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Abstract
In real-time rendering, a 3D scene is modelled with meshes of triangles that the 
GPU projects to the screen. They are discretized by sampling each triangle at regu-
lar space intervals to generate fragments which are then added texture and light-
ing effects by a shader program. Realistic scenes require detailed geometric models, 
complex shaders, high-resolution displays and high screen refreshing rates, which all 
come at a great compute time and energy cost. This cost is often dominated by the 
fragment shader, which runs for each sampled fragment. Conventional GPUs sam-
ple the triangles once per pixel; however, there are many screen regions containing 
low variation that produce identical fragments and could be sampled at lower than 
pixel-rate with no loss in quality. Additionally, as temporal frame coherence makes 
consecutive frames very similar, such variations are usually maintained from frame 
to frame. This work proposes Dynamic Sampling Rate (DSR), a novel hardware 
mechanism to reduce redundancy and improve the energy efficiency in graphics 
applications. DSR analyzes the spatial frequencies of the scene once it has been ren-
dered. Then, it leverages the temporal coherence in consecutive frames to decide, for 
each region of the screen, the lowest sampling rate to employ in the next frame that 
maintains image quality. We evaluate the performance of a state-of-the-art mobile 
GPU architecture extended with DSR for a wide variety of applications. Experimen-
tal results show that DSR is able to remove most of the redundancy inherent in the 
color computations at fragment granularity, which brings average speedups of 1.68x 
and energy savings of 40%.
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1 Introduction

The growing computing capabilities of today’s mobile devices allow for real-
time rendering of complex 3D scenes. Supporting users’ demands for ever richer 
applications clashes with the battery-operated nature of those devices, which 
makes energy efficiency paramount. In particular, previous studies have described 
the GPU as the most energy-demanding component of mobile SoCs for graphics 
workloads [1–3].

In real-time graphics, the geometry of objects is modelled with a set of verti-
ces, which the GPU processes, assembles into flat polygons (normally triangles), 
and projects to the screen plane. Triangles are then discretized into arrays of pix-
els by sampling their surfaces at regular intervals to produce a fragment (i.e., a set 
of attributes such as color, depth, normal, etc.) for each sampled location, often 
just once per pixel. Fragments are then conveniently textured, shaded and blended 
to obtain a final color value per pixel.

On the one hand, if parts of the scene contain high spatial frequencies, sam-
pling triangles at a low rate may be insufficient to capture fine details and would 
cause aliasing effects, such as jagged edges or flickering. Supersampling is an 
approach that relieves these artifacts by sampling at higher rates and combin-
ing the results into a single color. However, it involves large energy and perfor-
mance costs since it increases the number of generated fragments [4], and it is 
well documented that fragment processing is the most energy consuming stage 
of the graphics pipeline due to the amount of computations and memory accesses 
required [5–7]. For that reason, supersampling is rarely applied in real-time ren-
dering applications, especially in mobile GPUs, and scenes are usually rendered 
at one color sample per pixel.

On the other hand, sampling all triangles at the same rate is not efficient 
because not all parts of the screen require the same sampling rate [8]. Figure 1 
illustrates this phenomenon by comparing two different regions of the screen in a 
given frame: while 1c contains significant level of detail, 1b is homogeneous with 
a single color and, therefore, does not require per-pixel sampling. We have quan-
tified, for a variety of mobile graphics applications, the number of 16x16-pixel 
regions of the screen that do not contain enough level of detail for them to require 
one sample per pixel. Figure 2 shows that on average almost half of the screen can 
be processed at a lower sampling rate without affecting image quality. Properly 
identifying and removing the large amount of resources devoted to these unneces-
sary computations can lead to a substantial reduction in energy consumption.

Based on the above observations, this paper presents Dynamic Sampling Rate 
(DSR): a hardware mechanism that dynamically finds and applies, for each part 
of the scene, the optimal sampling rate, i.e., the lowest sampling rate that does 
not cause visible artifacts in the rendered image. DSR is designed for Tile-Based 
Rendering (TBR) architectures [9], a common pipeline organization in mobile 
devices that divides the screen into rectangular sections -tiles- and renders them 
in succession, allowing the storage of temporary values in on-chip buffers to avoid 
their corresponding accesses to main memory. After the rendering of a tile to the 
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on-chip color buffer finishes, DSR computes the Discrete Cosine Transform of 
the resultant tile image, analyzes the spatial frequencies present in it and decides, 
based on a simple heuristic, the best sampling rate for the tile: whether it could 
have been sampled at a lower rate without sacrificing image quality, whether it 
contains enough detail that the sampling rate needs to be increased or whether 

Fig. 1  Difference in level of detail across a frame. a Frame of the game Guns of Boom. b Region with 
low level of detail. c Region with significant level of detail
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Fig. 2  Number of 16 × 16 tiles that can be sampled at a rate lower than one sample per pixel without 
generating per-tile visible artifacts. Section 4 describes the methodology employed for this categorization
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the sampling rate is already optimal. The estimated-best rates for all the tiles are 
then stored in a small on-chip Lookup Table and are queried during the following 
frame, before the rendering of each tile. DSR estimates the best sampling rate for 
a tile in one frame and applies it in the following frame because it takes advan-
tage of the well-known frame coherence property of graphics animations [10]: 
visual smoothness is achieved by producing a (quick) succession of frames where 
a large subset of tiles are very similar between two consecutive frames.

DSR addresses the shortcomings of prior work on the area of sampling at coarser 
granularities to reduce the number of shader executions. The majority of approaches 
rely on heavy efforts from the programmer to specify which components of the 
scene contain less details such as certain lights [11] or vertex attributes [8]. Con-
versely, DSR decides the sampling rates in a completely transparent manner to the 
programmer. Unlike approaches in which a static sampling rate is set for parts of 
the scene (such as particular regions of the screen [12] or fragments in the bound-
ary between triangles [13]), DSR dynamically and continuously adapts the sampling 
rate of the entire scene at tile granularity to closely track image changes. Addition-
ally, to the best of our knowledge, DSR is the first work to take advantage of frame 
coherence for this purpose. Although frame coherence has been proposed to skip 
some shader executions in the so-called Checkerboard rendering [14], such scheme 
is lossy and may affect image quality. DSR, on the other hand, only reduces the sam-
pling rate in tiles that do not contain high spatial frequencies and, therefore, DSR 
does not produce visual artifacts. Previous approaches that dynamically change the 
sampling rate must compute their estimates in the middle of the pipeline execution 
[15], whereas DSR is architected to not introduce any time overhead by overlapping 
the frequency analysis of one tile with the rendering of the next one.

To summarize, the main contributions of this paper are:

• A new hardware technique, completely transparent to the programmer, that esti-
mates the lowest possible sampling rate to which each tile may be rendered with-
out producing visual artifacts and applies it during the following frame by taking 
advantage of frame coherence.

• A dynamic mechanism based on real-time analysis of the spatial frequencies that 
continuously adapts the per-tile sampling rate to track the image changes that 
occur over time.

• A comprehensive architectural description of the frequency analysis unit and 
how it is integrated within the graphics pipeline in a way that it causes no timing 
overheads.

• An implementation and evaluation that shows that Dynamic Sampling Rate 
reduces the shading activity by 66% and memory accesses by 28%, yielding 
speedups of 1.68x and an overall energy reduction of 40% on average.

The rest of the paper is organized as follows. Section 2 reviews the common pipeline 
organization of mobile GPUs and the Discrete Cosine Transform as a mean to map-
ping an image into the frequency domain. Section 3 describes the design of DSR. 
Section 4 presents the approach used to set the DSR’s parameters. Section 5 illus-
trates the implementation of DSR and the changes required to the baseline GPU. 
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Section 6 presents the experimental framework and Sect. 7 quantifies the benefits of 
applying DSR. Section 8 outlines some related work and Sect. 9 sums up the main 
conclusions of this work.

2  Background

2.1  Tile‑based rendering

In a Tile-Based Rendering GPU, the image is rendered in two decoupled steps, as 
shown in Fig.  3. First, the Geometry Pipeline processes the vertices of the three-
dimensional models, transforming and assembling them into triangles. Triangles are 
then binned into the tiles that they overlap. Once the whole geometry has been pro-
cessed and stored, the Raster Pipeline executes the second step, one tile at a time. 
By working on tiles, all temporary color values can be stored in the on-chip Color 
Buffer, which is only flushed to main memory once all triangles of the tile have been 
processed. The execution in the Raster Pipeline starts by fetching the primitives from 
memory and dispatching them to the rasterizer. Then, the rasterizer samples the sur-
face of triangles at regular space intervals, generating Fragments: points inside the 
triangle with interpolated information at each point. Adjacent fragments are then 
arranged into groups of four called Quads and are sent to the Fragment Shaders 
which compute their colors by executing user-defined programs in lockstep mode 
for the four fragments. The color of each pixel in the tile is held in the Color Buffer, 
and it is obtained from one fragment, by blending multiple adjacent fragments, or by 
replicating the same fragment into multiple adjacent pixels, depending on whether 
the sampling rate is equal, higher or lower than one per pixel, respectively.

Fig. 3  Tile-based rendering GPU
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2.2  Frequency analysis

The typical sampling rate of a scene is one sample per pixel. According to the 
Nyquist Sampling Theorem [16], such a sampling rate allows capturing changes in 
the image every two pixels or more, i.e., with a frequency smaller or equal than two 
pixels. As shown in Fig. 1, not all regions of the screen contain high frequencies, or 
changes in the image in a short space. Therefore, a (much) lower sampling rate may 
be enough to represent the original signals. We propose to analyze the frequencies 
of each rendered tile to decide the sampling rate to be applied to it in the following 
frame.

A well known mechanism to obtain the frequency components of an image is the 
Discrete Cosine Transform (DCT) [17]. As a Fourier-related transform, the DCT 
maps a function (an image) from the spatial domain to a set of coefficients of basis 
functions localized in the frequency spectrum. Those basis functions correspond to 
sinusoids of a certain frequency and are visually represented in Fig. 4. It can be seen 
that as either the x or y axis increase, the basis function is a sinusoid with higher 
variation rate, i.e., with higher frequency. Applying a 2D DCT to a block of NxN 
pixel colors results in a NxN matrix of values, the coefficients of the linear combina-
tion of basis functions which represent the original image in the frequency domain. 
The coefficient present in each element of the matrix indicates how much of that 
particular frequency is found in the original image.

The 2D DCT has several characteristics that make it an ideal choice for the type 
of real-time frequency analysis we require to find the optimal sampling rate for a 
tile:

• It assumes an even symmetry of the function: by construction, the image is mir-
rored in all its borders, which avoids artificial high frequency components that 
other transforms introduce by only considering a NxN pixel subset of the image.

• It has very high energy compaction, which means that the great majority of fre-
quency information is summarized in the upper-left region of the result matrix. 
This allows us to make sampling rate decisions only considering a subset of the 
NxN coefficients.

Fig. 4  DCT basis functions for 
N = 8 pixels
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• It has a low complexity cost in comparison with other transforms as only cosines 
are computed.

Additionally, the 2D DCT is a separable function, which allows for the linear com-
putation of all the elements in one dimension followed by the linear computation of 
all the elements in the second dimension. These characteristics allow us to imple-
ment a fast and energy efficient hardware unit to analyze the frequency components 
of a tile, explained in more detail in Sect. 5.

3  Dynamic sampling rate

This section describes how the 2D DCT is used to estimate the optimal sampling 
rate for a tile, i.e., the lowest sampling rate that does not introduce visible artifacts in 
the overall frame, and how to dynamically adapt it to image changes over time.

When the rendering process of the tile finishes, the Color Buffer contains the 
final color for all the pixels of the tile. We propose to add a small hardware unit 
that takes these colors as inputs to compute the 2D DCT and analyzes the resulting 
matrix of coefficients to determine if the current sampling rate for the tile is optimal. 
All the DCT coefficients are first aggregated into a single value that summarizes the 
amount of high-frequency information of the tile. Although a wide variety of met-
rics exist, we empirically determined that the maximum absolute value among the 
coefficients corresponding to high-frequency diagonals suffices, and we will refer to 
it as MaxC (we term here diagonal k as the set of all elements of the matrix whose 
row index plus column index is equal to k: for instance, diagonal 3 consists of ele-
ments (0, 3), (1, 2), (2, 1) and (3, 0)). The rationale under this choice is that, intui-
tively, we are more interested in knowing if the largest high-frequency component 
is big enough to justify a high sampling rate rather than considering the effect of 
multiple high-frequency components combined. The low-frequency components of 
the matrix are not taken into account in the computation of MaxC.

Figure  5 illustrates the determination of MaxC in a 5 × 5 coefficient matrix in 
which we consider diagonals 0 through 3 as low-frequency diagonals. As shown, 
MaxC is 3, since it is the highest absolute value among all the high-frequency 
diagonals. Although larger values appear in the low-frequency diagonals, they are 
ignored.

Then, a simple test is conducted to decide the new sampling rate for the tile: 
MaxC is compared against two different thresholds.

• The first threshold, which we label Reduce Threshold ( TR ), represents the maxi-
mum frequency a tile can contain for it to be sampled at a rate lower than the 
current one. If MaxC is lower than the Reduce Threshold, the sampling rate for 
the tile is reduced.

• The second threshold, which we label Increase Threshold ( TI ) represents the 
maximum frequency a tile can contain for it to be sampled at the current rate. 
If MaxC is greater than the Increase Threshold, the sampling rate for the tile is 
increased.
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In the case that MaxC is neither lower than the Reduce Threshold nor greater than 
the Increase Threshold, the sampling rate for the tile does not change. The new sam-
pling rate for each tile is stored and used to process it in the next frame. The scene 
is, therefore, not sampled uniformly neither in space nor time: each tile is rasterized 
with an independent sampling rate and it may be modified across frames to adapt to 
image changes.

Figure 6 shows the Finite State Machine (FSM) that manages the dynamic sam-
pling rate determination. We consider five different sampling rates: sampling at the 
center of every pixel (baseline sampling rate) and sampling at the center of every 
square block of 4, 16, 64 or 256 pixels (as shown in Fig. 7). We will refer to these 
sampling rates as 1× , 1∕4× , 1∕16× , 1∕64× and 1∕256× , respectively. These sampling 
rates are motivated by the baseline GPU architecture employed in this work, which 
utilizes tiles of 16 × 16 pixels. Each state in the FSM corresponds to halving the 
previous sample rate in both X and Y dimensions, and the lowest state only gener-
ates one sample per tile. The transitions among states are controlled by the heuristic 
decision described above, based on a <T ,D> tuple that contains: the Thresholds (T) 
to which MaxC is compared to, and the number of low-frequency matrix Diagonals 
that are ignored (D) for its computation. We label as <TR,DR> the tuples for the 
Reduce transitions and as <TI ,DI> the tuples for the Increase transitions.

10 -7 5 -4 1

8 6 4 2 -1

-4 5 -3 -1 1

3 -2.5 2 1 0.5

2 -1 1 0.5 0.5

Diagonal 0

Diagonal 1

Diagonal 2

Diagonal 3

Low-Frequency 
Diagonals

High-Frequency 
Diagonals

MaxC

Fig. 5  MaxC determination example

Reduce SR
Increase SR

Always

1x 1/ 4x 1/ 16x 1/ 64x 1/ 256x

Maintain SR

Fig. 6  Dynamic sampling rate Finite-State Machine
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As images generated with lower sampling rates have fewer high-frequency com-
ponents and different sampling rate requirements, each transition in the FSM has 
individual values for <TR,DR> and for <TI ,DI> . Apparently, the FSM has 4 Increase 
and 4 Decrease transitions. However, at 1∕256× rate, fragments are sampled just 
once and the resulting tile contains a single plain color. As there is no spatial fre-
quency in it, the heuristic cannot make decisions based on the coefficient matrix. 
Our FSM conservatively forces the 1∕256× state to always transition back to 1∕64× . 
Consequently, we must set parameter values for 3 Increase and 4 Reduce transitions 
in the FSM. Adequate values for these parameters have been empirically determined 
through extensive experiments with the objective to reduce GPU activity (samples) 
while keeping the original image quality. Section 4 describes the methodology fol-
lowed to find such optimal <TR,DR> , <TI ,DI> values for each sampling rate.

Although in this work we consider sampling once per fragment to be the highest 
sampling rate, DSR can easily be integrated in GPUs that allow higher sampling 
rates, such as the ones implementing Supersampling Antialiasing (SSAA). The max-
imum sampling rate that those GPUs provide will be used as DSR’s baseline sam-
pling rate. DSR will then selectively apply SSAA by dynamically determining which 
regions of the screen require it. DSR can also be combined with the widely spread 
Multisampling Antialiasing (MSAA) approach [18]. With MSAA, depth is sampled 
at several points per pixel (usually 4), while the fragment shader is only computed 
at the pixel center. All the samples that pass the depth test receive the output of the 
shader. As DSR only changes the frequency in which shaders are executed, DSR can 
also be applied on systems that use MSAA.

4  Parameter selection

This section describes the empirical methodology to find the best values for DSR 
parameters such that frames are rendered at the lowest possible average sample rate 
(ASR) without producing any visible error.

As depicted in Algorithm  1, we perform an exhaustive parameter explora-
tion. For each parameter combination under test we render all frames, adjusting 
the sample rate of each tile according to the output of the heuristic. During the 
search, any combination that produces even a single erroneous frame is directly 

Fig. 7  The five sampling rates considered in our experiments, from 1× (left) to 1∕256× (right)
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discarded. Otherwise, the achieved ASR across all frames is computed for that 
combination. Eventually, we choose the parameter combination that produces the 
lowest ASR.

Frame errors are computed by comparing the image quality of the produced 
frames with respect to the frame rendered at baseline sampling rate using the Mean 
Structural Similarity Index (MSSIM [19]), a widely adopted, perceptually-based 
quality metric that estimates the visual impact of changes in image luminance and 
contrast caused by compression distortions. The MSSIM has been shown to out-
perform other similarity metrics that just measure differences in pixel color, such 
as PSNR and MSE, in terms of quality [20, 21] as it correlates better with the per-
ception of the human visual system. A frame error occurs whenever the obtained 
MSSIM is lower than 95, as it is the point at which defects can be discerned by 
human beings [22].

Each parameter combination contains a set of 14 different parameters (four 
<TR,DR> pairs for the Reduce transitions and three <TI ,DI> pairs for the Increase 
transitions). Even considering just a few values for each parameter (say n), the 
sheer amount of combinations to consider ( n14 ) makes an exhaustive exploration 
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unfeasible. We adopt instead a divide and conquer approach in which we first only 
focus on finding the best parameters for the Increase transitions. Next, those val-
ues are used and kept constant in Algorithm 1 to find the best parameters for the 
Reduce transitions. By splitting the parameter search into two steps, we substan-
tially limit the number of combinations to explore and we can execute an exhaus-
tive search.

Note however that during the first step we cannot apply Algorithm 1: without 
values set for the <TR,DR> pairs, the procedure lacks a mechanism to dynami-
cally reduce the sample rates and the FSM never reaches the lowest states. Con-
sequently, we must provide an alternative sampling rate reduction mechanism for 
this first step. Such mechanism must produce tiles at low enough sampling rates 
that Increase transitions are required to prevent errors due to undersampling. Oth-
erwise (if Increase decisions were never required) we would not test the capabili-
ties of the parameter combinations to produce a low ASR while not producing 
frame errors.

To build an effective reduction mechanism we first conduct a simple preliminary 
experiment that finds near-optimal sample rates for each of the tiles in all frames. 
Those values will act as references and will stay constant during the exploration of 
the Increase parameters. The reduction mechanism consists in always choosing the 
lowest sampling rate between the reference value and the outcome of the heuristic 
(which either increases the sampling rate or keeps it the same).

This preliminary experiment first generates the images of all tiles in all frames at 
all five sampling rates. It then sequentially analyzes tile by tile the five alternatives 
and selects the lowest one that does not produce visible errors compared with the 
same tile at baseline sampling. We term these sample rates Local Minimum, because 
image discrepancies are not analyzed at full frame level but just at tile level. As 
such, they may not be the optimal sample rates (optimal values may be lower when 
discrepancies are analyzed at frame level) but they are low enough to be used as a 
reference in our reduction mechanism.

Algorithm  2 shows the procedure to find the best parameters for the Increase 
transitions (the first step). Akin to Algorithm 1, for each tile it computes the DCT 
and decides whether or not to increase the current sampling rate according to the 
<TI ,DI> parameters under test (Lines 5–9). However, unlike Algorithm 1, it next 
considers overriding that decision by choosing instead the stored Local Minimum 
sample rate for the next frame (Line 11) in case that it is lower. As the algorithm can 
select a sampling rate lower than the Local Minimum, the found parameters gravi-
tate towards the optimal sampling rates.
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5  Implementation

This section describes the combinational logic and memory structures required to 
implement Dynamic Sampling Rate, and how the frequency analysis and sample 
rate determination are integrated within the Raster Pipeline.

5.1  Pipeline integration

The Dynamic Sample Rate technique uses a FSM (see Fig.  6) to dynamically 
determine the sampling rate of each tile based on its current state and its MaxC. It 
requires a new hardware structure called Sampling Rate Table (SRT), with one entry 
per tile, that holds the state of each tile in a frame. Since the FSM has 5 different 
states, a state can be represented with 3 bits. Consequently, for a frame resolution 
of 1080 × 1920 pixels (as modelled in our experiments) there are 8100 tiles and the 
storage overhead of the SRT is 2.96 KB.

Other than the SRT, Dynamic Sampling Rate requires very minor modifications 
to the pipeline, as shown in Fig. 8. Tiles are scheduled and primitives are fetched in 
the same way as in the baseline because the sampling rate only affects the discretiza-
tion process. The Rasterizer still produces Quads (square groups of four adjacent 
fragments), so they can be depth tested, shaded and blended as in the baseline. The 
main difference is that the screen area covered by each fragment is bigger than a 
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pixel when the sampling rate is lower than 1× . We refer to those fragments as Super-
fragments and to a group of four Superfragments as Superquads. Producing a super-
fragment at a sampling rate of 1/N × N only requires sampling at the center of a grid 
of N × N pixels.

Whenever a tile starts its processing, its state (hence the associated sampling rate) 
is fetched from the Sampling Rate Table. The Rasterizer generates Superfragments 
according to the stored state. The Depth and Color Buffers already have capacity to 
hold temporary values for the 256 pixels ( 16 × 16 pixel tiles) of the baseline resolu-
tion. Fragments within a Superfragment share depth and color, so, only one read/
write operation in the Depth Buffer is executed when depth testing a Superfragment 
and only one read/write operation in the Color Buffer is executed when blending a 
Superfragment. This results in some entries of the Color Buffer not being initialized 
after a tile finishes its processing.

When all primitives in a tile have been processed, the final color values of the 
Superfragments present in the Color Buffer are upsampled by replicating their value 
to all pixels that belong to the Superfragment. Afterwards, the contents of the Color 
Buffer are transferred to main memory and the DCT computation of the tile starts in 
the Frequency Analysis Unit.

5.2  Frequency analysis unit

The 2D DCT is a separable function [23]. This property allows to transform a N × N 
Input image into the frequency domain by successively applying 1D transforms, first 
along the rows and then along the columns (or vice-versa). By considering separa-
bility, the well-known 2D-DCT formula can be rearranged as shown in Eq. 1:

where 0 ≤ p, q ≤ N − 1 and the scale factors � are defined as:

(1)DCT(p, q) = �(p)�(q)

N−1∑
m=0

cos
(2m + 1)�p

2N

N−1∑
n=0

Inputmn cos
(2n + 1)�q

2N

Fig. 8  Raster pipeline with DSR
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The 2D-DCT formula is usually expressed in matrix notation as [24]:

where K is the so-called Kernel Matrix, that contains precomputed values for both 
the scale factors and the cosine functions in the form of:

Our frequency analysis scheme uses the Synopsys’s implementation of the 2D DCT 
transform from their DesignWare library [25]. This module is based on the afore-
mentioned Kernel Matrix precomputation and row-column decomposition. The 
computation of the 2D DCT shown in Eq. 3 is divided in two steps, decoupled by 
an auxiliary buffer (Aux) that holds temporary results. The first step computes the 
1D-DCT of the rows ( Aux = (K Input)T ) and the second step completes the 2D com-
putation ( DCT = (K Aux)T ). In the Synopsys implementation, a single buffer is used 
for storing both the temporary and final results. This buffer, which we name DCT 
Buffer, is written by columns and read by rows to emulate the two transpositions.

Figure  9 shows a block diagram of the Frequency Analysis Unit and its data-
flow: the input data is read from the Color Buffer 1  and is multiplied by the Kernel 
Matrix 2  using a series of compute units. Each unit computes the 1D-DCT of a row 
and stores the result in the DCT Buffer 3  . Since the tiles in our modeled GPU are 
composed of 16x16 pixels and the frequency analysis unit contains 4 compute units, 
each unit sequentially processes 4 rows. Once the 16 rows have been processed, the 
second pass is performed: the temporary contents of the DCT Buffer 4  are multi-
plied to the Kernel Matrix and stored back in the DCT Buffer 5  , four columns at a 
time, until the final 2D DCT is computed.

The original Synopsys design operates sequentially in each row and column, as it 
does not have hardware to compute multiple 1D-DCTs in parallel. This implies sig-
nificant time overheads to compute the entire 2D-DCT of 16 × 16 elements. We have 
slightly modified the design by replicating the compute units. Experimentally, we 
have determined that with 4 compute units the frequency analysis and sampling rate 
determination do not cause stalls in the pipeline and the energy and area overheads 
are minimal (results in Sect. 7).

Once the DCT computation ends, the hardware 6  estimates the best sampling 
rate for that tile using the scheme presented in Sect. 3: it first uses the matrix of coef-
ficients (ignoring the D first diagonals) to compute MaxC; then, following the FSM 
in Fig. 6, it decides the new tile state (hence a corresponding sampling rate), based 
on the current state 7  and the comparison between MaxC and the T threshold. 

(2)�p = �q

⎧
⎪⎨⎪⎩

1√
N

if p = 0 or q = 0�
2

N
otherwise.

(3)DCT = K Input KT = (K(K Input)T )T

(4)Kpq =

⎧
⎪⎨⎪⎩

1√
N

if p = 0�
2

N
cos

(2q+1)�p

2N
otherwise.
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Finally, the new tile state is stored in the SRT 8  to indicate the sampling rate to be 
used in the following frame.

6  Experimental framework

The set of benchmarks employed in our experiments include ten unmodified 
commercial Android graphics applications that represent the current landscape 
of real-time rendering in mobile devices (see Table 1). The benchmark set con-
sists of contemporary applications with tens of millions of downloads in Google 
Play [26] and includes a variety of workloads: from 2D applications with sim-
ple models (e.g., tsd) to 3D applications with detailed scenes (e.g., gob). The 
applications are also diverse in how the camera is placed and moved through the 
scene. The set includes benchmarks with the static-camera scenes (clr, dbz, hea, 
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tsd) and simple scrolls (brs, med, sod, rok) that characterize mobile applications 
and also scenes with free-from and swift camera movements (gob, min).

The experimental framework used in this work is composed of three different 
stages: 

1. The benchmarks are first run on a smartphone equipped with an Adreno 530 GPU 
and a 5.15-inch, 1080p display. The smartphone is connected to GAPID [27], an 
open source debugging tool that captures the OpenGL API calls of an application 
to the graphics card driver. After all the loading screens have been cleared, the 
game is played for several seconds with human-generated inputs, which allows 
GAPID to obtain a file containing all the executed OpenGL commands of 100 
frames of archetypal execution.

2. The logged commands are then fed to the software-based back-end included in 
Gallium3D [28], which implements all the stages of the Graphics Pipeline and 
runs it on a CPU. We instrument the execution of the software renderer to obtain 
a complete instruction and memory trace of the application.

3. The trace drives the execution of the cycle-accurate simulator of the TEAPOT 
toolset [29], from which we obtain timing and energy results. The parameters 
used in our experiments are presented in Table 2 and model a TBR architec-
ture resembling the ARM Mali-450 GPU [30]. The simulator has been extended 
to include all the combinational logic and local memory structures required by 
DSR. Additionally, the Frequency Analysis Unit described in Sect. 5.2 has been 
implemented in VHDL and synthesized to obtain its delay and power using the 
Synopsys Design Compiler, the modules of the DesignWare library and the 28/32 
nm technology library from Synopsys [31].

Table 1  Benchmark suite Benchmark Alias Genre

Brawl Stars brs Beat’em Up
Clash Royale clr Real-Time Strategy
Dragon Ball Z: Dokkan Battle dbz Board Game, Puzzle
Guns of Boom gob First-Person Shooter
Hearthstone hea Collectible Card Game
Merge Dragons! med Puzzle
Minecraft min Sandbox
Rise of Kingdoms: Lost Crusade rok Real-Time Strategy
Sonic Dash sod Endless Runner
Toy Story Drop! tsd Puzzle
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7  Results

In this section, we present the energy and performance gains of our proposal com-
pared to those of the baseline GPU. Figure  10 shows the energy consumption of 
the whole system (GPU plus memory) with our DSR proposal normalized to the 
Baseline described in Section 2.1. We can see that having independent and dynamic 
sampling rates for each tile achieves an average 40% reduction of energy, with sav-
ings up to 67% (for dbz). Figure 10 also shows the minor costs of activating DSR: 
the static and dynamic energy consumption of the Sampling Rate Table, and the 

Table 2  GPU simulation parameters

Baseline GPU parameters

Tech Specs 400 MHz, 1 V, 32 nm
Screen Resolution 1080 × 1920

Tile Size 16 × 16 pixels

Main memory

Latency 50–100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Size 1 GB

Queues

Vertex (2x) 16 entries, 136 bytes/entry
Triangle, Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way associative, 4 KB, 1 bank, 1 cycle
Texture Caches ( 4×) 64 bytes/line, 2-way associative, 8 KB, 1 bank, 1 cycle
Tile Cache 64 bytes/line, 8-way associative, 128 KB, 8 banks, 1 cycle
L2 Cache 64 bytes/line, 8-way associative, 256 KB, 8 banks, 2 cycles
Color Buffer 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle
Depth Buffer 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 triangle/cycle
Rasterizer 16 attributes/cycle
Early Z test 32 in-flight quad-fragments

Programmable stages

Vertex Processor 1 vertex processor
Fragment Processor 4 fragment processors

Additional hardware

Sample Rate Table 8100 entries, 4 bits/entry
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logic and temporary memory required to compute the 2D DCT of the tiles (Fig. 9). 
All together, they represent less than 2% of the total energy consumption and less 
than 1% of the area of the baseline GPU.

Figure  11 shows the reduction in execution cycles of DSR normalized to the 
Baseline design and broken down into Geometry and Raster cycles. On average, 
our proposal leads to 1.9× speedup in the Raster Pipeline, with maximums of more 
than 4× (dbz). This translates into a 36% global execution time reduction, since the 
Geometry Pipeline contains no modifications with respect to the baseline. Note 
that we do not incur in any execution time penalty, as the frequency analysis of the 
tiles and their sampling rate determination is completely overlapped with the Raster 
Pipeline activity.

Fig. 10  Energy consumption of DSR compared to the baseline GPU

Fig. 11  Execution time of DSR compared to the baseline GPU
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The benefits in energy consumption and execution time of DSR are caused by 
sampling most tiles at lower rates, as shown in Fig.  12. Benchmarks with static 
scenes, (clr, dbz, hea or tsd) are able to achieve a considerable drop in Average Sam-
ple Rate, as tiles will generally maintain its frequency across frames. Therefore, tiles 
that do not require to be sampled at 1× rate will have the opportunity to be sampled 
at a lower rate, and that lower rate will be maintained for a long period of time. 
DSR is also able to obtain an important ASR reduction in applications for which the 
scene is moving, such as med or rok. While constantly changing geometry results 
in a majority of the tiles needing to be sampled in the baseline rate, there is still a 
significant portion of the scene that can be rendered at a much lower rate, yielding 
ASR reductions of more than 35%. Those portions of the scene can even be found in 
applications that experience swift, constant changes in the camera, such as sod.

On average, less than half of the tiles are sampled at the baseline rate, while 
almost 40% of the tiles are processed using the two lowest sampling rates ( 1∕64× 
and 1∕256× ). The Average Sample Rate across all benchmarks and frames is thus 
reduced to 0.36 samples per fragment. This greatly reduces the activity of the Frag-
ment Shaders, as shown in Fig. 13. DSR reduces the average number of processed 
fragments by 66% and the number of texture accesses to main memory by 28% 
when compared to the Baseline. The gap between both numbers is caused by an 
increase in sparsity: as samples are taken at larger intervals, the likelihood of reusing 
a texture cache line is smaller than in the Baseline. However, the great reduction in 
processed fragments still allows for significant savings in overall texture traffic.

Rendered scenes in real-time applications tend to smoothly vary across con-
secutive frames. Therefore, the sampling rate requirements of tiles may evolve 
over time. As DSR analyzes the frequencies of the scene after rendering each 
tile, it manages to dynamically capture such changes and quickly adjust the sam-
pling rates of all individual tiles accordingly. Figure 14 illustrates this process by 
depicting the fluctuations in the sampling rate of 4 tiles of the application gob, 
starting at the beginning of the captured execution and running it for 50 frames. 

0.36
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Fig. 12  Breakdown of sampling rates
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We can observe that DSR starts sampling all the tiles at the maximum rate, 1× 
( 1 ) . Tiles A,B and C can be sampled at a much lower sampling rate, and spend 
a small transitory period of time continuously reducing their sampling rate ( 2 ) 
until their optimal rate for their current spatial frequency is found ( 3 ) . Tiles 
remain in their estimated-optimal sampling rates (e.g., 4  , 5  ) until the spatial 
frequencies in them change (e.g., 6  ). Note how every time that a tile is sampled 
at 1/256x rate (e.g., 7  ), the sampling rate is immediately increased in the follow-
ing frame, as described in Fig. 6. It can be observed that the scene is not sampled 
uniformly neither in space (in a particular frame the sampling rate of the 4 tiles 

Fig. 13  Shader activity of DSR compared to the baseline GPU

Fig. 14  Evolution of the sampling rate of 4 different tiles over several frames
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is normally different) nor in time (the sampling rate of a particular tile changes 
across the frames).

In our experiments, DSR has not produced a single error in all the generated 
frames, i.e., has not rendered any frame with a MSSIM lower than 95 when com-
pared with the frame rendered at baseline sampling rate. Despite our benchmarks 
containing swift camera movements and object displacements across the screen, 
the similarity between consecutive frames allows the reuse of the estimated-best 
sampling rates without producing any visual artifacts. Albeit a sparse phenome-
non, more abrupt alterations may occur in a particular frame, such as in a change 
of scene. The correctness of DSR cannot be guaranteed in these rare scenarios, as 
it is based on frame coherency. We have performed an experiment to quantify the 
effect that DSR has on image quality whenever there is a scene change. To do so, 
three additional 100-frame traces for the benchmarks listed in Table  3 have been 
generated. Each trace contains two different scene changes, emulated by entering 
and exiting the pause or settings menu of the application. With the renderization of 
these applications’ frames with DSR active, we have observed that only the frame 
rendered immediately after each of the six scene changes is erroneous. Subsequent 
frames are indistinguishable from frames rendered at baseline sampling rate. It is 
well documented that the human eye requires some time to construe visual infor-
mation, as scenes cannot be properly recreated in less than 67ms [32]. This time is 
greater than what a single frame lasts in 30 frames per second, the frame rate which 
is considered to be the minimum acceptable [33, 34], so we can conclude that these 
potential errors affect only a single frame and will not be perceived by the user.

8  Related work

There is a lot of interest in the graphics community in reducing shading costs 
so that more complex and realistic scenes can be rendered. Several techniques 
dynamically detect regions of the screen that can be sampled at lower rates by 
adding additional pipeline stages before or after the shading process. Deferred 
Adaptive Compute Shading [35] divides the framebuffer into levels, subsets of 
pixels progressively farther apart. Fragments are only shaded if the neighbor pix-
els from the previous level are not similar. Otherwise, the color of the fragment is 
computed by averaging the results of its neighbors. The work of Sathe and Ake-
nine-Möller [13] reuses shading computations for triangles that share an edge by 
adding a comparison queue before the processing stage. In Adaptive Image-Space 
Sampling [15], the resolution is reduced in areas that contain less perceivable 

Table 3  Additional benchmarks 
for the image quality experiment

Benchmark Genre

Alto’s Odyssey Endless Runner
PlayerUnknown’s Battlegrounds Battle Royale
Homescapes Puzzle
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detail, which are evaluated with an additional pass after the geometry processing. 
Conversely, DSR is architected to not introduce any time overhead by completely 
overlapping the sampling rate estimation for a tile with the rendering of the next 
one.

To avoid the runtime overhead of determining components with less detail, 
several works allow the programmer to statically determine the sampling rate. 
In coarse Pixel Shading [8], the sample rate of each primitive can be controlled 
based on their vertex attributes. He et al. [11] design new language abstractions 
that grant each shader program the ability to determine which components can be 
processed at which rate. In NVIDIA’s Variable Rate Shading [12], the program-
mer decides which sampling rate to apply in each section of the screen. DSR, 
on the other hand dynamically estimates the best sampling rates in each tile by 
using a hardware-only mechanism, in a completely transparent manner to the 
programmer.

Frame coherence has been previously leveraged to reduce the number of sam-
ples to process. In Checkerboard rendering [14], each frame shades an alternate 
half of the pixels in the screen. The color of the non-shaded half is obtained by 
applying reconstruction filters to the results obtained in the preceding frame. A 
large number of shading computations are avoided at the cost of some visual arti-
facts, since the lossy nature of the reconstruction and the fixed undersampling 
cannot perfectly reproduce neither motion nor visibility changes. In contrast, 
DSR estimates sampling rates at the finer granularity of tiles, can render tiles 
at the small rate of only one fragment per tile and does not affect image quality 
because it only reduces the sampling rate whenever a tile does not contain high 
spatial frequencies.

9  Conclusions

This paper proposes Dynamic Sampling Rate (DSR), a novel microarchitectural 
technique to reduce shader executions by determining the lowest sampling rate for 
each tile in a frame that does not reduce the overall quality of the rendered images. 
DSR analyzes the frequency components of a tile once it has been processed and 
decides the rate in which the tile’s triangles will be sampled in the following frame. 
The sampling rate prediction leverages the frame-to-frame coherence inherent in 
animated graphics applications, which results in a high likelihood that the frequency 
components of a tile are maintained across consecutive frames.

We have shown that for a set of unmodified commercial Android applications 
DSR reduces the fragment-level redundancy by 66% on average with minimal hard-
ware overhead, leading to an average speedup of 1.68× and energy savings of 40%.
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