
Control Speculation for Energy-Efficient
Next-Generation Superscalar Processors

Juan L. Aragón, Member, IEEE Computer Society, José González, Member, IEEE Computer Society,

and Antonio González, Member, IEEE Computer Society

Abstract—Conventional front-end designs attempt to maximize the number of “in-flight” instructions in the pipeline. However, branch

mispredictions cause the processor to fetch useless instructions that are eventually squashed, increasing front-end energy and issue

queue utilization and, thus, wasting around 30 percent of the power dissipated by a processor. Furthermore, processor design trends

lead to increasing clock frequencies by lengthening the pipeline, which puts more pressure on the branch prediction engine since

branches take longer to be resolved. As next-generation high-performance processors become deeply pipelined, the amount of wasted

energy due to misspeculated instructions will go up. The aim of this work is to reduce the energy consumption of misspeculated

instructions. We propose Selective Throttling, which triggers different power-aware techniques (fetch throttling, decode throttling, or

disabling the selection logic) depending on the branch prediction confidence level. Results show that combining fetch-bandwidth

reduction along with select-logic disabling provides the best performance in terms of overall energy reduction and energy-delay

product improvement (14 percent and 10 percent, respectively, for a processor with a 22-stage pipeline and 16 percent and 13 percent,

respectively, for a processor with a 42-stage pipeline).

Index Terms—Control speculation, energy-aware systems, low-power design, processor architecture.

�

1 INTRODUCTION

CONTINUING advances in semiconductor technology lead
to more powerful processors in which power dissipa-

tion has become an important design concern. Power
dissipation translates directly into heat, which may cause
chip malfunction due to some failures such as thermal
runaway, junction fatigue, and electro-migration diffusion
[21]. To keep temperature under control, high performance
processors require the use of very expensive cooling
schemes, which may significantly impact the final cost of
the system. For mobile and embedded processors, battery
life is another key design concern.

Conventional front-end instruction delivery—fetch, de-

code, rename, and dispatch—accounts for a significant

portion of the overall energy consumed in a typical processor.

For instance, the front-end was reported to consume about

25 percent of the total energy in the Alpha 21264 [9]. Front-

end designs try to maximize the number of instructions

supplied to the back-end using all the available bandwidth

and resulting in some useless energy consumption and

resource utilization. Furthermore, current processor designs

use very deep pipelines to increase processor frequency and

then performance [11], [12], [22], [23]. Augmenting the

pipeline depth increases the number of cycles that a branch

takes from being fetched to be resolved, which increases the

number of misspeculated instructions for each branch

misprediction. The result is that a very significant part of

the dissipated power (around 30 percent, on average, based

on data reported in [3]) may be wasted due to misspecu-

lated instructions.

The goal of this work is to reduce the energy consumed

by misspeculated instructions without hurting performance

by means of Selective Throttling. Based on the confidence

level assigned to each branch prediction, different processor

structures are dynamically throttled: fetch unit, decode unit,

or selection logic. For low confidence predictions, the most

aggressive throttling heuristics are applied early in the

pipeline (at the expense of a potentially higher performance

penalty if the prediction turns out to be correct). On the

other hand, for high confidence predictions, less aggressive

techniques, both in terms of energy reduction and potential

performance degradation, are applied depending on the

confidence level.

Prior related work, such as Pipeline Gating [17], proposed

an all-or-nothing mechanism which is very sensitive to the

goodness of the confidence estimator since performance is

highly penalized if the confidence estimation turns out to be

incorrect (see Section 5.2 for further details).
In [3], we proposed different throttling policies that are

selectively applied based on the branch confidence estima-

tion. In addition, these policies have a certain degree of

adaptability (i.e., complete fetch stall versus stalling fetch

every four cycles). We also proposed a new throttling

technique which disables the selection of instructions that

are control dependent on a low confident branch.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006 281

. J.L. Aragón is with the Departamento Ingenieria y Tecnologı́a de
Computadores, Universidad de Murcia, Facultad de Informática-Campus
Espinardo, 30100 Murcia, Spain. E-mail: jlaragon@ditec.um.es.

. J. González is with the Intel Barcelona Research Center, UPC, Intel Labs
Barcelona, Barcelona, Spain. E-mail: pepe.gonzalez@intel.com.

. A. González is with the Computer Architecture Department, Universitat
Politècnica de Catalunya, c/ Jordi Girona 1-3, Mòdul D6, 08034 Barcelona,
Spain. E-mail: antonio@ac.upc.es.

Manuscript received 22 June 2004; revised 9 Aug. 2005; accepted 24 Aug.
2005; published online 20 Jan. 2006
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0212-0604.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

The new contributions of this work are the following:

. A more up-to-date baseline architecture is chosen
with a pipeline depth of 22 stages, similar to that of
the Intel Pentium 4 [8], to evaluate our proposal for
different throttling heuristics.

. The Sensitivity Analysis section is extended to
evaluate the effect of our proposal when considering
future design trends such as superpipelining [11], [12],
[22], [23], considering pipeline lengths of up to
42 stages.

. The effect of using better branch predictors, such as
the hybrid predictor implemented in the Alpha 21264,
is evaluated.

. The effect of different issue window (IW) sizes is
also evaluated. Since IW is responsible for a
significant fraction of the overall energy consump-
tion, we show that Selective Throttling can signifi-
cantly reduce overall energy consumption and
improve Energy-Delay product for processors with
large IWs.

. Energy savings provided by Selective Throttling for
different blocks of the processor are analyzed. In
particular, it reduces the energy consumption of the
I-cache by 40 percent and the energy consumption of
the issue window by 18 percent.

The rest of the paper is organized as follows: Section 2
reviews some related work. Section 3 analyzes the power
and energy consumption due to misspeculated instructions.
The proposed Selective Throttling mechanism is described in
Section 4. Section 5 analyzes performance and energy
reductions of our proposal. Finally, Section 6 summarizes
the main conclusions of this work.

2 RELATED WORK

There have been many proposals for reducing the perfor-
mance degradation caused by branch mispredictions. Some
approaches try to improve branch prediction accuracy [1],
[7], [18], [25]. Others try to minimize performance degrada-
tion by fetching and/or executing multiple paths [2], [13],
[16], [24]. However, analyzing how misspeculated instruc-
tions influence energy consumption has not received so
much attention.

Pipeline Gating [17] prevents wrong-path instructions
from entering the pipeline and wasting energy. This is
accomplished by using a confidence estimator to assess the
quality of branch predictions [10], [14]. Confidence estima-
tion is used to determine whether the processor is likely to
fetch instructions that will not commit. The number of
unresolved low confidence branches is used to determine
when and for how long to gate. If this number exceeds a
threshold, the fetch or decode stage is stalled, but
previously fetched or decoded instructions continue flow-
ing through the pipeline.

In [4], a fetch throttling mechanism is proposed to reduce
power dissipation by enabling or disabling the fetch or
decode stages based on certain heuristics. The authors
introduce two control-flow heuristics to selectively turn the
fetch stage off during three cycles.

JIT Instruction Delivery [15] dynamically limits the
number of “in-flight” instructions. Whenever the instruc-
tion count exceeds a threshold, the fetch stage is stalled.

Unlike Pipeline Gating, a confidence estimator is not used.
Recently, a fetch gating mechanism driven by issue queue
utilization has been proposed [6]. It is combined with dy-
namic issue queue size adaptation in order to further
reduce overall energy consumption.

3 ENERGY CONSUMPTION OF WRONG-PATH

INSTRUCTIONS

Processors use control flow speculation to predict the
outcome of conditional branches. Speculation greatly
improves performance, but it also increases energy con-
sumption in case of misprediction. Furthermore, the
amount of speculative activity increases with deeper
pipelines, resulting in systems that waste a significant
portion of energy. In [4], the number of incorrectly fetched
instructions was reported to account for up to 80 percent of
all fetched instructions.

In this section, we quantify the contribution of these
useless instructions on the overall power dissipation. The
SPECint2000 benchmark suite is analyzed with the Wattch
v1.02 power-performance simulator [5] for a baseline
processor with 22 stages (see Section 5.1 for details on
simulation methodology and processor configuration).

Fig. 1 shows the overall power breakdown for each block
of the processor averaged across all benchmarks for both
correct-path and wrong-path instructions. The significant
impact that branch prediction causes in deeper pipelines
can be seen, in terms of power dissipation: About 30 percent
of the total processor power is dissipated by misspeculated
instructions. This represents an upper bound of the power
reduction that can be achieved with the techniques
proposed in this paper. As expected, the fetch stage
(“icache”+“bpred”), which dissipates about 14 percent
of the overall power, wastes 57 percent of its power
(9 percent of the total) due to wrong-path instructions.
Similarly, the decode stage (“rename” + a fraction of
“regfile”1 + a fraction of “window”2) also contributes

282 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

1. According to the Wattch power model, the “regfile” activity
counter is updated in the decode stage to account for reads of ready
operands and also in the commit stage to account for register writes of
committed values.

2. Wattch’s “window” activity counter is updated in the decode stage to
write ready operands into the ROB (that contains the physical registers), at
issue to read ready operands from physical registers, and, finally, at write-
back to write results into the corresponding physical registers.

Fig. 1. Overall power breakdown for correct-path and wrong-path

instructions.

significantly to wasted power. The back-end of the
processor, including the issue logic, wake-up and selection
logic, ROB, LSQ, functional units, data caches, and the
result bus still waste about 9 percent of the overall power as
a consequence of misspeculated instructions. Finally,
12 percent of the power is wasted by the clock due to
useless activities.

Because of the way the Wattch simulator measures
dissipated power, it is not easy to directly determine the
fraction corresponding to misspeculated instructions for
each pipeline stage. Therefore, in order to precisely
determine the energy wasted by wrong-path instructions
on a per-stage basis, we also ran the following experiments:

1. Oracle fetch: Only fetches correct-path instructions
for conditional branches. In case of misprediction,
the processor does not fetch the misspeculated path.

2. Oracle decode: Uses realistic fetch, but only decodes
correct-path instructions for conditional branches.

3. Oracle select: Uses realistic fetch and decode, but only
selects for issuing correct-path instructions for
conditional branches.

In particular, the difference between the energy savings of
oracle fetch and oracle decode represents an upper bound of the
energy wasted exclusively within the fetch stage. Analo-
gously, the difference between the energy savings of oracle

decode and oracle select constitutes an upper bound of the
energy wasted only within the decode stage. Fig. 2 shows the
average speedup as well as power and energy savings and
energy-delay improvement for the three oracle experiments.
It can be seen that 13 percent of the overall energy is wasted
exclusively in the fetch stage, whereas 6 percent of the overall
energy is wasted in the decode stage.

Note that the oracle fetch experiment provides overall
energy savings similar to those reported in Fig. 1 although
now only conditional branches are considered. However,
since Selective Throttling will be applied only to conditional
branches, the oracle fetch experiment provides a better upper
bound on potential savings. Overall potential savings in
power, energy, and energy-delay for oracle fetch are
22 percent, 26 percent, and 31 percent, respectively. Note
that there is a speedup of 6 percent, mainly due to reduction
in I-cache pollution and resource contention. Fig. 2 also

shows that the potential energy savings by gating at decode
are 13 percent (oracle decode experiment) and 7 percent
(oracle select experiment) if we gate them at issue.

4 SELECTIVE THROTTLING

Selective Throttling attempts to reduce dynamic power
dissipation and energy consumption while minimizing
performance degradation. This is accomplished by limiting
the number of misspeculated instructions fetched, decoded,
and issued, which decreases useless activities in the
processor.

Selective Throttling relies on branch confidence estimation
to initiate a particular action. We propose using different
throttling policies depending on the confidence level, with
the goal of obtaining an optimal trade-off between power
and performance.

4.1 Power-Aware Knobs

Various throttling knobs with different potential impact on
performance are used:

. Fetch throttling: Reduces the fetch bandwidth to a
half, a quarter, or it completely stalls the fetch unit.

. Decode throttling: Reduces the decode bandwidth to a
half, a quarter, or it completely stalls the decode unit.

. Selection throttling: Avoids the selection for execution
of those instructions control-dependent on a low
confidence branch.

The last knob, Selection throttling, is a novel scheme that
attempts to reduce the power dissipated when misspecu-
lated instructions are executed. In order to do that, the
selection of instructions control-dependent on a low
confidence branch is disabled. This avoids useless activity
in the issue logic. On the other hand, it has a minor impact
on performance when it is erroneously applied (i.e.,
activated for correctly predicted branches) since instruc-
tions following the branch have already been fetched,
decoded, and dispatched anyway and they can be issued
immediately after the branch is executed.

The three knobs can be combined. For example, we
could define a throttling policy that reduces the fetch
bandwidth to a half, the decode bandwidth to a quarter,
and avoids the selection of instructions fetched after a
low confidence branch.

Fig. 3 depicts a block diagram of Selective Throttling.
Limiting the fetch and decode bandwidth is achieved by
alternating full activity cycles with idle cycles. For instance,
in an 8-wide issue processor, reducing the fetch bandwidth
to a half implies that eight instructions are fetched in a
given cycle and zero instructions are fetched in the next one.

The fetch and decode throttling knobs work as follows:
Four 2-bit registers are used to store the current and last
fetch/decode bandwidths, as depicted in Fig. 3. Each
register stores one of the following four values: full band-
width, one half, one quarter, or idle.

In the fetch stage, if a branch is predicted with low
confidence, new bandwidth parameters for both fetch and
decode units are set according to the defined throttling
policy and the previous bandwidths are backed up. In the
writeback stage, if a low confidence branch turns out to be

ARAG �OON ET AL.: CONTROL SPECULATION FOR ENERGY-EFFICIENT NEXT-GENERATION SUPERSCALAR PROCESSORS 283

Fig. 2. Oracle fetch, decode, and select savings.

mispredicted, both fetch/decode bandwidths are restored
to the last value. Otherwise, if the low confidence branch
was correctly predicted, we restore fetch/decode band-
widths when the branch being writebacked is the one that set
the current bandwidth. This last condition is necessary to
allow multiple nested throttling policies for different low
confidence branches, as explained in Section 4.2.

The selection throttling knob is fairly straightforward to
implement. It just requires one bit in each issue window entry
to disable selection. Fig. 4 shows how the no-select bit is used to
avoid raising the request signal used by the selection logic.
This heuristic works as follows: When a branch prediction has
low confidence, all of the following instructions set the no-
select bit to 1 when introduced in the issue window (IW).
When the low confidence branch reaches the writeback stage,
if it was mispredicted, all instructions after the branch are
flushed from the pipeline and we have successfully avoided
some useless activities and reduced power. Otherwise, if the
low confidence branch was correctly predicted, all the no-
select bits in the IW are reset to 0 using the “reset” line shown
in Fig. 4. Resetting the no-select bits for all instructions in the
IW may seem a conservative approach since Selective
Throttling allows multiple nested low confidence branches.
However, the reset is done very infrequently: Experimental
results show that less than 0.5 percent of total executed
instructions are conditional branches correctly predicted, but
labeled as low confidence by the simulated 8 KB BPRU
confidence estimator.

Note that the power overhead of the four 2-bit registers
and the additional no-select bits, although small, has been
modeled and taken into account in our experiments.

4.2 Confidence-Based Classification of Branches

The energy-efficiency of Selective Throttling strongly de-
pends on the accuracy of the confidence estimator. If the
confidence estimator assigns low confidence to a prediction
and it turns out to be correct, Selective Throttling results in a
power-performance penalty: Power dissipation is not
reduced, whereas performance is degraded. On the other
hand, if a prediction is assigned high confidence and the

branch turns out to be mispredicted, performance is not
degraded, but energy is wasted.

Thus, in order to obtain an optimal power-performance
trade-off, instead of using the conventional two states
(high/low) provided by a typical confidence estimator, we
propose classifying each branch prediction into the follow-
ing four states, based on the value of the confidence counter
stored in each entry of the confidence estimator:

1. very-high confidence branches (VHC),
2. high confidence branches (HC),
3. low confidence branches (LC),
4. very-low confidence branches (VLC).

This classification allows the processor to better tune the
different knobs to control power-performance. Note also
that Selective Throttling applies a particular throttling
scheme not only based on the confidence estimator, but
also on the status of other in-flight branches. For instance,
after applying a throttling policy for an LC branch, if a later
branch is assigned VLC before the first branch is resolved, a
more restrictive throttling policy may be applied.

4.3 Evaluated Confidence Estimators

According to the metrics introduced by Grunwald et al.
[10], a good confidence estimator should have high SPEC
and PVN.3 This led us to use the confidence estimator
proposed for the Branch Prediction Reversal Unit (BPRU)
scheme [1], which makes use of predicted data values to
assess the confidence of branch predictions. The BPRU is
based on the fact that data values can be useful to determine
branch mispredictions. Some mispredictions can be avoided
by selectively reversing the prediction based on some
processor parameters, in particular, predicted data values.
The BPRU is effective to detect some pathological branches
with a high probability of being mispredicted, such as hard
to predict if-then-else structures.

The BPRU has been modified as follows to adapt it to the
purpose of this work. It uses a tagged table. Branches that
miss in that table use the saturating counter of the
underlying branch predictor to provide the confidence
estimation. If a branch is predicted as either weakly taken or
weakly not-taken, the branch is assigned LC. As expected,
this change increments the SPEC metric at the expense of

284 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

Fig. 3. Main components of Selective Throttling.

3. SPEC is defined as the fraction of incorrect predictions labeled as low
confidence, whereas PVN is defined as the fraction of low confidence
branches that are finally mispredicted.

Fig. 4. Wake-up logic [19] modified to implement the selection throttling

knob.

reducing the PVN metric. Simulations for an 8 KB gshare
predictor along with an 8 KB BPRU obtain an average SPEC
of 60 percent and a PVN of 45 percent for the evaluated
benchmarks.

For comparison purposes, we have also evaluated
Pipeline Gating using an 8 KB JRS confidence estimator
with an MDC-threshold of 12. This confidence estimator
obtains an average SPEC of 90 percent and a PVN of
24 percent, which is consistent with results reported in [10].

5 EXPERIMENTAL RESULTS

5.1 Simulation Methodology

To evaluate the energy-efficiency of Selective Throttling, we
run the 10 benchmarks from the SPECint95 and
SPECint2000 suites that exhibit the highest branch mis-
prediction rates. All benchmarks were compiled with
maximum optimizations (-O4 -fast) by the Compaq
Alpha compiler and were run using a modified version of
the Wattch v1.02 power-performance simulator [5]. All
benchmarks were run to completion, using reduced input
data sets in some of the applications to keep simulation time
reasonable. Table 1 shows the characteristics of each
particular benchmark.

Table 2 shows the configuration of the simulated
architecture. A 22-stage pipeline (from fetch to commit)
similar to that of the Intel Pentium 4 processor [8] has been
considered as an example of a current microprocessor with
a deep pipeline. These extra stages have been implemented
in both Wattch’s power model and sim-outorder’s timing
model. All results presented in this work use Wattch’s
clock-gating style “cc3,” which scales power linearly with
port/unit utilization, whereas inactive units still dissipate
10 percent of its maximum power.

5.2 Energy-Efficiency of Selective Throttling

In order to measure the energy-efficiency of Selective
Throttling, we carried out a comprehensive set of experi-
ments. These experiments are classified into three groups in
order to study the effect of each power-aware knob. The
first group of experiments exercises only the fetch throttling
knob independently of the others. The second group of
experiments evaluates the decode throttling knob indepen-
dently and in combination with fetch throttling. Finally, the
third group of experiments analyzes the selection throttling

knob in conjunction with both fetch throttling and decode
throttling. In all experiments, we compare configurations
with equal total size in the required tables. The baseline
configuration uses a 16 KB gshare branch predictor [18]. For
Selective Throttling, the branch predictor is an 8 KB gshare
and the confidence estimator is an 8 KB BPRU [1]. For
comparison purposes, we have simulated Pipeline Gating
with an 8 KB gshare and an 8 KB BPRU confidence
estimator. We also include results for Pipeline Gating using
an 8 KB JRS confidence estimator with an MDC-threshold of
12 and a gating threshold of 2, as proposed in [17].

Fig. 5 presents the results for the fetch throttling knob
using different throttling policies, from less to more
aggressive. The figure shows the speedup, energy savings,
and energy-delay product improvement over the baseline.

Experiments A1, A2, and A3 reduce the fetch bandwidth to
a half after an LC branch. Besides, after a VLC branch, the
fetch bandwidth is reduced to a half, a fourth, or stalled,
respectively. Such throttling policies have a negligible impact
on performance, with an average slowdown lower than
1 percent. Reducing the fetch activity decreases power
dissipation and results in average energy savings of 6 percent,
8 percent, and 10 percent, respectively. The E-D improvement
is similar because of negligible performance loss. Experi-
ments A4 and A5 correspond to more aggressive policies and,
therefore, they further degrade performance (3 percent), but
obtain greater energy savings (13 percent for A5), due to a
drastic reduction in wrong-path instruction activity.

Finally, Pipeline Gating (experiments A6 and A7) also has a
significant impact on performance, especially when using
BPRU, with an average slowdown of 13 percent (up to
22 percent for go). This negative impact was also reported in
[4], [15], [20]. Pipeline Gating obtains average energy savings
of 11 percent, which is close to experiment A5. However, the
average E-D improvement for Pipeline Gating+BPRU is
negative (-1 percent) and it is just 2 percent for Pipeline
Gating+JRS, whereas experiment A5 obtains an average E-D
improvement of 10 percent. These results point out that
completely stalling the fetch unit, as Pipeline Gating, is too
aggressive in terms of power-performance, whereas limiting

ARAG �OON ET AL.: CONTROL SPECULATION FOR ENERGY-EFFICIENT NEXT-GENERATION SUPERSCALAR PROCESSORS 285

TABLE 1
Benchmark Characteristics

TABLE 2
Configuration of the Simulated Processor

Simulations with more modern technologies, such as 90nm, 1.2V, and
3 GHz, will lead to similar conclusions since we are reducing the activity
of many units/structures in the processor, not their capacitance.

the number of instructions entering the pipeline based on the

confidence level assigned to the predicted branch represents

a better trade-off between performance and power.
The next set of experiments evaluates the effect of decode

throttling independently and in combination with fetch

throttling knob. To limit the number of experiments, we have

assumed that every VLC branch stalls the fetch unit since, in

the previous analysis, the best trade-off was obtained by

experiment A5. Fig. 6 shows the results using different

throttling levels for the selected benchmarks. Again, results

for Pipeline Gating, using both BPRU and JRS confidence

estimators, are shown for comparison purposes.
Experiments B1 and B2 only change the decode

bandwidth while keeping the fetch bandwidth at full speed

when an LC branch is found. The speedup plot shows a

noticeable impact on performance when the decode

bandwidth is reduced to one fourth, obtaining an average

slowdown of 4 percent in configuration B2. As expected, the

286 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

Fig. 5. Evaluation of the fetch throttling knob.

Fig. 6. Evaluation of the decode throttling knob independently and in combination with the fetch throttling knob.

reduction of the number of decoded instructions reduces
power dissipation and results in average energy savings of
8 percent and 9 percent, respectively. Again, since experi-
ment B2 limits the number of processed instructions more
than B1, its average E-D improvement (4 percent) is lower
than for configuration B1 (6 percent). Similar trends are
experienced by experiments B3 and B4. This reveals that
throttling the decode stage must be done carefully since
aggressive policies may result in a significant impact on the
E-D product.

Regarding the particular effect of decode throttling over the
best configuration of fetch throttling (A5), configuration B5
represents an incremental change since an LC branch also
reduces the decode bandwidth one fourth. The additional
reduction in wrong-path instructions allows B5 to obtain
similar energy savings and E-D improvement to A5.

The third set of experiments evaluates the effect of
selection throttling knob combined with both the fetch
throttling and decode throttling knobs. Fig. 7 plots the best
configurations from the previous analysis (A5 and B5) along
with the same configurations extended with the selection
throttling knob. C1 and C3 are exactly the same experi-
ments as A5 and B5, respectively, whereas C2 and C4
extend them with the selection throttling knob. Again, results
for Pipeline Gating are shown for comparison purposes.

It can be seen that selection throttling scarcely degrades
performance. Configuration C1 has an average slowdown
of 3 percent, whereas C2 (with selection throttling) has a
slowdown of 5 percent. C3 and C4 follow a similar trend:
Selection throttling introduces an additional slowdown of
about 2 percent. On the other hand, this knob reduces
power dissipation due to lower issue and execution
activities, resulting in higher average energy savings of
12 percent and 14 percent for experiments C1 and C2,
respectively. Selection throttling provides 2 percent of

additional energy savings while, at the same time, it does
not harm the E-D product metric. This knob minimizes the
impact of branches wrongly classified as low confidence
since control-dependent instructions are still decoded and
some of them are even awakened.

Summarizing, after evaluating the effect of the three
power-aware knobs, the best results are obtained by
configuration C2, which stalls the fetch unit after a VLC
branch is encountered, reduces the fetch bandwidth to 1/4
after an LC branch, and avoids the selection of those
instructions depending on an LC branch. This throttling
policy obtains average energy savings of 14 percent (up to
20 percent for go) and an average E-D improvement of
10 percent (up to 14 percent for go), which is significantly
better than that obtained by Pipeline Gating, with a negative
E-D improvement of -1 percent, as seen before.

This analysis concludes that the classification of branches
into multiple low confidence levels adds the flexibility to
use different throttling policies that dynamically adjust the
instruction traffic making an energy-efficient use of
resources. Aggressive techniques are more effective for
very low confidence predictions, whereas conservative,
smart heuristics are more adequate for low confidence
predictions. Completely gating the fetch unit is not always
the best solution in terms of power-performance. A better
trade-off is achieved by reducing the number of instructions
at different stages in the pipeline based on the confidence
level assigned to the predicted path.

It is also interesting to note that Selective Throttling
reduces the energy consumption of many units of the
processor. Fig. 8 shows the energy savings breakdown for
configuration C2. As expected, the greatest energy savings
are obtained in the I-cache (40 percent on average) because
of an important reduction in the number of misspeculated
instructions retrieved from the I-cache. Another important

ARAG �OON ET AL.: CONTROL SPECULATION FOR ENERGY-EFFICIENT NEXT-GENERATION SUPERSCALAR PROCESSORS 287

Fig. 7. Evaluation of the selection throttling knob.

structure is the issue window, which accounts for 18 percent
of the total dissipated power of the simulated processor
according to Fig. 1 (Section 3). For this particular structure,
our proposal reduces energy consumption by 18 percent.

Finally, it is interesting to evaluate the energy-efficiency
of a confidence-based scheme such as Selective Throttling for
applications with highly predictable branches. In such
applications, branch predictions are highly confident most
of the time and, therefore, there are very few opportunities
to initiate a throttling heuristic. Table 3 shows the relative
performance and energy savings provided by the best
configuration of Selective Throttling (C2) for six Spec2000
floating point benchmarks.4 As expected, the average
branch misprediction rate of those FP codes is just
1.5 percent. Looking at the worst case, art, the energy
overhead of our proposal is just 1.3 percent and the E-D
metric degrades by 5 percent. However, other predictable
applications, such as equake (1.2 percent misprediction rate),
obtain a positive E-D improvement of about 5 percent.
Overall, Selective Throttling adds very little or no energy/
performance overhead when speculation is highly con-
fident most of the time.

5.3 Sensitivity Study of Selective Throttling

This section studies the energy-efficiency of Selective
Throttling when some architectural parameters of the
processor are varied. We report average speedup, power
and energy savings, and E-D improvement for configura-
tion C2 using the BPRU confidence estimator.

5.3.1 Pipeline Depth

The first group of experiments evaluates the effect of
superpipelining [11], [23] on the energy-efficiency of Selective
Throttling. In [12], [22], the authors proposed two analytical
power-performance models that provide the variation of
energy as a function of pipeline depth. The models were
validated and refined using simulation data. As in those
previous studies, we have extended the power-performance
simulator to model different pipeline depths by adding
extra stages “uniformly” across the pipeline. In particular,
extra stages are added to the in-order front-end (fetch and
decode stages), the cache access latency, and the latencies of
the functional units, whereas processor frequency is not
varied. We also modified the Wattch power model to

account for the particular number of pipeline latches
depending on the number of stages.

Increasing the number of cycles it takes for branches to
be resolved augments the number of useless instructions
entered into the pipeline, wasting resources and dissipating
power. The longer the pipeline, the higher the wasted
energy. Selective Throttling reduces the number of wrong-
path instructions and, therefore, it provides higher benefits
with deeper pipelines. This effect is illustrated in Fig. 9,
which shows the percentage of overall wasted power by
wrong-path instructions for pipeline depths from 5 to
42 stages in an 8-wide issue processor. Wrong-path
instructions waste about 25 percent of overall power for a
5-stage pipeline. This percentage steadily increases to
31 percent for a 42-stage pipeline. When Selective Throttling
is used, the percentage of wasted power drops to 10 percent
and 14 percent, respectively.

In order to evaluate the energy-efficiency of Selective
Throttling, Fig. 10 shows the relative performance, power,
and energy savings as a function of pipeline depth. First, we
can see that Selective Throttling is robust against pipeline
length variations, with a performance degradation between
3 and 6 percent in all cases. However, power savings,
energy savings, and, in particular, E-D improvement grow
with pipeline depth, as expected. The average energy
savings and E-D improvement go up to 16 percent and
13 percent, respectively, for 42 stages.

5.3.2 Reducing the Issue Width

The previous sensitivity analysis evaluated the effect of
pipeline depth in an 8-wide issue processor. However,
although the paper is focused on next-generation super-
scalar processors, it is also interesting to evaluate the

288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

Fig. 8. Energy savings breakdown for several units of the processor.

4. We skip 100 million instructions and then simulate 500 million
instructions for each benchmark.

TABLE 3
Energy-Efficiency for Some SpecFP2000 Benchmarks

energy-efficiency of Selective Throttling in a current 4-wide
issue processor design with a less power hungry front-end.
The 4-wide issue configuration also allows a better
comparison with the original Pipeline Gating scheme, which
was tuned to a 4-wide issue, 7-stage processor [17]. Fig. 11
shows the energy savings and E-D improvement for a
4-wide issue processor as a function of pipeline depth.
Results are shown for Selective Throttling (using BPRU
confidence estimator) and for Pipeline Gating using both
BPRU and JRS confidence estimators.

Despite the fact that the energy savings and E-D
improvement are somewhat lower, Selective Throttling
clearly outperforms previous gating techniques for almost
all configurations (except for pipelines from five to seven
stages). It is interesting to see that the energy savings
provided by our proposal (which directly translates into
battery savings and temperature reduction) for an eventual
next generation mobile processor (4-wide issue, 20 stages)
are close to 10 percent.

When compared with the original Pipeline Gating scheme
in a 7-stage configuration, Fig. 11b shows that both Selective
Throttling (using BPRU) and Pipeline Gating (using JRS5)
obtain the same E-D improvement (1 percent) and about the
same energy savings (5 percent). This shows that Pipeline
Gating is a very energy-effective approach for short
pipelines, but, when the number of stages is increased,
Pipeline Gating is not able to reduce the E-D product even
when using the same confidence estimator (BPRU), mainly
due to the high impact on performance of stalling the fetch
unit. As stated before, completely gating the fetch unit is not
always the best solution in terms of power-performance,
especially for deep pipelines. Reducing the bandwidth of
the instructions that flow through the different stages of the
pipeline enables a better compromise between performance
loss and energy savings.

5.3.3 Branch Predictor and Confidence Estimator Sizes

The next group of experiments concerns the size of both the
gshare branch predictor and the BPRU confidence estimator.
In all cases, we always compare equal total sizes from 8 KB
to 64 KB, as shown in Fig. 12. Selective Throttling devotes
half of the total size to the branch predictor and the other
half to the confidence estimator.6

As expected, branch prediction accuracy increases with
predictor size for both the baseline and the Selective
Throttling, leading to higher IPCs in both cases. However,
the performance degradation provided by Selective Throt-
tling is reduced as size grows because the confidence
estimator becomes more accurate. On the other hand,
power savings are reduced as size grows because there
are fewer opportunities for improvement due to the higher
prediction accuracy. These opposite trends of performance
and power dissipation result in almost constant energy
savings and E-D improvement of Selective Throttling with
respect to the baseline as gshare size changes: between
14 percent and 13 percent energy savings and between
9 percent and 10 percent E-D improvement.

5.3.4 Using the Alpha 21264 Branch Predictor

The next group of experiments analyzes the benefits of our
proposal when a more sophisticated branch predictor is
used: the branch predictor of the Alpha 21264 processor.
Again, we always compare equal total sizes from 8 KB to
64 KB, as shown in Fig. 13. As expected, when the size of the
21264 branch predictor is increased, power savings are
reduced because there are fewer opportunities to reduce
power dissipation due to the higher branch prediction
accuracy. On the other hand, performance is also less
degraded (around 2 percent slowdown for all evaluated
sizes). The net effect is an average energy saving between 10
and 12 percent and average E-D improvement between 8
and 9 percent for Selective Throttling over the baseline
configuration. The main conclusion of this analysis is that
Selective Throttling provides significant energy savings even
in the presence of highly accurate branch predictors.

5.3.5 Issue Window and Reorder Buffer Sizes

The last group of experiments evaluates the effect of the
issue window and reorder buffer size. The studied sizes
range from 64 to 512 entries, as shown in Fig. 14. The main
conclusion of this analysis is that energy savings and E-D
improvement provided by Selective Throttling increase as
ROB and issue window size increases (21 percent and
16 percent, respectively, for 512 entries). The reason is that
the reorder buffer and the issue window are responsible for
an important fraction of the overall dissipated power. Large
ROBs provide more opportunities to speculate, but they
also incur more useless activity for each misprediction and,
thus, the absolute energy consumption is increased. In such

ARAG �OON ET AL.: CONTROL SPECULATION FOR ENERGY-EFFICIENT NEXT-GENERATION SUPERSCALAR PROCESSORS 289

Fig. 9. Wasted power by wrong-path instructions (8-wide issue).

Fig. 10. Pipeline depth sensitivity of Selective Throttling (8-wide issue).

5. The JRS confidence estimator has been tuned for every pipeline depth
in order to increase its PNV.

6. Preliminary experiments with a different distribution of sizes showed
that this is the best distribution.

processors, a mechanism such as Selective Throttling can

significantly reduce energy consumption and improve the

E-D product.

6 CONCLUSIONS

Modern superscalar processors waste a significant amount

of energy in misspeculated instructions. In this work, we
propose a mechanism, Selective Throttling, with the aim of
reducing useless activities without compromising perfor-
mance. Selective Throttling dynamically applies a different
power-reduction scheme depending on the confidence

estimation assigned to each particular branch prediction.
We propose throttling at three different levels: fetch,
decode, and instruction selection. Confidence estimation is
used to select the appropriate level of throttling. For those
branches that are likely to be mispredicted, aggressive

throttling policies are applied. On the other hand, when
confidence is not so low, less aggressive policies, both in
terms of power reduction and performance degradation, are
used. Results for a pipeline of 22 stages show that Selective

Throttling achieves average energy savings of 14 percent
and an average Energy-Delay improvement of 10 percent.

Finally, we have also shown that the power-performance
efficiency of the Selective Throttling mechanism is robust
against some architectural parameters. In particular, both
energy savings and E-D improvement increase as the

pipeline becomes deeper, obtaining 16 percent energy
savings for 42 stages. Furthermore, benefits also increase
as issue window and reorder buffer size augments. Benefits
are also very important for a variety of branch predictor
configurations.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish

Ministry of Education and Science under grants TIC2003-
08154-C06-03 and TIN2004-03072 and EU Feder Funds.

REFERENCES

[1] J.L. Aragón, J. González, J.M. Garcı́a, and A. González, “Con-
fidence Estimation for Branch Prediction Reversal,” Proc. Int’l
Conf. High Performance Computing, pp. 214-223, 2001.

[2] J.L. Aragón, J. González, A. González, and J.E. Smith, “Dual Path
Instruction Processing,” Proc. Int’l Conf. Supercomputing, 2002.

[3] J.L. Aragón, J. González, and A. González, “Power-Aware Control
Speculation through Selective Throttling,” Proc. Int’l Symp. High
Performance Computer Architecture, 2003.

[4] A. Baniasadi and A. Moshovos, “Instruction Flow-Based Front-
End Throttling for Power-Aware High-Performance Processors,”
Proc. Int’l Symp. Low Power Electronics and Design, 2001.

[5] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Frame-Work
for Architectural-Level Power Analysis and Optimizations,” Proc.
Int’l Symp. Computer Architecture, 2000.

290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 3, MARCH 2006

Fig. 11. Energy-efficiency for a 4-wide issue processor as a function of pipeline depth.

Fig. 12. Branch predictor size sensitivity.

Fig. 13. Selective Throttling benefits for the 21264 branch predictor.

Fig. 14. Issue window and ROB size evaluation.

[6] A. Buyuktosunoglu, T. Karkhanis, D.H. Albonesi, and P. Bose,
“Energy Efficient Co-Adaptive Instruction Fetch and Issue,” Proc.
Int’l Symp. Computer Architecture, 2003.

[7] P.Y. Chang, M. Evers, and Y.N. Patt, “Improving Branch
Prediction Accuracy by Reducing Pattern History Table Inter-
ference,” Proc. Int’l Conf. Parallel Architectures and Compilation
Techniques, 1996.

[8] P.N. Glaskowsky, “Pentium 4 (Partially) Previewed,” Micropro-
cessor Report, Aug. 2000.

[9] M.K. Gowan, L.L. Biro, and D.B. Jackson, “Power Considerations
in the Design of the Alpha 21264 Microprocessor,” Proc. Design
Automation Conf., June 1998.

[10] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun, “Con-
fidence Estimation for Speculation Control,” Proc. Int’l Symp.
Computer Architecture, 1998.

[11] A. Hartstein and T.R. Puzak, “The Optimum Pipeline Depth for a
Microprocessor,” Proc. Int’l Symp. Computer Architecture, pp. 7-13,
May 2002.

[12] A. Hartstein and T.R. Puzak, “Optimum Power/Performance
Pipeline Depth,” Proc. Int’l Symp. Microarchitecture, Dec. 2003.

[13] T.H. Heil and J.E. Smith, “Selective Dual Path Execution,”
technical report, Electrical and Computer Eng. Dept., Univ. of
Wisconsin-Madison, 1997.

[14] E. Jacobsen, E. Rotenberg, and J.E. Smith, “Assigning Confidence
to Conditional Branch Predictions,” Proc. Int’l Symp. Microarchi-
tecture, 1996.

[15] T. Karkhanis, J.E. Smith, and P. Bose, “Saving Energy with Just in
Time Instruction Delivery,” Proc. Int’l Symp. Low Power Electronics
and Design, Aug. 2002.

[16] A. Klauser, A. Paithankar, and D. Grunwald, “Selective Eager
Execution on the PolyPath Architecture,” Proc. Int’l Symp.
Computer Architecture, 1998.

[17] S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating:
Speculation Control For Energy Reduction,” Proc. Int’l Symp.
Computer Architecture, 1998.

[18] S. McFarling, “Combining Branch Predictors,” Technical Report
#TN-36, Digital Western Research Lab., 1993.

[19] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective
Superscalar Processors,” Proc. Int’l Symp. Computer Architecture,
1997.

[20] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan, “Power
Issues Related to Branch Prediction,” Proc. High Performance
Computer Architecture, 2002.

[21] C. Small, “Shrinking Devices Put the Squeeze on System
Packaging,” EDN, pp. 41-46, Feb. 1994.

[22] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P.N.
Strenski, and P.G. Emma, “Optimizing Pipelines for Power and
Performance,” Proc. Int’l Symp. Microarchitecture, pp. 333-344, Dec.
2002.

[23] E. Sprangle and D. Carmean, “Increasing Processor Performance
by Implementing Deeper Pipelines,” Proc. Int’l Symp. Computer
Architecture, pp. 25-36, 2002.

[24] S. Wallace, B. Calder, and D.M. Tullsen, “Threaded Multiple Path
Execution,” Proc. Int’l Symp. Computer Architecture, 1998.

[25] T.Y. Yeh and Y.N. Patt, “Two-Level Adaptive Branch Prediction,”
Proc. Intl Symp. Microarchitecture, 1991.

Juan L. Aragón received the MS and PhD
degrees in computer engineering from the
Universidad de Murcia, Spain, in 1996 and
2003, respectively. During 2003 and 2004, he
did a one-year postdoctoral stay as a visiting
assistant professor and researcher in the Com-
puter Science Department at the University of
California, Irvine. In 1999, he joined the Com-
puter Engineering Department at the Universi-
dad de Murcia, Spain, where he currently holds

an assistant professor position. His research interests are focused on
processor microarchitecture, energy-efficient architectures, embedded
processors, branch prediction, and value prediction. He is a member of
the IEEE Computer Society.

José González received the MS and PhD
degrees from the Universitat Politècnica de
Catalunya (UPC), Barcelona, Spain. In January
2000, he joined the Computer Engineering
Department of the University of Murcia, Spain,
and became an associate professor in June
2001. In March 2002, he joined the Intel
Barcelona Research Center, where he is a
senior researcher. Currently, he is working on
new paradigms for the IA-32 family, in particular,

thermal and power-aware clustered microarchitectures. He is a member
of the IEEE Computer Society.

Antonio González received the MS and PhD
degrees from the Universitat Politècnica de
Catalunya (UPC), Barcelona, Spain. He is the
founding director of the Intel-UPC Barcelona
Research Center, whose research focuses on
new microarchitecture paradigms and code
generation techniques for future microproces-
sors. He joined the faculty of the Computer
Architecture Department of UPC in 1986 and
became a full professor in 2002. He currently

holds a part-time professor position in this department. His research has
focused on computer architecture, compilers, and parallel processing,
with a special emphasis on processor microarchitecture and code
generation. He has published more than 200 papers, has given more
than 60 invited talks, and has filed for 13 patents in the areas of power-
aware microarchitectures, clustered microarchitectures, speculative
multithreaded processors, data value and data dependence speculation
and reuse, cache architectures, register file architecture, modulo
scheduling, code analysis and optimization, parallel algorithms, prolog-
oriented architectures, instruction fetching mechanisms, and digital
image processing. He is an associate editor of the IEEE Transactions on
Computers, IEEE Transactions on Parallel and Distributed Systems,
ACM Transactions on Architecture and Code Optimization, and Journal
of Embedded Computing. He has served on more than 50 program
committees for international symposia in the field of computer
architecture, including ISCA, MICRO, HPCA, PACT, ICS, ICCD,
ISPASS, CASES, and IPDPS. He was program (co)chair for ICS
2003, ISPASS 2003, and MICRO 2004, among other symposia. He is a
member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ARAG �OON ET AL.: CONTROL SPECULATION FOR ENERGY-EFFICIENT NEXT-GENERATION SUPERSCALAR PROCESSORS 291

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

