves an average speedup of 1.74x and energy reduction
of 43% for the GPU/Memory system, surpassing by far the
benefits of Transaction Elimination, a state-of-the-art memory
bandwidth reduction technique available in some commercial
Tile-Based Rendering GPUs.

Keywords-Graphics Pipeline; Energy Efficiency; Tile-Based
Rendering

I. INTRODUCTION

Graphics applications for smartphones and tablets have

become ubiquitous platforms for entertainment, with more

than 2 billion users worldwide and more than a 40% share

of the overall games market [1]. The portable nature of such

devices drives engagement to games with simple gameplay

that can be played in short bursts, such as puzzle, strategy

or casual games, genres that represent the greatest number

of downloads and played time [2], [3], [4]. While games

of those characteristics usually do not involve complex

scenes and cutting-edge effects, rendering their scenes still

requires a substantial amount of power, a limited resource in

battery-operated devices. Consequently, reducing the energy

consumption of the GPU is a major concern of hardware

and software designers [5], [6], [7], [8], [9].

Figure 1 shows the average power consumption and GPU

load for the Android desktop (without animations), for

several commercial Android games and the Antutu bench-
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Figure 1. Overall average power consumption. GPU load is normalized
by weighting it by the ratio between operating and maximum GPU
frequency. Data obtained using Trepn Profiler [10] for a Snapdragon 636
with connections disabled and minimum screen brightness.

mark [11], divided into CPU and GPU phases (Antutu3D).

As it can be seen, applications with simple scenes such as

CandyCrush (ccs) require a substantial amount of power

and GPU load, comparable to an application designed to

stress the GPU. Note that they also drive much more power

than the Android desktop, that lets the GPU mostly idle,

while consuming twice as much as an application that only

stresses the CPU. These experimental results confirm the

popular claim that, in graphics applications, the GPU and

its communication with main memory (loading textures

and storing colors, among other tasks) are the greatest

contributors to energy consumption [12], [13], [14].

A state-of-the-art pipeline design employed to reduce

bandwidth in mobile GPUs is Tile-Based Rendering

(TBR). In TBR, a frame space is divided into a grid of tiles

that are independently rendered, which allows to do a variety

of computations leveraging small, fast, local on-chip mem-

ory instead of using main memory. The graphics pipeline

in a TBR GPU is divided into two decoupled pipelines:

the Geometry Pipeline receives vertices and generates, after

a set of transformations, output primitives (triangles) that

are sorted into tile bins and stored into the main memory

Parameter Buffer; and the Raster Pipeline which traverses

the tiles one at a time, fetching each tile’s primitives,

rasterizing each primitive into fragments, and shading each

fragment to obtain a final pixel color.

A main purpose of the GPU is to render sequences of

images. In order to produce fluid animations, consecutive

frames tend to be similar, i.e., it is usual to find regions

in a frame with the same color as in the preceding frame,
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Figure 2. Percentage of tiles producing the same color as the preceding
frame across 50 consecutive frames (experimental details in Section IV).

which implies that a significant amount of computations

are redundant. Figure 2 illustrates this phenomenon, known

as Frame-to-Frame coherence [15], by plotting the average

percentage of equal tiles between two consecutive frames for

a set of commercial Android games. In games with moderate

camera movements (ccs to hop), over 90% of tiles produce

the same color as in the preceding frame. This feature can

also be found, albeit less frequently, in games where the

scene is in continuous motion (mst to tib).

Several previous works attempted to exploit frame-to-

frame coherence in order to improve energy efficiency.

Transaction Elimination [16] (TE) compares a signature of

the colors generated after rendering a tile with the signature

of the same tile in the preceding frame. If they are equal,

the color update to main memory is avoided. Arnau et al.

[17] proposed a task-level Fragment Memoization scheme

that computes, for each fragment, a signature the shader

inputs and caches it, along with the output color, in a LUT.

Subsequent fragments form their signatures and check them

against the signatures of the memoized fragments. In case

of a hit, the shader’s computation and associated texture ac-

cesses are avoided and the cached color is used instead. Be-

cause most redundancy resides between consecutive frames,

the huge reuse distance makes impractical to store a frame’s

worth of signatures and output values. To help reduce the

reuse distance, it builds on top of PFR [18], an architecture

that renders two consecutive frames in parallel and keeps

tiles synchronized. But PFR cuts in half the redundancy

detection potential: even frames reuse values cached by the

previous (odd) frame, but odd frames cannot because their

previous-frame values are already evicted from the LUT by

the time they are rendered.

We make the observation that in a TBR GPU, primitives

do not need to be discretized into fragments to know that

the final result will be the same as in the preceding frame.

Instead, by managing redundancy at a tile level, redundant

tiles may be discovered much earlier than at a fragment level

and bypass the whole Raster Pipeline. Note that the Raster

Pipeline computes the pixel colors using as inputs a set of

primitives’ attributes generated by the Primitive Assembly

stage of the Geometry Pipeline plus a set of scene constants,

so it knows all the input data required to render a tile when

it starts processing it.

Based on the above observation, we propose Rendering

Elimination (RE), a novel technique that employs the input

data of a tile to anticipate if all of its pixels will have the

same color as in the preceding frame, and to bypass the

complete rendering of the tile. Since an entire frame of

these input sets must be stored on-chip, they are compared

by means of a signature. In parallel with the sorting of a

primitive into tiles, RE computes on-the-fly the signatures of

the overlapped tiles and stores them in a local fixed-size on-

chip buffer. Then, after the Geometry Pipeline has processed

the frame, tiles are dispatched to the Raster Pipeline. For

each tile, RE compares its current and preceding frame

signatures and, if they match, all the rendering process is

bypassed and the colors in the Frame Buffer are reused.

Otherwise, the tile is rendered as usual.

Figure 3. Raster Pipeline stages saved by using TE, Memoization or RE.

By working at a much coarser grain than Fragment Mem-

oization [17], RE can store on-chip all the frame signatures

and detect all the available tile redundancy instead of just

that of the even frames, which more than compensates

for the marginal undetected redundancy at sub-tile level

(our results show that RE almost doubles the amount of

redundancy discovered). In addition, RE does not need to

store output results because tile colors are reused from the

Frame Buffer, thus saving storage and bandwidth. Besides

this, while TE and Fragment Memoization each skip just a

single stage of the Raster Pipeline (as depicted in Figure

3), RE completely skips all the Raster Pipeline stages.

Considering that almost 75% of the total GPU memory

accesses (textures, colors and primitives) are generated by

these stages, our approach is able to greatly reduce memory

bandwidth and energy consumption.

The main contributions of this paper are: (1) The obser-

vation that frame-to-frame redundancy can be discovered in

a TBR GPU at the tile level much earlier in the pipeline

than previous techniques do. (2) A detailed proposal of

Rendering Elimination, a technique for early discarding of

redundant tiles, clearly showing how RE may be seamlessly

integrated into the Graphics Pipeline with minimal hardware

and performance overheads. (3) An experimental evaluation

of RE that shows an average speedup of 1.74x and 43%

energy reduction over a conventional mobile GPU, and

substantial improvements over previous works.
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II. TILE-BASED RENDERING BASELINE

Figure 4 shows the baseline architecture used in this paper,

which resembles an ARM Mali-450 GPU [19]. While it

is only a single point in the design spectrum of GPUs,

it serves perfectly to demonstrate the huge benefits of our

technique for a broad class of GPU architectures with the

only requirement to follow an OpenGL compliant TBR

organization. This architecture is a hardware implementation

of the Graphics Pipeline, a conceptual model that describes

the stages through which data should be processed in order

to render a scene. The application communicates with the

GPU using commands, which are used to configure the

pipeline state (shader code, constants –“uniforms”–, textures,

etc.) and to trigger execution via drawcalls, a stream of

vertices to be processed with the current state. The pipeline

state is held constant during a drawcall invocation but may

be altered between invocations.

Figure 4. Assumed baseline architecture.

The Command Processor parses drawcalls and determines

the format used by the application to submit vertices to the

pipeline. Next, the Vertex Fetcher creates an input stream

of vertices by reading information with the established

format. The per-vertex read information is known as Vertex

Attributes, and consists of sets of data that specify vertices,

such as 3D space coordinates or color. The vertex stream

is then shaded: the attributes of each vertex are transformed

using Vertex Processors that execute programs set by the ap-

plication. These programs are called shaders, and are shared

among all vertices of a drawcall. The shaded vertices are

grouped into triangles or other primitives in the final stage

of the Geometry Pipeline, known as Primitive Assembly,

where some of the non-visible ones are discarded applying

clipping and culling techniques.

The primitives resulting from the geometry process are

sent to the Tiling Engine, where the Polygon List Builder

stores primitives’ attributes in a region of memory known as

Parameter Buffer. The attributes are stored in a format that

exploits locality and enhances performance on the Raster

Pipeline. The Polygon List Builder also determines in which

tiles each primitive resides. After all the geometry has

been sorted into tiles and saved in the Parameter Buffer,

the tiles are processed in sequence. The Tile Scheduler is

responsible of fetching the primitives’ data for a given tile

and dispatching it to the Raster Pipeline.

The Raster Pipeline starts by rasterizing primitives. The

primitives are discretized into fragments: pixel-sized ele-

ments described by interpolated information from vertex

attributes. The Early Depth Test is used to discard fragments

that would be occluded by previously processed fragments.

The fragments that pass the test are sent to the Fragment

Processors, which execute application-defined shaders to

compute the color for every fragment. The output color

computed in the processors for a given pixel is merged with

the previously computed colors using the Blending unit, and

the resulting color is written into the local on-chip Color

Buffer. When the Raster Pipeline has processed all of the

primitives of a tile, the contents of the Color Buffer are

flushed into the Frame Buffer in system memory and the

Raster Pipeline begins processing the next tile.

III. RENDERING ELIMINATION

A. Overview

This paper proposes Rendering Elimination, a novel

micro-architectural technique that accurately determines if

a tile is redundant, i.e., if all of its pixels will have the same

color as in the previous frame. Whenever a tile is detected

as redundant, its Raster Pipeline execution is completely

bypassed and the color from the previous frame is reused.

The Raster Pipeline takes as inputs the scene constants

and the attributes of all the primitives that overlap a tile,

and produces a color for each pixel belonging to that tile.

In order to determine in advance redundancy for a tile, we

compare its inputs for the current frame against the inputs

for the previous frame: if the two input sets match, the

outputs will also be equal. Because of the large volume of

these sets, storing them in main memory would be extremely

inefficient, even with the support of a cache, because the

reuse distance between them is an entire frame. Instead,

we use a more efficient approach based on computing a

signature for the inputs of the tile and storing it in a local

buffer. This buffer, that we call Signature Buffer, contains

the signatures of all the tiles of the previous and current

frames. Figure 5 depicts the Graphics Pipeline flow with the

added Signature Buffer.

The Signature Unit computes the signatures employing

the primitives that the Polygon List Builder produces and

inserts them into the Signature Buffer. At the same time,

the Polygon List Builder fills the Parameter Buffer with

the data of such primitives, including identifiers of the tiles

that contain them. After the geometry of the frame has

been processed, the Signature Buffer holds signatures for

the inputs of all the tiles. Hereafter, whenever a tile is

scheduled in the Raster Pipeline, its Signature Buffer entry
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Figure 5. Graphics Pipeline including RE.

is checked: if the current frame signature matches that of

the previous frame, the Raster Pipeline execution is skipped

and the Frame Buffer locations for that tile are not updated.

Otherwise, the Raster Pipeline is executed normally.

B. Implementation Requirements

The signature of a tile is computed by hashing a list of

all the inputs of a tile: this includes the vertex attributes and

scene constants associated to all the primitives that overlap

the tile. Such inputs are produced either by the Command

Processor when setting scene constants for a drawcall or

by the Polygon List Builder when sorting primitives and

storing their vertex attributes into the Parameter Buffer. The

stream of primitives produced by the Geometry Pipeline,

however, is generated in the order that the GPU received

the drawcalls, which is generally not the order in which

they appear in the screen. In fact, any primitive from the

stream could overlap any number of tiles. This causes that

the complete list of inputs for a tile is not known until all the

geometry of the scene has been processed. A straightforward

implementation that starts computing the signatures when

the Geometry Pipeline has processed the whole frame would

not be practical. Since vertex attributes are stored in the

Parameter Buffer (residing in off-chip memory), retrieving

them in order to compute a signature for the tile would

require significant time and energy overheads and delaying

the execution of the Raster Pipeline.

To be effective, our technique computes the signatures for

the current frame in an incremental approach. Whenever a

primitive is sorted, the temporary signatures for each tile

that it overlaps are read. The new signature for each tile

is constructed by combining the temporary signature with

either the scene constants or the attributes of the vertices of

the current primitive and, afterwards, it is rewritten in the

appropriate Signature Buffer entry. This on-the-fly signature

computation is overlapped with other Geometry Pipeline

stages, resulting in minimal overheads in execution time.

The signature function employed by RE is CRC32 [20].

While a plethora of other mechanisms exist, CRC32 out-

performs well-known hashing approaches such as XOR-

based schemes, as we will show in Section V. We have

not observed a single instance of hashing collisions in our

benchmarks when using CRC32. Moreover, as a widely-used

error detection code, CRC has been extensively researched

in the literature and efficient techniques have been devel-

oped [21] that allow for an incremental and parallel CRC

computation based on Look-up Tables, as outlined below.

C. Incremental CRC32 Computation

As proven in [21], the CRC of a message can be computed

even if its length is not known a priori by breaking it down

into several submessages and computing the CRC of those

submessages independently. Given a message A, composed

by concatenating submessages A1...An, of lenghts b1...bn
bits, the CRC of A can be computed as:

Algorithm 1 Incremental CRC Computation

CRCA = 0
for submessage Ai in A do

b = length(Ai)
CRCAi

= ComputeCRC(Ai)
CRCTemporary = ComputeCRC(CRCA << b)
CRCA = CRCAi

⊕ CRCTemporary

end for

That is, the CRC of the first submessage A1 is computed.

When the length b of the following submessage A2 is known,

we can compute the CRC of the two submessages (a bit

string formed by concatenating A1 and A2) by computing

the CRC of A2, left-shifting the CRC of A1 by b bits, com-

puting the CRC of this shifted message, and combining both

CRCs via an XOR function. By means of this procedure,

CRCs of partial messages of increasing length are computed:

first, the CRC of A1, then the CRC of the concatenation of

A1 and A2, then the CRC of the concatenation of A1, A2 and

A3, and so on, until the last submessage An is reached and,

therefore, the CRC of the concatenation of the submessages

corresponds to the CRC of the original message.

D. Table-based CRC32 Computation

Each iteration in Algorithm 1 would require several cycles

if the CRC computation was implemented using the basic

Shift Register mechanism [22]. A faster alternative is to use a

Look-up Table (LUT) loaded with precomputed CRC values

for all possible inputs. However, this approach is unfeasible

in terms of storage requirements, since a message of length

n requires a LUT of 2n entries. As shown in [21], a message

B of n bits, being n multiple of 8, can be broken into k

1-byte blocks B1...Bk (n = 8× k) and use a small LUT to

efficiently compute the CRC of each block.

Each LUT takes as input a block Bi and computes the

CRC of a message corresponding to left-shifting Bi by

k − i bytes. Namely, the first LUT computes the CRC of

a message consisting of block B1 followed by k − 1 bytes

of zeros, the second LUT comptues the CRC of a message

consisting of block B2 followed by k−2 bytes of zeros and

the kth LUT computes the CRC of a message consisting of
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block Bk. The results of the k LUTs are combined into one

CRC via an XOR function.

Since each LUT has 28 entries and each entry contains a

precomputed CRC value, the size of each LUT is 1 KB and,

consequently, computing the CRC of a message of length n

bits has a storage cost of k KB.

E. Tile Inputs Bitstream Structure

RE determines if the colors of two tiles are going to be

the same by comparing the signature of their inputs. The

inputs of a tile are the vertex attributes of the primitives that

overlap it and the set of scene constants associated to those

primitives. In order to render primitives, the GPU receives

a series of commands that define the state of the pipeline

(shaders, textures, constants) and drawcalls, which contain

a stream of vertices to be processed with the defined state.

Each drawcall can generate any number of primitives and

each primitive can overlap any number of tiles. Therefore,

the input of a tile consists of a sequence of blocks, one for

every drawcall that contains the primitives that overlap this

tile. Each block is, in turn, composed of several subblocks:

a first subblock corresponding to the constants defined in

the drawcall followed by a list of subblocks that correspond

to the attributes of the primitives that overlap this tile.

Since both the number of primitives overlapping a tile and

the number of attributes of those primitives is not fixed,

neither are the lengths of the blocks nor is the length of the

subblocks.

Figure 6. Example of input message.

Figure 6 provides an example of the described tile inputs

for four tiles and the primitives of two drawcalls: Drawcall

F (fill) and Drawcall S (stripes). Drawcall F generates

Primitive C, which overlaps Tiles 0 and 2. Therefore, the

inputs of Tiles 0 and 2 contain the block of Drawcall F,

composed of a set of constants and the attributes of Primitive

C. Drawcall S generates two primitives, Primitives A and B.

These two primitives overlap Tiles 1 and 3, so the inputs of

Tiles 1 and 3 contain the block of Drawcall S, composed of

a set of constants and the attributes of both primitives. Note

that, while two primitives of Drawcall S overlap Tiles 1 and

3, the set of constants of the drawcall is only considered

once for those tiles. Primitive A also overlaps Tile 2, so the

set of constants of Drawcall S as well as the attributes of

Primitive A are added to Tile 2’s inputs.

Besides scene constants, primitives have other global

associated data that affects the color of a fragment: the

shader program and the textures to be used within. RE

Figure 7. Signature Unit block diagram.

does not include these in the tile signature, since changes

to such global data are not common. In our benchmarks,

we have observed that shaders and textures remain constant

for thousands of frames. Moreover, loading new shaders and

textures is done through API calls (such as glShaderSource

and glTexImage2D, for instance) and, therefore, are regis-

tered by the driver. Whenever such infrequent API calls

occur, Rendering Elimination is disabled for the current

frame. Besides this, RE could also be disabled during one

frame periodically to guarantee Frame Buffer refreshing. RE

should also be temporarily disabled by the driver for scenes

that use multiple render targets: RE is specifically targeted

to an important segment of less sophisticated applications

that cover a large fraction of the mobile market.

F. Signature Unit Architecture

The message that has to be signed for a tile consists

of a sequence of blocks, containing either scene constant

data or vertex attribute data. The number of blocks of a

message is not known until all the geometry of the frame is

processed and, therefore, RE uses the incremental signature

computation described in Algorithm 1.

The Signature Unit (SU), the piece of logic responsible for

the incremental computation of the CRCs of tiles, is shown

in Figure 7. Whenever the SU receives a new data block,

it computes its CRC and updates the CRC of all the tiles

overlapped by the primitive associated to that block.

Let us consider first the case of vertex attributes, which

are blocks sent to the SU by the Polygon List Builder. The

SU computes the signature of all the vertex attributes of a

primitive using the Compute CRC unit, and the resulting

CRC32 (CRCAi
as described by Algorithm 1) is stored in

the Primitive CRC register. Since the number of attributes

in a primitive is variable, the Compute CRC unit stores the

length of the signed block (b in Algorithm 1) in the Shift

Amount P register. While the SU computes the CRC of a

primitive, the Polygon List Builder inserts into the OT Queue

a list of identifiers of the tiles overlapped by the primitive.

After computing the signature of a primitive, the SU

traverses the list of overlapped tiles and updates each tile
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signature by combining it with the primitive signature. It

pops in sequence each entry from the head of the OT Queue

and uses this tile id to read the corresponding CRC from

the Signature Buffer, which is then sent to the Accumulate

CRC unit. This unit receives as inputs the previous CRC

for a tile and the length of the primitive message signed

by the Compute Unit. The Accumulate CRC unit computes

the CRC of the message that results by left-shifting the

previous CRC as many bits as the received length. This CRC

corresponds to CRCTemporary in Algorithm 1. Finally, the

results of the Compute and Accumulate units are bitwise

xored to obtain the new CRC for the tile (CRCA in

Algorithm 1) and the new signature is written back to the

Signature Buffer.

The SU can also receive data blocks from the Command

Processor, which correspond to scene constants. The signa-

ture computation of the constants of a drawcall is done in

the same form as the signature computation of the vertex

attributes of a primitive: the Compute Unit generates a

CRC32 and the length of the signed message and stores

them in two registers: Constants CRC and Shift Amount

C, respectively. In order to combine the signature of the

constants with the signature of the attributes, several issues

need to be addressed. First, every drawcall may define its

own set of constants which only affect to that drawcall.

Consequently, the Constant CRC register only has to be

combined with the CRC of the tiles affected by that drawcall.

Besides this, even though multiple primitives of the same

drawcall may overlap the same tile, the Constant CRC

should be considered only once per tile.

Rendering Elimination uses a bitmap to solve these issues.

The bitmap has a length equal to the number of tiles that

the Frame Buffer is divided into. If a position of the bitmap

is set, it means that the Constant CRC has already been

combined into the signature for that tile. Whenever the GPU

receives a new set of constants after having processed one or

more drawcalls, the bitmap is cleared and the constants are

signed and stored in the Constant CRC register. For all the

following primitives, for every tile identifier popped from

the OT Queue, the bitmap is queried to check whether that

tile has already combined the signature of the constants into

its signature. If so, the previous CRC of the tile is only

updated with the value stored in the Primitive CRC register.

Otherwise, the bit in the bitmap position corresponding to

that tile is set and the previous CRC of the tile is updated

twice: first with the contents of the Constants CRC, and

second with the Primitive CRC, by making the Accumulate

CRC unit to select the appropriate shift amount in each step.

G. Compute CRC and Accumulate CRC Unit Architectures

The Compute CRC unit implements the first two steps

in the loop of Algorithm 1, computing the CRC of a

block consisting of a primitive or a set of constants and

determining the length of the block. Since the length of such

Algorithm 2 Compute CRC Unit, Incremental

Computation

CRCOut = 0
ShiftAmount = 0
for 64-bit subblock Ai in submessage A do

CRCAi
= ComputeCRC(Ai)

CRCTemporary = ComputeCRC(CRCOut << 64)
CRCOut = CRCAi

⊕ CRCTemporary

ShiftAmount = ShiftAmount+ 1
end for

Figure 8. Compute CRC Unit block diagram.

blocks is not fixed, the Compute CRC unit is architected to

incrementally compute the CRC32 of a block by breaking

it into subblocks of fixed length (64 bits) and recursively

applying Alg. 1. The resulting procedure is detailed in Alg.

2. Namely, the Compute CRC unit has a similar internal

structure as the SU, as shown in Figure 8. It consists of two

subunits and the CRCOut register (initialized to zero). The

Sign subunit computes the CRC32 of a fixed-length subblock

and stores it into the CRCOut register after a bitwise XOR

with the result of the Shift subunit. In parallel, the Shift

subunit computes the CRC32 of the message resulting by

left-shifting 64 bits the contents of the CRCOut register.

This process is repeated for each 64-bit subblock in the

input data block received by the Compute CRC unit. The

control logic of the Compute CRC unit counts the number

of signed subblocks and communicates it to the Accumulate

CRC unit using registers Shift Amount P (for Primitives)

and Shift Amount C (for Constants), shown in Figure 7.

Algorithm 3 Accumulate CRC Unit, Incremental

Computation

CRCAccum = SignatureBuffer[tile]
for k ← 1 to ShiftAmount do

CRCAccum = ComputeCRC(CRCAccum << 64)
end for

The Accumulate CRC unit implements the third step

in the loop of Algorithm 1, that computes the CRC of a

message consisting of the partial CRC of a tile (stored in the

Signature Buffer) left-shifted by as many zeros as the length

of the block to accumulate (the one fed to the Compute

CRC unit). Since the length of this block is variable, it is

also variable the amount to shift, hence the length of the
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Figure 9. Accumulate CRC Unit block diagram.

resultant message to be signed by the Accumulate CRC

unit. Therefore, this unit follows an incremental procedure

to compute the CRC, as detailed in Algorithm 3. Note

that, while the Accumulate CRC unit follows the same

incremental approach as the Compute CRC unit, the ac-

cumulated blocks are always zero (they come from a left

shift). Therefore, each iteration only requires to shift and

re-sign the CRC32 computed on the preceding iteration and,

consequently, the Accumulate CRC unit only consists of a

Shift subunit, as shown in Figure 9.

LUT7 LUT6 LUT5 LUT4 LUT3 LUT2 LUT1 LUT0

8-Byte Input 
Data

XOR
CRCAi

LUT7 LUT6 LUT5 LUT4 LUT3 LUT2 LUT1 LUT0

XOR

Sign Subunit

Figure 10. Architecture of the Sign subunit.

Figure 10 shows the Sign subunit architecture, which

computes the CRC32 of a 64-bit subblock using the table-

based approach described in Section III-D. Each byte in the

subblock is independently processed by accessing a specific

LUT. The output of the Shift subunit is the bitwise XOR of

the results of the 8 LUTs.

LUT11 LUT10 LUT9 LUT8

CRCAccum
XOR

LUT11 LUT10 LUT9 LUT8

XOR

Shift SubunitPrevious CRC32

Figure 11. Architecture of the Shift subunit.

Figure 11 shows the Shift subunit architecture, which

computes the CRC32 of the 64-bit message that results

from a 32-bit input block shifted with 32 zeros. The design

is analogous to the Sign subunit, and uses the table-based

approach described in Section III-D.

The choice of the subblock size for the Compute CRC

unit is determined by several tradeoffs: the length of a

submessage has to be multiple of the length of the whole

message, but very small submessages imply a larger number

of cycles to compute the signature. Conversely, long submes-

sages require more LUT storage, which causes energy and

area overheads.

Experimentally, we have determined that subblocks of

size 8 bytes signed with eight 1-KB LUTs incur in small

time and energy overheads, as shown in Section V. The

average command that updates constants modifies 16 values.

A subblock of length 8 bytes corresponds to 2 of those values

and, therefore, computing the signature for the average

constant input data requires 8 cycles. Regarding primitives,

the size of the data of an attribute is 48 bytes, which

correspond to 3 vertices defined by four 4-byte components

each. The average number of attributes per primitive is 3

and, thus, computing the signature for the average primitive

requires 18 cycles.

IV. EVALUATION METHODOLOGY

In this section we briefly describe the simulation infras-

tructure and the set of benchmarks employed in the exper-

iments to evaluate Rendering Elimination and Transaction

Elimination (TE) techniques. The implementation of TE is

also presented in this section.

A. GPU Simulation Framework

In order to evaluate our proposal and TE we employ

Teapot [23]. Teapot is a GPU simulation framework that

allows to run unmodified Android applications and evaluate

performance and energy consumption of the GPU. Table I

shows the parameters employed in our simulations in order

to model an architecture resembling an ARM Mali-450

GPU [19]. The Mali 400 MP series is the most deployed

Mali GPU with around 19% of the mobile GPU market [24].

Teapot is comprised of three main components: an

OpenGL trace generator, a GPU functional simulator and a

GPU cycle-accurate simulator. The workloads are executed

in the Android Emulator deployed in the Android Stu-

dio [25]. While the application is running, the OpenGL trace

generator intercepts and stores all the OpenGL commands

that the Android Emulator sends to the GPU driver. The

OpenGL commands trace that is generated is later fed to

an instrumented version of Softpipe. Softpipe is a software

renderer included in Gallium3D, a well-known architecture

for building 3D graphics drivers. Our instrumented Softpipe

executes the OpenGL commands and creates a GPU trace

including information of the different stages of the graphics

pipeline (memory accesses, shader instructions, vertices,

fragments, etc). The GPU trace is used by the cycle-

accurate simulator, which gathers activity factors of all the

components included in the modeled TBR architecture and

reports timing as well as power consumption. Regarding

the power model, McPAT [26] provides energy estimations

for the processors and the caches included in the GPU.

We have extended McPAT using its components (SRAM,

registers, XORs and MUXes, among others) to describe all

the additional structures present in the architecture presented

in Section III: the Signature Buffer, the CRC LUTs, the OT

Queue and the constant bitmap, as well as all necessary
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registers and combinational logic. The main memory and

the memory controller are simulated with DRAMSim2 [27].

Table I
GPU SIMULATION PARAMETERS.

Baseline GPU Parameters

Tech Specs 400 MHz, 1 V, 32 nm

Screen Resolution 1196x768

Tile Size 16x16 pixels

Main Memory

Latency 50-100 cycles

Bandwidth 4 bytes/cycle (dual channel LPDDR3)

Size 1 GB

Queues

Vertex (2x) 16 entries, 136 bytes/entry

Triangle, Tile 16 entries, 388 bytes/entry

Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way, 4 KB, 1 bank, 1 cycle

Texture Caches (4x) 64 bytes/line, 2-way, 8 KB, 1 bank, 1 cycle

Tile Cache 64 bytes/line, 8-way, 128 KB, 8 banks, 1 cycle

L2 Cache 64 bytes/line, 8-way, 256 KB, 8 banks, 2 cycles

Color Buffer 64 bytes/line, 1-way, 1 KB, 1 bank, 1 cycle

Depth Buffer 64 bytes/line, 1-way, 1 KB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 triangle/cycle

Rasterizer 16 attributes/cycle

Early Z test 32 in-flight quad-fragments, 1 Depth Buffer

Programmable stages

Vertex Processor 1 vertex processor

Fragment Processor 4 fragment processors

Table II
BENCHMARK SUITE.

Benchmark Alias Genre Type

Angry Birds abi Arcade 2D
Candy Crush Saga ccs Puzzle 2D
Castle Defense cde Tower Defense 2D
Clash of Clans coc MMO Strategy 3D
Crazy Snowboard csn Arcade 3D
Cut the Rope ctr Puzzle 2D
Hopeless hop Survival Horror 2D
Modern Strike mst First Person Shooter 3D
Temple Run ter Platform 3D
Tigerball tib Physics Puzzle 3D

B. Benchmark Suite

Table II shows the set of benchmarks analyzed to evaluate

our technique, which consists of ten commercial Android

graphics applications. Our set of benchmarks includes both

2D and 3D games, applications that stress the GPU further

than other commonly used applications in battery-operated

devices. Among the 3D games we include workloads with

simple 3D models such as tib, and workloads with more

sophisticated 3D models and scenes such as mst and ter. The

workloads included in our set of benchmarks are representa-

tive of the current landscape of smartphone games ecosystem

as it includes popular Android games. These applications

have millions of downloads according to Google Play [28],

some of them surpassing 500 million downloads.

C. Transaction Elimination

Transaction Elimination (TE) [16] is a technique that

reduces main memory bandwidth by avoiding the flush

of the Color Buffer in tiles that have the same color as

in the preceding frame. Since the reuse distance of two

tiles is an entire frame, tile equality is not performed by

comparing the colors of all the pixels of a tile but rather

signatures of those colors. Whenever a tile has finished being

rendered, its colors (the contents in the Color Buffer) are

hashed into a signature and compared to the signature of

the same tile for the previous frame. If the two signatures

are equal, the newly generated colors are not written into the

Frame Buffer. Although the exact details of this technique

in commercial systems are not fully disclosed, we have

modified our cycle-accurate simulator to model an efficient

implementation and compare it with our proposed approach.

Figure 12 presents the extra hardware added in the pipeline

to perform Transaction Elimination.

Figure 12. Graphics Pipeline including TE.

In our TE evaluation, we consider the energy overheads

caused by the Signature Buffer and the Compute CRC unit,

but do not add any execution time overhead: while we count

the number of accesses to report energy, we ideally assume

that the signature for a Color Buffer does not require any

execution cycles.

For both the evaluation of Rendering Elimination and

Transaction Elimination, we consider the common case in

current GPUs in which the memory system has not only

one but two Frame Buffers. This allows the display to read

from one (called Front Buffer) while the GPU processes

the following frame by writing into a different memory

region (Back Buffer) without causing visual artifacts. The

Front and Back buffers are periodically swapped so that

the display presents new frames at the appropriate frame

rate. With this approach, tiles have to be compared not

with the frame being displayed but with one prior, since

the potential transactions to eliminate occur between the

GPU and the Back Buffer. The Signature Buffer, therefore,

contains signatures spanning two frames: the set generated

when the GPU processes a frame and writes into the Back
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Figure 13. RE compared against Baseline GPU: (a) Execution cycles. (b) Energy consumption.
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Figure 14. Sources of execution time and energy reduction (a) Tiles with equal color and inputs, equal color and different inputs, and different color and
inputs across neighboring frames. (b) RE memory bandwidth compared to baseline: Parameter Buffer and Texel reads and Color Buffer flushes.

Buffer and the set for the Front Buffer, that will be used to

compare tiles when the buffers are swapped.

V. EXPERIMENTAL RESULTS

In this Section we present the main results of RE over

the baseline. For comparison purposes, we also evaluate

Fragment Memoization [17] and TE [16].

Figure 13a shows execution cycles of RE for our set

of benchmarks. The total cycles are normalized to those

of the Baseline and divided into cycles corresponding to

Geometry and Raster Pipelines. RE achieves an average

execution time reduction of 42% (1.74x speedup), yielding

reductions of up to 86% (cde). The execution of the Raster

Pipeline using RE is 2x faster than the Baseline GPU on

average, with maximums of more than 10x. On the other

hand, the overheads introduced by the technique are almost

negligible, since the signature computation is overlapped

by previous Geometry Pipeline stages. The pipeline is only

stalled when computing signatures for primitives that cover

a large amount of tiles, resulting in an overflow of the

Overlapped Tiles Queue. These kind of primitives are rare,

as can be seen by the fact that, on average, only a 0.64%

additional geometry cycles are introduced. The overhead

of comparing the signatures is even smaller. Considering

that accessing the corresponding Signature Buffer entry and

performing a simple comparison takes a few cycles while

skipping the entire Raster Pipeline can save thousands, these

tiny overheads are more than offset by the large performance

gains. Such overheads only result in performance loss in

benchmarks that lack redundant tiles and cannot leverage

RE at all. Even in those cases, the performance impact is

smaller than 1%, as it can be seen in mst.

Figure 13b shows the GPU energy consumption (considering

both static and dynamic) when using RE for our set of

benchmarks, normalized to the baseline. The total energy is

split into two parts: energy spent by the GPU in accessing

main memory and energy spent in other activities. As shown,

RE brings about an average 43% reduction of the energy

consumed by the system, with a 38% reduction of the

energy consumed by the GPU and 48% reduction of the

energy consumed by main memory. Moreover, RE provides

enormous energy savings for benchmarks such as ccs or

cde, reducing 90% of the overall energy consumed by the

baseline. In mst, a benchmark that does not take advantage of

RE, the energy overheads are smaller than 1%. Regarding

area, McPAT reports that the cost of the hardware added

(CRC LUTs, Signature Buffer, Overlapped Tiles Queue

and bitmap) incurs in less than 1% area overhead. These

reductions in execution time and energy consumption are

due to an important number of tiles bypassing the execution

of the Raster Pipeline and avoiding their corresponding main

memory accesses. Figure 14a shows the average percentage

of tiles that, across neighboring frames, produce the same

color (the sum of bottom and mid bars) and the average

percentage of tiles that change colors (top bar). The bottom

bar depicts the percentage of tiles that Rendering Elimi-

nation avoids rendering, which is, on average 50% of the
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tiles of a frame and 81% of the total redundant tiles. The

mid bar shows the percentage of tiles that despite having

different inputs end up with the same color (12%). The

top bar presents the percentage of tiles with different inputs

and different colors (38%). Note that there is not a single

occurrence of a tile that changes the color while maintaining

the same inputs. Furthermore, Figure 14a reveals three

different behaviors for the benchmarks analyzed depending

on camera movements. The first category, (ccs to hop) is

composed of workloads with mainly static cameras, so their

scenes contain lots of redundant tiles. The second category

(mst) is composed of workloads with highly dynamic camera

movements and almost no redundant tiles. The third category

(abi to tib) behaves like the first set in some phases and like

the second set in others. It can be seen that there is a strong

correlation between the number of detected redundant tiles

presented on Figure 14a and the speedup and energy savings

reported in Figure 13.

Eliminating redundant tiles not only reduces the activity

of the GPU but it also eliminates all the associated memory

accesses. Figure 14b plots the amount of main memory

traffic generated by the Raster Pipeline, normalized to the

baseline. The total traffic is split into three parts: accesses

generated by the Tile Cache when reading primitives from

the Parameter Buffer, accesses generated by the Texture

Cache when fetching textures in the fragment shaders and

accesses generated by flushing the on-chip Color Buffer to

the Frame Buffer. As it is shown, RE achieves a significant

drop in traffic to main memory (48% on average).

A. RE vs Fragment Memoization and TE

Figure 15 compares the number of fragments shaded by

RE to those shaded by the technique proposed by Arnau et

al. [17], which performs fragment memoization but requires

rendering multiple frames in parallel. Note also that our

approach is able to skip more pipeline stages and their

corresponding main memory accesses (see Figure 3). We run

an experiment to compare the amount of reused fragments

by each technique. We modelled Fragment Memoization as

originally proposed, with 2-frames in parallel and a 32-bit

hash that discards the screen coordinates, but we augmented

their default 512-entry 4-way LUT to 2048 entries to better

compare to the chip area of RE. As shown, RE reuses

much more fragments in the majority of benchmarks. One

would expect that, by working at a fragment granularity,

memoization could discover more redundancy than working

at a tile level. However such granularity also requires a

bigger storage and, as already pointed out in their paper, a

realistic space-limited LUT only captures on average 60% of

that potential, whereas RE captures all of the redundant tiles

with equal inputs. The only notable exception is hop: As a

significant portion of the screen is black, the pressure on the

LUT storage is heavily reduced by being able to render the

scene with a small number of repeated fragments, but this is

a rather rare case. Moreover, because of the large reuse dis-

tance between redundant fragments, Fragment Memoization

requires significant modifications in the pipeline to enable

rendering of multiple frames in parallel. While executing

two frames in parallel has benefits beyond memoization, it

has two major drawbacks that RE does not. First, it implies a

significant re-design of the whole GPU. Second, it generates

input response lag because of the parallel frame rendering

process. To alleviate this side effect it must be disabled

during frames where the user introduce inputs.
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Figure 15. Fragments shaded with RE and PFR-aided Memoization
normalized to baseline.

Figure 16 compares the benefits of Rendering Elimination

over Transaction Elimination (see implementation details in

Section IV-C). Transaction Elimination (TE) avoids only the

Color Buffer flushes to main memory, while RE bypasses

the whole Raster Pipeline execution for redundant tiles.

Therefore, while TE reduces a 9% the energy consumption

with respect to the baseline GPU, RE outperforms it and

achieves a reduction of 43%. Note that in benchmarks

with a large percentage of redundant tiles such as cde, RE

achieves an additional 65% energy savings compared with

TE. Moreover, since the flush of the Color Buffer represents

a relatively small portion of the total time of the Raster

Pipeline, RE far surpasses the performance benefits of TE.

In some cases, TE may obtain energy savings for bench-

marks in which RE cannot. As Figure 14a presents, there is a

subset of tiles whose rendering outputs the same color as in

the preceding frame but do not have the same inputs as in the

preceding frame (depicted in the mid bar). On average, this

occurs for 12% of the tiles. This phenomenon may occur,

for instance, when the only differences between the two tiles

happen on occluded fragments that are eventually culled by

the z-test and do not contribute to the final color of the

tile, or for scenes with quick camera panning movements

where most of the background texture contains a single

plain color. Consequently, in benchmarks where RE detects

a small percentage of equal tiles, such as abi, TE may obtain

a slightly better energy savings than RE.

We refer to the above event, where the signature of two

tile inputs does not match but the final color of their pixels

remains unchanged, as false negatives. False negatives do not

generate errors, but reveal a broader potential for tile reuse

that RE is not capable to detect. On the other hand, since

tile inputs are compared using the result of a hash function,
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Figure 16. Comparison of RE and TE against Baseline. (a) Cycles. (b) Energy consumption.

there exists the possibility of collisions or false positives:

pairs of different tile inputs that are mapped to the same

signature. A false positive means that the GPU incorrectly

reuses a tile that has actually changed in the current frame.

However, the probability of such an event with a CRC32

signature is roughly one every 4 billion tiles, i.e., less than

one tile per million frames (more than 4 hours playing).

Moreover, it would be extremely difficult, or impossible,

to spot the incorrect tile by a human, since it would last

for only a single frame (less than 20 ms), and it would

probably appear very similar to the correct tile due to frame

coherency. Actually, we found zero false positives in our

experiments with CRC32.

VI. RELATED WORK

Hardware memoization has been widely researched to

accelerate general-purpose computing by detecting blocks

of instructions that repeatedly produce the same value and

caching them in LUTs [29], [30], [31], [32].

Several works exploit frame coherence in order to avoid

the processing of redundant fragments. Ragan-Kelley et

al. [33] decouple shading from visibility and employ a hard-

ware memoization scheme that caches shading results. Ar-

nau et al. [17] also propose a hardware memoization scheme

to reduce redundant fragment shading that is implemented

on top of a PFR [18] pipeline to improve reuse distance. A

comparison with this technique is provided in Section V-A.

RE is similar to memoization in that it remembers the

signatures of previous inputs to detect redundancy. However,

since RE works at a coarser granularity, instead of caching

just a fraction of these signatures, it stores all of them.

Furthermore, the outputs do not need to be cached, since

they are already present in the Frame Buffer.

Transaction Elimination (TE) [16] is a bandwidth saving

feature included in the ARM Mali GPU that detects identical

tiles between the current frame being rendered and the

previous one. TE computes a CRC signature per tile. If a tile

of the current frame has the same CRC as in the preceding

frame, its results are not flushed to main memory, which

produces significant energy savings. On the other hand, RE

not only avoids the flush of redundant tiles to main memory,

but also the execution of the entire Raster Pipeline.

Some works aim to reduce fragment shading by means of

reducing the number of occluded fragments whose color is

computed. Occlussion queries [34], [35] rasterize and test

the visibility of Bounding Volumes of the objects to cull the

geometry at draw command level granularity. However, the

queries need to be sorted in a front-to-back order to perform

well, which sets an important limitation. Other works aim to

avoid fragment shading for hidden surfaces at fragment level

granularity [36], [5]. These methods propose to perform a

hidden surface removal phase where geometry is rasterized

and depth tested in order to identify the visible geometry

that will be later fragment shaded. Unlike these works, RE

does not need to perform extra rendering passes to reduce

overshading. Furthermore, if a tile is eliminated, both visible

and occluded surfaces will not be processed.

VII. CONCLUSIONS

In this paper we have presented Rendering Elimination

(RE), a novel micro-architectural technique for Tile-Based

Rendering GPUs that effectively reduces shading computa-

tions and memory accesses by means of culling redundant

tiles across consecutive frames. Since RE detects a redundant

tile before it is dispatched to the Raster Pipeline, the

entire computation (which includes rasterization, depth test,

fragment processing, blending, etc.) is avoided, as well as

all the associated energy-consuming memory accesses to the

Parameter Buffer, Textures and Frame Buffer.

Our results show that RE outperforms state-of-the-art

techniques such as Transaction Elimination or Fragment

Memoization, which are only able to bypass a single pipeline

stage. Compared to the baseline GPU, RE achieves an

average speedup of 1.74x and reduces the GPU and main

memory energy consumption by 38% and 48%, respectively.

The hardware overhead of RE is minimum, requiring less

than 1% of the total area of the GPU, while its latency

is hidden by other processes of the graphics pipeline. In

terms of energy, RE incurs a negligible overhead of less than

0.5% of the total GPU energy. RE is especially efficient in

benchmarks with small camera movements, with speedups

as high as 6.9x and energy savings up to 90%. Even in
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benchmarks without any significant amount of redundant

tiles, the performance impact is well smaller than 1%.
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