
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04413-7

1 3

Dynamic sampling rate: harnessing frame coherence
in graphics applications for energy‑efficient GPUs

Martí Anglada1 · Enrique de Lucas2 · Joan‑Manuel Parcerisa1 ·
Juan L. Aragón3 · Antonio González1

Accepted: 26 February 2022
© The Author(s) 2022

Abstract
In real-time rendering, a 3D scene is modelled with meshes of triangles that the
GPU projects to the screen. They are discretized by sampling each triangle at regu-
lar space intervals to generate fragments which are then added texture and light-
ing effects by a shader program. Realistic scenes require detailed geometric models,
complex shaders, high-resolution displays and high screen refreshing rates, which all
come at a great compute time and energy cost. This cost is often dominated by the
fragment shader, which runs for each sampled fragment. Conventional GPUs sam-
ple the triangles once per pixel; however, there are many screen regions containing
low variation that produce identical fragments and could be sampled at lower than
pixel-rate with no loss in quality. Additionally, as temporal frame coherence makes
consecutive frames very similar, such variations are usually maintained from frame
to frame. This work proposes Dynamic Sampling Rate (DSR), a novel hardware
mechanism to reduce redundancy and improve the energy efficiency in graphics
applications. DSR analyzes the spatial frequencies of the scene once it has been ren-
dered. Then, it leverages the temporal coherence in consecutive frames to decide, for
each region of the screen, the lowest sampling rate to employ in the next frame that
maintains image quality. We evaluate the performance of a state-of-the-art mobile
GPU architecture extended with DSR for a wide variety of applications. Experimen-
tal results show that DSR is able to remove most of the redundancy inherent in the
color computations at fragment granularity, which brings average speedups of 1.68x
and energy savings of 40%.

Keywords GPU · Tile-Based Rendering · Fragment Shading · Sampling

 * Martí Anglada
 manglada@ac.upc.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1204-1841
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04413-7&domain=pdf

 M. Anglada et al.

1 3

1 Introduction

The growing computing capabilities of today’s mobile devices allow for real-
time rendering of complex 3D scenes. Supporting users’ demands for ever richer
applications clashes with the battery-operated nature of those devices, which
makes energy efficiency paramount. In particular, previous studies have described
the GPU as the most energy-demanding component of mobile SoCs for graphics
workloads [1–3].

In real-time graphics, the geometry of objects is modelled with a set of verti-
ces, which the GPU processes, assembles into flat polygons (normally triangles),
and projects to the screen plane. Triangles are then discretized into arrays of pix-
els by sampling their surfaces at regular intervals to produce a fragment (i.e., a set
of attributes such as color, depth, normal, etc.) for each sampled location, often
just once per pixel. Fragments are then conveniently textured, shaded and blended
to obtain a final color value per pixel.

On the one hand, if parts of the scene contain high spatial frequencies, sam-
pling triangles at a low rate may be insufficient to capture fine details and would
cause aliasing effects, such as jagged edges or flickering. Supersampling is an
approach that relieves these artifacts by sampling at higher rates and combin-
ing the results into a single color. However, it involves large energy and perfor-
mance costs since it increases the number of generated fragments [4], and it is
well documented that fragment processing is the most energy consuming stage
of the graphics pipeline due to the amount of computations and memory accesses
required [5–7]. For that reason, supersampling is rarely applied in real-time ren-
dering applications, especially in mobile GPUs, and scenes are usually rendered
at one color sample per pixel.

On the other hand, sampling all triangles at the same rate is not efficient
because not all parts of the screen require the same sampling rate [8]. Figure 1
illustrates this phenomenon by comparing two different regions of the screen in a
given frame: while 1c contains significant level of detail, 1b is homogeneous with
a single color and, therefore, does not require per-pixel sampling. We have quan-
tified, for a variety of mobile graphics applications, the number of 16x16-pixel
regions of the screen that do not contain enough level of detail for them to require
one sample per pixel. Figure 2 shows that on average almost half of the screen can
be processed at a lower sampling rate without affecting image quality. Properly
identifying and removing the large amount of resources devoted to these unneces-
sary computations can lead to a substantial reduction in energy consumption.

Based on the above observations, this paper presents Dynamic Sampling Rate
(DSR): a hardware mechanism that dynamically finds and applies, for each part
of the scene, the optimal sampling rate, i.e., the lowest sampling rate that does
not cause visible artifacts in the rendered image. DSR is designed for Tile-Based
Rendering (TBR) architectures [9], a common pipeline organization in mobile
devices that divides the screen into rectangular sections -tiles- and renders them
in succession, allowing the storage of temporary values in on-chip buffers to avoid
their corresponding accesses to main memory. After the rendering of a tile to the

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

on-chip color buffer finishes, DSR computes the Discrete Cosine Transform of
the resultant tile image, analyzes the spatial frequencies present in it and decides,
based on a simple heuristic, the best sampling rate for the tile: whether it could
have been sampled at a lower rate without sacrificing image quality, whether it
contains enough detail that the sampling rate needs to be increased or whether

Fig. 1 Difference in level of detail across a frame. a Frame of the game Guns of Boom. b Region with
low level of detail. c Region with significant level of detail

0

10

20

30

40

50

60

selit fo egatnecreP

Fig. 2 Number of 16 × 16 tiles that can be sampled at a rate lower than one sample per pixel without
generating per-tile visible artifacts. Section 4 describes the methodology employed for this categorization

 M. Anglada et al.

1 3

the sampling rate is already optimal. The estimated-best rates for all the tiles are
then stored in a small on-chip Lookup Table and are queried during the following
frame, before the rendering of each tile. DSR estimates the best sampling rate for
a tile in one frame and applies it in the following frame because it takes advan-
tage of the well-known frame coherence property of graphics animations [10]:
visual smoothness is achieved by producing a (quick) succession of frames where
a large subset of tiles are very similar between two consecutive frames.

DSR addresses the shortcomings of prior work on the area of sampling at coarser
granularities to reduce the number of shader executions. The majority of approaches
rely on heavy efforts from the programmer to specify which components of the
scene contain less details such as certain lights [11] or vertex attributes [8]. Con-
versely, DSR decides the sampling rates in a completely transparent manner to the
programmer. Unlike approaches in which a static sampling rate is set for parts of
the scene (such as particular regions of the screen [12] or fragments in the bound-
ary between triangles [13]), DSR dynamically and continuously adapts the sampling
rate of the entire scene at tile granularity to closely track image changes. Addition-
ally, to the best of our knowledge, DSR is the first work to take advantage of frame
coherence for this purpose. Although frame coherence has been proposed to skip
some shader executions in the so-called Checkerboard rendering [14], such scheme
is lossy and may affect image quality. DSR, on the other hand, only reduces the sam-
pling rate in tiles that do not contain high spatial frequencies and, therefore, DSR
does not produce visual artifacts. Previous approaches that dynamically change the
sampling rate must compute their estimates in the middle of the pipeline execution
[15], whereas DSR is architected to not introduce any time overhead by overlapping
the frequency analysis of one tile with the rendering of the next one.

To summarize, the main contributions of this paper are:

• A new hardware technique, completely transparent to the programmer, that esti-
mates the lowest possible sampling rate to which each tile may be rendered with-
out producing visual artifacts and applies it during the following frame by taking
advantage of frame coherence.

• A dynamic mechanism based on real-time analysis of the spatial frequencies that
continuously adapts the per-tile sampling rate to track the image changes that
occur over time.

• A comprehensive architectural description of the frequency analysis unit and
how it is integrated within the graphics pipeline in a way that it causes no timing
overheads.

• An implementation and evaluation that shows that Dynamic Sampling Rate
reduces the shading activity by 66% and memory accesses by 28%, yielding
speedups of 1.68x and an overall energy reduction of 40% on average.

The rest of the paper is organized as follows. Section 2 reviews the common pipeline
organization of mobile GPUs and the Discrete Cosine Transform as a mean to map-
ping an image into the frequency domain. Section 3 describes the design of DSR.
Section 4 presents the approach used to set the DSR’s parameters. Section 5 illus-
trates the implementation of DSR and the changes required to the baseline GPU.

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

Section 6 presents the experimental framework and Sect. 7 quantifies the benefits of
applying DSR. Section 8 outlines some related work and Sect. 9 sums up the main
conclusions of this work.

2 Background

2.1 Tile‑based rendering

In a Tile-Based Rendering GPU, the image is rendered in two decoupled steps, as
shown in Fig. 3. First, the Geometry Pipeline processes the vertices of the three-
dimensional models, transforming and assembling them into triangles. Triangles are
then binned into the tiles that they overlap. Once the whole geometry has been pro-
cessed and stored, the Raster Pipeline executes the second step, one tile at a time.
By working on tiles, all temporary color values can be stored in the on-chip Color
Buffer, which is only flushed to main memory once all triangles of the tile have been
processed. The execution in the Raster Pipeline starts by fetching the primitives from
memory and dispatching them to the rasterizer. Then, the rasterizer samples the sur-
face of triangles at regular space intervals, generating Fragments: points inside the
triangle with interpolated information at each point. Adjacent fragments are then
arranged into groups of four called Quads and are sent to the Fragment Shaders
which compute their colors by executing user-defined programs in lockstep mode
for the four fragments. The color of each pixel in the tile is held in the Color Buffer,
and it is obtained from one fragment, by blending multiple adjacent fragments, or by
replicating the same fragment into multiple adjacent pixels, depending on whether
the sampling rate is equal, higher or lower than one per pixel, respectively.

Fig. 3 Tile-based rendering GPU

 M. Anglada et al.

1 3

2.2 Frequency analysis

The typical sampling rate of a scene is one sample per pixel. According to the
Nyquist Sampling Theorem [16], such a sampling rate allows capturing changes in
the image every two pixels or more, i.e., with a frequency smaller or equal than two
pixels. As shown in Fig. 1, not all regions of the screen contain high frequencies, or
changes in the image in a short space. Therefore, a (much) lower sampling rate may
be enough to represent the original signals. We propose to analyze the frequencies
of each rendered tile to decide the sampling rate to be applied to it in the following
frame.

A well known mechanism to obtain the frequency components of an image is the
Discrete Cosine Transform (DCT) [17]. As a Fourier-related transform, the DCT
maps a function (an image) from the spatial domain to a set of coefficients of basis
functions localized in the frequency spectrum. Those basis functions correspond to
sinusoids of a certain frequency and are visually represented in Fig. 4. It can be seen
that as either the x or y axis increase, the basis function is a sinusoid with higher
variation rate, i.e., with higher frequency. Applying a 2D DCT to a block of NxN
pixel colors results in a NxN matrix of values, the coefficients of the linear combina-
tion of basis functions which represent the original image in the frequency domain.
The coefficient present in each element of the matrix indicates how much of that
particular frequency is found in the original image.

The 2D DCT has several characteristics that make it an ideal choice for the type
of real-time frequency analysis we require to find the optimal sampling rate for a
tile:

• It assumes an even symmetry of the function: by construction, the image is mir-
rored in all its borders, which avoids artificial high frequency components that
other transforms introduce by only considering a NxN pixel subset of the image.

• It has very high energy compaction, which means that the great majority of fre-
quency information is summarized in the upper-left region of the result matrix.
This allows us to make sampling rate decisions only considering a subset of the
NxN coefficients.

Fig. 4 DCT basis functions for
N = 8 pixels

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

• It has a low complexity cost in comparison with other transforms as only cosines
are computed.

Additionally, the 2D DCT is a separable function, which allows for the linear com-
putation of all the elements in one dimension followed by the linear computation of
all the elements in the second dimension. These characteristics allow us to imple-
ment a fast and energy efficient hardware unit to analyze the frequency components
of a tile, explained in more detail in Sect. 5.

3 Dynamic sampling rate

This section describes how the 2D DCT is used to estimate the optimal sampling
rate for a tile, i.e., the lowest sampling rate that does not introduce visible artifacts in
the overall frame, and how to dynamically adapt it to image changes over time.

When the rendering process of the tile finishes, the Color Buffer contains the
final color for all the pixels of the tile. We propose to add a small hardware unit
that takes these colors as inputs to compute the 2D DCT and analyzes the resulting
matrix of coefficients to determine if the current sampling rate for the tile is optimal.
All the DCT coefficients are first aggregated into a single value that summarizes the
amount of high-frequency information of the tile. Although a wide variety of met-
rics exist, we empirically determined that the maximum absolute value among the
coefficients corresponding to high-frequency diagonals suffices, and we will refer to
it as MaxC (we term here diagonal k as the set of all elements of the matrix whose
row index plus column index is equal to k: for instance, diagonal 3 consists of ele-
ments (0, 3), (1, 2), (2, 1) and (3, 0)). The rationale under this choice is that, intui-
tively, we are more interested in knowing if the largest high-frequency component
is big enough to justify a high sampling rate rather than considering the effect of
multiple high-frequency components combined. The low-frequency components of
the matrix are not taken into account in the computation of MaxC.

Figure 5 illustrates the determination of MaxC in a 5 × 5 coefficient matrix in
which we consider diagonals 0 through 3 as low-frequency diagonals. As shown,
MaxC is 3, since it is the highest absolute value among all the high-frequency
diagonals. Although larger values appear in the low-frequency diagonals, they are
ignored.

Then, a simple test is conducted to decide the new sampling rate for the tile:
MaxC is compared against two different thresholds.

• The first threshold, which we label Reduce Threshold (TR), represents the maxi-
mum frequency a tile can contain for it to be sampled at a rate lower than the
current one. If MaxC is lower than the Reduce Threshold, the sampling rate for
the tile is reduced.

• The second threshold, which we label Increase Threshold (TI) represents the
maximum frequency a tile can contain for it to be sampled at the current rate.
If MaxC is greater than the Increase Threshold, the sampling rate for the tile is
increased.

 M. Anglada et al.

1 3

In the case that MaxC is neither lower than the Reduce Threshold nor greater than
the Increase Threshold, the sampling rate for the tile does not change. The new sam-
pling rate for each tile is stored and used to process it in the next frame. The scene
is, therefore, not sampled uniformly neither in space nor time: each tile is rasterized
with an independent sampling rate and it may be modified across frames to adapt to
image changes.

Figure 6 shows the Finite State Machine (FSM) that manages the dynamic sam-
pling rate determination. We consider five different sampling rates: sampling at the
center of every pixel (baseline sampling rate) and sampling at the center of every
square block of 4, 16, 64 or 256 pixels (as shown in Fig. 7). We will refer to these
sampling rates as 1× , 1∕4× , 1∕16× , 1∕64× and 1∕256× , respectively. These sampling
rates are motivated by the baseline GPU architecture employed in this work, which
utilizes tiles of 16 × 16 pixels. Each state in the FSM corresponds to halving the
previous sample rate in both X and Y dimensions, and the lowest state only gener-
ates one sample per tile. The transitions among states are controlled by the heuristic
decision described above, based on a <T ,D> tuple that contains: the Thresholds (T)
to which MaxC is compared to, and the number of low-frequency matrix Diagonals
that are ignored (D) for its computation. We label as <TR,DR> the tuples for the
Reduce transitions and as <TI ,DI> the tuples for the Increase transitions.

10 -7 5 -4 1

8 6 4 2 -1

-4 5 -3 -1 1

3 -2.5 2 1 0.5

2 -1 1 0.5 0.5

Diagonal 0

Diagonal 1

Diagonal 2

Diagonal 3

Low-Frequency
Diagonals

High-Frequency
Diagonals

MaxC

Fig. 5 MaxC determination example

Reduce SR
Increase SR

Always

1x 1/ 4x 1/ 16x 1/ 64x 1/ 256x

Maintain SR

Fig. 6 Dynamic sampling rate Finite-State Machine

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

As images generated with lower sampling rates have fewer high-frequency com-
ponents and different sampling rate requirements, each transition in the FSM has
individual values for <TR,DR> and for <TI ,DI> . Apparently, the FSM has 4 Increase
and 4 Decrease transitions. However, at 1∕256× rate, fragments are sampled just
once and the resulting tile contains a single plain color. As there is no spatial fre-
quency in it, the heuristic cannot make decisions based on the coefficient matrix.
Our FSM conservatively forces the 1∕256× state to always transition back to 1∕64× .
Consequently, we must set parameter values for 3 Increase and 4 Reduce transitions
in the FSM. Adequate values for these parameters have been empirically determined
through extensive experiments with the objective to reduce GPU activity (samples)
while keeping the original image quality. Section 4 describes the methodology fol-
lowed to find such optimal <TR,DR> , <TI ,DI> values for each sampling rate.

Although in this work we consider sampling once per fragment to be the highest
sampling rate, DSR can easily be integrated in GPUs that allow higher sampling
rates, such as the ones implementing Supersampling Antialiasing (SSAA). The max-
imum sampling rate that those GPUs provide will be used as DSR’s baseline sam-
pling rate. DSR will then selectively apply SSAA by dynamically determining which
regions of the screen require it. DSR can also be combined with the widely spread
Multisampling Antialiasing (MSAA) approach [18]. With MSAA, depth is sampled
at several points per pixel (usually 4), while the fragment shader is only computed
at the pixel center. All the samples that pass the depth test receive the output of the
shader. As DSR only changes the frequency in which shaders are executed, DSR can
also be applied on systems that use MSAA.

4 Parameter selection

This section describes the empirical methodology to find the best values for DSR
parameters such that frames are rendered at the lowest possible average sample rate
(ASR) without producing any visible error.

As depicted in Algorithm 1, we perform an exhaustive parameter explora-
tion. For each parameter combination under test we render all frames, adjusting
the sample rate of each tile according to the output of the heuristic. During the
search, any combination that produces even a single erroneous frame is directly

Fig. 7 The five sampling rates considered in our experiments, from 1× (left) to 1∕256× (right)

 M. Anglada et al.

1 3

discarded. Otherwise, the achieved ASR across all frames is computed for that
combination. Eventually, we choose the parameter combination that produces the
lowest ASR.

Frame errors are computed by comparing the image quality of the produced
frames with respect to the frame rendered at baseline sampling rate using the Mean
Structural Similarity Index (MSSIM [19]), a widely adopted, perceptually-based
quality metric that estimates the visual impact of changes in image luminance and
contrast caused by compression distortions. The MSSIM has been shown to out-
perform other similarity metrics that just measure differences in pixel color, such
as PSNR and MSE, in terms of quality [20, 21] as it correlates better with the per-
ception of the human visual system. A frame error occurs whenever the obtained
MSSIM is lower than 95, as it is the point at which defects can be discerned by
human beings [22].

Each parameter combination contains a set of 14 different parameters (four
<TR,DR> pairs for the Reduce transitions and three <TI ,DI> pairs for the Increase
transitions). Even considering just a few values for each parameter (say n), the
sheer amount of combinations to consider (n14) makes an exhaustive exploration

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

unfeasible. We adopt instead a divide and conquer approach in which we first only
focus on finding the best parameters for the Increase transitions. Next, those val-
ues are used and kept constant in Algorithm 1 to find the best parameters for the
Reduce transitions. By splitting the parameter search into two steps, we substan-
tially limit the number of combinations to explore and we can execute an exhaus-
tive search.

Note however that during the first step we cannot apply Algorithm 1: without
values set for the <TR,DR> pairs, the procedure lacks a mechanism to dynami-
cally reduce the sample rates and the FSM never reaches the lowest states. Con-
sequently, we must provide an alternative sampling rate reduction mechanism for
this first step. Such mechanism must produce tiles at low enough sampling rates
that Increase transitions are required to prevent errors due to undersampling. Oth-
erwise (if Increase decisions were never required) we would not test the capabili-
ties of the parameter combinations to produce a low ASR while not producing
frame errors.

To build an effective reduction mechanism we first conduct a simple preliminary
experiment that finds near-optimal sample rates for each of the tiles in all frames.
Those values will act as references and will stay constant during the exploration of
the Increase parameters. The reduction mechanism consists in always choosing the
lowest sampling rate between the reference value and the outcome of the heuristic
(which either increases the sampling rate or keeps it the same).

This preliminary experiment first generates the images of all tiles in all frames at
all five sampling rates. It then sequentially analyzes tile by tile the five alternatives
and selects the lowest one that does not produce visible errors compared with the
same tile at baseline sampling. We term these sample rates Local Minimum, because
image discrepancies are not analyzed at full frame level but just at tile level. As
such, they may not be the optimal sample rates (optimal values may be lower when
discrepancies are analyzed at frame level) but they are low enough to be used as a
reference in our reduction mechanism.

Algorithm 2 shows the procedure to find the best parameters for the Increase
transitions (the first step). Akin to Algorithm 1, for each tile it computes the DCT
and decides whether or not to increase the current sampling rate according to the
<TI ,DI> parameters under test (Lines 5–9). However, unlike Algorithm 1, it next
considers overriding that decision by choosing instead the stored Local Minimum
sample rate for the next frame (Line 11) in case that it is lower. As the algorithm can
select a sampling rate lower than the Local Minimum, the found parameters gravi-
tate towards the optimal sampling rates.

 M. Anglada et al.

1 3

5 Implementation

This section describes the combinational logic and memory structures required to
implement Dynamic Sampling Rate, and how the frequency analysis and sample
rate determination are integrated within the Raster Pipeline.

5.1 Pipeline integration

The Dynamic Sample Rate technique uses a FSM (see Fig. 6) to dynamically
determine the sampling rate of each tile based on its current state and its MaxC. It
requires a new hardware structure called Sampling Rate Table (SRT), with one entry
per tile, that holds the state of each tile in a frame. Since the FSM has 5 different
states, a state can be represented with 3 bits. Consequently, for a frame resolution
of 1080 × 1920 pixels (as modelled in our experiments) there are 8100 tiles and the
storage overhead of the SRT is 2.96 KB.

Other than the SRT, Dynamic Sampling Rate requires very minor modifications
to the pipeline, as shown in Fig. 8. Tiles are scheduled and primitives are fetched in
the same way as in the baseline because the sampling rate only affects the discretiza-
tion process. The Rasterizer still produces Quads (square groups of four adjacent
fragments), so they can be depth tested, shaded and blended as in the baseline. The
main difference is that the screen area covered by each fragment is bigger than a

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

pixel when the sampling rate is lower than 1× . We refer to those fragments as Super-
fragments and to a group of four Superfragments as Superquads. Producing a super-
fragment at a sampling rate of 1/N × N only requires sampling at the center of a grid
of N × N pixels.

Whenever a tile starts its processing, its state (hence the associated sampling rate)
is fetched from the Sampling Rate Table. The Rasterizer generates Superfragments
according to the stored state. The Depth and Color Buffers already have capacity to
hold temporary values for the 256 pixels (16 × 16 pixel tiles) of the baseline resolu-
tion. Fragments within a Superfragment share depth and color, so, only one read/
write operation in the Depth Buffer is executed when depth testing a Superfragment
and only one read/write operation in the Color Buffer is executed when blending a
Superfragment. This results in some entries of the Color Buffer not being initialized
after a tile finishes its processing.

When all primitives in a tile have been processed, the final color values of the
Superfragments present in the Color Buffer are upsampled by replicating their value
to all pixels that belong to the Superfragment. Afterwards, the contents of the Color
Buffer are transferred to main memory and the DCT computation of the tile starts in
the Frequency Analysis Unit.

5.2 Frequency analysis unit

The 2D DCT is a separable function [23]. This property allows to transform a N × N
Input image into the frequency domain by successively applying 1D transforms, first
along the rows and then along the columns (or vice-versa). By considering separa-
bility, the well-known 2D-DCT formula can be rearranged as shown in Eq. 1:

where 0 ≤ p, q ≤ N − 1 and the scale factors � are defined as:

(1)DCT(p, q) = �(p)�(q)

N−1∑
m=0

cos
(2m + 1)�p

2N

N−1∑
n=0

Inputmn cos
(2n + 1)�q

2N

Fig. 8 Raster pipeline with DSR

 M. Anglada et al.

1 3

The 2D-DCT formula is usually expressed in matrix notation as [24]:

where K is the so-called Kernel Matrix, that contains precomputed values for both
the scale factors and the cosine functions in the form of:

Our frequency analysis scheme uses the Synopsys’s implementation of the 2D DCT
transform from their DesignWare library [25]. This module is based on the afore-
mentioned Kernel Matrix precomputation and row-column decomposition. The
computation of the 2D DCT shown in Eq. 3 is divided in two steps, decoupled by
an auxiliary buffer (Aux) that holds temporary results. The first step computes the
1D-DCT of the rows (Aux = (K Input)T) and the second step completes the 2D com-
putation (DCT = (K Aux)T). In the Synopsys implementation, a single buffer is used
for storing both the temporary and final results. This buffer, which we name DCT
Buffer, is written by columns and read by rows to emulate the two transpositions.

Figure 9 shows a block diagram of the Frequency Analysis Unit and its data-
flow: the input data is read from the Color Buffer 1 and is multiplied by the Kernel
Matrix 2 using a series of compute units. Each unit computes the 1D-DCT of a row
and stores the result in the DCT Buffer 3 . Since the tiles in our modeled GPU are
composed of 16x16 pixels and the frequency analysis unit contains 4 compute units,
each unit sequentially processes 4 rows. Once the 16 rows have been processed, the
second pass is performed: the temporary contents of the DCT Buffer 4 are multi-
plied to the Kernel Matrix and stored back in the DCT Buffer 5 , four columns at a
time, until the final 2D DCT is computed.

The original Synopsys design operates sequentially in each row and column, as it
does not have hardware to compute multiple 1D-DCTs in parallel. This implies sig-
nificant time overheads to compute the entire 2D-DCT of 16 × 16 elements. We have
slightly modified the design by replicating the compute units. Experimentally, we
have determined that with 4 compute units the frequency analysis and sampling rate
determination do not cause stalls in the pipeline and the energy and area overheads
are minimal (results in Sect. 7).

Once the DCT computation ends, the hardware 6 estimates the best sampling
rate for that tile using the scheme presented in Sect. 3: it first uses the matrix of coef-
ficients (ignoring the D first diagonals) to compute MaxC; then, following the FSM
in Fig. 6, it decides the new tile state (hence a corresponding sampling rate), based
on the current state 7 and the comparison between MaxC and the T threshold.

(2)�p = �q

⎧
⎪⎨⎪⎩

1√
N

if p = 0 or q = 0�
2

N
otherwise.

(3)DCT = K Input KT = (K(K Input)T)T

(4)Kpq =

⎧
⎪⎨⎪⎩

1√
N

if p = 0�
2

N
cos

(2q+1)�p

2N
otherwise.

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

Finally, the new tile state is stored in the SRT 8 to indicate the sampling rate to be
used in the following frame.

6 Experimental framework

The set of benchmarks employed in our experiments include ten unmodified
commercial Android graphics applications that represent the current landscape
of real-time rendering in mobile devices (see Table 1). The benchmark set con-
sists of contemporary applications with tens of millions of downloads in Google
Play [26] and includes a variety of workloads: from 2D applications with sim-
ple models (e.g., tsd) to 3D applications with detailed scenes (e.g., gob). The
applications are also diverse in how the camera is placed and moved through the
scene. The set includes benchmarks with the static-camera scenes (clr, dbz, hea,

Color Buffer

Kernel
Matrix

Sample
Rate Table

Sampling Rate
Determination

Frequency Analysis
Unit

Combinational Logic Local Memory

1

3

2

5

7

DCT
Buffer

4

6

1D DCT
Compute Unit 0

1D DCT
Compute Unit 1

1D DCT
Compute Unit 2

1D DCT
Compute Unit 3

8

Fig. 9 Frequency Analysis Unit overview

 M. Anglada et al.

1 3

tsd) and simple scrolls (brs, med, sod, rok) that characterize mobile applications
and also scenes with free-from and swift camera movements (gob, min).

The experimental framework used in this work is composed of three different
stages:

1. The benchmarks are first run on a smartphone equipped with an Adreno 530 GPU
and a 5.15-inch, 1080p display. The smartphone is connected to GAPID [27], an
open source debugging tool that captures the OpenGL API calls of an application
to the graphics card driver. After all the loading screens have been cleared, the
game is played for several seconds with human-generated inputs, which allows
GAPID to obtain a file containing all the executed OpenGL commands of 100
frames of archetypal execution.

2. The logged commands are then fed to the software-based back-end included in
Gallium3D [28], which implements all the stages of the Graphics Pipeline and
runs it on a CPU. We instrument the execution of the software renderer to obtain
a complete instruction and memory trace of the application.

3. The trace drives the execution of the cycle-accurate simulator of the TEAPOT
toolset [29], from which we obtain timing and energy results. The parameters
used in our experiments are presented in Table 2 and model a TBR architec-
ture resembling the ARM Mali-450 GPU [30]. The simulator has been extended
to include all the combinational logic and local memory structures required by
DSR. Additionally, the Frequency Analysis Unit described in Sect. 5.2 has been
implemented in VHDL and synthesized to obtain its delay and power using the
Synopsys Design Compiler, the modules of the DesignWare library and the 28/32
nm technology library from Synopsys [31].

Table 1 Benchmark suite Benchmark Alias Genre

Brawl Stars brs Beat’em Up
Clash Royale clr Real-Time Strategy
Dragon Ball Z: Dokkan Battle dbz Board Game, Puzzle
Guns of Boom gob First-Person Shooter
Hearthstone hea Collectible Card Game
Merge Dragons! med Puzzle
Minecraft min Sandbox
Rise of Kingdoms: Lost Crusade rok Real-Time Strategy
Sonic Dash sod Endless Runner
Toy Story Drop! tsd Puzzle

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

7 Results

In this section, we present the energy and performance gains of our proposal com-
pared to those of the baseline GPU. Figure 10 shows the energy consumption of
the whole system (GPU plus memory) with our DSR proposal normalized to the
Baseline described in Section 2.1. We can see that having independent and dynamic
sampling rates for each tile achieves an average 40% reduction of energy, with sav-
ings up to 67% (for dbz). Figure 10 also shows the minor costs of activating DSR:
the static and dynamic energy consumption of the Sampling Rate Table, and the

Table 2 GPU simulation parameters

Baseline GPU parameters

Tech Specs 400 MHz, 1 V, 32 nm
Screen Resolution 1080 × 1920

Tile Size 16 × 16 pixels

Main memory

Latency 50–100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Size 1 GB

Queues

Vertex (2x) 16 entries, 136 bytes/entry
Triangle, Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way associative, 4 KB, 1 bank, 1 cycle
Texture Caches (4×) 64 bytes/line, 2-way associative, 8 KB, 1 bank, 1 cycle
Tile Cache 64 bytes/line, 8-way associative, 128 KB, 8 banks, 1 cycle
L2 Cache 64 bytes/line, 8-way associative, 256 KB, 8 banks, 2 cycles
Color Buffer 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle
Depth Buffer 64 bytes/line, 1-way associative, 1 KB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 triangle/cycle
Rasterizer 16 attributes/cycle
Early Z test 32 in-flight quad-fragments

Programmable stages

Vertex Processor 1 vertex processor
Fragment Processor 4 fragment processors

Additional hardware

Sample Rate Table 8100 entries, 4 bits/entry

 M. Anglada et al.

1 3

logic and temporary memory required to compute the 2D DCT of the tiles (Fig. 9).
All together, they represent less than 2% of the total energy consumption and less
than 1% of the area of the baseline GPU.

Figure 11 shows the reduction in execution cycles of DSR normalized to the
Baseline design and broken down into Geometry and Raster cycles. On average,
our proposal leads to 1.9× speedup in the Raster Pipeline, with maximums of more
than 4× (dbz). This translates into a 36% global execution time reduction, since the
Geometry Pipeline contains no modifications with respect to the baseline. Note
that we do not incur in any execution time penalty, as the frequency analysis of the
tiles and their sampling rate determination is completely overlapped with the Raster
Pipeline activity.

Fig. 10 Energy consumption of DSR compared to the baseline GPU

Fig. 11 Execution time of DSR compared to the baseline GPU

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

The benefits in energy consumption and execution time of DSR are caused by
sampling most tiles at lower rates, as shown in Fig. 12. Benchmarks with static
scenes, (clr, dbz, hea or tsd) are able to achieve a considerable drop in Average Sam-
ple Rate, as tiles will generally maintain its frequency across frames. Therefore, tiles
that do not require to be sampled at 1× rate will have the opportunity to be sampled
at a lower rate, and that lower rate will be maintained for a long period of time.
DSR is also able to obtain an important ASR reduction in applications for which the
scene is moving, such as med or rok. While constantly changing geometry results
in a majority of the tiles needing to be sampled in the baseline rate, there is still a
significant portion of the scene that can be rendered at a much lower rate, yielding
ASR reductions of more than 35%. Those portions of the scene can even be found in
applications that experience swift, constant changes in the camera, such as sod.

On average, less than half of the tiles are sampled at the baseline rate, while
almost 40% of the tiles are processed using the two lowest sampling rates (1∕64×
and 1∕256×). The Average Sample Rate across all benchmarks and frames is thus
reduced to 0.36 samples per fragment. This greatly reduces the activity of the Frag-
ment Shaders, as shown in Fig. 13. DSR reduces the average number of processed
fragments by 66% and the number of texture accesses to main memory by 28%
when compared to the Baseline. The gap between both numbers is caused by an
increase in sparsity: as samples are taken at larger intervals, the likelihood of reusing
a texture cache line is smaller than in the Baseline. However, the great reduction in
processed fragments still allows for significant savings in overall texture traffic.

Rendered scenes in real-time applications tend to smoothly vary across con-
secutive frames. Therefore, the sampling rate requirements of tiles may evolve
over time. As DSR analyzes the frequencies of the scene after rendering each
tile, it manages to dynamically capture such changes and quickly adjust the sam-
pling rates of all individual tiles accordingly. Figure 14 illustrates this process by
depicting the fluctuations in the sampling rate of 4 tiles of the application gob,
starting at the beginning of the captured execution and running it for 50 frames.

0.36

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1x 1/4x 1/16x 1/64x 1/256x ASR

Fig. 12 Breakdown of sampling rates

 M. Anglada et al.

1 3

We can observe that DSR starts sampling all the tiles at the maximum rate, 1×
(1) . Tiles A,B and C can be sampled at a much lower sampling rate, and spend
a small transitory period of time continuously reducing their sampling rate (2)
until their optimal rate for their current spatial frequency is found (3) . Tiles
remain in their estimated-optimal sampling rates (e.g., 4 , 5) until the spatial
frequencies in them change (e.g., 6). Note how every time that a tile is sampled
at 1/256x rate (e.g., 7), the sampling rate is immediately increased in the follow-
ing frame, as described in Fig. 6. It can be observed that the scene is not sampled
uniformly neither in space (in a particular frame the sampling rate of the 4 tiles

Fig. 13 Shader activity of DSR compared to the baseline GPU

Fig. 14 Evolution of the sampling rate of 4 different tiles over several frames

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

is normally different) nor in time (the sampling rate of a particular tile changes
across the frames).

In our experiments, DSR has not produced a single error in all the generated
frames, i.e., has not rendered any frame with a MSSIM lower than 95 when com-
pared with the frame rendered at baseline sampling rate. Despite our benchmarks
containing swift camera movements and object displacements across the screen,
the similarity between consecutive frames allows the reuse of the estimated-best
sampling rates without producing any visual artifacts. Albeit a sparse phenome-
non, more abrupt alterations may occur in a particular frame, such as in a change
of scene. The correctness of DSR cannot be guaranteed in these rare scenarios, as
it is based on frame coherency. We have performed an experiment to quantify the
effect that DSR has on image quality whenever there is a scene change. To do so,
three additional 100-frame traces for the benchmarks listed in Table 3 have been
generated. Each trace contains two different scene changes, emulated by entering
and exiting the pause or settings menu of the application. With the renderization of
these applications’ frames with DSR active, we have observed that only the frame
rendered immediately after each of the six scene changes is erroneous. Subsequent
frames are indistinguishable from frames rendered at baseline sampling rate. It is
well documented that the human eye requires some time to construe visual infor-
mation, as scenes cannot be properly recreated in less than 67ms [32]. This time is
greater than what a single frame lasts in 30 frames per second, the frame rate which
is considered to be the minimum acceptable [33, 34], so we can conclude that these
potential errors affect only a single frame and will not be perceived by the user.

8 Related work

There is a lot of interest in the graphics community in reducing shading costs
so that more complex and realistic scenes can be rendered. Several techniques
dynamically detect regions of the screen that can be sampled at lower rates by
adding additional pipeline stages before or after the shading process. Deferred
Adaptive Compute Shading [35] divides the framebuffer into levels, subsets of
pixels progressively farther apart. Fragments are only shaded if the neighbor pix-
els from the previous level are not similar. Otherwise, the color of the fragment is
computed by averaging the results of its neighbors. The work of Sathe and Ake-
nine-Möller [13] reuses shading computations for triangles that share an edge by
adding a comparison queue before the processing stage. In Adaptive Image-Space
Sampling [15], the resolution is reduced in areas that contain less perceivable

Table 3 Additional benchmarks
for the image quality experiment

Benchmark Genre

Alto’s Odyssey Endless Runner
PlayerUnknown’s Battlegrounds Battle Royale
Homescapes Puzzle

 M. Anglada et al.

1 3

detail, which are evaluated with an additional pass after the geometry processing.
Conversely, DSR is architected to not introduce any time overhead by completely
overlapping the sampling rate estimation for a tile with the rendering of the next
one.

To avoid the runtime overhead of determining components with less detail,
several works allow the programmer to statically determine the sampling rate.
In coarse Pixel Shading [8], the sample rate of each primitive can be controlled
based on their vertex attributes. He et al. [11] design new language abstractions
that grant each shader program the ability to determine which components can be
processed at which rate. In NVIDIA’s Variable Rate Shading [12], the program-
mer decides which sampling rate to apply in each section of the screen. DSR,
on the other hand dynamically estimates the best sampling rates in each tile by
using a hardware-only mechanism, in a completely transparent manner to the
programmer.

Frame coherence has been previously leveraged to reduce the number of sam-
ples to process. In Checkerboard rendering [14], each frame shades an alternate
half of the pixels in the screen. The color of the non-shaded half is obtained by
applying reconstruction filters to the results obtained in the preceding frame. A
large number of shading computations are avoided at the cost of some visual arti-
facts, since the lossy nature of the reconstruction and the fixed undersampling
cannot perfectly reproduce neither motion nor visibility changes. In contrast,
DSR estimates sampling rates at the finer granularity of tiles, can render tiles
at the small rate of only one fragment per tile and does not affect image quality
because it only reduces the sampling rate whenever a tile does not contain high
spatial frequencies.

9 Conclusions

This paper proposes Dynamic Sampling Rate (DSR), a novel microarchitectural
technique to reduce shader executions by determining the lowest sampling rate for
each tile in a frame that does not reduce the overall quality of the rendered images.
DSR analyzes the frequency components of a tile once it has been processed and
decides the rate in which the tile’s triangles will be sampled in the following frame.
The sampling rate prediction leverages the frame-to-frame coherence inherent in
animated graphics applications, which results in a high likelihood that the frequency
components of a tile are maintained across consecutive frames.

We have shown that for a set of unmodified commercial Android applications
DSR reduces the fragment-level redundancy by 66% on average with minimal hard-
ware overhead, leading to an average speedup of 1.68× and energy savings of 40%.

Acknowledgements This work has been supported by the the CoCoUnit ERC Advanced Grant of the
EU’s Horizon 2020 program (Grant No. 833057), Spanish State Research Agency (MCIN/AEI) under
Grant PID2020-113172RB-I00, the ICREA Academia program, and the Generalitat de Catalunya under
Grant FI-DGR 2016. Funding was provided by Ministerio de Economía, Industria y Competitividad,
Gobierno de España (Grant No. TIN2016-75344-R).

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Patil S, Kim Y, Korgaonkar K, Awwal, I, Rosing, TS (2015) Characterization of user’s behavior
variations for design of replayable mobile workloads. International Conference on Mobile Comput-
ing, Applications, and Services, pp 51–70

 2. AnandTech: Qualcomm Snapdragon S4 (Krait) Performance preview. Accessed = 2022-02-11
(2012). http:// www. anand tech. com/ show/ 5559/ qualc omm- snapd ragon- s4- krait- perfo rmance- previ
ew- msm89 60- adreno- 225- bench marks/4

 3. Anglada M, de Lucas E, Parcerisa J, Aragón JL, Marcuello P, González A (2019) Rendering elimi-
nation: early discard of redundant tiles in the graphics pipeline. 2019 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pp 623–634. https:// doi. org/ 10. 1109/
HPCA. 2019. 00014

 4. Maule M, Comba JL, Torchelsen R, Bastos R (2012) Transparency and anti-aliasing techniques for
real-time rendering. 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials,
pp 50–59. IEEE

 5. Shebanow M (2013) An evolution of mobile graphics. Keynote talk at High Performance Graphics
 6. Pool J (2012) Energy-precision tradeoffs in the graphics pipeline. Ph.D. thesis, The University of

North Carolina at Chapel Hill
 7. de Lucas E (2018) Reducing redundancy of real time computer graphics in mobile systems. Ph.D.

thesis, UPC, Computer Architecture Department
 8. Vaidyanathan K, Salvi M, Toth R, Foley T, Akenine-Möller T, Nilsson J, Munkberg J, Hasselgren J,

Sugihara M, Clarberg P, Janczak T, Lefohn A (2014) Coarse pixel shading. In: Proceedings of High
Performance Graphics, pp 9–18. Eurographics Association

 9. Akenine-Moller T, Strom J (2008) Graphics processing units for handhelds. Proc IEEE
96(5):779–789

 10. Hubschman H, Zucker SW (1982) Frame-to-frame coherence and the hidden surface computation:
constraints for a convex world. ACM Trans Graphics 1(2):129–162

 11. He Y, Gu Y, Fatahalian K (2014) Extending the graphics pipeline with adaptive, multi-rate shading.
ACM Transactions on Graphics (TOG) 33(4):142

 12. NVIDIA: NVIDIA GPU Turing Architecture. Accessed = 2022-02-11 (2018). https:// www. nvidia.
com/ conte nt/ dam/ en- zz/ Solut ions/ design- visua lizat ion/ techn ologi es/ turing- archi tectu re/ NVIDIA-
Turing- Archi tectu re- White paper. pdf

 13. Sathe R, Akenine-Möller T (2015) Pixel merge unit. Eurographics (Short Papers), pp 53–56
 14. Mcferron T, Lake A Checkerboard rendering for real-time upscaling on intel® integrated graphics
 15. Stengel M, Grogorick S, Eisemann M, Magnor M (2016) Adaptive image-space sampling for gaze-

contingent real-time rendering. IComputer Graphics Forum, vol 35, pp 129–139. Wiley Online
Library

 16. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng
47(2):617–644

 17. Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput
100(1):90–93

 18. Akeley K (1993) Reality engine graphics. In: Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques, pp 109–116. ACM

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/4
http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/4
https://doi.org/10.1109/HPCA.2019.00014
https://doi.org/10.1109/HPCA.2019.00014
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

 M. Anglada et al.

1 3

 19. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP et al (2004) Image quality assessment: from error
visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

 20. Gao X, Lu W, Tao D, Li X (2009) Image quality assessment based on multiscale geometric analysis.
IEEE Trans Image Process 18(7):1409–1423

 21. Ma Q, Zhang L, Wang B (2010) New strategy for image and video quality assessment. J Electron
Imaging 19(1):011019

 22. Flynn JR, Ward S, Abich J, Poole D (2013) Image quality assessment using the ssim and the just
noticeable difference paradigm. In: International Conference on Engineering Psychology and Cog-
nitive Ergonomics, pp 23–30. Springer

 23. Rao KR, Yip P (2014) Discrete cosine transform: algorithms, advantages, applications. Academic
Press

 24. Sihvo T, Niittylahti J (2005) Row-column decomposition based 2d transform optimization on sub-
word parallel processors. International Symposium on Signals, Circuits and Systems, 2005. ISSCS
2005, vol 1, pp 99–102. IEEE

 25. Synopsys: DesignWare 2D DCT. Accessed = 2022-02-11 (2021). https:// www. synop sys. com/ dw/
ipdir. php?c= DW_ dct_ 2d

 26. Google: Google Play. Accessed = 2022-02-11 (2008). https:// play. google. com
 27. Google: GAPID (Graphics API Debugger). Accessed = 2022-02-11 (2019). https:// devel opers.

google. com/ vr/ devel op/ unity/ gapid
 28. 3D, M.: Gallium3D. Accessed = 2022-02-11 (2009). https:// www. freed esktop. org/ wiki/ Softw are/

galli um
 29. Arnau J-M, Parcerisa J-M, Xekalakis P (2013) Teapot: a toolset for evaluating performance, power

and image quality on mobile graphics systems. In: Proceedings of the 27th International ACM Con-
ference on Supercomputing, pp 37–46. ACM

 30. ARM: ARM Mali-450 GPU. Accessed = 2022-02-11 (2012). https:// devel oper. arm. com/ produ cts/
graph ics- and- multi media/ mali- gpus/ mali- 450- gpu

 31. Synopsys: Synopsys. Accessed = 2022-02-11 (1986). https:// synop sys. com
 32. Goldstein E.B, Brockmole J (2016) Sensation and Perception. Cengage Learning
 33. Janzen BF, Teather RJ (2014) Is 60 fps better than 30? The impact of frame rate and latency on

moving target selection. Proceedings of the Extended Abstracts of the 32nd Annual ACM Confer-
ence on Human Factors in Computing Systems, pp 1477–1482. ACM

 34. Debattista K, Bugeja, Spina S, Bashford-Rogers T, Hulusic V (2018) Frame rate versus resolution:
a subjective evaluation of spatiotemporal perceived quality under varying computational budgets.
Computer Graphics Forum, vol 37, pp 363–374. Wiley Online Library

 35. Mallett I, Yuksel C (2018) Deferred adaptive compute shading. Proceedings of the Conference on
High-Performance Graphics, pp 1-4. ACM

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Martí Anglada1 · Enrique de Lucas2 · Joan‑Manuel Parcerisa1 ·
Juan L. Aragón3 · Antonio González1

 Enrique de Lucas
 enrique.delucas@imgtec.com

 Joan-Manuel Parcerisa
 jmanel@ac.upc.edu

 Juan L. Aragón
 jlaragon@um.es

 Antonio González
 antonio@ac.upc.edu

https://www.synopsys.com/dw/ipdir.php?c=DW_dct_2d
https://www.synopsys.com/dw/ipdir.php?c=DW_dct_2d
https://play.google.com
https://developers.google.com/vr/develop/unity/gapid
https://developers.google.com/vr/develop/unity/gapid
https://www.freedesktop.org/wiki/Software/gallium
https://www.freedesktop.org/wiki/Software/gallium
https://developer.arm.com/products/graphics-and-multimedia/mali-gpus/mali-450-gpu
https://developer.arm.com/products/graphics-and-multimedia/mali-gpus/mali-450-gpu
https://synopsys.com
http://orcid.org/0000-0002-1204-1841

1 3

Dynamic sampling rate: harnessing frame coherence in graphics…

1 Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Jordi Girona
1-3, Barcelona 08034, Spain

2 Imagination Technologies, Imagination House, King’s Langley WD4 8LZ, UK
3 Dept. Ingeniería y Tecnología de Computadores, Universidad de Murcia, Campus de Espinardo,

Murcia 30100, Spain

	Dynamic sampling rate: harnessing frame coherence in graphics applications for energy-efficient GPUs
	Abstract
	1 Introduction
	2 Background
	2.1 Tile-based rendering
	2.2 Frequency analysis

	3 Dynamic sampling rate
	4 Parameter selection
	5 Implementation
	5.1 Pipeline integration
	5.2 Frequency analysis unit

	6 Experimental framework
	7 Results
	8 Related work
	9 Conclusions
	Acknowledgements
	References

