
Early Visibility Resolution for Removing Ineffectual Computations

in the Graphics Pipeline

Martı́ Anglada1 Enrique de Lucas2 Joan-Manuel Parcerisa1 Juan L. Aragón3 Antonio González1

1Universitat Politècnica de Catalunya 2Semidynamics Technology Services, Barcelona 3Universidad de Murcia

{manglada, jmanel, antonio}@ac.upc.edu

enrique.delucas@semidynamics.com jlaragon@um.es

Abstract—GPUs’ main workload is real-time image render-
ing. These applications take a description of a (animated)
scene and produce the corresponding image(s). An image is
rendered by computing the colors of all its pixels. It is normal
that multiple objects overlap at each pixel. Consequently, a
significant amount of processing is devoted to objects that will
not be visible in the final image, in spite of the widespread use
of the Early Depth Test in modern GPUs, which attempts to
discard computations related to occluded objects.

Since animations are created by a sequence of similar im-
ages, visibility usually does not change much across consecutive
frames. Based on this observation, we present Early Visibility
Resolution (EVR), a mechanism that leverages the visibility
information obtained in a frame to predict the visibility in the
following one. Our proposal speculatively determines visibility
much earlier in the pipeline than the Early Depth Test. We
leverage this early visibility estimation to remove ineffectual
computations at two different granularities: pixel-level and
tile-level. Results show that such optimizations lead to 39%
performance improvement and 43% energy savings for a set
of commercial Android graphics applications running on state-
of-the-art mobile GPUs.

Keywords-Graphics Pipeline; Tile-Based Rendering; Energy
Efficiency; Visibility;

I. INTRODUCTION

Graphics-rich applications are overwhelmingly common

in mobile platforms. However, achieving an acceptable

frame rate in such applications often requires a significant

amount of energy, a very constrained resource in battery-

operated devices.

Frames are rendered by processing data through the graph-

ics pipeline: vertices are transformed, lighted and grouped

into primitives, which are usually triangles. Triangles are

then rasterized into fragments, pixel-sized regions of prim-

itives, upon which a final color is computed and written

to the framebuffer in main memory to be displayed. The

main cause of energy consumption in the described pipeline

is communication with main memory, a great fraction of

which is devoted to fragment operations: colors are typically

computed after accessing stored images named textures and

the resulting color has to be stored in the framebuffer. Tile-

Based Rendering (TBR) is a rendering paradigm widely used

in mobile devices to reduce memory accesses, because it

divides the screen into rectangular sections or tiles, that are

independently rendered over small on-chip buffers.

This paper presents Early Visibility Resolution (EVR), a

novel hardware mechanism implemented on a TBR architec-

ture that improves the energy efficiency of GPUs by enabling

optimizations on existing techniques such as Early-Z Test

and Rendering Elimination.

Improving the Early-Z test: Visibility of overlapping

fragments is typically handled employing the Z Buffer,

a memory region which stores the depth of the closest

fragment to the camera for every pixel in the frame. New

fragments compare their depth with the one stored in their

same position and are only written to the framebuffer if they

are closer than the previously visible fragment. However, it

is common for the color of pixels to be computed multiple

times, a phenomenon known as overshading, as values

produced by previously-computed fragments are occluded

by newer fragments if they turn to be closer to the observer.

To reduce overshading, most GPUs nowadays include an

additional Early-Z test just before the stage that computes

the fragment color. However the requirement for the Early-Z

test to reduce the overshading is that opaque primitives are

processed in front-to-back order so that hidden primitives

are processed after visible ones. Our proposed EVR tech-

nique reduces the overshading caused by hidden primitives

by identifying them well before they are rasterized, and

scheduling them after the visible ones, thus ensuring that

they will be rejected by the Early-Z test.

Improving Rendering Elimination (RE): RE [1] is a

technique implemented on top of a TBR architecture that

identifies tiles that do not change between two consecutive

frames. RE keeps track of the primitives in each tile and the

input data used for computing their colors. Before starting

the rendering process of a tile, its input data is compared

against that used to compute the same tile in the previous

frame and, if they match, the rendering of the entire tile is

skipped because its colors, stored in the framebuffer, will

not change. However, we observe that a significant potential

is lost because many equal tiles cannot be identified as such

when the only changes between frames occur in hidden

primitives that do not contribute to the final colors of the

tiles. Since EVR identifies hidden primitives early, they can

635

2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCA.2019.00015

be excluded from the tile input data set that RE compares,

thus increasing the amount of skipped tiles.

Early Visibility Resolution estimates visibility in early

stages of the graphics pipeline by exploiting frame-to-frame

coherence. Given that animations are produced as a sequence

of similar images, visibility tends to remain very similar

across consecutive frames: occluded primitives in a frame

are prone to be occluded in the following frame as well.

The visibility of a primitive is separately determined for

every tile it overlaps in order to achieve a better precision,

since it may occur that a primitive is partially visible, i.e.,

visible in some tiles but completely occluded in some other

tiles. Our proposal is based on computing the depth of the

farthest visible point of each tile in a frame and use these

depths to predict the visibility of primitives in the next frame.

Whenever a primitive is assigned to a tile, its closest point

to the camera is compared against the depth of the farthest

visible point for that tile in the previous frame: if the former

is farther, the primitive is considered to be occluded for that

tile, whereas if it is closer, the primitive is considered to be

visible. We leverage this early visibility prediction scheme

to reduce redundancy in a TBR Graphics Pipeline at two

different granularities:

• Fragment level. The effectiveness of the traditional

Early-Z test hidden fragment rejection is improved by

processing primitives predicted to be occluded after

those predicted to be visible.

• Tile level. The effectiveness of Rendering Elimination’s

redundant tile detection is significantly improved by

ignoring primitives predicted to be occluded when

computing similarities between tiles.

In the Results section, we show that early detection

and reordering of potentially occluded primitives reduces

overshading by 20%, and boosts redundant tile detection by

5%, yielding speedups of 39% and energy reduction of 43%

II. BACKGROUND

Tile-Based Rendering. The Graphics Pipeline consists of

a sequence of steps required to render a scene generated

by an application. Figure 1 shows the block diagram of

a hardware implementation of such pipeline based on the

architecture of an ARM Mali-450 [2], one of the most

widespread GPU architectures on the mobile market [3].

The pipeline execution is initiated by the application, which

sends API commands to the GPU to be processed. The

Command Processor receives these commands and sets the

appropriate state for the Graphics Pipeline. Among them,

streams of vertices are sent as draw commands, to be pro-

cessed by the pipeline. In Tile-Based Rendering (TBR) the

rendering process is divided into two pipelines: Geometry

and Raster. Furthermore, the screen space is partitioned

into regular, independently-rendered regions named tiles,

which allows for the use of smaller on-chip memories for

storage of temporary depth and color values. The Geometry

Pipeline fetches vertices and their attributes (per-vertex

information such as position, color or texture coordinates)

from main memory and transforms the vertices from object-

space coordinates into the display-space coordinates using

user-defined programs called vertex shaders and some fixed

function stages of the pipeline. The vertices are grouped

into primitives (usually triangles) in the Primitive Assembly

stage, which also discards the ones that do not face the

camera or are outside the viewing volume. The Geometry

Pipeline finishes its process in the Polygon List Builder

stage, which assigns primitives to tiles by filling a memory

structure named Parameter Buffer. The Parameter Buffer

contains the vertex attributes of all the primitives of the

frame being rendered. It also stores, for each tile, its Display

List: a list of pointers to the attributes of the primitives that

overlap that tile.

Figure 1. Assumed baseline architecture, similar to an ARM Mali-450.

The Raster Pipeline is triggered once all the geometry of

the frame has been processed. Tiles are processed sequen-

tially by fetching their primitives from the Parameter Buffer

and dispatching them to the Rasterizer, which discretizes

them into fragments, elements containing the information

necessary to compute the color of a pixel. Fragments then

can be queried for visibility in the Early Depth Test stage,

which discards fragments that will not contribute to the

color of the pixel because an already-processed fragment

occludes them. The fragments passing the test proceed to

the Fragment Processors, where their color is computed by

user-defined fragment shaders. The output color may then

be blended with previous computed values for that pixel (in

case of transparencies) and the resulting value is stored in

a local memory named Color Buffer, a rectangular array of

pixel colors consisting of a red, green and blue component

for each color. When all of the primitives of a tile have

been rendered, the contents of the Color Buffer are flushed

to main memory.

Rendering Elimination. Rendering Elimination [1] is a

636

technique that avoids the rendering of tiles that will produce

the same color across consecutive frames. A signature of the

primitives of each tile is computed and compared with the

signature of the primitives the same tile had in the preceding

frame. If the two signatures match, it is considered that the

inputs for the Raster Pipeline have not changed between

frames and, therefore, the output will also be the same.

Consequently, the tile is not rendered and the colors of its

pixels are reused with the ones computed in the previous

frame. Figure 2 shows a block diagram of how the technique

operates within the Graphics Pipeline. The Signature Buffer

1 is an on-chip lookup table that stores, for each tile,

the signature of the previous frame and the in-progress

signature of the current frame. Whenever a primitive reaches

the end of the Geometry Pipeline, the signature of its vertex

attributes is computed 2 . In addition, for each tile that

the primitive overlaps, the signature of the current frame for

that tile is updated by combining the temporary value stored

in the Signature Buffer entry with the computed signature

of the primitive. When all the frame geometry has been

processed, the Signature Buffer holds the final signatures

for every tile in the current frame. Then, whenever a tile

is scheduled to be rendered, its signatures for the current

and the previous frame are read from the Signature Buffer

and compared to decide whether or not the tile needs to be

rendered 3 .

Figure 2. Rendering Elimination block diagram.

Early Depth Test. The Depth Test [4] is a per-fragment

operation in which occluded fragments are discarded (do

not write in the Color Buffer). To do so, the depth of the

closest fragment to the camera is kept for every pixel in the

screen in a memory structure named Z Buffer. After shading

a fragment and before updating the Color Buffer, its depth

value is checked against the stored value for that position in

the Z Buffer: if the new fragment is closer to the camera than

the previous one, the Color Buffer and Z Buffer entries are

updated with the fragment’s color and depth, respectively.

Otherwise, the buffers are not updated. The Early Depth

Test is an optimization supported by most modern GPUs

in which fragments are discarded before shading them by

applying the Depth Test prior to being dispatched to the

Fragment Processors: a fragment will be shaded only if it

passes this visibility test. However, not all primitives can

benefit from this optimization because some shaders have the

capability to change the visibility determined by the Early

Depth Test. The most common operations to achieve such

alterations are fragment discard (the execution of the shader

prevents a fragment from progressing into the pipeline, thus

causing an incorrect early update of the Z Buffer) and depth

writing (a shader may generate a depth value which may

cause a fragment considered visible to become occluded or

vice versa).

Blending. Transparency is often computed by combining

a translucent foreground color with a background color so

as to create a filter of the color of the objects behind. To

achieve this blending effect, an additional color component

named alpha expressing the degree of opacity is included

in each pixel. The alpha value ranges from 1 to 0, with 1

indicating that the fragment is fully opaque and 0 indicating

full transparency. Whenever the fragment shader outputs a

color for a fragment, it is combined with the existing value

in the same entry of the Color Buffer in a way that depends

on its alpha value. To properly render transparent objects,

the value in the Color Buffer must correspond to the color

of all the objects behind the transparent fragment, since the

blending operation is generally not commutative. Therefore,

the standard method for applying transparency is to first

render the opaque geometry (thus taking advantage of the

Depth Buffer capabilities) and then render all the translucent

geometry in back-to-front order.

III. EARLY VISIBILITY RESOLUTION (EVR) OF

OCCLUDED PRIMITIVES

Detecting occluded primitives early in the pipeline can

prevent us to process them and avoid a significant amount of

ineffectual work. However, this is a complex problem, so we

rely on a simplification that estimates visibility with a low

implementation cost. We exploit the fact that visibility tends

to remain constant across consecutive frames: if a primitive

is occluded in a frame, it will most likely be occluded in

the following one.

A sufficient -but not necessary- condition for a primitive

to be occluded in a tile is that the primitive is entirely located

farther from the viewpoint than the farthest visible point in

that tile. Based on that observation, we label primitives as

occluded in a tile if they are farther than the farthest visible

point (hereafter named FVP) for that tile in the previous

frame. Whenever a frame finishes rendering, the visibility

of the complete scene is known, so the depth of the FVP

can be extracted for each tile.

Visibility is usually determined at a fragment level using

the Early Depth Test. However, a large number of mobile 2D

applications use the so-called Painter’s Algorithm [5], where

objects in the scene are drawn in back-to-front order. This

way, a newly-processed opaque fragment always occludes

previously-rendered fragments in the position it maps to

637

without the need of tracking depth information using the

Z Buffer. Consequently, to determine the FVP for a tile,

we must distinguish between primitives that write on the Z

Buffer (WOZ primitives) and primitives that do not (NWOZ).

A. WOZ Primitives

All information regarding the visibility for these primi-

tives is available in the Z Buffer when the tile is rendered.

The per-tile FVP depth is computed as the maximum depth

value stored in the Z Buffer (Zfar). A primitive is labeled

as occluded in a given tile if its closest vertex (Znear) to the

viewpoint is farther than the FVP’s depth from the previous

frame.

The coarse granularity caused by comparing to a single

Zfar value combined with the conservative Znear comparison

(which requires that all primitive points are beyond the FVP,

not just those overlapping the tile) reduces the detection rate,

since not all occluded primitives might be labeled as such.

However, this way the primitives can be labeled as occluded

for a tile earlier in the pipeline, with information available

at the Polygon List Builder stage (vertex depths and tile

binning of the primitive), without the need to either clip

them to the boundaries of a tile or rasterize them. Note that

Zfar is a single value per tile, so it is stored in an on-chip

memory buffer at an acceptable energy and area overhead.

B. NWOZ Primitives

The visibility for these primitives is implicit in the ren-

dering order and is, therefore, not resolved using the Z

Buffer. However, by using a different mechanism, occluded

primitives can still be detected in such scenes. During the

sorting of primitives into tiles, we tally how many different

draw commands have produced primitives that overlapped

each particular tile and store that number in a layer identifier

counter. The layer identifier of a tile starts at zero at the

beginning of the frame and is increased by 1 whenever a

primitive that belongs to a new command is sorted to that

tile.

When a primitive is sorted to a tile, it is assigned the

current layer identifier of that tile. Since opaque primitives

in a layer partially or completely occlude layers laid under it,

we can use those identifiers as depth information: primitives

with higher layer identifiers are closer to the observer than

primitives with smaller ones. Later on, after rasterization,

layer identifiers are tracked for all the opaque visible frag-

ments of a primitive in the Layer Buffer, which is a local

structure akin to the Z Buffer.

When a tile is completely rendered, all the information

concerning its visibility is available in the Layer Buffer. The

depth of the FVP corresponds to the minimum identifier

stored in the Layer Buffer (Lfar). A primitive is labeled as

occluded in a tile if its assigned layer for the current tile is

smaller than the tile’s Lfar from the previous frame.

C. Hybrid Scenes

A 3D scene is mainly composed of primitives that write in

the Z Buffer, but it may also include primitives that do not.

For instance, a batch of NWOZ primitives are sometimes

drawn at the beginning of the scene as a background or at the

end as a HUD1. Besides, it is common to find scenes with

traditional alpha blending, where geometry is rendered in

two steps. In the first one, the opaque geometry is rendered.

In the second step, the translucent primitives are processed

in back-to-front order. Translucent primitives are NWOZ

because by definition they are not occluders, so they must

not update the Z Buffer.

WOZ primitives are also assigned a layer identifier to

help compare its age relative to NWOZ primitives. However,

since resolving visibility among WOZ primitives themselves

is not determined by their relative age but by comparing

their explicit depth values, we can assign the same layer

identifier to all of the WOZ primitives in a batch. If two

primitives, one being a WOZ and the other being an opaque

NWOZ, overlap the same pixel, visibility is resolved by

comparing their relative age, i.e., by determining which one

was rendered last.

The FVP depth of a tile may be either Zfar or Lfar,

depending on whether the FVP belongs to a WOZ or a

NWOZ primitive, respectively. After computing Lfar, we

determine to which type of primitive it belongs and store

the proper FVP depth value (either Zfar or Lfar) for the tile.

A boolean value termed FVP-type is then set to indicate

whether the stored FVP corresponds to a WOZ or a NWOZ

primitive.

(a) FVP-type: Layer
FVP depth: 3

(b) FVP-type: Z
FVP depth: 0.5

Figure 3. FVP depth computation in tiles with both WOZ primitives
(white) and NWOZ primitives (striped).

Figure 3 illustrates how the FVP of a tile is computed

in the presence of both WOZ and NWOZ primitives. A

tile is viewed in a top-down perspective with the location

of its primitives represented as rectangles. The observer of

the scene placed on the left, i.e., the right corner is farther.

The top of the figure displays the layer identifiers for all

primitives as well as the Z value for WOZ primitives.

1HUD is short for Head-Up Display, a visual overlay used to present
information to the user.

638

In the scenario presented in Figure 3a, Layer 1 is com-

pletely occluded by Layer 2, whereas Layer 2 is completely

occluded by Layers 3 and 4. Layer 3 is visible, so the Lfar

of the tile is 3. Since Layer 3 belongs to NWOZ primitives,

the FVP depth of the tile is its Lfar and a corresponding

FVP-type that indicates that the FVP is a layer is stored.

In the scenario presented in Figure 3b, Layer 1 is visible,

so the Lfar of the tile is 1. Since Layer 1 belongs to WOZ

primitives, the FVP depth corresponds to the tile’s Zfar.

Primitives with a depth value of 1 are occluded by primitives

with smaller depth values, while primitives with a depth

value of 0 do not completely occlude primitives with a depth

value of 0.5. Thus, the Zfar, and consequently the FVP depth,

of the tile is 0.5. The FVP-type of the tile is set to indicate

that the FVP is a Z value. A primitive is labeled as occluded

if one of the following two scenarios occurs:

• The FVP in the previous frame is NWOZ and the layer

assigned to the primitive is lower than Lfar

• The primitive and the FVP in the previous frame are

WOZ, and the primitive’s Znear is farther than Zfar.

IV. REMOVING INNEFECTUAL COMPUTATIONS WITH

EVR

In this section, we present two optimizations that lever-

age the presented EVR mechanism for early detection of

occluded primitives to avoid ineffectual computations and

memory accesses in the Graphics Pipeline.

A. Overshading Reduction

Overshading occurs when a pixel is shaded multiple

times because several primitives overlap it. If an opaque

primitive writes into an already-shaded pixel, the resources

devoted to the previous color computation have been wasted

because it has no effect in the final image. Note that some

overshading cannot be avoided, such as the one produced

by translucent primitives. As introduced before, GPUs try to

reduce overshading by employing an Early Depth Test which

avoids shading a fragment if a closer, opaque fragment

has already been processed. Although this mechanism can

eliminate a significant fraction of overshading, it is heavily

dependent on the order that fragments are processed because

it can only discard fragments which are hidden by those

already processed. A direct solution to the overshading

problem would be for the application to sort the opaque

primitives in a front-to-back order. However, many of these

software-based approaches require building costly spatial

hierarchical data structures to render the scene from any

single viewpoint. They are only effective on “walkthrough”

applications where the entire scene is static and only the

viewer moves through it, because the overheads can be

amortized over a large number of frames. Furthermore, such

application-level sorting is often challenging due to cyclic

overlaps among objects or objects containing geometry that

occludes parts of the same object.

Some applications perform a preliminary depth pre-pass

(either in hardware or in software), where some or all of

the geometry is rendered using a simple shader that only

writes into the Z Buffer. After that, the actual render pass is

executed but now having perfect or near-perfect visibility

information in the Z Buffer, which greatly increases the

number of fragments discarded by the depth test. Despite

the improved efficacy of the depth test, the overhead of

the additional render pass is very high and often offsets its

potential benefits.

In this paper we propose to use the speculative visibility

determination mechanism described in Section III to dynam-

ically reorder opaque primitives so as to render primitives

that are likely to be occluded after primitives that are likely

to be visible without the need of an additional render pass.

The reordering is performed in the Polygon List Builder

stage, when primitives are sorted into tiles. In the baseline

configuration, for each primitive the Parameter Buffer is

updated as follows: the primitive’s attributes are stored in

memory and a pointer to those attributes is written into the

Display List of each tile. Then, whenever a tile is rendered,

its Display List is accessed and the pointers to primitives

are dereferenced to access their attributes to rasterize them.

The proposed reordering mechanism divides the Display

List of every tile into two lists. Tiles are rendered by fetching

initially all the primitives from the first list and then the

primitives from the second list. Whenever a primitive is

sorted into a tile, its attributes are stored into the Parameter

Buffer the same way as in the baseline. The pointer to

those attributes, on the other hand, is stored on one of the

lists depending on the type of primitive and its predicted

visibility, according to Algorithm 1. This algorithm only

Algorithm 1 Reordering Algorithm based on FVP

if Primitive is WOZ then

if Predicted visible then

Append into First List

else

Append into Second List

end if

else � NWOZ Primitive

if Second List not empty then

Move Second List to the end of the First List

end if

Append into First List

end if

reorders opaque WOZ primitives among themselves, while

preserving the order of NWOZ primitives against themselves

and against WOZ primitives. Reordering WOZ primitives

does not incur in rendering errors: NWOZ primitives are

not reordered and all WOZ primitives perform the depth

test as usual, which maintains the correctness of the result

produced by such primitives regardless of the order in which

639

they are rasterized.

(a) Primitives overlapping a tile, divided into 4 batches according to their
primitive type

(b) WOZ primitives that are predicted occluded are stored on the Second
List, while all other primitives are stored in the First List

Figure 4. Reordering algorithm example.

To illustrate Algorithm 1, let us consider Figure 4a,

showing 4 different batches of primitives of a particular tile.

The two WOZ batches include primitives that are predicted

to be visible and primitives that are predicted to be occluded.

Figure 4b shows how they are reordered.

The first processed batch is an NWOZ batch. No actions

are performed with the second list since it is empty, and all

the primitives in the batch are appended to the first list. Next,

there is a WOZ batch, whose primitives are appended to the

first list if they are predicted to be visible in the tile and

appended to the second list otherwise. When the following

NWOZ batch arrives, all the primitives in the second list are

moved to the end of the first list and then the primitives of

the batch are appended to the first list. Finally, another WOZ

batch is processed, whose primitives are again appended to

the two lists according to their predicted visibility.

This reordering technique is highly effective at reducing

overshading because if the visibility prediction is correct, the

early depth test is able to discard more fragments, which

reduces the amount of computation and memory accesses

devoted to occluded fragments. Note that this scheme does

not introduce any error as commented above. Visibility

mispredictions simply imply a loss of culling effectiveness

in the Early Depth Test.

B. Rendering Elimination Improvement

Rendering Elimination [1] is a technique that detects tiles

that produce the same color across adjacent frames. To

do so, when primitives are sorted into tiles at the end of

the Geometry Pipeline, a signature per tile is incrementally

computed on-the-fly with the attributes of all primitives

overlapping each tile. Then, when the Raster Pipeline starts

processing a tile, its signature computed for the current

Table I
VISIBILITY CASUISTRY

Scenario Frame i Frame i+1

A Visible Visible
B Visible Occluded
C Occluded Occluded
D Occluded Visible

frame is compared against the signature computed in the

previous frame: if both signatures match, the tile is not

rendered since it will produce the same colors as in the

previous frame. Rendering Elimination requires all attributes

from all primitives of a tile to be exactly the same as in

the previous frame to detect redundancy. However, in the

case that only occluded primitives change their attributes,

the tile’s colors will be the same as for the preceding

frame, making Rendering Elimination not able to detect and

eliminate such frame-to-frame redundancy. In this paper,

we also propose using the approximate visibility resolution

mechanism described in Section III to compute signatures

only with visible primitives so as to improve the effective-

ness of Rendering Elimination’s tile redundancy detection.

In the baseline operation of Rendering Elimination, a

lookup table named Signature Buffer stores one CRC32

per tile. Whenever a primitive is sorted, the CRC32 of

the attributes of its vertices is computed. Then, for all the

tiles that the primitive overlaps, the corresponding Signature

Buffer entry is read and updated by combining the CRC32

value of the entry with the CRC32 value of the sorted

primitive.

Using the visibility prediction scheme proposed in Sec-

tion III, we propose to extend the Rendering Elimination

technique as follows. For each sorted primitive, its depth

is compared against the depth of the FVP in the previous

frame for each tile it overlaps. If the primitive is predicted

to be occluded in a tile, the Signature Buffer entry for

that tile is not updated with the CRC32 of the primitive.

As it will be shown in the Results section, utilizing the

FVP depth allows for a significant increase in redundant

tile detection. Moreover, the proposed optimization does

not produce any rendering errors. Table I presents the four

possibilities regarding the resolved visibility of a primitive

(either visible or occluded) across two consecutive frames.

For scenarios A and B the optimization behaves like

the baseline Rendering Elimination: since the primitive was

visible in the tile in Frame i, it is considered for the signature

of the tile in Frame i + 1, regardless of its final visibility.

Note that, in scenario B, the primitive will be occluded and,

therefore, will not be considered in the signature in Frame

i+ 2. This is the case for scenarios C and D.

Scenario C is the case that improves over the baseline:

since the occluded primitive does not affect the final colors

of the tile, not considering the primitive for the signature

640

enhances redundancy detection while not generating errors.

Finally, scenario D does not cause rendering errors be-

cause for a primitive P (occluded in Frame i) to be visible

in Frame i+1, at least one of the following two conditions

must hold:

i) P has moved closer to the camera than the farthest

depth of the tile in the previous frame. In that case, P will be

added to the signature of the tile. Since it was not included

in the signature of the previous frame, the signatures will

differ and the tile will be rendered.

ii) All the primitives that occluded P have moved (or

are not rendered) so that in Frame i + 1 they do not

totally occlude P . In that case, the attributes of the occluder

primitives must have changed and the signature will be

different: even if P is not considered for the signature, the

tile will be rendered.

V. IMPLEMENTATION

In this section, we describe the extra hardware required

to implement the proposed early visibility resolution mecha-

nism, which basically consists of additional units to compute

and store the FVP (farthest visible point) for all the tiles in

the frame. Figure 5 shows how they are integrated into a

TBR GPU.

Figure 5. Graphics Pipeline including the structures needed to implement
FVP computation.

A. Layer Generator Table

As discussed in Section III, layers are tracked to emulate

depth among NWOZ primitives. Assigning a layer identifier

to a primitive requires to address the following issues.

First, since the layer identifier is intended to count the

number of objects (draw commands) whose primitives have

overlapped a given tile so far, each tile must have its

independent layer counter. Of course, for a given tile, all

the primitives of the same command are assigned the same

layer identifier, although that layer may differ from one tile

to another.

Second, since WOZ primitives update their depth into the

Z Buffer, layer identifiers do not provide any information

among primitives in a WOZ batch: the same identifier can

be assigned to all WOZ primitives in a batch for a given

tile.

We propose to employ a small, on-chip LUT which

we call Layer Generator Table in order to manage the

association of layer identifiers to primitives. This table has

one entry per tile, and each entry contains three fields:

1) Last identifier of a command that produced a primitive

that overlapped the tile.

2) Last layer assigned to a primitive that overlapped the

tile.

3) Last type of primitive (WOZ/NWOZ) that overlapped

the tile.

Using the Layer Generator Table (LGT) we can assign a

layer to every primitive in all the tiles it overlaps during the

Polygon List Builder stage. Whenever a primitive is sorted

into a tile, the LGT entry for that tile is checked. If the stored

command identifier is the same as the primitive’s command

identifier, it means that the primitive belongs to the same

layer as the last primitive sorted into that tile. Consequently,

the primitive is assigned the layer stored in the entry. After

sorting a primitive into a tile, it updates the last type of

primitive field in the LGT (a binary value: NWOZ or WOZ).

On the other hand, if the stored command identifier

is different to the primitive’s command, the layer may

be increased depending on the type of primitive. NWOZ

primitives always increase the layer number whereas for

WOZ primitives the layer is only increased if the previous

primitive was NWOZ. Finally, the LUT entry is updated

with the new command identifier and the new layer value if

they have changed.

The layer identifier of a primitive is stored in the Param-

eter Buffer, as any other attribute. This way, layers can be

assigned to all the fragments of the primitive at rasterization

time.

B. Layer Buffer

The farthest visible layer of a tile can be obtained by

computing the minimum visible layer of all its pixels. Since

tiles are relatively small (e.g. 16x16 pixels) we can use an

on-chip buffer to keep track of per-pixel information for an

entire tile. This buffer, which we call the Layer Buffer, has

one entry for every pixel of the tile being rendered (just as

the Z Buffer or the Color Buffer) that stores the visible layer

for that pixel.

The Layer Buffer is updated during the Blending stage,

when the final fragment opacity is already determined. To

detect opacity, we use the same alpha value that fragments

employ to blend with colors previously written in the Color

Buffer. If the alpha factor is exactly 1, the fragment is opaque

and its layer is written into the Layer Buffer. Otherwise,

641

since the fragment is translucent and does not completely

occlude layers behind it, the Layer Buffer is not updated.

During the blending stage, each fragment of a WOZ

primitive stores its layer identifier in a register named ZR, so

that it identifies the layer of the last visible WOZ primitive

and may be used to distinguish, at the end of rendering a

tile, if its FVP corresponds to a WOZ or a NWOZ primitive,

i.e., the FVP-type of the tile. The value of ZR is compared

to Lfar when the tile finishes rendering: if the two values

are equal, the FVP-type of the tile is WOZ. Otherwise, it is

NWOZ.

C. FVP Table

In order to predict if a primitive is likely to be visible in

a tile we use the tile’s FVP depth of the previous frame, so

the entire set of per-tile FVP depths must be stored. Such

information is maintained in a structure that we call FVP

Table. The FVP Table has one entry per tile, with each

entry containing the previous frame’s FVP depth for that tile.

Each entry in the table also stores the FVP-type to indicate

whether the type of data stored is a Z or a layer identifier.

Whenever a tile finishes rendering, its FVP-type is de-

termined. If the FVP depth belongs to a NWOZ primitive,

the FVP Table entry for the tile is updated with Lfar, setting

its FVP-type bit. Otherwise, the FPV entry for the tile is

updated with Zfar and the entry’s FVP-type bit is cleared.

VI. EVALUATION METHODOLOGY

A. Simulator infrastructure

We employ the Teapot simulation framework [6] to eval-

uate our proposal. Teapot runs unmodified Android appli-

cations for mobile platforms and obtains GPU performance

and energy consumption statistics. Table II lists the parame-

ters used in the simulations in order to model an architecture

resembling the ARM Mali-450 GPU [2], the most widely

used GPU architecture nowadays, with almost 20% of the

mobile GPU market [3].

The traces that feed the Teapot cycle-accurate simulator

are obtained via a two-step process: First, an Android appli-

cation is run in the Android emulator [7], and every OpenGL

command sent to the GPU is intercepted and stored in a file.

Second, those OpenGL commands are fed to the software

renderer included in Gallium3D [8], which is instrumented

to generate a trace containing all the information needed

to guide the cycle accurate execution, such as vertex data,

shader instructions or memory addresses of the different

stages of the Graphics Pipeline. For each application, we

simulate 60 consecutive frames from the original application

run.

McPAT [9] is used to estimate the energy consumption

of the GPU. All the additional hardware required for the

proposed technique (Layer Generator Table, FVT table,

Layer Buffer, comparators and registers) is modelled using

McPAT’s components (SRAMs, Registers, MUXes, XORs).

Table II
GPU SIMULATION PARAMETERS.

Baseline GPU Parameters

Tech Specs 400 MHz, 1 V, 32 nm
Screen Resolution 1196x768
Tile Size 16x16 pixels

Main Memory

Latency 50-100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Size 1 GB

Queues

Vertex (2x) 16 entries, 136 bytes/entry
Triangle, Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way associative,
4 KB, 1 bank, 1 cycle

Texture Caches (4x) 64 bytes/line, 2-way associative,
8 KB, 1 bank, 1 cycle

Tile Cache 64 bytes/line, 8-way associative,
128 KB, 8 banks, 1 cycle

L2 Cache 64 bytes/line, 8-way associative,
256 KB, 8 banks, 2 cycles

Color Buffer 64 bytes/line, 1-way associative,
1 KB, 1 bank, 1 cycle

Depth Buffer 64 bytes/line, 1-way associative,
1 KB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 triangle/cycle
Rasterizer 16 attributes/cycle
Early Z test 32 in-flight quad-fragments, 1 Depth Buffer

Programmable stages

Vertex Processor 1 vertex processor
Fragment Processor 4 fragment processors

Additional hardware

Layer Generator Table 3600 entries, 3 bytes/entry
FVP Table 3600 entries, 4 bytes/entry
Layer Buffer 64 bytes/line, 1-way associative,

1 KB, 1 bank, 1 cycle

Regarding system memory, Teapot employs DRAMSim2

[10].

B. Benchmarks

Table III presents the benchmarks employed to test the

proposed approach, which correspond to twenty unmodified

Android graphics applications. All of these applications

have millions of downloads according to Google Play [11],

with some of them surpassing 500 million downloads. The

set of benchmarks includes games of the most popular

genres in the mobile segment [12], such as puzzle, arcade

and simulation. The benchmarks also contain a variety of

workloads: completely 2D scenes such as cde or wmw,

scenes with simple 3D models such as ata or tib), and

642

scenes with more sophisticated models such as 300 or mst.

Applications classified as 3D contain both WOZ and NWOZ

primitives, while applications classified as 2D only contain

NWOZ primitives.

Table III
BENCHMARK SUITE.

Benchmark Alias Genre Type

300: Seize your glory 300 Action 3D
Air Attack ata Arcade 3D
Crazy Snowboard csn Arcade 3D
Modern Strike mst First Person Shooter 3D
Temple Run ter Platform 3D
Tigerball tib Physics Puzzle 3D
Angry Birds abi Puzzle 2D
Armymen arm Strategy 2D
Avenger Legends ale Strategy 2D
Candy Crush Saga ccs Puzzle 2D
Castle Defense cde Tower Defense 2D
Clash of Clans coc MMO Strategy 2D
Cut the Rope ctr Puzzle 2D
Dude Perfect dpe Puzzle 2D
Hayday hay Simulation 2D
Hopeless hop Action Survival 2D
Magic Touch mto Arcade 2D
Redsun red Strategy 2D
Where’s my water wmw Puzzle 2D
World of goo wog Physics Puzzle 2D

VII. EXPERIMENTAL RESULTS

Figure 6 shows the energy consumption of the GPU-

Memory system normalized to the Baseline GPU for our set

of benchmarks. The proposed optimizations that leverage an

early prediction of the visibility achieve a 43% reduction of

energy consumption on average. Energy savings are obtained

in all benchmarks, with maximums of more than 80%

(cde, dpe). Figure 7 shows the execution time, divided into

Geometry and Raster pipelines, normalized to the baseline.

On average, the proposed techniques achieve 39% execution

time reduction, with maximums of more than 70% (ccs, cde,

dpe).

Figure 6. Energy consumption of our EVR proposal normalized to the
Baseline GPU.

The energy overheads are mainly due to additional writes

to the Parameter Buffer to store the layer identifiers. This

overhead is quite moderate, 2.1% on average, as it can be

Figure 7. Execution time of our EVR proposal normalized to the Baseline
GPU.

seen in Figure 6. Figure 6 also illustrates that the addi-

tional hardware added by the proposed mechanism incurs

in only 1.2% energy consumption overhead on average: the

structures needed to manage the FVP information (Layer

Generator Table, Layer Buffer and FVP Table) generate

0.5% additional static and dynamic energy consumption

while the LUTs needed to implement Rendering Elimina-

tion contribute to an additional 0.7% energy consumption.

The computation of Rendering Elimination’s tile signatures

incurs in time overhead in the Geometry Pipeline whenever

a primitive overlaps a large number of tiles, since the

pipeline is stalled waiting for all signatures to be sequentially

updated. Figure 7 reports such overheads in execution time

which, on average, represents 0.5% of the total.

Figure 8. Comparison of the number of shaded fragments per pixel among
the baseline GPU, our EVR proposal and an oracle.

These important reductions in energy consumption and

execution time are mainly produced by avoiding the process-

ing of ineffectual fragments (fragments that are occluded or

are the same as in the previous frame). Figure 8 shows the

number of fragments shaded per pixel using the proposed

early visibility resolution mechanism to reorder primitives

(EVR) compared to the baseline for our set of 3D bench-

marks. We also compare our scheme with an oracle approach

(which ideally assumes that the Z Buffer is initialized with

the final visibility of the tile –the final depth values– before

it is executed). EVR significantly reduces (20%) the number

of vainly shaded fragments, and its results are close to those

obtained by an oracle approach. EVR cannot reach the oracle

because of its approximate nature. First, it uses visibility

information of the previous frame, which may have changed.

643

Second, it estimates visibility at a primitive-level, while the

oracle resolves visibility at the finest possible granularity:

fragment level.

Moreover, a large fraction of tiles are detected to be

redundant and its execution is completely bypassed, avoiding

not only the Fragment Shader stage for all their fragments,

but also the rest of the stages of the Raster Pipeline for

those tiles. Figure 9 shows the percentage of detected

redundant tiles –producing the same colors as the previous

frame– for our set of benchmarks. Results are shown for the

baseline Rendering Elimination (RE), the proposed EVR-

aided Rendering Elimination (EVR), and an oracle setup that

can perfectly identify all tiles of a frame that are equal to

those of the previous frame.

Figure 9. Percentage of detected equal tiles by EVR, compared to RE
and an oracle.

On average, EVR avoids the rendering of 54% of the tiles,

reducing 5% more tiles than the baseline RE. Predicting oc-

cluded primitives and not adding them to the tile’s signature

allows the detection of equal tiles in benchmarks in which

RE was hardly effective, such as 300 or mst. The majority

of these tiles that are identified as redundant corresponds to

portions of the screen in which WOZ primitives are covered

by NWOZ primitives in the form of a HUD. In most cases

the scene contains objects that are in motion but completely

occluded by NWOZ geometry. The layer-based visibility

scheme allows EVR to identify additional redundant tiles

in benchmarks with a high degree of redundancy detected

by RE, such as cde or mto. In some applications such as hay

or wmw, the additional tiles eliminated exceeds 10%, with

a maximum of 30%.

The additional redundant tiles detected results in an

average 10% reduction of energy consumption compared

to the baseline RE, as presented in Figure 10. The early

visibility resolution incurs in some overheads, which are

grouped together in the figure. In the Geometry Pipeline, the

Layer Generator and FVP tables are accessed to generate a

layer identifier, which is stored in the Parameter Buffer. In

the Raster Pipeline, the layer identifiers are read and written

into the Layer Buffer. When a tile finishes its rendering, its

FVP is computed by accessing the Z and Layer Buffers, and

the result is stored in the FVP Table. Although the required

Figure 10. Energy consumption of our EVR proposal normalized to RE.

sequential check of the two tables for each primitive and

each tile to which it is mapped could incur in some time

overhead, it is more than offset by the reduction in number

of primitives that can skip the signature computation step

since they are occluded. This is shown in Figure 11, which

compares execution time, broken down into Geometry and

Raster Pipelines, for the Baseline GPU, RE and our proposed

EVR approach for early visibility resolution. Note that RE

has to read the temporary hashes held in the Signature Buffer

for all the tiles that a primitive overlaps, shift them as many

bytes as the size of the primitive and, finally, combine them

with the hash of the primitive to produce a new signature for

the tile. This process is avoided in our scheme if a primitive

is determined to be occluded in a tile, since EVR marks it not

to be included into the tile’s signature. The only exception

where our EVR scheme does not reduce Geometry cycles is

hop, a benchmark that has very few primitives concentrated

in a reduced amount of tiles. Consequently, the average

number of primitives to combine into the signature of a tile is

small, limiting the benefits of occluded primitive detection.

On average, our EVR mechanism reduces the execution time

in the Geometry Pipeline by 4% with respect to RE.

Moreover, Rendering Elimination may induce time and

energy overheads in benchmarks where not enough redun-

dant tiles are detected to offset the signature computation,

such as 300 or mst. On the other hand, our scheme is more

effective at detecting redundant tiles and, for non-redundant

tiles specially in 3D benchmarks, the primitive reordering in-

creases the efficiency of the Early Depth Test, which reduces

the amount of computations in the fragment processors. This

results in overall speedups for all benchmarks.

VIII. RELATED WORK

Occlusion culling is a fundamental problem in computer

graphics, with an extensive literature spanning more than

three decades. In this section, we focus on the most influ-

ential works and the ones most related to our proposal.

The Z Buffer [4] is the de facto standard to resolve

visibility due to its effectiveness and low implementation

cost. The Hierarchical Z Buffer [13] is a variation of the

baseline technique in which a depth pyramid is used to test

visibility. The base level of the pyramid is the Z Buffer

644

Figure 11. Execution time comparison of our EVR proposal and RE against the baseline GPU.

and higher levels are constructed by combining the depth

of four pixels at the next lower level, typically by choosing

the farthest one. Entire primitives can be discarded without

accessing the Z Buffer by comparing their nearest depth

against the values in higher levels in the pyramid. Our

EVR proposal also compares the depth of primitives to

a FVP depth, which would correspond to the top of the

pyramid of the Hierarchical Z Buffer. However, the FVP

depth contains final visibility information which allows,

unlike the Z pyramid, to detect primitives that will be

occluded by others processed later. Moreover, the FVP depth

includes more information than just the top of the Z pyramid,

allowing the detection of occluded NWOZ primitives that do

not use the Z buffer.

Z-Prepass [14] draws the scene in two steps: first the

geometry is rendered using simple fragment shaders only

to quickly fill the Z Buffer. Later, the geometry is rendered

again with proper shaders, but now with perfect visibility

information in-place, so that all occluded fragments can be

discarded. This additional render pass incurs in significant

overheads, which may not always be offset by the increase in

the fragments discarded in the Early Depth Test. By working

at a coarser granularity (primitive instead of fragment), EVR

does not need to perform the pre-pass but still achieves

results comparable to having complete visibility information.

The concept of layers has been previously adopted in

the context of occlusion culling, most notably in Depth

Peeling [15], an algorithm that renders geometry multiple

times, peeling off the surface layer at each pixel in each

pass. Recently, Andersson et al. [16] leveraged a two-

layer representation of depths to avoid bandwidth spent in

updating the Hierarchical Z Buffer, while in the work of

Scheckel and Kolb [17] layers are used in combination

with the alpha parameter to completely cull transparent

fragments. Unlike EVR, these approaches cannot combine

visibility information of both WOZ and NWOZ primitives

for a better visibility determination.

Computing visibility at a fragment level (known as image-

precision [18]) is useful to solve certain problems, such

as circular dependencies. However, resolving visibility at

a coarser grain could reduce the number of computations

needed. Hardware occlusion queries [19] are a feature that

allow the user to query simple geometry (such as the

bounding volumes) against the current contents of the Z

Buffer. The query counts the number of fragments that

pass the Z Test and the result allows the application to

avoid rendering entire objects at the expense of CPU-GPU

synchronization. Furthermore, as with the Early Depth Test,

in order for occlusion queries to perform well, both objects

and queries must be sent in front-to-back order. EVR is

transparent to the application in both axis: it does not require

neither synchronization nor ordering.

Multiple works reduce overshading by means of reorder-

ing the primitives that make up a scene. Govindaraju et al.

[20] propose an algorithm to sort non-overlapping objects

in either front-to-back or back-to front order from a given

viewpoint. In the work of Chen et al. [21], static objects

are preprocessed in order to create a depth-sorted list of

primitives for every possible viewpoint. The approach of

Han and Sander [22] also preprocesses objects to create

several sorted lists that are indexed at runtime to ensure

optimal order, but they consider movement by taking into

account not only viewpoints but also several key frames.

Weber and Stamminger [23] use a graph representation

of dependencies in animated scenes with a fixed camera

to sort primitives accordingly, and leverage frame-to-frame

coherence to merge different graphs and keep the overall

structure manageable. VRO [24] also takes advantage of

temporal coherence to reorder objects entirely in hardware

and reduce overshading. Unlike these approaches, EVR is

applied at a finer granularity (primitive instead of object),

does not need to perform any preprocess and can also be

employed in interactive scenes, not just animated ones.

IX. CONCLUSIONS

We have presented a mechanism to determine visibility

in early stages of the Graphics Pipeline based on exploiting

frame coherence. Since consecutive frames tend to be very

similar, we use the information of a frame to estimate the

visibility for the following one.

The proposed technique collects the depth of the farthest

visible primitive of every tile whenever its rendering process

is complete. For each overlapped tile, the depth of a primitive

645

is compared against the depth stored for that tile in the

preceding frame. If it is farther, the primitive is occluded.

This paper demonstrates the benefits of early visibility

prediction to remove ineffectual computations, by increasing

the effectiveness of the Early Z Test, a commonly used

technique in contemporary GPUs, and Rendering Elimina-

tion, a recently proposed technique to exploit redundant

computations. The former works at pixel granularity and the

latter works at tile granularity.

Using the predicted visibility information, opaque prim-

itives whose visibility is resolved using the Z Buffer are

reordered such that primitives predicted as visible are ren-

dered first, which avoids the shading of occluded fragments.

Besides, primitives predicted to be occluded are not con-

sidered when generating the signature used by Rendering

Elimination to identify tiles that are equal to the ones in the

previous frame. That increases the number of tiles that are

identified as redundant and, consequently, whose rendering

can be avoided.

Our technique provides average speedups of 39% and

energy savings of 43% for a set of commercial Android ap-

plications. The reorder mechanism achieves overshading re-

ductions comparable to having a Z Buffer filled with perfect

visibility information without requiring any additional render

pass to compute depths. On the other hand, by improving

the tile redundancy detection of Rendering Elimination, the

raster pipeline of the GPU skips the rendering of more than

half of the tiles on average.

X. ACKNOWLEDGEMENTS

This work has been partially supported by the Span-

ish State Research Agency under grant TIN2016-75344-

R (AEI/FEDER, EU) and by the Generalitat de Catalunya

under the AGAUR-FI program.

REFERENCES

[1] M. Anglada, E. de Lucas, J.-M. Parcerisa, J. L. Aragón,
P. Marcuello, and A. González, “Rendering elimination: Early
discard of redundant tiles in the graphics pipeline,” in Pro-
ceedings of the 25th IEEE International Symposium on High-
Performance Computer Architecture, IEEE, 2019.

[2] “Arm mali-450 gpu.” https://developer.arm.com/products/
graphics-and-multimedia/mali-gpus/mali-450-gpu, accessed
December 10, 2018.

[3] “Hardware gpu market.” http://hwstats.unity3d.com/mobile/
gpu.html, accessed December 10, 2018.

[4] E. Catmull, “A subdivision algorithm for computer display of
curved surfaces,” tech. rep., Utah University Salt Lake City
School of Computing, 1974.

[5] “Painter’s algorithm.” https://www.siggraph.org/education/
materials/HyperGraph/scanline/visibility/painter.htm,
accessed December 10, 2018.

[6] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Teapot: a
toolset for evaluating performance, power and image quality
on mobile graphics systems,” in Proceedings of the 27th
International ACM Conference on Supercomputing, pp. 37–
46, ACM, 2013.

[7] “Android studio.” https://developer.android.com/studio/index.
html, accessed December 10, 2018.

[8] “Gallium3d.” https://www.freedesktop.org/wiki/Software/
gallium, accessed December 10, 2018.

[9] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 469–480,
2009.

[10] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A
cycle accurate memory system simulator,” IEEE Computer
Architecture Letters, vol. 10, no. 1, pp. 16–19, 2011.

[11] “Google play.” https://play.google.com, accessed December
10, 2018.

[12] “Mobile game statistics.” https://medium.com/@sm app
intel/new-mobile-game-statistics-every-game-publisher-
should-know-in-2016-f1f8eef64f66, accessed December 10,
2018.

[13] N. Greene, M. Kass, and G. Miller, “Hierarchical z-buffer
visibility,” in Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 231–238,
ACM, 1993.

[14] “Early z rejection.” https://software.intel.com/en-us/articles/
early-z-rejection-sample, accessed December 10, 2018.

[15] C. Everitt, “Interactive order-independent transparency,”
White paper, NVIDIA, vol. 2, no. 6, p. 7, 2001.

[16] M. Andersson, J. Hasselgren, and T. Akenine-Möller,
“Masked depth culling for graphics hardware,” ACM Trans-
actions on Graphics, vol. 34, no. 6, p. 188, 2015.

[17] S. Scheckel and A. Kolb, “Min-max mipmaps for efficient
2d occlusion culling,” in Conference on Computer Graphics,
Visualization and Computer Vision, 2016.

[18] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker,
“A characterization of ten hidden-surface algorithms,” ACM
Computing Surveys, vol. 6, no. 1, pp. 1–55, 1974.

[19] O. Mattausch, J. Bittner, and M. Wimmer, “Chc++: Coherent
hierarchical culling revisited,” in Computer Graphics Forum,
vol. 27, pp. 221–230, Wiley Online Library, 2008.

[20] N. K. Govindaraju, M. Henson, M. C. Lin, and D. Manocha,
“Interactive visibility ordering and transparency computations
among geometric primitives in complex environments,” in
Proceedings of the 2005 Symposium on Interactive 3D Graph-
ics and Games, pp. 49–56, ACM, 2005.

[21] G. Chen, P. V. Sander, D. Nehab, L. Yang, and L. Hu, “Depth-
presorted triangle lists,” ACM Transactions on Graphics,
vol. 31, no. 6, p. 160, 2012.

[22] S. Han and P. V. Sander, “Triangle reordering for reduced
overdraw in animated scenes,” in Proceedings of the 20th
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pp. 23–27, ACM, 2016.

[23] C. Weber and M. Stamminger, “Topological triangle sorting
for predefined camera paths,” in Proceedings of the Confer-
ence on Vision, Modeling and Visualization, pp. 153–160,
Eurographics Association, 2016.

[24] E. De Lucas, P. Marcuello, J.-M. Parcerisa, and A. Gonzalez,
“Visibility rendering order: Improving energy efficiency on
mobile gpus through frame coherence,” IEEE Transactions
on Parallel and Distributed Systems, 2018.

646

