
Fast and Accurate SER Estimation for Large
Combinational Blocks in Early Stages

of the Design
Mart�ı Anglada , Ramon Canal , Senior Member, IEEE, Juan L. Arag�on ,

and Antonio Gonz�alez , Fellow, IEEE

Abstract—Soft Error Rate (SER) estimation is an important challenge for integrated circuits because of the increased vulnerability brought

by technology scaling. This paper presents amethodology to estimate in early stages of the design the susceptibility of combinational

circuits to particle strikes. In the core of the framework liesMASkIt, a novel approach that combines signal probabilitieswith technology

characterization to swiftly compute the logical, electrical, and timingmasking effects of the circuit under study taking into account all input

combinations and pulse widths at once. Signal probabilities are estimated applying a new hybrid approach that integrates heuristics along

with selective simulation of reconvergent subnetworks. The experimental results validate our proposed technique, showing a speedup of

two orders ofmagnitude in comparisonwith traditional fault injection estimation with an average estimation error of 5 percent. Finally, we

analyze the vulnerability of the Decoder, Scheduler, ALU, and FPU of an out-of-order, superscalar processor design.

Index Terms—Combinational logic, microprocessor, reliability, soft errors

Ç

1 INTRODUCTION

TECHNOLOGY scaling has provided substantial benefits
such as higher frequencies and increasing transistor den-

sity. On the other hand, scaling into sub-100 nm lithogra-
phies has brought new challenges, notably in the field of
reliable circuit design. With lower supply voltages and node
capacitances, integrated circuits have become more vulnera-
ble to single-event transients (SETs): disturbances caused by
particle strikes from ionizing radiation. Radiation-induced
transients are primarily caused by thermal and high-energy
neutrons coming from cosmic rays and by alpha particles
coming from packagingmaterials [1]. Alpha particles collide
with the silicon nuclei, while thermal and high-energy neu-
trons generate ionizing particles. In both cases, they deposit
a dense track of electron-hole pairs as they pass through a p-
n junction, and causing a current pulse at the node that col-
lects the charge. If a sufficient amount of charge is collected
by the junction, the SET results in a fault by flipping the logic
state at the associated node. Bit flips may occur due to strikes
in the transistors of amemory element or due to the propaga-
tion of strikes at the transistors of logic gates to latching ele-
ments. When a fault caused by a bit flip is captured by a

storage element such as a memory cell or a register, it results
in a single event upset (SEU). As opposed to events that may
cause permanent failures, SEUs do not damage the device
and are, therefore, called transient or soft errors. The Soft Error
Rate (SER) is a metric to evaluate the vulnerability of a circuit
against soft errors.

Historically, soft errors have been tackled in the context
of memory because of the large area of the chip devoted to
caches and the higher vulnerability of SRAM cells in com-
parison to combinational logic. However, technology scal-
ing led to a reduction in the ratio between the minimum
charge required to introduce a glitch (Qcrit) and the collec-
tion efficiency of transistors (Qs), which increased the SER
in logic circuits by five orders of magnitude [2], making it
comparable to the SER of unprotected memory. While the
adoption of FinFET technology has provided greater robust-
ness against SEU in each generation [3], [4], the increase in
transistor density maintains the overall system SER as an
essential concern [5], [6].

With such sensitivity, mechanisms to protect circuits from
soft errors are needed not only for traditional safety-critical
applications but also for mainstream systems [7]. The draw-
back of effective protection mechanisms such as Quadded
logic [8] is that they incur substantial performance, area and
power overheads. Alternatively, there exist a set of selective
hardening techniques that only protect the most sensitive ele-
ments of a combinational circuit, whether they are gates [9] or
latches [10]. There is, therefore, a need for analysis tools that
can provide the designer information about the most critical
components of a circuit and the trade-off between the over-
heads of mechanisms for error resilience and the system-level
SER value of the circuit. While reliability estimation techni-
ques such as fault injection [11] already exist, the large

� M. Anglada, R. Canal, and A. Gonz�alez are with the Departament
d’Arquitectura de Computadors, Universitat Polit�ecnica de Catalunya, c/Jordi
Girona 1-3, Barcelona 08034, Spain.
E-mail: {manglada, rcanal, antonio}@ac.upc.edu.

� J.L. Arag�on is with the Computer Engineering Department, University of
Murcia, Campus de Espinardo, Murcia 30100, Spain.
E-mail: jlaragon@ditec.um.es.

Manuscript received 21 Feb. 2018; revised 1 Oct. 2018; accepted 2 Dec. 2018.
Date of publication 13 Dec. 2018; date of current version 8 Sept. 2021.
(Corresponding author: Mart�ı Anglada.)
Recommended for acceptance by D. Gizopoulos and G. Karakonstantis.
Digital Object Identifier no. 10.1109/TSUSC.2018.2886640

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2021 427

2377-3782 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1204-1841
https://orcid.org/0000-0002-1204-1841
https://orcid.org/0000-0002-1204-1841
https://orcid.org/0000-0002-1204-1841
https://orcid.org/0000-0002-1204-1841
https://orcid.org/0000-0003-4542-204X
https://orcid.org/0000-0003-4542-204X
https://orcid.org/0000-0003-4542-204X
https://orcid.org/0000-0003-4542-204X
https://orcid.org/0000-0003-4542-204X
https://orcid.org/0000-0002-4955-7235
https://orcid.org/0000-0002-4955-7235
https://orcid.org/0000-0002-4955-7235
https://orcid.org/0000-0002-4955-7235
https://orcid.org/0000-0002-4955-7235
https://orcid.org/0000-0002-0009-0996
https://orcid.org/0000-0002-0009-0996
https://orcid.org/0000-0002-0009-0996
https://orcid.org/0000-0002-0009-0996
https://orcid.org/0000-0002-0009-0996
mailto:
mailto:


exploration space that needs to be covered in order to choose
a proper hardening strategy makes the use of such slow,
brute-force techniques impractical.

Modelling and analyzing the SER in logic is more complex
than in memory elements, since there is an exponential num-
ber of input vectors, signal correlations due to reconvergence
and combinations with pulse widths. Even more importantly,
there exist some masking effects that reduce the likelihood that
a particular SETwithin a circuit will be latched and causing an
error. Thesemasking effects are commonly classified as [12]:

� Logical masking: Transient faults are masked by gates
whose output is independent of the faulty input.

� Electrical masking: The pulse is attenuated (either its
amplitude is reduced or its rise/fall times are
increased) by the electrical properties of the gates
throughout the logic chain, and the resulting magni-
tude is insufficient to change the value that is latched.

� Timing masking: The pulse arrives at a state-holding
element out of its latching-time window.

A correct modelling of these effects is required for an
accurate SER estimation. Recent works show the consequen-
ces of not considering them: if logical masking is not taken
into account, the SER could be overestimated by 25 times
[13]. Omitting electrical masking could yield a pessimistic
result of more than 3 times [14], while omitting timingmask-
ing implies considering erroneously the contribution to the
total SER of 62 percent of the gates of the circuit [15].

This work presents an accurate and fast framework to esti-
mate the SER in combinational logic considering the three
aforementioned masking effects and taking into account all
possible input combinations and pulse widths. In the core of
the framework lies the proposed MASkIt approach, an algo-
rithm that traverses a circuit backwards from outputs to
inputs and computes at each gate the probability that a strike
in that gate results in an SEU. Signal probabilities are used to
accurately compute the effect of logicalmasking of all possible
input vectors at once, instead of iterating through input com-
binations. A pre-characterized cell library is applied in the
computation of electrical and timing masking effects, taking
into account all definedpulsewidths and amplitudes simulta-
neously to avoid simulating glitch propagation for each set
of pulse characteristics. Note, however, that the presence of
reconvergent subnetworks generates dependences among
signals, which invalidates the use of trivial procedures based
on path probabilities to compute the SER of a circuit. MASkIt
employs two different mechanisms to deal with reconvergen-
ces to fast and accurately estimate signal probabilities and
vulnerability:

� The estimation of signal probabilities is done using a
novel hybrid method that merges static analysis
with selective subcircuit simulation: all small-sized
reconvergent subnetworks of the circuit are exhaus-
tively simulated whereas a linear-time estimation
algorithm is run to obtain the signal probability for
the rest of the gates.

� Reconvergences during vulnerability estimation are
handled using Binary Decision Diagrams (BDD), a
well-known data structure to operate on boolean
functions, but we have limited their use to reconver-
gent subnetworks in order to achieve scalability.

The main algorithm is devised to be easily embedded
within a larger toolflow in order to accurately estimate the
SER of combinational blocks of a microprocessor in early
design stages. Fig. 1 shows an example of such toolflow.With
a logic synthesis tool, several alternate netlists can be gener-
ated from the same HDL design of the combinational block
by modifying configuration parameters, such as clock period
or technology process. The primary input probability distri-
bution for the netlist can be obtained through a tracing tool
by running a set of test programs and getting the signals
corresponding to the primary inputs of the block under study.
Such primary input probability distributions are the basis to
estimate the probabilities of the signals of the whole circuit
using the procedure detailed in Section 5. With the approach
described in Section 4, MASkIt uses the computed signal
probabilities along with a cell characterization library to esti-
mate the vulnerability of the circuit taking into account the
threemasking effects. Due toMASkIt’s ability to quickly com-
pute the SER and provide a vulnerability report for a parti-
cular configuration of parameters, a large design space can
be explored as early in the design process as an HDL design
is available.

The remainder of this paper is organized as follows.
Section 2 reviews previous work on estimating SER in combi-
national logic. Sections 3, 4, 5, and 6 are dedicated to the
description and validation of MASkIt, the core algorithm
of the model. In particular, Section 3 formulates the SER esti-
mation and modeling approach. Section 4 presents the pro-
posed approach for computing the masking effects. Section 5
describes the mechanism to estimate signal probabilities.

Fig. 1. Overview of the proposed MASkIt framework.

428 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2021



Section 6 reports the experimental results of the validation
process. Finally, Section 7 depicts a use case of the
entire framework for analyzing the vulnerability of a state-
of-the-art, out-of-order processor design. The main conclu-
sions of thework are summarized in Section 8.

2 BACKGROUND AND RELATED WORK

In recent years, SER in combinational logic has been an area
of extensive research, and a variety of methodologies for its
estimation have been developed. These techniques can be
classified in two wide categories: dynamic and static.

Dynamic techniques useMonteCarlo fault injection, a clas-
sic approach that implies generating random input vectors,
injecting a transient fault in the output of a gate and observing
if the output values of the circuit differ from the ones obtained
in a fault-free simulation.

There are several works that use this methodology to
compute the SER in logic. IBM presented a program [16] to
determine if a design meets SER specification based on lay-
out, technology information and Qcrit values. Wang et al.
[17] injected faults in the state elements of a whole processor
pipeline to analyze how many transient faults resulted in
soft errors. The work of Zhang et al. [18] combines graph
theory and fault injection to emulate the logical masking
effect. In [19], path-based analysis and cell-precharacteriza-
tion are used in conjunction with fault injection to compute
the system-level SER. A variety of modifications to the clas-
sic techniques have been proposed as well. In [20], a way to
easily inject a wider fault model set in RTL code with small
temporal overhead is introduced. In [21], SET are only simu-
lated when they can not be affected by timing masking and
when the circuit has stabilized after a new input vector,
achieving simulation speedup by reducing the number of
time instances a pulse has to be injected. Kuo et al. [22] build
table-based models to characterize particle strikes, propaga-
tion paths and latches, and combine them with a heuristic
for the generation of random sequences in order to speed
up the simulations. In [23], the authors propose to reduce
execution time by integrating the RTL and gate-level mod-
els in an FPGA to accurately inject faults while being able to
quickly propagate them across clock cycles.

Even using such optimizations, the major drawback of
these approaches is that a large number of error injections
have to be performed in order to obtain statistically significant
results, which results in long execution times.

Other works disfavor the use of fault injection, but
propose methodologies that still require sampling and sim-
ulating input vectors. SEAT-LA [24] pre-characterizes the
current-voltage transfer characteristics and the delay of
the cells to model glitch propagation. However, it simulates
the circuit across multiple input combinations in order to
compute the logic state of the nodes to consider logical
masking. The proposal of Krishnaswamy et al. [25] reduces
the state explosion that appears when considering the
different sensitization paths using signature-based analysis,
but the computation of signatures entails simulation of all
input vectors.

On the other hand, relying on circuit simulation to com-
pute the SER in combinational logic is impractical due to its
exponential complexity. In pursuance of smaller execution

times, a plethora of static (also known as analytical)
approaches that trade accuracy for speedup have been
presented.

Static approaches can be, to a large extent, classified into
two categories: symbolic and probabilistic. Symbolic techni-
ques abstract the gates of the circuit to data structures which
are efficient to manipulate. This way, computations are per-
formed orders of magnitude faster than fault injection cam-
paigns with minimal loss of accuracy. FASER [13] uses
Binary Decision Diagrams to describe Boolean functions at
circuit nodes and to represent nodes that have been struck.
Krishnaswamy et al. propose in [26] to use Probabilistic
Transfer Matrices (PTM) and Algebraic Decision Diagrams
(ADD) to compute the logical masking in circuit nodes con-
currently considering all input combinations. MARS-C [27]
also uses BDD and ADD to encode the circuit, but extends
previous works to offer a unified treatment of all three
masking factors, while the methodology in [28] employs
PTM to analyze gates under stuck-on faults. The work of
Abdollahi [29] presents Probabilistic Decision Diagrams, an
exact representation that implicitly considers signal correla-
tions, allowing fast computations due to its compactness.
The main drawback associated to the aforementioned tech-
niques is their lack of scalability: the diagram representation
requires a considerable amount of memory and simulation
time to enumerate the massive input space in large circuits.

Probabilistic approaches, alternatively, develop error
propagation rules to compute the reliability of the circuit by
using them in sensitized paths, usually found using static
analysis. The method in [30] uses an enhanced static timing
analysis to derive all possible waveforms propagated from
a struck gate and combines it with error propagation rules
to calculate the probability of storing an incorrect value in
all reachable latches. BDEC, the error calculator presented
in [31], introduces a probabilistic gate level error propaga-
tion model based on Boolean difference. Using primary
input signals, error probabilities and gate error probabili-
ties, the reliability of the circuit is computed in linear-time
complexity with the number of gates of the circuit. In [32],
Han et al. also construct a gate reliability model that derives
approximate reliability results by bounding gate errors at
much smaller time and space complexities than PTM.
Upper and lower bounds are used in [33] to improve scal-
ability as well, where they are used in the context of gate
observability. The work of Rejimon and Bhanja [34] adopts
Bayesian Networks to capture the dependencies among sig-
nals, constructing for each node of the network a function
for the truth table of the gate including error probabilities.
CEP [35], presents rules for the propagation of signal and
error correlations in addition to the traditional propagation
rules, allowing an accurate computation of the error proba-
bility of the circuit. The proposal in [36] extends the work in
CEP by using a SAT solver to compute signal probabilities
in reconvergent nodes, which reduce the accuracy of the
correlation rules. Cai and Chen also propose to use signal
correlations in [37], where they introduce a new set of rules
that achieve excellent accuracy. The probabilistic techniques
on these works, however, only demonstrate their feasibility
on small-sized circuits and the required analysis to run
them would require a significant analysis time for medium
and large-sized circuits.

ANGLADA ET AL.: FAST AND ACCURATE SER ESTIMATION FOR LARGE COMBINATIONAL BLOCKS IN EARLY STAGES OF THE DESIGN 429



There are two major drawbacks concerning the majority of
the works in the literature. The first one is the lack of a frame-
work capable of computing all three masking factors in a
holistic way, which impacts the correctness of those works.
The techniques presented in [31], [33], [37], [38] and [39]
only take into account logical masking. On the other hand,
approaches such as [15], [27], [40], [41] or [36] do not compute
the electrical masking effect, while [42] and [2] overlook
the logicalmasking effect. The seconddrawback is that a large
body of the presented techniques use only small circuits as
benchmarks, which raises concerns regarding the scalability
of the works. Benchmarks classified as small include a range
from less than ten gates [32], [42], tens of gates [26], [41], a few
hundred of gates [18], [21], [29], [34] and a thousand gates
[24], [27], [31]. Table 1 summarizes the discussed literature
workswithin the two aforementioned drawback dimensions.

Several works provide a higher-level error estimation,
considering the effects that hardware faults may cause at
the software layer. Rehman et al. [44] and Shafique et al.
[45] propose compiler-based mechanisms that take into
account the masking provided by program instructions.
Brosch et al. [46] present a reliability model that integrates
system usage and execution environment. Carbin et al. [47]
introduce a programming language that allows to exploit
unreliable hardware for faster and more energy-efficient
computations. As circuit-level SER estimation is orthogonal
to software-level techniques such as the ones described, it
can be used to enhance the overall system SER estimation.

The algorithm presented in this work is able to model the
three masking effects and does not require an exponential
running time, as it will be shown in Section 4. The validation
of the model (Section 6) is performed using the ISCAS’85
benchmark suite, which contains circuits ranging from hun-
dreds of gates to a few thousands. To prove the scalability
and effectiveness of our MASkIt framework, Section 7
presents as use case considering circuits comprised of more
than 10,000 gates: somemajor combinational blocks of a state-
of-the-art, out-of-order processor, including the instruction
decoder, the instruction scheduler, the Arithmetic-Logical
Unit and the Floating Point Unit.

3 MASKIT OVERVIEW

3.1 SER Estimation

The overall SER of the circuit can be computed as the accu-
mulation of the individual SER of all the gates in the circuit

SERcircuit ¼
X#gates

i¼1
SERgatei : (1)

Each of those SER, SERgatei , is defined as the probability
that a particle with a particular charge q strikes at gatei and
the Soft Error Transient (SET) originated is not masked.

This is computed by integrating the products of particle-hit
rate and masking probability over a range of charges qmin to
qmax. For practicality, the integral is often approximated as
a discrete sum

SERgatei ¼
X#charges

c¼1
RPHðqcÞ � V ðgatei; qcÞ; (2)

where V is the vulnerability of the gate andRPH is the particle
hit rate, defined in [2] as a function of neutron flux, area and
slope of charge collection. qc corresponds to a discrete charge
selected from the continuous range: qc ¼ c � ðqmax � qminÞ=
#charges. In [13] it is shown that #charges ¼ 5 yields to an
accurate enough SER estimation in comparison with SPICE
models.

The vulnerability of a gate is defined as the probability that
a soft error propagates up to a latch. It can be formulated as

V ðgatei; qcÞ ¼ LMði; cÞ � EMði; cÞ � TMði; cÞ; (3)

which corresponds to the probability that the SETwith charge
qc at gate gatei is neither affected by the logical masking factor
(LM) nor the electrical masking factor (EM) nor the timing
masking factor (TM).

3.2 Netlist Modeling

Given a combinational circuit, our approach needs three
inputs: its netlist, a set of input probabilities and a cell charac-
terization library. The netlist of the circuit is a list of gates and
their connectivity, which corresponds to a directed acyclic
graph defined by the union of the list of gatesG (vertices), the
set of connections C (directed edges), the set I of primary
inputs of the circuit and the set V of primary outputs of the
circuit.

� Each element ofG is formed by a pair < ’; k > , where
’ is a Boolean operation (such as NOT or NAND) and
k is the number of inputs of the gate.

� Each element of C is a connection between one output
of a gate and one or more inputs of succeeding gates.
This is formally defined as a pair < gi, Gi > , where gi
is the ith gate ofG and Gi is a set of gates {g

a
m, g

b
n, g

c
o, ...},

where subscripts m, n and o indicate a particular gate
from G and superscripts a, b and c indicate the input
(0, 1, ..., k-1) of the gate that is connected to the output
of gi.

� Each element of I is a pair < i, a > , where i designates
the ith gate ofG and a corresponds to input number a
(0 � a < k) from gi.

� Each element of V is pair < i; f > , which indicates
that gate gi of G is connected to the output flip-flop f
of the circuit.

Every element i from the input set I has associated a
probability Pi, which corresponds to the likelihood of input
i to be 0.
From the cell characterization library, we extract the
following variables of interest:

� Every element gi of G has associated two transition
probabilities Tout

i [0 ! 1] and Tout
i [1 ! 0] which cor-

respond to the probability that, given a strike, the
output at gi transitions, respectively, from 0 to 1 and
from 1 to 0.

TABLE 1
Related Work Summary

Circuit size Number of considered masking effects

1 effect 2 effects 3 effects

�10 gates [26], [28], [32] [41], [42]
�100 gates [29], [33], [34] [36] [18], [21]
�1000 gates [31], [37], [38], [39] [2], [15], [27], [40] [22], [24], [43]

430 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2021



� Every element gi of G has associated a rise time tr
and a fall time tf , which correspond to the slopes of
the output pulse generated when gi is struck (from
10 to 90 percent of Vdd and from 90 to 10 percent of
Vdd, respectively).

� Every element gi of G has associated a propagation
delay d, the minimum switching delay among all
input combinations of the gate.

� Every element gi of G has associated a first transition
delay d1 and a second transition delay d2.

� Every element gi of G has associated a width PWmin,
which corresponds to theminimumwidth the striking
pulse needs in order to flip the logic value of gi.

� Every element of V has associated a time ts and a
time th, which correspond, respectively, to the setup
time and the hold time of the flip-flop.

MASkIt computes a set of vulnerability probabilities V
using Equation (3) which indicate, for every gate in G, the
probability that a strike in that gate will be propagated to one
or more outputs in V, taking into account the three masking
effects. Finally, it calculates the vulnerability of the whole
circuit based on those probabilities using Equations (1) and (2).

4 MASKING PROBABILITY COMPUTATION

4.1 Logical Masking

Logicalmasking occurswhen the generated current pulse due
to a strike arrives at the input of a gate whose output signal
happens to be logically independent of the faulty input at that
time, i.e., the output is determined by the rest of input signals.
We estimate LM, the probability that a gate is not affected
by the logical masking factor, by computing the likelihood of
controlling input vectors and combining themwith the transi-
tion probabilities for each input combination.

To better illustrate the process, let us consider a 2-input
NAND gate:

1) If both inputs are set to 0, a transient fault at only one
of the inputs (0! 1) does not affect the output.

2) If one input is 1 and the other is 0:
a) If the input at 1 suffers a transition (1! 0), the

output is not affected.
b) If the input at 0 suffers a transition (0! 1), the

output does change.
3) If both inputs are 1, a transition at any input (1! 0)

changes the output.
Therefore, the effect of not logically masking as SET for a

2-input NAND gate can be expressed as

LMNAND2 ¼
P0 � ð1� P1Þ � T in

0 ½0! 1� (4a)

þ ð1� P0Þ � P1 � T in
1 ½0! 1� (4b)

þ ð1� P0Þ � ð1� P1Þ � ðT in
0 ½1! 0� þ T in

1 ½1! 0�Þ; (4c)

where (4a) and (4b) correspond to case 2-b) in the previous
example while (4c) corresponds to case 3. T in

j ½n! m� indi-
cates the probability of a transition from n to m at input j,
which corresponds to Tout

i ½n! m� from the cell characteriza-
tion, where i is the gatewhose output is connected to input j.

These transition probabilities take into account two phe-
nomena regarding particle strikes in logic gates. The first one

is that strikes affect particular internal nodes of transistors,
activating off transistors. Depending on which transistors of
the gate are active, different internal nodes will be sensitive,
which affects the likelihood of a strike upsetting the state.

To illustrate this effect, Fig. 2 depicts a 2-input NAND gate
at a transistor level. Since strikes activate off transistors, if the
input combination is {A=1,B=1 } and a particle strikes at inter-
nal node I1 (Out|I1), the output of the gate will not be
affected. On the other hand, if a particle strikes at internal
node I2 (Out|I2), the output will be upset and suffer a transi-
tion. If the input combination is {A = 0, B = 0} neither a particle
strike at internal node I1 nor a strike at internal node I2 will
generate an undesired transition.

The second phenomena that transition probabilities take
into account is that the larger the fanout of a gate is, the
smaller the likelihood of a strike upsetting its output becomes.
These probabilities are extracted from the cell characterization
library,which is performed using themethodology in [48].

In a similar fashion to Equation (4), equations to measure
the logical masking effect for any kind of gate (not only
NANDs) can be constructed, in order to calculate the LM
term in Equation (3). These equations are applied in the
backward traversal algorithm of MASkIt to compute the
logical masking effect of each gate in the circuit.

4.2 Electrical Masking

Electrical masking occurs because of the natural attenuation
of the undesired pulse during its propagation along a chain of
gates. In particular, the rise and fall time of the pulse increases
while its amplitude decreases. We estimate the electrical
masking effect of each individual gate by determining if an
SET at that gate would be wide enough to be latched when
reaching an output.

A strike in a gate directly connected to a primary output
of the circuit needs to be stable from the setup time (ts) until
the hold time (th) of the output latch. However, a strike in
an intermediate gate (with other gates as successors) is
more unlikely propagated to an output since it needs to be
wide enough to be stable from ts until th but also taking into
account the attenuation effect caused throughout the propa-
gation path to the output latch.

At each visited gate, we calculate how its electrical prop-
erties affect the shape of the pulse using parameters tr, tf , d1
and d2 from the cell characterization using the well-known
glitch propagation model in [24]. This model has also been
adopted by a variety of recent works in the literature, such
as [49], [50], [51] and [52]. The model contains a set of equa-
tions to initially calculate the output voltage (that depends
on the rise and fall times and also the input pulse width)
and then compute the pulse width at the output using the
output voltage.

Fig. 2. NAND-2 sensitivity analysis. When Out|I1 or Out|I2 differ from
Out, there is a probability that a strike in node I1 or I2 would cause a bit-
flip in the output of the gate.

ANGLADA ET AL.: FAST AND ACCURATE SER ESTIMATION FOR LARGE COMBINATIONAL BLOCKS IN EARLY STAGES OF THE DESIGN 431



MASkIt applies those equations in its backward search
algorithm to extract the input pulse width of the gate under
consideration from the propagated output pulse,which corre-
sponds to a previously-computed input pulse from a succes-
sor gate. The resulting input width represents the minimum
width of an SET in order to traverse the path from the struck
gate to any output and be latched. The probability that a strike
generates a pulse of that width corresponds to the probability
that the strike becomes electrically masked. The complement
of that probability is the termEM in Equation (3).

4.3 Timing Masking

Timing masking occurs because latches are insensitive to sig-
nals that arrive out of their latching window.We estimate the
timingmasking effect by computing the likelihood that a par-
ticle strikes at such a time that the SET produced cannot reach
an output at an appropriate time to be latched.

Note that a strike in a gate directly connected to an output
needs to be stable before the setup time (ts) of the latch. A
strike in a gate that has other gates as successors needs to be
stable before the setup time of the latch in addition to the
propagation time from its successors to the latch.

In its backward traversal from outputs to inputs, MASkIt
computes at each gate the maximum time within a clock cycle
the SET would need to occur in order to traverse the path
from the struck gate to any output and be latched. To do so,
every gate propagates the maximum time computed by its
successors and adds its own cell-characterized delay d. The
probability that a particle strikes at that time or earlier in the
cycle corresponds to the probability that the strike becomes
timingmasked. The complement of that probability is the TM
term in Equation (3).

4.4 Reconvergent Fanouts

When a logic signal splits into multiple branches (fanout)
and later reconverges in two or more inputs of a gate, the
subnet thus formed is referred to as a reconvergent fanout
(RFON). Reconvergent fanouts need to be taken into
account because they break the assumption that signal
paths are independent. Fig. 3 shows an example of this: f is
the output of a gate whose inputs are not independent
because both are functions of the same signal, x1. We iden-
tify the gate that produces the branching signal as the Source
of the reconvergence, while we identify the gate that
receives the dependent inputs as the Destination of the
dependence. Additionally, it is not an uncommon issue,
since it has been reported that in current VLSI designs about
half of the nodes in a circuit cause a reconvergence [53].

In this work, we propose to obtain the Boolean difference
of the function at the destination of the reconvergence and
use it in conjunction with the vulnerability of the destination
node to compute the vulnerability at the source node. The
Boolean difference of a function f with respect to input xi is

df

dxi
¼ fðx1; . . . ; xi ¼ 0; . . . ; xnÞ � fðx1; . . . ; xi ¼ 1; . . . ; xnÞ: (5)

When the difference equals 1, the result is all input combi-
nations for which a change in xi also changes the output of f .
Note that this is equivalent to listing all input combinations1

of the subnetwork for which a SET in its source node would
cause a change in the logical value at the output of its destina-
tion node. Since the signal probabilities of all the inputs of the
subnetwork are known, we can obtain the overall probability
that, given a SET at the source of a reconvergence, the value at
the destination is altered. An efficient structure to represent
and operate with Boolean functions is a Binary Decision
Diagram [54]. A BDD is a rooted, directed acyclic graph with
one or two terminal nodes labeled ‘0’ and ‘1’ and with a set of
non-terminal nodes labeled with a Boolean variable. Each
non-terminal node has exactly two edges from that node to
others: one corresponding to the evaluation of the variable
to 0 and another one corresponding to the evaluation of the
variable to 1.

A BDD needs to be manipulated in order to represent the
Boolean difference of a function. This can be achieved with a
subset of the basic operations presented in [54]. In particular,
only three procedures are used:

� Apply: Takes two functions f1, f2 and a Boolean
operator <op> and produces a BDD representing the
function f1 <op> f2.

� Restrict: Transforms the graph representing a function
f into one where argument xi is replaced with some
constant b.

� Satisfy all: Lists all argument values for which a func-
tion f evaluates to 1.

Binary Decision Diagrams and its operations are used
in MASkIt as follows: When a source of reconvergence is
visited, an initial BDD is created. Then, all the nodes from
the reconvergent subnet are visited until the destination of
the reconvergence is reached. For every gate in the subnet-
work, the Apply procedure constructs a BDD representing
the function computed at the output of each logic gate.
When the traversal of the subnet is completed, the destina-
tion node contains a BDD which represents its Boolean
function as a function of all the subnets inputs. Two Restrict
operations are performed to the final BDD: one replacing
the source node variable with the constant 0 and another
replacing the source node variable with the constant 1.
Using the Apply procedure, the XOR of these two restriction
BDDs is computed, resulting in a BDD that represents the
Boolean difference of the destination node with respect to
the source node. Applying the Satisfy all procedure on the
Boolean difference BDD yields all input patterns that cause
a change in the output of the destination if the value of

Fig. 3. Example of a reconvergent fanout subnet.

1. We define as inputs the leads reaching the subnetwork and coming
fromnodes not contained in the subnetwork. The inputs of the subnetwork
in Fig. 3 are x2 . . .x5.

432 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2021



the source changes. Since the signal probability for every
signal is known, the probability of those input vectors can
also be calculated, i.e., the probability that a strike at the
source is not masked within the subnet. That probability is
independent from the vulnerability of the destination and,
therefore, the vulnerability of the source node can be easily
computed by combining the two. If the source node feeds
several subnets, the process is repeated for all of them,
obtaining vulnerabilities for the different paths. Finally, the
different vulnerabilities are combined as the union of non-
mutually exclusive events. Unlike previous works that also
use BDDs such as [13] or [55], in MASkIt the diagrams are
only created to handle RFON subnets and, consequently,
the exponential nature of the Satisfy all procedure is
bounded for a small subset of gates of the circuit. Moreover,
whenever the vulnerability of a subnet has been computed,
the BDD structure representing that subnet is no longer
needed and it can be freed from memory. Thus, less mem-
ory usage than in previous works is required.

Fig. 4 shows an example of this difference in memory
usage using circuit c7552 of the ISCAS’85 benchmarks, which
contains 3,512 gates. In a traditional approach, the exponen-
tial nature of the graph size leads to a swift unavailability of
resources: before 30 percent of the circuit has been visited,
the construction of the BDD has consumed the entirety of
free memory, greatly impacting the performance of the later
traversal and computations. On the other hand, the approach
adopted by MASkIt of only constructing BDDs in reconver-
gent subnets vastly reduces the resource readiness issue
since, at any given point in time, at most 40 percent of the
memory is used by BDDs.

4.5 MASkIt Algorithm

Algorithm 1 presents the procedure to compute the masking
probabilities of each gate in the circuit. The algorithm starts
by estimating the signal probabilities of all gates using the
method described in Section 5 (line 1). Afterwards, it executes
a Breadth-First Search (lines 3 to 22) starting from the outputs
and then moving backwards until the inputs of the circuit are
reached. A queue, created at line 2, is used to store the gates
and visit them in the proper order.

In every iteration of the main loop, one gate whose succes-
sors have already been visited is chosen to compute its vulner-
ability. This selection is performed by popping the first
element of the queue (line 4). That gate is then marked as
visited (line 5) and removed from the queue. The predeces-
sors of the gate are queued to be examined later (line 8) only if

all their successors have been visited (line 7). After the queue
structure has been updated, the vulnerability of the gate is
computed. The computation of the vulnerability of the con-
nection at the output of the gate is done considering all alter-
native paths from the gate to the output of the circuit. For this
purpose, we first compute the individual vulnerability for
each set of paths that include the connection from the output
of the gate to a particular input of a successor gate. The com-
putation of the vulnerability of a successor path is performed
according to whether or not the visited gate is a source of
reconvergence.

Algorithm 1. Algorithm to Estimate the SER in a Circuit

1: Compute signal probabilities of all gates
2: Inititialize Queuewith output gates
3: while Queue is not empty do
4: gate pop first element of Queue
5: mark gate as visited
6: for parent {Gates in Predecessors(gate)} do
7: if all gates in Successors(parent) have been visited then
8: Queue Queue [ parent
9: end for

10: if gate is not source of reconvergence then
11: for j {Inputs in Successors(gate)} do
12: VjðgateÞ  Compute vulnerability of any path from

gate to a circuit output via j using the LM, EM and
TM effects of j and the vulnerability of j

13: end for
14: Compute vulnerability of the connection at the output

of gatewith all VjðgateÞ values
15: else
16: for j {Reconvergent subnets in gate} do
17: Traverse subnet j, building BDDs for each gate, until

the reconvergence destination of j is reached
18: VjðgateÞ  Compute vulnerability of any path from

gate to a circuit output via j using the sensitization
BDD of j and the vulnerability of the reconvergence
destination of j

19: end for
20: Compute vulnerability of the connection at the output

of gatewith all VjðgateÞ values
21: end if
22: end while
23: Compute the vulnerability of the circuit based on the

vulnerabilities of all connections

The majority of gates are not sources of reconvergence. In
that case (line 10), every input from all the successor gates of
the gate being visited are considered (line 11). The probabil-
ity VjðgÞ that a SET at the output of a gate g reaches a latch
through a path traversing successor j corresponds to the
probability that the SET is not affected by the masking
effects of gate j nor by the masking effects of the path from j
to the output, i.e., the vulnerability V ðjÞ of gate j. Since the
masking effects of gate j and its vulnerability are indepen-
dent, we can express the vulnerability of a path from g to
the output of the circuit traversing j as

VjðgÞ ¼ LMðjÞ � EMðjÞ � TMðjÞ � V ðjÞ: (6)

ElementsLM,EM, and TM are computed using themech-
anisms described in Sections 4.1, 4.2 and 4.3, respectively.

Fig. 4. Comparison of BDD memory usage in a traditional approach and
in the MASkIt approach.

ANGLADA ET AL.: FAST AND ACCURATE SER ESTIMATION FOR LARGE COMBINATIONAL BLOCKS IN EARLY STAGES OF THE DESIGN 433



Then, we compute the vulnerability of the connection at the
output of the gate as the union of the path vulnerabilities for
its s independent successors (line 14)

V ðgÞ ¼
[s

j¼1
VjðgÞ: (7)

When the gate being visited is a source of a reconvergence,
the vulnerability of the paths of its successors is not indepen-
dent and, therefore, we cannot use the method described in
lines 10 through 14. As explained before, our solution is to use
Binary Decision Diagrams on the reconvergence subnetwork.
To do that, we construct the BDD of the reconvergence desti-
nation node by traversing thewhole subnetwork and building
the BDD for each gate (line 17). Then, applying BDD opera-
tions, the list of all input patterns that cause a change in the
output of the destination if the value of the source changes is
found. With the probabilities computed in line 1, the vulnera-
bility value VBDDðjÞ of the reconvergence subnework j is com-
puted. To compute the vulnerability of a gate g, we need to
combine that value with the vulnerability of the reconver-
gence destination, i.e., the probability that the fault is not
masked from the destination until an output of the circuit
(line 18). Since both probabilities are independent, we can
express the vulnerability of a path from g to the output of the
circuit traversing the destination of reconvergence of j as

VjðgÞ ¼ VBDDðjÞ � V ðdestinationðjÞÞ: (8)

This process is repeated for the s subnetworks for which
the gate is a source (line 16) and combined into one probability
for the node (line 20) using Equation (7), which assumes inde-
pendence among all subnetworks.

Finally, in line 23, we compute the vulnerability of the
whole circuit by combining the vulnerabilities of all its
connections, assuming that the strikes are equiprobable in
all connections. Therefore, the vulnerability of the circuit is
the arithmetic mean of the vulnerabilities of all connections.

5 ESTIMATION OF SIGNAL PROBABILITIES

As explained previously, the very first step of MASkIt is to
compute the signal probabilities of all the gates (nodes) in a
circuit. The signal probability Pi of a node i is the probability
that the signal value of the node iwill be a 0 under a random
assignment of an input vector. It has been long established
that computing signal probabilities is a #P-complete
problem [56] and, therefore, the usual approach is to esti-
mate such probabilities instead of running an unduly com-
plex algorithm to achieve accuracy.

There are two widely used techniques to solve the prob-
lem. The first one consists of sampling input vectors and
execute a logical simulation per sample in order to obtain
the state at each node. The final probability is computed as
the sum of logic states divided by the number of samples.
This technique is adopted in SER analysis works such as
[24], [57] and [18].

The second approach uses heuristic algorithms in order to
avoid the long execution times caused by the large number of
samples and simulations needed for high coverage. These
algorithms traverse the circuit from primary inputs to pri-
mary outputs, computing the signal probability at each gate

using the signal probability of the inputs of the gate. The com-
putation is based on the fact that, if input signals are indepen-
dent, the following elemental rules can be applied:

1) For aNOTgate, the probabilityPNOT of its output to be
0 given the probability P of having a 0 at the input is

PNOT ¼ 1� P: (9)

2) For a 2-input NAND gate, the probability PNAND of
its output to be 0 given the probability Pi of having a
0 at input i is

PNAND ¼ ð1� P0Þ � ð1� P1Þ: (10)

3) For a 2-input OR gate, the probability POR of its out-
put to be 0 given the probability Pi of having a 0 at
input i is

POR ¼ P0 � P1: (11)

These rules can be extended to any kind of logic gate
with an arbitrary number of inputs. Traversing a circuit
applying these rules is known as the 0-Algorithm [58]. The
0-Algorithm runs in linear time and yields exact signal
probabilities whenever the network is free from reconver-
gent fanouts. Since reconvergent fanouts break the assump-
tion that signal paths are independent, using the previous
elemental rules for gates that are destination of a reconver-
gence introduces some error in the computation of signal
probabilities, which discards the 0-Algorithm as a precise
mechanism to estimate signal probabilities.

Several alternatives have been proposed in the literature
to enhance the accuracy of the 0-Algorithm while remain-
ing in polynomial execution time, such as the Weighted
Averaging Algorithm (WAA) [59], the Dynamic Weighted
Averaging Algorithm (DWAA) [58] and the Possibilistic
Algorithm (POSS) [60]. These algorithms identify nodes
that are destinations of reconvergence and compute an esti-
mate for their signal probability as well as an estimate for
their influence to succeeding gates according to a series of
heuristic weights. While every algorithm derives different
heuristics, they all are based on the observation that the sig-
nal probability P ðjÞ of a node j can be expressed by

P ðjÞ ¼ P ðjjf ¼ 0Þ � P ðf ¼ 0Þ þ P ðjjf ¼ 1Þ � P ðf ¼ 1Þ; (12)

where f is a reconvergent fanout node of the fanin cone
of j. If f were the only RFON in the circuit, P ðjÞ could be
exactly calculated by using formulas such as (9), (10), and
(11) and applying three times the 0-Algorithm: first to evalu-
ate P ðfÞ, then forcing the logical value of f to 0 and 1 to cal-
culate the conditional probabilities.

A different approach is the Correlation Coefficient Method
(CCM) [58], which computes the signal probability of a
gate not only using the probability of the inputs but also
explicit ratios that express the correlation between each pair
of inputs. CCM modifies the elemental rules to compute a
signal probability by adding a correlation coefficient to
each formula and also proposes a new set of rules to propa-
gate them.

These algorithms have been applied in several recent
works in the literature to approximate signal probabilities,
such as the use of DWAA in CASSER [61] and the work of

434 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2021



Franco et al. [62] or the use of CCM in CEP [35], the frame-
work of Li and Draper [63] and the technique of Yoshida et al.
[36]. However, we have found these estimates to be inade-
quate for overall circuit SER computation. Fig. 5a shows the
error of the signal probability estimation of the aforemen-
tioned algorithms applied to a subset of the ISCAS’85 bench-
mark circuits. In average, POSS estimates signal probabilities
33 percent more accurately than the 0-Algorithm whereas
the estimation by CCM is 21 percent more accurate. DWAA
estimates signal probabilities with just 3 percent more accu-
racy while WAA even worsens the accuracy by increasing
the error by 35 percent. While POSS yields a reasonable
signal probability estimate with a mean absolute error of only
2 percent, it is important to note that the effect of that error
is largely intensified when computing the overall SER of a
circuit, as it can be seen in Fig. 5b, which shows the relative
error of each signal probability estimation algorithm against
fault injection.

A mean error of 2 percent per node implies that the SER
computation will be at least 2 percent inaccurate. But, since
the SER algorithm computes the vulnerability of a particular
gate based on the vulnerability of its successors, the error
increases at each step of the traversal of the circuit, resulting
in large errors (e.g., 24.7 percent when the signal probabilities
are estimatedwith POSS)when the traversal completes.

In consequence, we propose a new approach to accu-
rately estimate signal probabilities. Our approach is based
on the observation that the majority of reconvergent subnet-
works in a circuit have sizes that are modest in comparison
with the total number of gates of the circuit.2 Therefore,
exhaustive simulation of those reconvergent subnetworks
is a feasible task that produces an exact signal probability
for the destination nodes without significant execution time
overhead.

Fig. 6 shows a histogram of the size of all the reconvergent
subnetworks within the ISCAS’85 benchmark circuits. More
than 90 percent of the RFON subnetworks have size 30 or less,
hence exhaustively simulating all of them results in a good
signal probability estimate.

Further analysis of the benchmark circuits reveals that the
average number of inputs for reconvergent subnetworks of
size 30 is 21. Generating and simulating the 221 possible inputs
for a subnetwork of that size is a swift process that can be
repeated for all subnetworks without substantial execution
time overhead. Furthermore, as seen in Fig. 6, 70 percent of
the subnetworks have size 15 or less, which entails negligible
simulation time for a great part of the subnetwork population.
This allows the entire process of simulating all subnetworks
smaller than 30 to be achievable in acceptable execution times.

Algorithm 2 details our proposed approach to estimate sig-
nal probabilities, which builds on the Possibilistic algorithm.
As a preprocess, reconvergent fanouts are searched using
the algorithm of Roberts and Lala to detect all reconvergent
fanouts [64]. The circuit is then traversed from inputs to out-
puts, visiting every node. In the case that the visited node is
not a destination of reconvergence, the signal probability for
that node is estimated according to the rules of the Possibilistic

Fig. 5. Accuracy comparison of signal probability and SER estimation for different algorithms.

Fig. 6. Histogram of ISCAS’85 reconvergent subnetwork sizes.
2. We define reconvergent subnetwork size as the number of gates cover-

ing all paths between the source and the destination of reconvergence.

ANGLADA ET AL.: FAST AND ACCURATE SER ESTIMATION FOR LARGE COMBINATIONAL BLOCKS IN EARLY STAGES OF THE DESIGN 435



algorithm. Those heuristic rules are also used in the case
that the node is the destination of reconvergence from a sub-
network of size greater than 30. Only in the case that the
node is the destination of reconvergence from a subnetwork
of size 30 or smaller, we generate the 2n inputs of the recon-
vergent subnetwork. Then,we simulate the subcircuit 2n times
and average the 0-to-1 ratios of the nodes by the likelihood of
each input vector. The weight associated to each input vector
is computed as the union of the signal probabilities of every
signal in the vector, assuming that all of them are
independent.

Algorithm 2. Algorithm to Estimate Signal Probabilities

1: R Detect all RFON in the circuit
2: Traverse the circuit from inputs to outputs, setting in all

gates the heuristic values needed for POSS
3: Traverse the circuit from inputs to outputs. for each gate
4: if gate is not a destination in R or gate is a destination

with size > 30 in R then
5: SignalProbability(gate) POSS Heuristic(gate)
6: else
7: Rgate Subnetwork in Rwhose destination is gate
8: IV Generate all input vectors in Rgate

9: for i ¼ fi1; i2; . . . ; ing  Vector in IV do
10: Oi Signal value of gate after simulating

Rgate with i
11: Pi  

Qn
j¼1 ij

12: end for
13: SignalProbability(gate) PjIV j

i¼1 Oi 	 Pi

14: end if
15: end for

6 VALIDATION

In this section, we report the validation results for our signal
probability and circuit SER estimation methods. The experi-
ments were performed on a machine with an Intel Core
i7-4500U running at 2 GHz with 8 GB of RAM.

6.1 Signal Probability Estimation

In order to analyze the accuracy of the several signal
probability computation methods, we compare their esti-
mation with the output of circuit simulation. To do so,
random input vectors are sampled from an input distri-
bution, the circuit is simulated and the value at each
node is noted. After 107 simulation runs, the reference
ratio between 0 and 1 (the probability that there is a 0 at
that node) at each node is obtained. Then, the different
algorithms, whose outputs are signal probabilities per
node, are executed. Finally, the difference between the
reference probability and the algorithm probability is
measured for each node. The quality of each algorithm
is based on the arithmetic mean of those differences. We
used circuits from the ISCAS’85 benchmarks to conduct
these experiments. 100 different input distributions were
tested to extract conclusions.

Fig. 7 compares the signal probability estimation error
obtained using the Possibilistic algorithm (the best perform-
ing algorithm from the literature, as seen in Section 5) with
the error obtained using the MASkIt approach. Adding the
exhaustive simulation of reconvergent subnetworks on top of
the Possibilistic algorithm yields a 96 percent reduction of
estimation error. The remaining absolute error on average is
only 0.1 percent per node, which is considered adequate
enough to build the vulnerability estimation upon and also
produces positive results for the whole reliability estimation
model.

Fig. 8 plots the trade-off between the accuracy obtained
simulating fanout subnetworks up to a particular size and
the execution time of those simulations.

If larger subnets are considered, gates with big fanin
counts (5 or more) become more frequent, and the number of
inputs reaching the subnet increases dramatically with the
subnet size. Moreover, despite the extra computation effort,
the differences between the simulated probabilities and the
computed probabilities are not reduced significantly.We con-
clude that simulating the small subnets is feasible in terms of

Fig. 7. Comparison among the Possibilistic algorithm and MASkIt to estimate signal probabilities.

436 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2021



execution time and it provides a significant improvement
in the computation of signal probabilities.

6.2 Model Validation

For the validation of our framework, we compare MASkIt
against the results of fault injection. The experiments consist
of three variables: the input probability distribution, the cir-
cuit uponwhich the injection is performed and the number of
iterations. The input distribution consists of a random num-
ber between 0 and 1 for each primary input of the circuit. The
circuits correspond to the ISCAS’85 benchmarks synthesized
using the Design Compiler from Synopsys with 15 nm
Nangate Open Cell Library [65] as selected technology. The
cell characterization of that library is performed using the
methodology in [48].

The fault injection approach consists in changing the logic
value at the output of a gate. To perform an experiment, a par-
ticular input vector from an input distribution is generated
and the circuit is simulated. Then, faults are injected itera-
tively to all gates and outputs are observed for changes with
respect to the original simulation. If there are no differences
among the original outputs and the fault-injected ones, the
fault was masked. If one or more outputs have been changed,
the fault was notmasked and a counter, representing vulnera-
bility for the gate, is incremented. This process is repeated for
a number of iterations, inside which new input vectors are
sampled from the input distribution.When a sufficiently large
number of input vectors have been simulated, the vulnerabil-
ity counter at each of the gates is divided by the number of
iterations, thus computing the ratio of experiments in which
a fault in the gate was not masked, i.e., its vulnerability. These

actions are repeated for 100 different input probability
distributions.

The number of samples in a Monte Carlo experiment is
defined by Equation (13) [66]

n ¼
z2a=2 � S2

n

�2
; (13)

where n is the number of iterations needed, za=2 is the critical
value of the normal distribution for a=2, Sn is the estimated
deviation at the output and � is the desiredmargin of error.

For our experiments, we chose an interval of confidence
of 95 percent. Since the outputs of the experiment are proba-
bilities representing vulnerability, we chose a margin of
error of 1 percent. Even though we do not know the stan-
dard deviation of our population, it can be estimated by a
large number of beforehand preliminary simulations (such
as 107, as suggested in [67]). Therefore, according to [66],
the number of Monte Carlo trials is 3,934. We rounded this
number to 4,000 iterations.

Table 2 shows that the proposed MASkIt approach
achieves excellent accuracy with two orders of magnitude
reduction in execution time with respect to the classic fault
injection technique. The maximum relative error is below
10 percent with an average of 5 percent, while the average
absolute error is 1.9 percent and the maximum is 3.1 percent.
If the circuit contains few reconvergent fanouts, such as c499,
the model outputs results almost identical to those obtained
with fault injection. However, the size of the circuit does not
correlate with the precision of the algorithm. Finally, in terms
of execution time, MASkIt is 350 times faster on average than
classic fault injection, making our proposal a fast yet accurate
approach for circuit SER estimation also considering masking
effects.

7 USE CASE: SER ESTIMATION

FOR COMBINATIONAL BLOCKS

OF A MICROPROCESSOR

This section demonstrates the use of MASkIt for large, char-
acteristic circuits. To this end we use OPA, an open-source,
VHDL-coded, FPGA-synthesizable, out-of-order supersca-
lar processor [68] as a token of state-of-the-art circuit design
in microarchitecture. As a case study, we use our entire
methodology to compute the vulnerability of four critical
components of the OPA processor: the instruction decoder,
the instruction scheduler, the Arithmetic and Logic Unit

Fig. 8. Comparison between fanout cone size, accuracy, and execution
time.

TABLE 2
Validation Experiments for ISCAS’85 Benchmarks

Circuit details Fault injection MASkIt

Name Gate count Vulnerability Execution time Vulnerability Execution time Relative error (%)

c432 160 0.257 1 hour 0.256 15 seconds 0.5
c499 202 0.467 1.5 hours 0.468 22 seconds 0.004
c880 383 0.53 4.7 hours 0.515 33 seconds 2.7
c1355 546 0.385 10 hours 0.365 46 seconds 5.4
c1908 880 0.398 22 hours 0.369 3 minutes 7.3
c2670 1193 0.361 40 hours 0.339 9 minutes 6.14
c3540 1669 0.275 80 hours 0.249 22 minutes 9.5
c5315 2307 0.432 7.5 days 0.409 45 minutes 5.2
c7752 3512 0.375 1.5 weeks 0.344 1.5 hours 8.5

ANGLADA ET AL.: FAST AND ACCURATE SER ESTIMATION FOR LARGE COMBINATIONAL BLOCKS IN EARLY STAGES OF THE DESIGN 437



(ALU) and the Floating Point Unit (FPU). To the best of our
knowledge, this is the first work to report reliability figures
on such kind of circuits.

7.1 Preprocessing

The preprocessing before SER estimation begins with the
behavioral description in HDL code of each block circuit
under study. To obtain the signal probabilities of the circuits
primary inputs, logical simulations using ModelSim are per-
formed. The logical simulation consists in executing several
benchmarks andmonitoring at each cycle the logical values of
each primary input. The signal probability used for the soft
error estimation is the 0-to-1 ratio of these values. In our
experiments, we have used three microbenchmarks that are
representative of the typical workloads these circuits would
execute. The test programs are the following: accumulation of
the values of a vector of 1,000 elements, multiplication of two
matrices of 10x10 elements, and a bubblesort of a vector of
1,000 elements. We perform 100 executions for each program,
initializing the input sets with random values on each run.
The OPA processor block circuits are then synthesized using
a subset of elementary gates from NanGate 45 nm’s tech-
nology library [65] that have been previously characterized.
The synthesis constraints are: voltage of 0.7 V, temperature of
75
C and frequency of 1 GHz. The generated netlist is parsed
and mapped to the corresponding graph structure, in which
each node has data fed from the cell characterization library
and the primary inputs also have their signal probabilities set.

7.2 Results

Table 3 shows the results of running MASkIt for the four
aforementioned block circuits after the preprocessing stage.
The table reports the vulnerability for the three benchmark
applications as well as the execution time. Each circuit is
also characterized by the number of primary inputs, pri-
mary outputs and total gates. Several revealing observations
can be extracted. To begin with, masking effects have a tre-
mendous effect in the reduction of the SER. The weakest cir-
cuit in our experiments is the Decoder while running the
addition benchmark with a vulnerability of 56 percent,
which implies that 44 percent of particle strikes are masked
simply because of the inherent properties of the circuit
design. For other circuits the effect of masking can be highly
significant. It is the case of the FPU implemented in OPA,
which is the most resilient of the evaluated circuits, with a
vulnerability of just 20 percent, meaning that 80 percent of
particle strikes might be masked.

A second interesting observation is that the impact that dif-
ferent input distributions have in the reliability of a circuit is
not very large but it is not negligible. The circuit that presents
the widest variability is the ALU, which has a vulnerability of

41 percent with the input distribution obtained by running
the Addition benchmark and a vulnerability of 49 percent
while running the Bubblesort benchmark. The vulnerability
of the other three components (Decoder, Scheduler and FPU)
ismore contained towards amean value: the Decoder and the
Scheduler have absolute variations of only 4 percent whereas
the FPU has an absolute variation of 5 percent.

This study serves to illustrate MASkIt’s capability to
estimate the SER of several alternatives of the same combina-
tional circuit in early stages of design. With the synthesis
constrains previously described, the netlist obtained for the
Decoder has a substantial amount of XOR and XNOR gates,
which do not contribute tomask particle strikes through Logi-
cal Masking. As a consequence, the Decoder exhibits a rela-
tively higher vulnerability in comparison with the other three
circuits. If further synthesis constraints are added to prevent
the use of these kind of gates, the vulnerability of the Decoder
is reduced almost 10 percent: to 47 percent in Addition and
Multiplication and to 43 percent in Bubblesort.

The proposed MASkIt approach makes possible to per-
form early vulnerability studies by iterating across multiple
variations of a targeted circuit due to the achieved efficiency
and scalability. While we have not executed fault injection
for the use case circuits of the OPA processor, based upon
the results obtained for ISCAS’85 circuits (Table 2), we esti-
mate that using a traditional approach on circuits with
more than 10,000 gates would require at least 6 weeks of
execution time while MASkIt estimates the vulnerability for
circuits of such size in only 2.5 hours (this the case of the
Decoder, composed of 12,448 gates) which represents a time
improvement of two orders of magnitude with respect to
fault injection. Moreover, a comparison between running
MASkIt in c7752, the largest circuit in the ISCAS’85 bench-
mark, and the Decoder, the largest circuit in this case study,
reveals that, while the number of gates in the circuit
increases by 3.5x, the execution time only increases by 1.6x.
Therefore, it is shown that the execution time of MASkIt is
not exponential even though it computes the effect of all
input vectors and pulse widths simultaneously.

8 CONCLUSIONS

In this paper, we have introduced a novel methodology that
allows to estimate the vulnerability of combinational logic in
early stages of the design. The basis of such methodology is
MASkIt, an algorithm that traverses any circuit from outputs
to inputs and incrementally evaluates the overall SER by
computing the effects of logical, electrical and timing mask-
ing for all gates. All possible input widths and input vectors
are considered at once due to the use of a cell technology
library and signal probabilities. These signal probabilities

TABLE 3
Vulnerability Results for Several Combinational Blocks of a Superscalar Processor

Circuit details MASkIt Vulnerability Execution time

Name Primary inputs Primary outputs Gate count Addition Multiplication Bubblesort

Decoder 168 317 12448 0.56 0.55 0.52 2.5 hours
Scheduler 287 151 12311 0.36 0.35 0.32 2.5 hours
ALU 188 96 2781 0.41 0.46 0.49 50 mintues
FPU 227 166 1072 0.20 0.25 0.24 8 mintues

438 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2021



are approximated using a novel approach that combines an
heuristic algorithm along with the simulation of selected
reconvergent subnets within the circuit. Experiments on
benchmark circuits show that the proposed algorithm offers
two orders of magnitude speedup compared with a fault-
injection based SER estimation methodology with less than
5 percent inaccuracy.We have also shown that our technique
can be applied to swiftly and accurately estimate the vulner-
ability of state-of-the-art logic designs. As a case study, we
have studied several combinational block circuits from an
out-of-order superscalar. We show how MaskIt can handle
circuits of 12 K gates in over 2 hours, making it the first
method to achieve such turn around times. Consequently,
MaskIt is as an effective tool to help circuit designers choose
the least vulnerable circuit implementation in early design
stages.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness and Feder Funds
under grant TIN2013-44375-R, by theGeneralitat de Catalunya
under grant FI-DGR 2016, and by the FP7 program of the EU
under contract FP7-611404 (CLERECO).

REFERENCES

[1] R. C. Baumann, “Soft errors in advanced semiconductor devices-
part I: The three radiation sources,” IEEE Trans. Device Mater. Rel.,
vol. 1, no. 1, pp. 17–22, Mar. 2001.

[2] P. Shivakumar, et al., “Modeling the effect of technology trends on
the soft error rate of combinational logic,” in Proc. Int. Conf.
Depend. Syst. Netw., 2002, pp. 389–398.

[3] N. Seifert, et al., “Soft error susceptibilities of 22 nm Tri-Gate
devices,” IEEE Trans. Nucl. Sci., vol. 59, no. 6, pp. 2666–2673,
Dec. 2012.

[4] T. Uemura, et al., “Investigation of logic circuit soft error rate
(SER) in 14nm FinFET technology,” in Proc. IEEE Int. Rel. Physics
Symp., 2016, pp. 3B-4–1–3B-4-4.

[5] J. Meza, et al., “Revisiting memory errors in large-scale production
data centers: Analysis and modeling of new trends from the field,”
in Proc. 45th Annu. IEEE/IFIP Int. Conf. Depend. Syst. Netw., 2015,
pp. 415–426.

[6] S.-L. Gong, et al., “DRAM scaling error evaluation model using
various retention time,” in Proc. 45th Annu. IEEE/IFIP Int. Conf.
Depend. Syst. Netw., 2017, pp. 177–183.

[7] P. N. Sanda, et al., “Soft-error resilience of the IBM Power6
processor,” IBM J. Res. Develop., vol. 52, no. 3, pp. 275–284, 2008.

[8] J. Han, et al., “A fault-tolerant technique using quadded logic and
quadded transistors,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 23, no. 8, pp. 1562–1566, Aug. 2015.

[9] A. T. Sheikh, et al., “A fault tolerance technique for combinational
circuits based on selective-transistor redundancy,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 25, no. 1, pp. 224–237, Jan. 2017.

[10] A. Yan, et al., “Double-node-upset-resilient latch design for nano-
scale CMOS technology,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 25, no. 6, pp. 1978–1982, Jun. 2017.

[11] J. Arlat, et al., “Fault injection for dependability validation:
A methodology and some applications,” IEEE Trans. Softw. Eng.,
vol. 16, no. 2, pp. 166–182, Feb. 1990.

[12] S. Mukherjee, Architecture Design for Soft Errors. San Mateo, CA,
USA: Morgan Kaufmann, 2011.

[13] B. Zhang, et al., “FASER: Fast analysis of soft error susceptibility
for cell-based designs,” in Proc. 7th Int. Symp. Quality Electron.
Des., 2006, pp. 755–760.

[14] N. Miskov-Zivanov and D. Marculescu, “Formal modeling and
reasoning for reliability analysis,” in Proc. 47th Des. Autom. Conf.,
2010, pp. 531–536.

[15] S. Krishnaswamy, et al., “On the role of timing masking in reliable
logic circuit design,” in Proc. 45th ACM/IEEE Des. Autom. Conf.,
2008, pp. 924–929.

[16] P. C. Murley and G. R. Srinivasan, “Soft-error Monte Carlo model-
ing program, SEMM,” IBM J. R+D, vol. 40, no. 1, pp. 109–118,
1996.

[17] N. J. Wang, et al., “Characterizing the effects of transient faults on
a high-performance processor pipeline,” in Proc. Int. Conf. Depend.
Syst. Netw., 2004, pp. 61–70.

[18] M. Zhang and N. R. Shanbhag, “Soft-error-rate-analysis (SERA)
methodology,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 25, no. 10, pp. 2140–2155, Oct. 2006.

[19] D. Holcomb, et al., “Design as you see fit: System-level soft error
analysis of sequential circuits,” in Proc. Conf. Des. Autom. Test
Europe, 2009, pp. 785–790.

[20] J.-C. Baraza, et al., “Enhancement of fault injection techniques
based on the modification of VHDL code,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 16, no. 6, pp. 693–706, Jun. 2008.

[21] D. Alexandrescu, E. Costenaro, and M. Nicolaidis, “A practical
approach to single event transients analysis for highly complex
designs,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Nano-
tech. Syst., 2011, pp. 155–163.

[22] Y. Kuo, et al., “Accurate statistical soft error rate (SSER) analysis
using a quasi-Monte Carlo framework with quality cell models,”
in Proc. Int. Symp. Quality Electron. Des., 2010, pp. 831–838.

[23] L. Entrena, et al., “Soft error sensitivity evaluation of microproces-
sors by multilevel emulation-based fault injection,” IEEE Trans.
Comput., vol. 61, no. 3, pp. 313–322, Mar. 2012.

[24] R. Rajaraman, et al., “SEAT-LA: A soft error analysis tool for com-
binational logic,” in Proc. 19th Int. Conf. VLSI Des., 2006, Art. no. 4.

[25] S. Krishnaswamy, et al., “Signature-based SER analysis and
design of logic circuits,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 28, no. 1, pp. 74–86, Jan. 2009.

[26] S. Krishnaswamy, et al., “Accurate reliability evaluation and
enhancement via probabilistic transfer matrices,” in Proc. Conf.
Des. Autom. Test Europe, 2005, pp. 282–287.

[27] N. Miskov-Zivanov and D. Marculescu, “MARS-C: Modeling and
reduction of soft errors in combinational circuits,” in Proc. Des.
Autom. Conf., 2006, pp. 767–772.

[28] R. B. Schivittz, et al., “A probabilistic model for stuck-on faults in
combinational logic gates,” in Proc. 17th Latin-Amer. Test Symp.,
2016, pp. 39–44.

[29] A. Abdollahi, “Probabilistic decision diagrams for exact probabi-
listic analysis,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.,
2007, pp. 266–272.

[30] H. Asadi, et al., “Efficient algorithms to accurately compute derat-
ing factors of digital circuits,” Microelectron. Rel., vol. 52, no. 6,
pp. 1215–1226, 2012.

[31] N. Mohyuddin, et al., “Probabilistic error propagation in logic
circuits using the boolean difference calculus,” in Proc. IEEE Int.
Conf. Comput. Des., 2008, pp. 7–13.

[32] J. Han, et al., “Reliability modeling of nanoelectronic circuits,”
in Proc. Conf. Nanotechnol., 2005, pp. 269–272.

[33] A. Stempkovskiy, et al., “Practical metrics for evaluation of fault-
tolerant logic design,” in Proc. IEEE Conf. Russian Young Res. Elect.
Electron. Eng., 2017, pp. 569–573.

[34] T. Rejimon and S. Bhanja, “Scalable probabilistic computing models
using Bayesian networks,” in Proc. 48th Midwest Symp. Circuits Syst.,
2005, pp. 712–715.

[35] L. Chen, et al., “CEP: Correlated error propagation for hierarchical
soft error analysis,” J. Electron. Testing, vol. 29, no. 2, pp. 143–158,
2013.

[36] S. Yoshida, et al., “An soft error propagation analysis considering
logical masking effect on re-convergent path,” in Proc. IEEE 22nd
Int. On-Line Testing Symp., 2016, pp. 13–16.

[37] J. Cai and C. Chen, “Circuit reliability analysis using signal
reliability correlations,” in Proc. IEEE Int. Conf. Softw. Quality Rel.
Secur. Companion, 2017, pp. 171–176.

[38] S. Z. Shazli and M. B. Tahoori, “Using boolean satisfiability for
computing soft error rates in early design stages,” Microelectron.
Rel., vol. 50, no. 1, pp. 149–159, 2010.

[39] T. Takata, et al., “A robust algorithm for pessimistic analysis of
logic masking effects in combinational circuits,” in Proc. IEEE 17th
Int. On-Line Testing Symp., 2011, pp. 246–251.

[40] H. Asadi and M. B. Tahoori, “Soft error derating computation in
sequential circuits,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., 2006, pp. 497–501.

[41] Y. Kimi, et al., “An accurate soft error propagation analysis tech-
nique considering temporal masking disablement,” in Proc. IEEE
21st Int. On-Line Testing Symp., 2015, pp. 23–25.

ANGLADA ET AL.: FAST AND ACCURATE SER ESTIMATION FOR LARGE COMBINATIONAL BLOCKS IN EARLY STAGES OF THE DESIGN 439



[42] R. Garg, C. Nagpal, and S. P. Khatri, “A fast, analytical estimator
for the SEU-induced pulse width in combinational designs,”
in Proc. Des. Autom. Conf., 2008, pp. 918–923.

[43] G. B. Hamad, et al., “Efficient multilevel formal analysis and esti-
mation of design vulnerability to single event transients,” in Proc.
IEEE 21st Int. On-Line Testing Symp., 2015, pp. 1–6.

[44] M. Shafique, et al., “Reliable software for unreliable hardware:
Embedded code generation aiming at reliability,” in Proc. 7th
IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codes. Syst. Synthesis,
2011, pp. 237–246.

[45] M. Shafique, et al., “Exploiting program-level masking and error
propagation for constrained reliability optimization,” in Proc. 50th
Annu. Des. Autom. Conf., 2013, pp. 1–9.

[46] F. Brosch, et al., “Architecture-based reliability prediction with the
palladio component model,” IEEE Trans. Softw. Eng., vol. 38, no. 6,
pp. 1319–1339, Nov./Dec. 2012.

[47] M. Carbin, et al., “Verifying quantitative reliability for programs
that execute on unreliable hardware,” ACM SIGPLAN Notices,
vol. 48, no. 10, pp. 33–52, 2013.

[48] M. Riera, et al., “A detailed methodology to compute soft error
rates in advanced technologies,” in Proc. Conf. Des. Autom. Test
Europe, 2016, pp. 217–222.

[49] M. Ebrahimi, et al., “Layout-based modeling and mitigation of
multiple event transients,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 35, no. 3, pp. 367–379, Mar. 2016.

[50] M. Ebrahimi, et al., “Comprehensive analysis of alpha and neu-
tron particle-induced soft errors in an embedded processor at
nanoscales,” in Proc. Conf. Des. Autom. Test Europe, 2014, pp. 1–6.

[51] S. Kiamehr, et al., “Chip-level modeling and analysis of electrical
masking of soft errors,” in Proc. 31st VLSI Test Symp., 2013, pp. 1–6.

[52] M. Amin Sabet, B. Ghavami, and M. Raji, “A scalable solution
tosoft error tolerant circuit design using partitioning-based gate
sizing,” IEEE Trans. Rel., vol. 66, no. 1, pp. 245–256, Mar. 2017.

[53] I. M. Ratiu, et al., “VICTOR: A fast VLSI testability analysis pro-
gram,” in Proc. IEEE Int. Test Conf., 1982, pp. 397–401.

[54] R. E. Bryant, “Symbolic Boolean manipulation with ordered
binary-decision diagrams,” ACM Comput. Surveys, vol. 24, no. 3,
pp. 293–318, 1992.

[55] N. Miskov-Zivanov and D. Marculescu, “Circuit reliability analysis
using symbolic techniques,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 25, no. 12, pp. 2638–2649, Dec. 2006.

[56] R. G.Michael, et al.,Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco, CA,USA: Freeman, 1979.

[57] F. Kriebel, et al., “ACSEM: Accuracy-configurable fast soft error
masking analysis in combinatorial circuits,” in Proc. Conf. Des.
Autom. Test Europe, 2015, pp. 824–829.

[58] S. Ercolani, et al., “Estimate of signal probability in combinational
logic networks,” in Proc. Eur. Test Conf., 1989, pp. 132–138.

[59] B. Krishnamurthy and I. G. Tollis, “Improved techniques for
estimating signal probabilities,” IEEE Trans. Comput., vol. 38, no. 7,
pp. 1041–1045, Jul. 1989.

[60] M. A. Al-Kharji and S. A. Al-Arian, “A new heuristic algorithm
for estimating signal and detection probabilities,” in Proc. 7th
Great Lakes Symp. VLSI, 1997, pp. 26–31.

[61] A. C.-C. Chang, et al., “CASSER: A closed-form analysis framework
for statistical soft error rate,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 21, no. 10, pp. 1837–1848, Oct. 2013.

[62] D. T. Franco, et al., “Signal probability for reliability evaluation of
logic circuits,”Microelectron. Rel., vol. 48, no. 8, pp. 1586–1591, 2008.

[63] J. Li and J. Draper, “Accelerated soft-error-rate (SER) estimation
for combinational and sequential circuits,” ACM Trans. Des.
Autom. Electron. Syst., vol. 22, no. 3, 2017, Art. no. 57.

[64] M. W. Roberts and P. K. Lala, “Algorithm to detect reconvergent
fanouts in logic circuits,” IEEE Proc. Comput. Digit. Techn., vol. 134,
no. 2, pp. 105–111,Mar. 1987.

[65] Nangate 15nm open cell library, (2014). [Online]. Available:
http://www.nangate.com/?page_id=2328, Accessed on: 20-Dec-
2018.

[66] R. R. Robey and R. S. Barcikowski, “Type I error and the number
of iterations in Monte Carlo studies of robustness,” Brit. J. Math.
Statistical Psychology, vol. 45, no. 2, pp. 283–288, 1992.

[67] W. L. Winston, Simulation Modeling Using@ RISK. Duxbury, MA,
USA: Brooks/Cole, 2000.

[68] W. W. Terpstra, “OPA: Out-of-order superscalar soft CPU,” in
Proc. Ontology Router Configuration, 2015.

Mart�ı Anglada received the BS degree in computer
engineering, in 2013, and the MSc degree in high
performance computing, in 2015, from the Universi-
tat Polit�ecnica de Catalunya (UPC-BarcelonaTech).
He is currently working toward the PhD degree. He
joined the UPC-BarcelonaTech ARCO Research
Group in July 2014. His research is focused on low-
power, resilient architectures.

Ramon Canal is an associate professor with the
Computer Architecture Department, Universitat
Polit�ecnica de Catalunya. His research focuses
on resilient, energy efficient architectures. He has
an extensive list of publications and several invited
talks. He has been a program committee member
for several editions of HPCA, MICRO, ISCA,
HiPC, IPDPS, and ICCD. He has been co-general
chair of IOLTS 2012 and HPCA 2016. He is a
senior member of the IEEE.

Juan L. Arag�on received the PhD degree in com-
puter engineering from UMU, in 2003, followed by a
1-year postdoctoral stay asa visiting assistant profes-
sor and researcher with UC Irvine. He is an associate
professor with the Computer Architecture Depart-
ment, University of Murcia, Spain. He has also been
a visiting researcher with EPFL (Switzerland), in
2013 and with Princeton University (USA), in 2015
and 2017, respectively. He has co-authored 50
research papers inmajor conferences and journals.

Antonio Gonz�alez received the PhD degree, in
1989. He is a full professor with the Computer
ArchitectureDepartment, Universitat Polit�ecnica de
Catalunya, Barcelona, Spain, and the director of
the Microarchitecture and Compilers Research
Group. He was the founding director of the Intel
BarcelonaResearch Center from 2002 to 2014. His
research interests focus on computer architecture
and code optimization. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

440 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 3, JULY-SEPTEMBER 2021

http://www.nangate.com/?page_id=2328


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


