
Adaptive VP Decay: Making Value Predictors
Leakage-efficient Designs for High Performance Processors

Juan M. Cebrián1, Juan L. Aragón1, José M. García1 and Stefanos Kaxiras2
1Dept. of Computer Engineering

University of Murcia,
Murcia, 30100, Spain

+34 968 367656

{jcebrian,jlaragon,jmgarcia}@ditec.um.es

2Dept. of Electrical and Computer Engineering
University of Patras

Rio, 26500 Patras, Greece
+30 2610 996441

kaxiras@ee.upatras.gr

ABSTRACT
Energy-efficient microprocessor designs are one of the major
concerns in both high performance and embedded processor
domains. Furthermore, as process technology advances toward deep
submicron, static power dissipation becomes a new challenge to
address, especially for large on-chip array structures such as caches
or prediction tables. Value prediction emerged in the recent past as a
very effective way of increasing processor performance by
overcoming data dependences. The more accurate the value
predictor is the more performance is obtained, at the expense of
becoming a source of power consumption and a thermal hot spot,
and therefore increasing its leakage. Recent techniques, aimed at
reducing the leakage power of array structures such as caches, either
switch off (non-state preserving) or reduce the voltage level (state-
preserving) of unused array portions.

In this paper we propose the design of leakage-efficient value
predictors by applying adaptive decay techniques in order to disable
unused entries in the prediction tables. As value predictors are
implemented as non-tagged structures an adaptive decay scheme has
no way to precisely determine the induced miss-ratio due to
prematurely decaying an entry. This paper explores adaptive decay
strategies suited for the particularities of value predictors (Stride,
DFCM and FCM) studying the tradeoffs for these prediction
structures, that exhibit different pattern access behaviour than
caches, in order to reduce their leakage energy efficiently
compromising neither VP accuracy nor the speedup provided.
Results show average leakage energy reductions of 52%, 70% and
80% for the Stride, DFCM and FCM value predictors of 20 KB
respectively.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream Architectures
– RISC/CISC, VLIW architectures.

General Terms: Measurement, Performance, Design.

Keywords: Energy efficient architectures, leakage, value
prediction, cache decay.

1. INTRODUCTION
Energy consumption and power dissipation are one of the main
goals when facing the design of a modern microprocessor in the
high performance domain and, more crucially, in the embedded
microprocessor domain, especially in the case of battery-operated
devices. There are two sources of power dissipation, dynamic power
and static power (power dissipated regardless of activity, even when
transistors are not switching). For several generations, static power
(leakage) has been just a small fraction of the overall power
consumption in microprocessors, and it was not considered a major
concern [13][14]. However, as feature size shrinks to allow greater
transistor density and higher performance, supply voltage must be
lowered in order to restrain dynamic power consumption since it is
proportional to the square of supply voltage. But using smaller
geometries, with very small threshold voltages, has the additional
effect of increasing leakage loss exponentially, which leads to static
power beginning to dominate the overall power consumption as
process technology drops below 65 nm [5][14].
Several proposals can be found in the literature for managing
leakage power, at both circuit and architecture level. Some
proposals have focused on reducing the leakage power by switching
off unused portions of large array structures, in particular for caches,
since they occupy a significant fraction of total die area, therefore,
providing a great opportunity for reducing leakage energy. Cache
Decay [12] selectively turns individual data cache lines off if they
have not been used for a long time, reducing leakage energy at the
expense of losing the contents of the cache line. This non-state
preserving technique has also been successfully applied to branch
predictors and BTB structures [8][11].
On the other hand, Value Prediction (VP) has been proposed as a
very effective way of improving superscalar processor performance
[6][7][10][17] by overcoming data dependences which are one of
the major performance limitations in current high performance
superscalar processors. More recently, VP has also been
successfully proposed to perform early load retirements in high
performance processors [15]. However, the use of value prediction
structures despite the speedup provided (average 15% as reported in
[2]) has not been widely spread, mainly due to complexity-delay

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’07, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005...$5.00.

issues. Note however that, unlike other prediction structures such as
branch predictors where increasing access time and complexity can
significantly reduce their benefits since the next fetched instruction
is needed as early as possible, the access time in VPs is not so
crucial. First, the predicted value is not needed until the instruction
has reached its issue stage, and second, current high performance
processors typically implement deeper pipelines (14 stages or more)
which effectively hide the VP latency due to the increased front-end
pipeline length. When an instruction reaches the end of the multi-
stage front-end, the predicted value allows a speculative issue of the
instruction if any register input is not ready, making traditional VP a
very effective way of increasing processor performance.
However, the use of VP structures incurs in additional dynamic and
static power dissipation. The continuous access to the prediction
tables in almost each clock cycle may result in a thermal hot spot,
increasing the leakage power of the structure, as in the case of
caches and branch predictors. In modern high performance
processors, due to high operating temperatures, it is necessary to
fight to reduce leakage in every possible structure. Although the VP
is a small structure compared to an L2 cache, if we let it overheat
(likely, as it is accessed frequently and resides quite close to the
core) without any precaution to regulate its leakage, the negative
effects can be quite serious. Small hot structures can leak more than
larger but cooler ones. We cannot afford not to attack leakage even
at the smallest structures.
In this paper we propose Adaptive Value Prediction Decay (AVPD),
a mechanism able to dramatically reduce the leakage energy of
traditional Value Predictors with negligible impact on prediction
accuracy nor processor performance by dynamically locating VP
entries that have not been accessed for a noticeable amount of time.
When those entries have been identified, AVPD switches them off to
prevent them from leaking, which makes Value Predictors
complexity-effective structures (due to the minimal extra hardware
required) when used in medium and long pipelines as well as a
power-performance efficient mechanism suitable for high
performance processor designs. It is important to note that VPs
show a significant amount of spatial and temporal locality but,
unlike caches, a prematurely decayed VP entry does not degrade
performance as much as a prematurely decayed cache line since
losing the contents of a VP entry might result –or not– in a value
misprediction on the next access to that entry, but this is exactly
what would happen if we had a real generational change. On the
other hand, prematurely decaying a cache line always induces
additional accesses to the L2 cache.
Previous proposals that applied static decay approaches to both
caches and branch predictors needed to carefully choose a decay
interval, which could be even tuned per application, in order to
minimize the performance impact of leakage power reduction.
However, even obtaining the best decay interval per application (by
profiling techniques) does not guarantee the best energy savings,
since the static decay approach cannot capture variations within an
application. This is particularly important in the case of prediction
structures since correct and wrong predictions usually appear
clustered. An adaptive decay approach can dynamically choose
decay intervals at run-time to match the generational behaviour of
particular entries. In [12], an adaptive decay approach –suited for
caches– able to set decay intervals per cache line was proposed.
Despite the extra flexibility provided, the hardware overhead
required to manage decay intervals per cache line resulted in
moderate net leakage energy savings. In [20], the authors proposed

another adaptive decay approach, again suited for caches, exploiting
the fact that caches have tags and deactivating only the data portion
of cache lines but not the tag portion. By doing so, the ideal miss
rate, even when deactivating a cache line prematurely, can be
calculated and compared to the actual induced miss rate in order to
guide the adaptive scheme, at the expense of having the tag array
leaking all the time.
The contribution of the present work is a novel adaptive decay
scheme suited for the peculiarities of Value Predictors (to the best of
our knowledge this is the first such proposal). The new Adaptive
Value Prediction Decay (AVPD) approach is needed for two
reasons. First, adapting the decay interval individually for the very
small VP entries (as opposed to cache lines) would represent
significant overhead and thus we consider it impractical. Second,
VPs are non-tagged structures, and, therefore, it is not feasible to
track the ideal miss rate vs. the induced miss rate. The proposed
AVPD takes the best attributes of each of the two previous adaptive
decay proposals for the purpose of VP decay. It uses a global run-
time decay interval, requiring no additional hardware per entry. To
adapt this global decay interval without tags, AVPD uses a time-
based approach to judge whether or not the current decay interval
causes an inordinate number of entries to be prematurely shutoff.
Finally, we have evaluated AVPD in terms of dynamic and static
power consumption, instead of using indirect metrics such as active
ratio and turn-off ratio metrics.
The rest of the paper is organized as follows. Section 2 analyzes the
utilization of the prediction tables and the static decay approach.
The proposed AVPD scheme is described in Section 3. Section 4
shows the experimental methodology and the leakage energy
savings obtained. Section 5 provides some background and reviews
some related works. Finally, Section 6 summarizes the main
conclusions of the work.

2. Problem Overview

2.1 Generational Behaviour in Value
Predictors
Power dissipation of value prediction structures is divided into
dynamic and static power, as cited before. The dynamic component
strongly depends on the utilization of the VP tables. Values can be
predicted at different demanding levels: the most aggressive
utilization predicts the output value for all instructions traversing the
pipeline. Other approaches restrict the use of the value predictor to
just a fraction of instructions such as long-latency instructions, load
instructions that miss in the L1 or L2 data cache, instructions that
belong to a critical path, or just to predict the effective address for
memory disambiguation. Therefore, restricting the VP utilization to
just a fraction of selected instructions effectively reduces the
dynamic power component of this structure. However, the static
power component is still present, as the VP structure leaks
regardless of utilization with increasing leakage loss for finer
process technologies. For this reason, this work is focused on
reducing the VP structure’s static power component.
The authors in [12] showed that, very frequently, cache lines have
an initial active period (known as live time) followed by a period of
no utilization (known as dead time) before they are eventually
evicted. They proposed to break the stream of references to a
particular cache line into generations. Each generation lasts until the
cache line is evicted and replaced by a new one. This generational

behaviour also appears in the VP structure, although with some
particularities: as value predictors are implemented as direct-
mapped tables with no tags and allowing destructive interferences,
in our proposal, a generation ends when the VP entry is accessed by
an instruction with a different PC, as it can be seen in Figure 1. Its
live time will be the period of accesses with the same PC and its
dead time will be the period between the last access with an specific
PC until an access with a different one.
To better understand the generational behaviour in value predictors,
Figure 2 shows the utilization of the VP entries by measuring the
fraction of time each entry remains in a dead state1 for the whole
SPECint2000 benchmark suite as a function of VP size. It can be
observed that the three evaluated value predictors –Stride, FCM and
DFCM– present a similar utilization regardless of their size. For
sizes around 20 KB, the average fraction of dead time is 43% and
for predictor sizes around 40 KB the average fraction of time the
entries spend in their dead state is 47%. Therefore, if we were able
to take advantage of these dead times by detecting them and
shutting the entries off, we could reduce the leakage energy of the
VP structure by one half on average.
However, it is important to note that this is not an upper bound on
the leakage energy savings that could be achieved by decaying VP
entries. Long periods of inactive live time could be also detected to
early shut the entry off in order to obtain further leakage savings, at
the expense of slightly reducing the VP accuracy and processor
performance, as we will show in next sections.

2.2 Static Decay Scheme for Value Predictors
In this section we perform a detailed analysis on the leakage-
efficiency of the static decay approach when applied to traditional
Value Predictors as well as an introduction to the potential benefits
that an adaptive decay scheme could achieve.
The static decay scheme suited for value predictors needs to detect
those VP entries that have been unused for a significant period of
time in order to switch them off [3]. But in order to successfully
apply decay techniques, it is necessary to carefully choose the
number of cycles we should wait before shutting an entry off in
order to match generational changes. Therefore, we need to track
the accesses to each VP entry in order to detect if a particular entry
is accessed very frequently or, conversely, the entry has been
unused for a long period of time, probably entering into a dead state.
For the static decay scheme it is crucial to explore a wide range of

1 This fraction of time can be measured as the ratio total dead

time/(total live time+total dead time).

decay intervals to precisely detect the dead states while, at the same
time, not degrading the VP accuracy and, therefore, the speedup
provided. Ideally, the best static decay interval is the one that
minimizes the performance impact of prematurely disabling a VP
entry.
Regarding the utilization of VPs, throughout the paper we are
predicting the output values for all instructions traversing the
pipeline. However, it is important to note that this aggressive
prediction scheme does not benefit a decay mechanism, either static
or adaptive, since they are based on locating unused predictor
entries. The more demanding use of the VP structure the less
opportunities to detect unused VP entries and the less leakage
energy savings obtained from a decaying mechanism.
In order to better understand the effects of prematurely deactivating
a VP entry, Figure 3 shows the speedup provided by Value
Prediction with no decay as well as the speedup reduction when
applying the static decay approach for decay intervals from 256
Kcycles to just 64 cycles. It is important to note that, as cited
previously, traditional Value Prediction (with no decay) can provide
significant average speedups (13% for a 10 KB DFCM as shown in
Figure 3). Looking into the performance degradation caused by
static decaying, we can notice that for FCM and DFCM there is no
IPC degradation until 256-cycle decay intervals. For STP, there is a

Live Time Dead Time

Last Access New Generation

PC1 PC1 PC1
PC1 PC1 PC2

time

New Generation

Figure 1. Different generations for a value predictor entry.

Figure 2. Fraction of time VP entries are in dead state
(SpecInt2000).

Figure 3. Average speedup for the static decay scheme for
10KB value predictors (SPECint2000).

0,40

0,45

0,50

0,55

0,60

0,65

0,70

10 20 40 80 160

Predictor Size (KB)

de
ad

_t
im

e
/ (

liv
e_

tim
e+

de
ad

_t
im

e)

STP FCM DFCM

0

2

4

6

8

10

12

14

VP -
no decay

256K 32K 4K 1024 512 256 64

Decay Interval (cycles)

Sp
ee

du
p

(%
)

STP FCM DFCM

slight but negligible IPC degradation (less than 1%) for 1024- and
512-cycle decay intervals. As before, for 256-cycle (and smaller)
intervals the performance degradation is not tolerable.
Next analysis performs an evaluation on the energy-efficiency of the
static decay scheme for VPs. Unlike previous cache decay proposals
[12][20], we are reporting leakage energy measurements using a
modified version of HotLeakage simulator [19] that includes the
static power model for the evaluated VPs as well as the static and
dynamic power overhead of the static decay approach (see section
4.1 for details about simulation methodology and processor
configuration). In order to precisely evaluate the net leakage energy
savings provided by the static VP decay approach, it is necessary to
consider the following overheads associated with the mechanism.
The first component overhead takes into account the extra dynamic
and static power that results from the additional hardware (a global
decay interval counter as well as the two-bit local counters2 per VP
entry [3]). The second component overhead is derived from the
induced VP misses (when a VP entry is prematurely disabled) that
increase execution time. These extra cycles that the program is
running will also lead to additional static and dynamic power
dissipation. Note that this second overhead is highly destructive
since each extra cycle accounts for the overall dynamic and static
processor power and can easily cancel whatever VP leakage energy
savings provided by the static decay scheme.
Figure 4 shows the average leakage energy savings provided by the
static VP decay scheme for the DFCM value predictor when
considering different decay intervals and VP sizes (sizes are not
power-of-two numbers because of the extra 2-bit counters per
entry). As expected from the IPC degradation showed in Figure 3,
the best decay interval corresponds to a window of 512 cycles for
all VP sizes. For a predictor size of about 10 KB, static VP decay
obtains average leakage energy savings of 55% and, for a 20 KB
DFCM, the average leakage energy savings are 65%. As expected,
greater leakage energy savings can be obtained for greater VP sizes.
The greatest energy savings for VPs are obtained for decay intervals
within the 512-cycle range, unlike data caches where the best decay
intervals are within the 8-Kcycle range [12]. This due to the fact that
the average live time is around 400 cycles for VPs (note also that the
decay mechanism needs some additional cycles to determine that an
entry has entered in a dead state).
Figure 5 is similar to Figure 4 but for the FCM value predictor. As it
can be observed, the two VPs behave very similarly to each other.
Again, the best static decay interval corresponds to a window of 512
cycles. However, the average leakage energy savings are greater for
the FCM predictor. For a size of about 10 KB, static VP decay
obtains average leakage energy savings of 64% and, for a size
around 20 KB, the average leakage energy savings are 75%. In
these two figures it can be noticed that, for decay intervals smaller
than 512 cycles, the IPC degradation is not tolerable since the
overhead due to the induced extra cycles completely cancels all the
leakage power savings provided from static decaying, resulting in
negative net leakage energy savings.
Finally, Figure 6 shows the leakage energy savings, per benchmark,
for a 10 KB DFCM predictor. This Figure reveals one of the
weaknesses of the static decay scheme when compared to the
adaptive scheme: the static decay interval must be carefully chosen

2 Dynamic and static power overhead of all 2-bit local counters

has been measured to be less than 2% of the total VP structure.

in order to maximize the leakage energy savings. In some cases, the
best static decay interval may differ between applications (as it can
be seen in Figure 6 for mcf and gap benchmarks where the best
static decay interval is 4 Kcycles). However, even when using
profiling techniques in order to determine the best decay interval per

Figure 4. Static decay scheme for the DFCM value predictor
(SPECint2000).

Figure 5. Static decay scheme for the FCM value predictor
(SPECint2000).

Figure 6. Static decay scheme for a 10 KB DFCM value
predictor.

-100
-80
-60
-40
-20

0
20
40
60
80

100

262144 32768 4096 1024 512 256 64

Decay Interval (Cycles)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

2.5KB 5.18KB 10.5KB 21.25KB 43KB 87KB

-100
-80

-60
-40
-20

0

20
40
60

80
100

262144 32768 4096 1024 512 256 64
Decay Interval (cycles)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

2.3KB 4.6KB 9.5KB 19.25KB 39KB 78KB

-40

-20

0

20

40

60

80

100

262144 32768 4096 1024 512 256 64
Decay Interval (cycles)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

BZIP CRAFTY EON GAP
GCC GZIP MCF PARSER
TWOLF VORTEX VPR

application, there is no guarantee that the best leakage energy
savings are obtained, since the static decay approach cannot capture
variations within an application. This second effect is particularly
important in the case of VP structures since correct and wrong
predictions appear clustered depending on the program phase.
Therefore, an adaptive decay scheme can dynamically choose decay
intervals at run-time to more precisely match the generational
behaviour in prediction table entries.

3. Adaptive Value Prediction Decay (AVPD)
Dynamically applying decay techniques to Value Predictors is not a
trivial fact as we need to detect those VP entries that have been
unused for a significant amount of time and switch them off to
prevent them from leaking. Adaptive Value Prediction Decay
(AVPD) is a time-based mechanism that analyzes each VP entry
individually to detect how often that entry is accessed. If an entry is
unused for a long period of time, it probably means that it has
entered in a dead state, and we should proceed to turn it off.
The problem is to dynamically determine how long a decay interval
must be. If we choose to turn VP entries off using too long decay
intervals, the potential leakage energy savings will be reduced.
Conversely, if the time-based policy chooses too short decay
intervals, the VP accuracy might be reduced and, therefore,
inducing a performance degradation. A positive effect of AVPD
compared to the original cache decay mechanism is that
prematurely disabling a VP entry is not so harmful as disabling a
cache line: losing the contents of the cache line always leads to an
extra access to L2 cache or memory to retrieve the lost information
incurring in extra execution cycles; however, losing the contents of
a VP entry might result –or not– in a value misprediction on the
next access to that entry but this is exactly what would happen if we
had a real generational change (which is a very common situation
and one of the major limitations in traditional non-tagged VPs,
where the huge number of destructive interferences dramatically
shortens the generational replacement).

As shown in the previous section, the decay interval is dependant on
the application running in the processor or even on the section of the
code being executed. During program execution there are sections
of code where the VP usually hits (or fails) its predictions (correct
and wrong predictions appear clustered depending on the program
phase). In other program sections the number of VP entries being
accessed is low, or we can even identify instructions whose optimal
decay interval is different from others. Therefore, if we are able to
dynamically adapt the decay interval to the program needs, higher
leakage energy savings could be obtained compared to statically
setting it.
The implementation of the decay interval is done by means of a
hierarchical counter composed of a global counter and a two-bit
saturated gray-code counter for each individual value predictor
entry3 (local counters). In order to make the AVPD mechanism
easier to implement we will use power-of-two decay intervals. VP
entries are shut off, preventing them from leaking, by using gated-
VDD transistors [16]. These “sleep” transistors are inserted between
the ground (or supply) and the cells of each VP entry, which reduces
the leakage in several orders of magnitude and it can be considered
negligible. An alternative to using gated-VDD transistors consists of
using quasi-static 4T transistors, although similar leakage savings
would be expected [11].
The AVPD mechanism considers that each VP entry can be in one
of the following three states, as shown in Figure 7: enabled (both
data and the local counter are enabled), partially disabled (data is
shut off but the local counter is enabled) or disabled (both data and
the local counter are shut off). AVPD uses two additional global
counters that account for: a) the number of partially disabled entries
(entries that change from the enable state to the partially disabled
state) within the previous decay interval; and b) the number of re-
enabled entries (entries that change from the partially disabled state
to the enabled state) within the current decay interval. After a
number of cycles equal to the average live time4, a re-activation
ratio is calculated as the number re-enabled entries over the number
of partially disabled entries.
In addition, AVPD uses two pre-defined threshold values
(increasing threshold and decreasing threshold) in order to
determine whether the length of the current decay interval is correct,
that is, if the current decay interval makes VP entries to decay
during their live time (prematurely) or during their dead time.
Therefore, if the re-activation ratio is higher than the increasing
threshold, the current decay window is too short and it is doubled
since the are many entries being disabled prematurely. On the other
hand, if the re-activation ratio is lower than the decreasing
threshold, the current decay window is too long and it is halved
since we are shutting entries off too late, loosing opportunities to
reduce the VP leakage.
The AVPD mechanism works as follows (see Figure 7): each cycle
the global decay counter is incremented by one and, when it

3 Using a hierarchical counter is more power-efficient since it

allows accessing the local counters at a much coarser level.
Accessing the local counters each cycle would be prohibitive
because of the associated power overhead.

4 As cited in section 2.2, the static decay experiments showed that
the average live time is around 400 cycles for the three
evaluated VPs.

increment
local counter

re-enabled entries
counter

global decay
counter

partially disabled
entries counter

enabled
state

VP data
on

local counter
on

overflow
signal

partially
disabled state

local counter
on

VP data
off

if local counter
overflows

increment

overflow

if the entry is
accessed

reset

resetreset

disabled
state

VP data
off

local counter
off

if average live
time has elapsedif the entry

is accessed

reset

increment •

•

•

•

Figure 7. AVPD mechanism.

overflows, the local counters of all VP entries in either the enabled
or partially disabled state are incremented. However, an access to
any VP entry will result on an immediate reset of its local counter.
In addition:

• For those entries in the enabled state (both VP data and the local
counter are enabled): if the entry remains unused for a long
time, its local counter will eventually overflow and the entry
will change to the partially disabled state. The number of
partially disabled entries is incremented.

• For those entries in the partially disabled state (VP data is shut
off whereas the local counter is enabled): if the entry is not
accessed within the average live time4, it will be changed to the
disabled state and the local counter will be also shut off.
However, an access to a partially disabled entry will change it
to the enabled state, increasing the number of re-enabled
entries.

• For those entries in the disabled state (both VP data and the
local counter are shut off): an access to the entry will change it
to the enabled state.

Regarding the pre-defined values used for the increasing and
decreasing thresholds, it is important to note that setting the
decreasing threshold to small values will make AVPD sure that
there are few re-enabled entries before lowering the decay interval,
resulting in a more conservative policy. On the other hand, setting
the decreasing threshold to high values will make AVPD to
decrease the decay interval more frequently, resulting in a more
aggressive policy. Analogously, setting the increasing threshold to
small values means that AVPD will increase the decay interval even
if there are few re-enabled entries; whereas setting the increasing
threshold to high values will make AVPD to wait until having a
great fraction of re-activations before raising the decay interval. In
Section 4.2 we evaluate the leakage-efficiency of the AVPD
mechanism for different increasing and decreasing thresholds.
Finally, the power overhead associated to the AVPD mechanism can
be divided into three main components. The first component is
associated to the dynamic and static power derived from the two-bit
local counters inserted into every entry of the predictor (same
overhead as for the static decay scheme). The second component
comes from the three global counters: one is part of the two-level
decay interval counter (also appears in the static decay scheme) and
the other two counters are particular of the adaptive decay scheme.
The third component overhead, as explained in Section 2.2, is
derived from the induced VP misses (when a VP entry is
prematurely disabled) that increase program execution time. These
extra cycles that the program is running will also lead to additional
static and dynamic power dissipation. Note that this third
component (also appears in the static decay scheme) is highly
destructive since each extra cycle accounts for the overall processor
dynamic and static power and can easily cancel whatever leakage
energy savings provided by AVPD.
Therefore, we must try to make the AVPD mechanism accurate
enough to not increase the execution cycles. It is important to note
that AVPD is virtually not introducing additional power overhead
nor complexity (just the additional two global counters whose
power overhead that has been conveniently modelled into the AVPD
power model) when compared to the static decay scheme providing,
however, significant additional leakage energy savings as we will
show in next section.

4. Experimental Results

4.1 Simulation Methodology
To evaluate the energy-efficiency of the AVPD, we have used the
SPECint2000 benchmark suite. All benchmarks were compiled with
maximum optimizations (-O4 -fast) by the Compaq Alpha compiler
and they were run using a modified version of HotLeakage power-
performance simulator [19] that includes the dynamic and static
power model for the evaluated Value Predictors (Stride, FCM and
DFCM) as well as the power overhead associated to AVPD. The VP
access latency is 5 cycles.
Table 1 shows, for each particular benchmark, the input set, the total
number of simulated instructions and the number of forwarded
instructions. Due to the large number of dynamic instructions in
some benchmarks, we reduced the input data set while keeping a
complete execution. Table 2 shows the configuration of the
simulated architecture. Leakage related parameters have been taken
from the Alpha 21264 processor, provided with the HotLeakage
simulator suite, and using a process technology of 70 nanometers.

4.2 Leakage-efficiency of AVPD Mechanism
This section presents the leakage-efficiency evaluation of the
proposed AVPD mechanism for the Stride, FCM and DFCM

Table 2. Configuration of the simulated processor.

Processor Core
Process Technology:

Frequency:
Instruction Window:

Decode Width:
Issue Width:

Functional Units:

Pipeline:

70 nanometers
5600 Mhz
128 RUU, 64 LSQ
8 inst/cycle
8 inst/cycle
8 Int Alu; 2 Int Mult
8 FP Alu; 2 FP Mult
2 Memports
22 stages

Memory Hierarchy
L1 Icache:

L1 Dcache:
L2 cache:

64KB, 2-way
64KB, 2-way
2MB, 4-way, unified

Table 1. SPECint2000 benchmark characteristics.

Benchmark Input set Total # simulated
instr. (Mill.)

skipped
instr (Mill.)

bzip2 input source 1 500 500
crafty test (modified) 437 -
eon kajiya image 454 -
gap test (modified) 500 50
gcc test (modified) 500 50
gzip input.log 1 500 50
mcf test 259 -
parser test (modified) 500 200
twolf test 258 -
vortex test (modified) 500 50
vpr test 500 100

predictors. Each figure shows the VP leakage energy savings5
respect to not applying a decay scheme for some representative
configurations of the adaptive mechanism as well as the best static
decay configuration (512-cycle decay interval according to section
2.2) for comparison purposes.
For the evaluation of AVPD, we carried out a comprehensive set of
experiments for many configurations defined by using different
decreasing and increasing threshold values. In this work we only
present the most representative configurations:

• Configuration 00/100 (decreasing threshold set to 0% /
increasing threshold set to 100%): this is the most conservative
policy since AVPD will try to decrease the decay interval only if
none of the entries are re-activated; and it will only try to
increase the decay interval when all the entries are re-activated.
It works pretty well for all studied predictors as it does not take
any risks when changing the decay interval.

• Configuration 50/50: this is the most aggressive configuration as
it keeps changing the decay interval continuously, increasing or
decreasing the decay interval according to the re-activation
ratio. This configuration is so aggressive that the constant
changes on the decay interval neutralize, for many benchmarks,
the VP energy savings with the overhead of the extra execution
cycles.

• Configurations 40/60 and 70/100: they are the best ones we
have found for the different predictors. The 40/60 is quite
aggressive but works well with the Stride predictor, as it
balances long decay intervals with short ones. The 70/100
configuration has the trend to shorten the decay interval
whenever is possible, only raising it when all decayed entries
are re-activated.

Figure 8 shows the average leakage energy savings for the DFCM
predictor and the cited adaptive configurations as well as for the best
static decay interval (512 cycles). For this predictor, the best
adaptive configuration is 70/100 that surpasses the best static decay
scheme for all evaluated predictor sizes. For an average size of 10.5
KB, AVPD obtains 64% leakage energy savings versus the 55% of
the static scheme. For the smaller size of 5 KB, the difference
between the adaptive and static schemes is even more evident:
AVPD provides additional leakage energy savings of 14% respect to
the static scheme (AVPD obtains 55% and the static scheme just
41% of leakage energy savings). It can be observed that, as size
grows, the differences between the adaptive and static schemes
disappear, both obtaining 80% leakage energy savings for a size of
87 KB. In such big size predictors, there is no need for an adaptive
scheme as there are very low generational changes, and they can be
easily identified by the static scheme. The 70/100 configuration is
the best one we have found since its trend is to reduce the decay
interval towards its lower limit of 256 cycles. In general, we have
seen that whatever configuration that tends to shorten the decay
interval will perform well with DFCM, but constant changes of the
decay interval, like in the 50/50 configuration, will result in a loose
of net leakage energy savings.
Figure 9 shows the average leakage energy savings for the STP
predictor. As cited in section 3, the AVPD mechanism tries to

5 Total processor leakage-energy results are not presented due to

HotLeakage limitations that only provides static-power models
for regular array structures (caches, predictors and register file).

decrease the decay interval in order to reduce the leakage energy.
The STP predictor is especially susceptible to these trials of
reducing the decay interval since a big interval reduction degrades
the STP accuracy enough (as shown in Figure 3 of Section 2.2) to

15

25

35

45

55

65

75

85

95

2.5KB 5.18KB 10,5KB 21,25KB 43KB 87KB

Predictor Size (KB)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

Best Static AVPD 70/100 AVPD 00/100
AVPD 50/50 AVPD 40/60

Figure 8. DFCM value predictor leakage energy savings
(SPECint2000).

15

25

35

45

55

65

75

85

95

4,6KB 9,25KB 18,5KB 37KB 74KB

Predictor Size (KB)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

Best Static AVPD 70/100 AVPD 00/100
AVPD 50/50 AVPD 40/60

Figure 9. STP value predictor leakage energy savings
(SPECint2000).

Figure 10. FCM value predictor leakage energy savings
(SPECint2000).

15

25

35

45

55

65

75

85

95

2.3KB 4.6KB 9.5KB 19.25KB 39KB 78KB
Predictor Size (KB)

V
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

Best Static AVPD 70/100 AVPD 00/100
AVPD 50/50 AVPD 40/60

make the power overhead due to the induced extra cycles equal to
the power savings provided by AVPD. This results in the adaptive
scheme to behave similarly to the static scheme. The STP predictor
works better with configurations that change the decay interval
quickly, like 50/50 or 40/60, because configurations with a trend to
shorten the decay interval (like 70/100) decrease the predictor’s
accuracy too much, making the overhead even greater than the
provided energy savings.
Figure 10 shows the average leakage energy savings for the FCM
predictor. This predictor behaves very similarly to DFCM, with the
same best configuration (70/100), but obtaining even greater
leakage energy savings. In addition, the differences compared to the
best static decay scheme are also higher. For a predictor size of 4.6
KB, the static approach obtains 50% leakage energy savings
whereas the adaptive scheme obtains 74% (an additional 24%). For
greater sizes, the differences between the static and adaptive
schemes keep lowering until they converge to the same leakage
energy savings for very big predictor sizes (close to 90% leakage
energy savings for a size of 78 KB). If we focus on moderated FCM
sizes (around 10 KB), the best static scheme gets 64% leakage
energy savings whereas AVPD obtains 77% (13% of additional
savings). Note that FCM, like DFCM, performs well with any
configuration that tends to decrease the decay interval, due to the
negligible impact on its accuracy.
Finally, Figure 11 compares the proposed AVPD along with an
oracle static decay scheme for a DFCM predictor of about 10 KB.
The oracle static decay is the one able to choose the best static
decay interval per application, as it can be extracted from Figure 6.
According to Figure 11, we can notice that AVDP can surpass, for
most applications, the leakage energy savings provided by the
oracle static approach (up to additional 33% energy savings for
crafty and 29% for gcc) which makes AVPD an energy-effective
mechanism to more precisely match the dynamic generational
behaviour in Value Prediction structures.

5. Related Work
In order to reduce leakage power in processors, several techniques
have been proposed at both circuit level and architectural level. At
the architectural level, many proposals have focused on reducing the
leakage power by switching off unused portions of large array
structures such as caches. These techniques have been categorized
into state-preserving and non-state preserving [1][9][18].

Studies by Powell et al. [16] proposed gated-VDD as a technique to
limit static leakage power by banking and providing “sleep”
transistors which dramatically reduce leakage current by gating off
the supply voltage. This technique, known as decay, reduces the
leakage power drastically at the expense of losing the cell’s
contents, being necessary to apply it very carefully since the loose
of information can result in an increase of the dynamic power to
retrieve it again. Kaxiras et al. [12] successfully applied decay
techniques to individual cache lines in order to reduce leakage in
cache structures (67% of static power consumption can be saved
with minimal performance loss). This technique has also been
applied to conditional branch predictors and BTB structures [8][11].
On the other hand, drowsy techniques try to reduce leakage without
losing the cell’s information. Drowsy caches [4] use different supply
voltages according to the state of each cache line. The lines in
drowsy mode use a low-voltage level, retaining the data, while
requiring a high voltage level to access it again. Waking up from the
drowsy state is similar to a pseudo-cache miss incurring in some
additional penalty cycles (about 7 cycles). Of course, the leakage
savings of this mechanism are lower than the decay ones, but the
increase of dynamic power consumption due to the loose of
information is also lower. Flautner et al. [4] showed that a drowsy
cache putting to sleep all cache blocks periodically achieves 54%
leakage power savings with a negligible performance degradation
(about 1%).
Li et al. [9] evaluated the use of state and non-state preserving
techniques in caches. The authors showed that for a fast L2 cache
(5-8 cycles latency) decay techniques are superior in terms of both
performance loss and energy savings to drowsy ones.
An alternative to traditional decay is to use quasi-static, four-
transistor (4T) memory cells. 4T cells are approximately as fast as
6T SRAM cells, but do not have connections to the supply voltage
(VSS). Rather, the 4T cell is charged upon each access, whether read
or write, and it slowly leaks the charge over time until, eventually,
the value stored is lost. In [11], it was proposed to apply decay
techniques to branch predictors by using 4T cells. By doing this,
some of the drawbacks of using gated-VDD transistors are
eliminated, since an access to a 4T cell automatically reactivates the
cell, whereas reactivating a 6T cell from the “sleep” mode is
somewhat more complex, requiring extra hardware involved in
gating the supply voltage.

-20,00

0,00

20,00

40,00

60,00

80,00

100,00

bzip crafty eon gap gcc gzip mcf parser vortex vpr averageV
P

Le
ak

ag
e

En
er

gy
 S

av
in

gs
 (%

)

Oracle Static AVPD (70/100)

Figure 11. Oracle Static decay vs AVPD for a 10 KB DFCM predictor.

Studies by Zhou et al. [20] show an adaptive time based mechanism
suited for caches to dynamically disable cache lines in order to
reduce leakage power dissipation. This mechanism uses the cache
tag array, which is never switched off, in order to track if there are
many induced cache misses and adapt the decay interval
accordingly.
Regarding the work on Value Prediction, in the literature it can be
found a plethora of studies and proposals. The last value predictor
was introduced by Lipasti et al. [10]. This is the most basic
prediction mechanism and, basically, it assumes that the next value
produced by an instruction will be the same as the previous one. A
generalization of the last value predictor leads to the stride value
predictor (STP). Introduced by Gabbay et al. [6], it uses the last
value produced by an instruction plus a stride pattern. The finite
context method value predictor (FCM), introduced by Sazeides et al.
[17], uses the history of recent values, called the context, to
determine the next value. This is implemented by using two-level
prediction tables. The first level stores the context of the recent
history of the instruction. The second level stores, for each possible
context, the value which is most likely to follow it. The differential
finite context method value predictor (DFCM), introduced by
Goeman et al. [7], joins the two previous predictors into one
structure. DFCM works like FCM (two-level prediction tables), but
it stores the differences between the values instead of the values
themselves, plus the last value of the instruction. This allows DFCM
to capture stride patterns. For non-stride patterns, DFCM works just
like the FCM predictor.

6. Conclusions
This paper proposes Adaptive Value Prediction Decay (AVPD), a
mechanism able to dramatically reduce the leakage energy of
traditional Value Predictors with negligible impact on prediction
accuracy nor processor performance by dynamically locating VP
entries that have not been accessed for a noticeable amount of time.
Once those unused entries have been located, AVPD switches them
off to prevent them from leaking and, therefore, making Value
Prediction an energy-efficient approach for low-power processor
designs. The proposed AVPD extends the static decay approach in
order to better exploit the program behaviour as well as the
differences between sections of code where the VP can be under-
utilized.
The AVPD mechanism requires just slight modifications, with
virtually no extra hardware overhead compared to the static decay
scheme (just two additional global counters). AVPD combines the
best attributes, for the purpose of VP decay, of two previous
adaptive decay schemes. From [12] it inherits the time-based
scheme of detecting early shutoffs but shuns adaptation of the decay
interval per entry. Conversely, it inherits adaptation of a single
global decay interval from [20] but discards miss ratio measurement
since that would require tags. In addition, in our scheme, the
aggressiveness of the adaptation is easily controlled by two
parameters (increasing and decreasing thresholds).
Initially, we present in this work an analysis on the leakage-
efficiency of the static decay approach when applied to traditional
Value Predictors (Stride, DFCM and FCM). After that, we evaluate
the leakage-efficiency of the proposed AVPD showing that it can
indeed surpass the leakage energy savings provided by the static
decay approach (and even an oracle static decay). The average
leakage energy savings for the best known configuration of the

adaptive mechanism for a moderated predictor size of around 10 KB
are 32%, 64% and 77% for the three evaluated predictors, Stride,
DFCM and FCM, respectively. Compared to the best static decay
scheme, AVPD provides significant additional average leakage
energy savings (e.g., 14% for a 5 KB DFCM and 24% for a 5 KB
FCM).
Finally, the present work tries to show that the use of low-power
prediction structures could still make Value Prediction a power-
performance efficient mechanism suitable for high performance
processor designs.

7. ACKNOWLEDGMENTS
This work has been supported by the Ministry of Education and
Science of Spain under grants TIN2006-15516-C04-03 and
CSD2006-00046. This work is also supported in part by the EU FP6
IP-FET SARC contract No. 27648, and the EU FP6 NoE HiPEAC
IST-004408.

8. REFERENCES
[1] J.A. Butts and G. Sohi. “A static power model for architects”.

In Proc. of the 33rd Int. Symp. on Microarchitecture, 2000.
[2] B. Calder, G. Reinman and D.M. Tullsen. “Selective Value

Prediction”. In Proc. of the 26th Int. Symp. on Computer
Architecture, May 1999.

[3] J.M. Cebrián, J.L. Aragón and J.M. García. “Leakage Energy
Reduction in Value Predictors through Static Decay”. In Proc.
of the Int. Workshop on High-Performance, Power-Aware
Computing HP-PAC’07 (in conjunction with IPDPS'07),
March 2007.

[4] K. Flautner et al. “Drowsy Caches: Simple Techniques for
Reducing Leakage Power”. In Proc. of the 29th Int. Symp. on
Computer Architecture, 2002.

[5] M.J. Flynn and P. Hung. “Microprocessor Design Issues:
Thoughts on the Road Ahead”. IEEE Micro, vol. 25, no. 3, pp.
16-31, May/Jun, 2005.

[6] F. Gabbay and A. Mendelson. “Speculative execution based on
value prediction”. Technical Report 1080, Technion – Israel
Institute of Technology, 1997.

[7] B. Goeman, H. Vandierendonck and K. de Bosschere.
“Differential FCM: Increasing Value Prediction Accuracy by
Improving Table Usage Efficiency”. In Proc. of the 7th Int.
Symp. on High-Performance Comp. Architecture, 2001.

[8] Z. Hu et al. “Applying Decay Strategies to Branch Predictors
for Leakage Energy Savings”. In Proc. of the Int. Conf. on
Computer Design, Sep. 2002.

[9] Y. Li et al. “State-Preserving vs. Non-State-Preserving
Leakage Control in Caches,” In Proc. of the DATE
Conference, Feb. 2004.

[10] M. Lipasti, C. Wilkerson and J. Shen. “Value locality and load
value prediction”. In Proc. of the 7th Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems, Oct. 1996.

[11] P. Juang et al. “Implementing Branch-Predictor Decay Using
Quasi-Static Memory Cells”. ACM Transactions on
Architecture and Code Optimization, Vol. 1, June 2004.

[12] S. Kaxiras, Z. Hu and M. Martonosi. “Cache Decay:
Exploiting Generational Behavior to Reduce Cache Leakage
Power”. In Proc. of the 28th Int. Symp. on Computer
Architecture, 2001.

[13] A. Kesharvarzi. “Intrinsic iddq: Origins, reduction, and
applications in deep sub-micron low-power CMOS IC’s”. In
Proc. of the IEEE International Test Conference, 1997.

[14] N.S. Kim, T. Austin et al. “Leakage Current: Moore’s Law
Meets Static Power”. IEEE Computer, 2003.

[15] N. Kırman, M. Kırman, M. Chaudhuri and J.F. Martínez.
“Checkpointed early load retirement”. In Proc. of the Intl.
Symp. on High-Performance Comp. Architec., Feb. 2005.

[16] M.D. Powell et al. “Gated-Vdd: A Circuit Technique to
Reduce Leakage in Deep-Submicron Cache Memories”. In
Proc. of the Int. Symp. on Low Power Electronics and Design,
2000.

[17] Y. Sazeides and J.E. Smith. “The predictibility of data values”.
In Proc. of the 30th Annual International Symposium of
Microarchitecture, Dec 1997.

[18] S. Yang et al. “An integrated circuit/architecture approach to
reducing leakage in deep-submicron high-performance I-
Caches”. In Proc. of the 7th Int. Symp. on High-Performance
Computer Architecture, 2001.

[19] Y. Zhang, D. Paritkh, K. Sankaranarayanan, K.Skadron and M.
Stan. “HotLeakage: a temperature-aware model of
subthreshold and gate leakage for architects”. Technical
Report, Dept. Comp. Science, U. Virginia, 2003.

[20] H. Zhou, M. C. Toburen, E. Rotenberg and T. M. Conte.
“Adaptive mode-control: A static-power-efficient cache
design”. In Proc. of the Int. Conf. on Parallel Architectures
and Compilation Techniques, 2001.

