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ABSTRACT 
Energy-efficient microprocessor designs are one of the major 
concerns in both high performance and embedded processor 
domains. Furthermore, as process technology advances toward deep 
submicron, static power dissipation becomes a new challenge to 
address, especially for large on-chip array structures such as caches 
or prediction tables. Value prediction emerged in the recent past as a 
very effective way of increasing processor performance by 
overcoming data dependences. The more accurate the value 
predictor is the more performance is obtained, at the expense of 
becoming a source of power consumption and a thermal hot spot, 
and therefore increasing its leakage. Recent techniques, aimed at 
reducing the leakage power of array structures such as caches, either 
switch off (non-state preserving) or reduce the voltage level (state-
preserving) of unused array portions. 

In this paper we propose the design of leakage-efficient value 
predictors by applying adaptive decay techniques in order to disable 
unused entries in the prediction tables. As value predictors are 
implemented as non-tagged structures an adaptive decay scheme has 
no way to precisely determine the induced miss-ratio due to 
prematurely decaying an entry. This paper explores adaptive decay 
strategies suited for the particularities of value predictors (Stride, 
DFCM and FCM) studying the tradeoffs for these prediction 
structures, that exhibit different pattern access behaviour than 
caches, in order to reduce their leakage energy efficiently 
compromising neither VP accuracy nor the speedup provided. 
Results show average leakage energy reductions of 52%, 70% and 
80% for the Stride, DFCM and FCM value predictors of 20 KB 
respectively. 

Categories and Subject Descriptors 
C.1.1 [Processor Architectures]: Single Data Stream Architectures 
– RISC/CISC, VLIW architectures.  

General Terms: Measurement, Performance, Design. 

Keywords: Energy efficient architectures, leakage, value 
prediction, cache decay. 

1. INTRODUCTION 
Energy consumption and power dissipation are one of the main 
goals when facing the design of a modern microprocessor in the 
high performance domain and, more crucially, in the embedded 
microprocessor domain, especially in the case of battery-operated 
devices. There are two sources of power dissipation, dynamic power 
and static power (power dissipated regardless of activity, even when 
transistors are not switching). For several generations, static power 
(leakage) has been just a small fraction of the overall power 
consumption in microprocessors, and it was not considered a major 
concern [13][14]. However, as feature size shrinks to allow greater 
transistor density and higher performance, supply voltage must be 
lowered in order to restrain dynamic power consumption since it is 
proportional to the square of supply voltage. But using smaller 
geometries, with very small threshold voltages, has the additional 
effect of increasing leakage loss exponentially, which leads to static 
power beginning to dominate the overall power consumption as 
process technology drops below 65 nm [5][14].  
Several proposals can be found in the literature for managing 
leakage power, at both circuit and architecture level. Some 
proposals have focused on reducing the leakage power by switching 
off unused portions of large array structures, in particular for caches, 
since they occupy a significant fraction of total die area, therefore, 
providing a great opportunity for reducing leakage energy. Cache 
Decay [12] selectively turns individual data cache lines off if they 
have not been used for a long time, reducing leakage energy at the 
expense of losing the contents of the cache line. This non-state 
preserving technique has also been successfully applied to branch 
predictors and BTB structures [8][11].  
On the other hand, Value Prediction (VP) has been proposed as a 
very effective way of improving superscalar processor performance 
[6][7][10][17] by overcoming data dependences which are one of 
the major performance limitations in current high performance 
superscalar processors. More recently, VP has also been 
successfully proposed to perform early load retirements in high 
performance processors [15]. However, the use of value prediction 
structures despite the speedup provided (average 15% as reported in 
[2]) has not been widely spread, mainly due to complexity-delay 
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issues. Note however that, unlike other prediction structures such as 
branch predictors where increasing access time and complexity can 
significantly reduce their benefits since the next fetched instruction 
is needed as early as possible, the access time in VPs is not so 
crucial. First, the predicted value is not needed until the instruction 
has reached its issue stage, and second, current high performance 
processors typically implement deeper pipelines (14 stages or more) 
which effectively hide the VP latency due to the increased front-end 
pipeline length. When an instruction reaches the end of the multi-
stage front-end, the predicted value allows a speculative issue of the 
instruction if any register input is not ready, making traditional VP a 
very effective way of increasing processor performance.  
However, the use of VP structures incurs in additional dynamic and 
static power dissipation. The continuous access to the prediction 
tables in almost each clock cycle may result in a thermal hot spot, 
increasing the leakage power of the structure, as in the case of 
caches and branch predictors. In modern high performance 
processors, due to high operating temperatures, it is necessary to 
fight to reduce leakage in every possible structure. Although the VP 
is a small structure compared to an L2 cache, if we let it overheat 
(likely, as it is accessed frequently and resides quite close to the 
core) without any precaution to regulate its leakage, the negative 
effects can be quite serious. Small hot structures can leak more than 
larger but cooler ones. We cannot afford not to attack leakage even 
at the smallest structures. 
In this paper we propose Adaptive Value Prediction Decay (AVPD), 
a mechanism able to dramatically reduce the leakage energy of 
traditional Value Predictors with negligible impact on prediction 
accuracy nor processor performance by dynamically locating VP 
entries that have not been accessed for a noticeable amount of time. 
When those entries have been identified, AVPD switches them off to 
prevent them from leaking, which makes Value Predictors 
complexity-effective structures (due to the minimal extra hardware 
required) when used in medium and long pipelines as well as a 
power-performance efficient mechanism suitable for high 
performance processor designs. It is important to note that VPs 
show a significant amount of spatial and temporal locality but, 
unlike caches, a prematurely decayed VP entry does not degrade 
performance as much as a prematurely decayed cache line since 
losing the contents of a VP entry might result –or not– in a value 
misprediction on the next access to that entry, but this is exactly 
what would happen if we had a real generational change. On the 
other hand, prematurely decaying a cache line always induces 
additional accesses to the L2 cache. 
Previous proposals that applied static decay approaches to both 
caches and branch predictors needed to carefully choose a decay 
interval, which could be even tuned per application, in order to 
minimize the performance impact of leakage power reduction. 
However, even obtaining the best decay interval per application (by 
profiling techniques) does not guarantee the best energy savings, 
since the static decay approach cannot capture variations within an 
application. This is particularly important in the case of prediction 
structures since correct and wrong predictions usually appear 
clustered. An adaptive decay approach can dynamically choose 
decay intervals at run-time to match the generational behaviour of 
particular entries. In [12], an adaptive decay approach –suited for 
caches– able to set decay intervals per cache line was proposed. 
Despite the extra flexibility provided, the hardware overhead 
required to manage decay intervals per cache line resulted in 
moderate net leakage energy savings. In [20], the authors proposed 

another adaptive decay approach, again suited for caches, exploiting 
the fact that caches have tags and deactivating only the data portion 
of cache lines but not the tag portion. By doing so, the ideal miss 
rate, even when deactivating a cache line prematurely, can be 
calculated and compared to the actual induced miss rate in order to 
guide the adaptive scheme, at the expense of having the tag array 
leaking all the time.  
The contribution of the present work is a novel adaptive decay 
scheme suited for the peculiarities of Value Predictors (to the best of 
our knowledge this is the first such proposal). The new Adaptive 
Value Prediction Decay (AVPD) approach is needed for two 
reasons. First, adapting the decay interval individually for the very 
small VP entries (as opposed to cache lines) would represent 
significant overhead and thus we consider it impractical. Second, 
VPs are non-tagged structures, and, therefore, it is not feasible to 
track the ideal miss rate vs. the induced miss rate. The proposed 
AVPD takes the best attributes of each of the two previous adaptive 
decay proposals for the purpose of VP decay. It uses a global run-
time decay interval, requiring no additional hardware per entry. To 
adapt this global decay interval without tags, AVPD uses a time-
based approach to judge whether or not the current decay interval 
causes an inordinate number of entries to be prematurely shutoff. 
Finally, we have evaluated AVPD in terms of dynamic and static 
power consumption, instead of using indirect metrics such as active 
ratio and turn-off ratio metrics. 
The rest of the paper is organized as follows. Section 2 analyzes the 
utilization of the prediction tables and the static decay approach. 
The proposed AVPD scheme is described in Section 3. Section 4 
shows the experimental methodology and the leakage energy 
savings obtained. Section 5 provides some background and reviews 
some related works. Finally, Section 6 summarizes the main 
conclusions of the work. 

2. Problem Overview 

2.1 Generational Behaviour in Value 
Predictors 
Power dissipation of value prediction structures is divided into 
dynamic and static power, as cited before. The dynamic component 
strongly depends on the utilization of the VP tables. Values can be 
predicted at different demanding levels: the most aggressive 
utilization predicts the output value for all instructions traversing the 
pipeline. Other approaches restrict the use of the value predictor to 
just a fraction of instructions such as long-latency instructions, load 
instructions that miss in the L1 or L2 data cache, instructions that 
belong to a critical path, or just to predict the effective address for 
memory disambiguation. Therefore, restricting the VP utilization to 
just a fraction of selected instructions effectively reduces the 
dynamic power component of this structure. However, the static 
power component is still present, as the VP structure leaks 
regardless of utilization with increasing leakage loss for finer 
process technologies. For this reason, this work is focused on 
reducing the VP structure’s static power component. 
The authors in [12] showed that, very frequently, cache lines have 
an initial active period (known as live time) followed by a period of 
no utilization (known as dead time) before they are eventually 
evicted. They proposed to break the stream of references to a 
particular cache line into generations. Each generation lasts until the 
cache line is evicted and replaced by a new one. This generational 



behaviour also appears in the VP structure, although with some 
particularities: as value predictors are implemented as direct-
mapped tables with no tags and allowing destructive interferences, 
in our proposal, a generation ends when the VP entry is accessed by 
an instruction with a different PC, as it can be seen in Figure 1. Its 
live time will be the period of accesses with the same PC and its 
dead time will be the period between the last access with an specific 
PC until an access with a different one. 
To better understand the generational behaviour in value predictors, 
Figure 2 shows the utilization of the VP entries by measuring the 
fraction of time each entry remains in a dead state1 for the whole 
SPECint2000 benchmark suite as a function of VP size. It can be 
observed that the three evaluated value predictors –Stride, FCM and 
DFCM– present a similar utilization regardless of their size. For 
sizes around 20 KB, the average fraction of dead time is 43% and 
for predictor sizes around 40 KB the average fraction of time the 
entries spend in their dead state is 47%. Therefore, if we were able 
to take advantage of these dead times by detecting them and 
shutting the entries off, we could reduce the leakage energy of the 
VP structure by one half on average. 
However, it is important to note that this is not an upper bound on 
the leakage energy savings that could be achieved by decaying VP 
entries. Long periods of inactive live time could be also detected to 
early shut the entry off in order to obtain further leakage savings, at 
the expense of slightly reducing the VP accuracy and processor 
performance, as we will show in next sections. 

2.2 Static Decay Scheme for Value Predictors 
In this section we perform a detailed analysis on the leakage-
efficiency of the static decay approach when applied to traditional 
Value Predictors as well as an introduction to the potential benefits 
that an adaptive decay scheme could achieve. 
The static decay scheme suited for value predictors needs to detect 
those VP entries that have been unused for a significant period of 
time in order to switch them off [3]. But in order to successfully 
apply decay techniques, it is necessary to carefully choose the 
number of cycles we should wait before shutting an entry off in 
order to match generational changes. Therefore, we need to track 
the accesses to each VP entry in order to detect if a particular entry 
is accessed very frequently or, conversely, the entry has been 
unused for a long period of time, probably entering into a dead state. 
For the static decay scheme it is crucial to explore a wide range of 

                                                                 
1 This fraction of time can be measured as the ratio total dead 

time/(total live time+total dead time). 

decay intervals to precisely detect the dead states while, at the same 
time, not degrading the VP accuracy and, therefore, the speedup 
provided. Ideally, the best static decay interval is the one that 
minimizes the performance impact of prematurely disabling a VP 
entry. 
Regarding the utilization of VPs, throughout the paper we are 
predicting the output values for all instructions traversing the 
pipeline. However, it is important to note that this aggressive 
prediction scheme does not benefit a decay mechanism, either static 
or adaptive, since they are based on locating unused predictor 
entries. The more demanding use of the VP structure the less 
opportunities to detect unused VP entries and the less leakage 
energy savings obtained from a decaying mechanism.  
In order to better understand the effects of prematurely deactivating 
a VP entry, Figure 3 shows the speedup provided by Value 
Prediction with no decay as well as the speedup reduction when 
applying the static decay approach for decay intervals from 256 
Kcycles to just 64 cycles. It is important to note that, as cited 
previously, traditional Value Prediction (with no decay) can provide 
significant average speedups (13% for a 10 KB DFCM as shown in 
Figure 3). Looking into the performance degradation caused by 
static decaying, we can notice that for FCM and DFCM there is no 
IPC degradation until 256-cycle decay intervals. For STP, there is a 
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Figure 1. Different generations for a value predictor entry.

Figure 2. Fraction of time VP entries are in dead state 
(SpecInt2000). 

Figure 3. Average speedup for the static decay scheme for 
10KB value predictors (SPECint2000). 
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slight but negligible IPC degradation (less than 1%) for 1024- and 
512-cycle decay intervals. As before, for 256-cycle (and smaller) 
intervals the performance degradation is not tolerable.  
Next analysis performs an evaluation on the energy-efficiency of the 
static decay scheme for VPs. Unlike previous cache decay proposals 
[12][20], we are reporting leakage energy measurements using a 
modified version of HotLeakage simulator [19] that includes the 
static power model for the evaluated VPs as well as the static and 
dynamic power overhead of the static decay approach (see section 
4.1 for details about simulation methodology and processor 
configuration). In order to precisely evaluate the net leakage energy 
savings provided by the static VP decay approach, it is necessary to 
consider the following overheads associated with the mechanism. 
The first component overhead takes into account the extra dynamic 
and static power that results from the additional hardware (a global 
decay interval counter as well as the two-bit local counters2 per VP 
entry [3]). The second component overhead is derived from the 
induced VP misses (when a VP entry is prematurely disabled) that 
increase execution time. These extra cycles that the program is 
running will also lead to additional static and dynamic power 
dissipation. Note that this second overhead is highly destructive 
since each extra cycle accounts for the overall dynamic and static 
processor power and can easily cancel whatever VP leakage energy 
savings provided by the static decay scheme.  
Figure 4 shows the average leakage energy savings provided by the 
static VP decay scheme for the DFCM value predictor when 
considering different decay intervals and VP sizes (sizes are not 
power-of-two numbers because of the extra 2-bit counters per 
entry). As expected from the IPC degradation showed in Figure 3, 
the best decay interval corresponds to a window of 512 cycles for 
all VP sizes. For a predictor size of about 10 KB, static VP decay 
obtains average leakage energy savings of 55% and, for a 20 KB 
DFCM, the average leakage energy savings are 65%. As expected, 
greater leakage energy savings can be obtained for greater VP sizes. 
The greatest energy savings for VPs are obtained for decay intervals 
within the 512-cycle range, unlike data caches where the best decay 
intervals are within the 8-Kcycle range [12]. This due to the fact that 
the average live time is around 400 cycles for VPs (note also that the 
decay mechanism needs some additional cycles to determine that an 
entry has entered in a dead state).  
Figure 5 is similar to Figure 4 but for the FCM value predictor. As it 
can be observed, the two VPs behave very similarly to each other. 
Again, the best static decay interval corresponds to a window of 512 
cycles. However, the average leakage energy savings are greater for 
the FCM predictor. For a size of about 10 KB, static VP decay 
obtains average leakage energy savings of 64% and, for a size 
around 20 KB, the average leakage energy savings are 75%. In 
these two figures it can be noticed that, for decay intervals smaller 
than 512 cycles, the IPC degradation is not tolerable since the 
overhead due to the induced extra cycles completely cancels all the 
leakage power savings provided from static decaying, resulting in 
negative net leakage energy savings. 
Finally, Figure 6 shows the leakage energy savings, per benchmark, 
for a 10 KB DFCM predictor. This Figure reveals one of the 
weaknesses of the static decay scheme when compared to the 
adaptive scheme: the static decay interval must be carefully chosen 
                                                                 
2 Dynamic and static power overhead of all 2-bit local counters 

has been measured to be less than 2% of the total VP structure. 

in order to maximize the leakage energy savings. In some cases, the 
best static decay interval may differ between applications (as it can 
be seen in Figure 6 for mcf and gap benchmarks where the best 
static decay interval is 4 Kcycles). However, even when using 
profiling techniques in order to determine the best decay interval per 

Figure 4. Static decay scheme for the DFCM value predictor 
(SPECint2000). 

Figure 5. Static decay scheme for the FCM value predictor 
(SPECint2000). 

Figure 6. Static decay scheme for a 10 KB DFCM value 
predictor. 
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application, there is no guarantee that the best leakage energy 
savings are obtained, since the static decay approach cannot capture 
variations within an application. This second effect is particularly 
important in the case of VP structures since correct and wrong 
predictions appear clustered depending on the program phase. 
Therefore, an adaptive decay scheme can dynamically choose decay 
intervals at run-time to more precisely match the generational 
behaviour in prediction table entries. 

3. Adaptive Value Prediction Decay (AVPD) 
Dynamically applying decay techniques to Value Predictors is not a 
trivial fact as we need to detect those VP entries that have been 
unused for a significant amount of time and switch them off to 
prevent them from leaking. Adaptive Value Prediction Decay 
(AVPD) is a time-based mechanism that analyzes each VP entry 
individually to detect how often that entry is accessed. If an entry is 
unused for a long period of time, it probably means that it has 
entered in a dead state, and we should proceed to turn it off.  
The problem is to dynamically determine how long a decay interval 
must be. If we choose to turn VP entries off using too long decay 
intervals, the potential leakage energy savings will be reduced. 
Conversely, if the time-based policy chooses too short decay 
intervals, the VP accuracy might be reduced and, therefore, 
inducing a performance degradation. A positive effect of AVPD 
compared to the original cache decay mechanism is that 
prematurely disabling a VP entry is not so harmful as disabling a 
cache line: losing the contents of the cache line always leads to an 
extra access to L2 cache or memory to retrieve the lost information 
incurring in extra execution cycles; however, losing the contents of 
a VP entry might result –or not– in a value misprediction on the 
next access to that entry but this is exactly what would happen if we 
had a real generational change (which is a very common situation 
and one of the major limitations in traditional non-tagged VPs, 
where the huge number of destructive interferences dramatically 
shortens the generational replacement). 

As shown in the previous section, the decay interval is dependant on 
the application running in the processor or even on the section of the 
code being executed. During program execution there are sections 
of code where the VP usually hits (or fails) its predictions (correct 
and wrong predictions appear clustered depending on the program 
phase). In other program sections the number of VP entries being 
accessed is low, or we can even identify instructions whose optimal 
decay interval is different from others. Therefore, if we are able to 
dynamically adapt the decay interval to the program needs, higher 
leakage energy savings could be obtained compared to statically 
setting it.  
The implementation of the decay interval is done by means of a 
hierarchical counter composed of a global counter and a two-bit 
saturated gray-code counter for each individual value predictor 
entry3 (local counters). In order to make the AVPD mechanism 
easier to implement we will use power-of-two decay intervals. VP 
entries are shut off, preventing them from leaking, by using gated-
VDD transistors [16]. These “sleep” transistors are inserted between 
the ground (or supply) and the cells of each VP entry, which reduces 
the leakage in several orders of magnitude and it can be considered 
negligible. An alternative to using gated-VDD transistors consists of 
using quasi-static 4T transistors, although similar leakage savings 
would be expected [11]. 
The AVPD mechanism considers that each VP entry can be in one 
of the following three states, as shown in Figure 7: enabled (both 
data and the local counter are enabled), partially disabled (data is 
shut off but the local counter is enabled) or disabled (both data and 
the local counter are shut off). AVPD uses two additional global 
counters that account for: a) the number of partially disabled entries 
(entries that change from the enable state to the partially disabled 
state) within the previous decay interval; and b) the number of re-
enabled entries (entries that change from the partially disabled state 
to the enabled state) within the current decay interval. After a 
number of cycles equal to the average live time4, a re-activation 
ratio is calculated as the number re-enabled entries over the number 
of partially disabled entries.  
In addition, AVPD uses two pre-defined threshold values 
(increasing threshold and decreasing threshold) in order to 
determine whether the length of the current decay interval is correct, 
that is, if the current decay interval makes VP entries to decay 
during their live time (prematurely) or during their dead time. 
Therefore, if the re-activation ratio is higher than the increasing 
threshold, the current decay window is too short and it is doubled 
since the are many entries being disabled prematurely. On the other 
hand, if the re-activation ratio is lower than the decreasing 
threshold, the current decay window is too long and it is halved 
since we are shutting entries off too late, loosing opportunities to 
reduce the VP leakage.  
The AVPD mechanism works as follows (see Figure 7): each cycle 
the global decay counter is incremented by one and, when it 

                                                                 
3 Using a hierarchical counter is more power-efficient since it 

allows accessing the local counters at a much coarser level. 
Accessing the local counters each cycle would be prohibitive 
because of the associated power overhead. 

4 As cited in section 2.2, the static decay experiments showed that 
the average live time is around 400 cycles for the three 
evaluated VPs. 
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overflows, the local counters of all VP entries in either the enabled 
or partially disabled state are incremented. However, an access to 
any VP entry will result on an immediate reset of its local counter. 
In addition: 

• For those entries in the enabled state (both VP data and the local 
counter are enabled): if the entry remains unused for a long 
time, its local counter will eventually overflow and the entry 
will change to the partially disabled state. The number of 
partially disabled entries is incremented. 

• For those entries in the partially disabled state (VP data is shut 
off whereas the local counter is enabled): if the entry is not 
accessed within the average live time4, it will be changed to the 
disabled state and the local counter will be also shut off. 
However, an access to a partially disabled entry will change it 
to the enabled state, increasing the number of re-enabled 
entries. 

• For those entries in the disabled state (both VP data and the 
local counter are shut off): an access to the entry will change it 
to the enabled state.  

Regarding the pre-defined values used for the increasing and 
decreasing thresholds, it is important to note that setting the 
decreasing threshold to small values will make AVPD sure that 
there are few re-enabled entries before lowering the decay interval, 
resulting in a more conservative policy. On the other hand, setting 
the decreasing threshold to high values will make AVPD to 
decrease the decay interval more frequently, resulting in a more 
aggressive policy. Analogously, setting the increasing threshold to 
small values means that AVPD will increase the decay interval even 
if there are few re-enabled entries; whereas setting the increasing 
threshold to high values will make AVPD to wait until having a 
great fraction of re-activations before raising the decay interval. In 
Section 4.2 we evaluate the leakage-efficiency of the AVPD 
mechanism for different increasing and decreasing thresholds. 
Finally, the power overhead associated to the AVPD mechanism can 
be divided into three main components. The first component is 
associated to the dynamic and static power derived from the two-bit 
local counters inserted into every entry of the predictor (same 
overhead as for the static decay scheme). The second component 
comes from the three global counters: one is part of the two-level 
decay interval counter (also appears in the static decay scheme) and 
the other two counters are particular of the adaptive decay scheme. 
The third component overhead, as explained in Section 2.2, is 
derived from the induced VP misses (when a VP entry is 
prematurely disabled) that increase program execution time. These 
extra cycles that the program is running will also lead to additional 
static and dynamic power dissipation. Note that this third 
component (also appears in the static decay scheme) is highly 
destructive since each extra cycle accounts for the overall processor 
dynamic and static power and can easily cancel whatever leakage 
energy savings provided by AVPD.  
Therefore, we must try to make the AVPD mechanism accurate 
enough to not increase the execution cycles. It is important to note 
that AVPD is virtually not introducing additional power overhead 
nor complexity (just the additional two global counters whose 
power overhead that has been conveniently modelled into the AVPD 
power model) when compared to the static decay scheme providing, 
however, significant additional leakage energy savings as we will 
show in next section. 

4. Experimental Results 

4.1 Simulation Methodology 
To evaluate the energy-efficiency of the AVPD, we have used the 
SPECint2000 benchmark suite. All benchmarks were compiled with 
maximum optimizations (-O4 -fast) by the Compaq Alpha compiler 
and they were run using a modified version of HotLeakage power-
performance simulator [19] that includes the dynamic and static 
power model for the evaluated Value Predictors (Stride, FCM and 
DFCM) as well as the power overhead associated to AVPD. The VP 
access latency is 5 cycles.  
Table 1 shows, for each particular benchmark, the input set, the total 
number of simulated instructions and the number of forwarded 
instructions. Due to the large number of dynamic instructions in 
some benchmarks, we reduced the input data set while keeping a 
complete execution. Table 2 shows the configuration of the 
simulated architecture. Leakage related parameters have been taken 
from the Alpha 21264 processor, provided with the HotLeakage 
simulator suite, and using a process technology of 70 nanometers. 

4.2 Leakage-efficiency of AVPD Mechanism 
This section presents the leakage-efficiency evaluation of the 
proposed AVPD mechanism for the Stride, FCM and DFCM 

Table 2. Configuration of the simulated processor. 

Processor Core 
Process Technology: 

Frequency: 
Instruction Window: 

Decode Width: 
Issue Width: 

Functional Units: 
 
 

Pipeline: 

70 nanometers 
5600 Mhz 
128 RUU, 64 LSQ 
8 inst/cycle 
8 inst/cycle 
8 Int Alu; 2 Int Mult 
8 FP Alu; 2 FP Mult 
2 Memports 
22 stages 

Memory Hierarchy 
L1 Icache:  

L1 Dcache:  
L2 cache: 

64KB, 2-way  
64KB, 2-way 
2MB, 4-way, unified  

 

Table 1. SPECint2000 benchmark characteristics. 

Benchmark Input set Total # simulated 
instr. (Mill.)

# skipped
instr (Mill.)

bzip2 input source 1 500 500
crafty test (modified) 437 -
eon kajiya image 454 -
gap test (modified) 500 50
gcc test (modified) 500 50
gzip input.log 1 500 50
mcf test 259 -
parser test (modified) 500 200
twolf test 258 -
vortex test (modified) 500 50
vpr test 500 100



predictors. Each figure shows the VP leakage energy savings5 
respect to not applying a decay scheme for some representative 
configurations of the adaptive mechanism as well as the best static 
decay configuration (512-cycle decay interval according to section 
2.2) for comparison purposes.  
For the evaluation of AVPD, we carried out a comprehensive set of 
experiments for many configurations defined by using different 
decreasing and increasing threshold values. In this work we only 
present the most representative configurations: 

• Configuration 00/100 (decreasing threshold set to 0% / 
increasing threshold set to 100%): this is the most conservative 
policy since AVPD will try to decrease the decay interval only if 
none of the entries are re-activated; and it will only try to 
increase the decay interval when all the entries are re-activated. 
It works pretty well for all studied predictors as it does not take 
any risks when changing the decay interval.  

• Configuration 50/50: this is the most aggressive configuration as 
it keeps changing the decay interval continuously, increasing or 
decreasing the decay interval according to the re-activation 
ratio. This configuration is so aggressive that the constant 
changes on the decay interval neutralize, for many benchmarks, 
the VP energy savings with the overhead of the extra execution 
cycles. 

• Configurations 40/60 and 70/100: they are the best ones we 
have found for the different predictors. The 40/60 is quite 
aggressive but works well with the Stride predictor, as it 
balances long decay intervals with short ones. The 70/100 
configuration has the trend to shorten the decay interval 
whenever is possible, only raising it when all decayed entries 
are re-activated.  

Figure 8 shows the average leakage energy savings for the DFCM 
predictor and the cited adaptive configurations as well as for the best 
static decay interval (512 cycles). For this predictor, the best 
adaptive configuration is 70/100 that surpasses the best static decay 
scheme for all evaluated predictor sizes. For an average size of 10.5 
KB, AVPD obtains 64% leakage energy savings versus the 55% of 
the static scheme. For the smaller size of 5 KB, the difference 
between the adaptive and static schemes is even more evident: 
AVPD provides additional leakage energy savings of 14% respect to 
the static scheme (AVPD obtains 55% and the static scheme just 
41% of leakage energy savings). It can be observed that, as size 
grows, the differences between the adaptive and static schemes 
disappear, both obtaining 80% leakage energy savings for a size of 
87 KB. In such big size predictors, there is no need for an adaptive 
scheme as there are very low generational changes, and they can be 
easily identified by the static scheme. The 70/100 configuration is 
the best one we have found since its trend is to reduce the decay 
interval towards its lower limit of 256 cycles. In general, we have 
seen that whatever configuration that tends to shorten the decay 
interval will perform well with DFCM, but constant changes of the 
decay interval, like in the 50/50 configuration, will result in a loose 
of net leakage energy savings. 
Figure 9 shows the average leakage energy savings for the STP 
predictor. As cited in section 3, the AVPD mechanism tries to 
                                                                 
5 Total processor leakage-energy results are not presented due to 

HotLeakage limitations that only provides static-power models 
for regular array structures (caches, predictors and register file). 

decrease the decay interval in order to reduce the leakage energy. 
The STP predictor is especially susceptible to these trials of 
reducing the decay interval since a big interval reduction degrades 
the STP accuracy enough (as shown in Figure 3 of Section 2.2) to 
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Figure 8. DFCM value predictor leakage energy savings 
(SPECint2000). 
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Figure 9. STP value predictor leakage energy savings 
(SPECint2000). 

Figure 10. FCM value predictor leakage energy savings 
(SPECint2000). 
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make the power overhead due to the induced extra cycles equal to 
the power savings provided by AVPD. This results in the adaptive 
scheme to behave similarly to the static scheme. The STP predictor 
works better with configurations that change the decay interval 
quickly, like 50/50 or 40/60, because configurations with a trend to 
shorten the decay interval (like 70/100) decrease the predictor’s 
accuracy too much, making the overhead even greater than the 
provided energy savings.  
Figure 10 shows the average leakage energy savings for the FCM 
predictor. This predictor behaves very similarly to DFCM, with the 
same best configuration (70/100), but obtaining even greater 
leakage energy savings. In addition, the differences compared to the 
best static decay scheme are also higher. For a predictor size of 4.6 
KB, the static approach obtains 50% leakage energy savings 
whereas the adaptive scheme obtains 74% (an additional 24%). For 
greater sizes, the differences between the static and adaptive 
schemes keep lowering until they converge to the same leakage 
energy savings for very big predictor sizes (close to 90% leakage 
energy savings for a size of 78 KB). If we focus on moderated FCM 
sizes (around 10 KB), the best static scheme gets 64% leakage 
energy savings whereas AVPD obtains 77% (13% of additional 
savings). Note that FCM, like DFCM, performs well with any 
configuration that tends to decrease the decay interval, due to the 
negligible impact on its accuracy. 
Finally, Figure 11 compares the proposed AVPD along with an 
oracle static decay scheme for a DFCM predictor of about 10 KB. 
The oracle static decay is the one able to choose the best static 
decay interval per application, as it can be extracted from Figure 6. 
According to Figure 11, we can notice that AVDP can surpass, for 
most applications, the leakage energy savings provided by the 
oracle static approach (up to additional 33% energy savings for 
crafty and 29% for gcc) which makes AVPD an energy-effective 
mechanism to more precisely match the dynamic generational 
behaviour in Value Prediction structures. 

5. Related Work 
In order to reduce leakage power in processors, several techniques 
have been proposed at both circuit level and architectural level. At 
the architectural level, many proposals have focused on reducing the 
leakage power by switching off unused portions of large array 
structures such as caches. These techniques have been categorized 
into state-preserving and non-state preserving [1][9][18]. 

Studies by Powell et al. [16] proposed gated-VDD as a technique to 
limit static leakage power by banking and providing “sleep” 
transistors which dramatically reduce leakage current by gating off 
the supply voltage. This technique, known as decay, reduces the 
leakage power drastically at the expense of losing the cell’s 
contents, being necessary to apply it very carefully since the loose 
of information can result in an increase of the dynamic power to 
retrieve it again. Kaxiras et al. [12] successfully applied decay 
techniques to individual cache lines in order to reduce leakage in 
cache structures (67% of static power consumption can be saved 
with minimal performance loss). This technique has also been 
applied to conditional branch predictors and BTB structures [8][11]. 
On the other hand, drowsy techniques try to reduce leakage without 
losing the cell’s information. Drowsy caches [4] use different supply 
voltages according to the state of each cache line. The lines in 
drowsy mode use a low-voltage level, retaining the data, while 
requiring a high voltage level to access it again. Waking up from the 
drowsy state is similar to a pseudo-cache miss incurring in some 
additional penalty cycles (about 7 cycles). Of course, the leakage 
savings of this mechanism are lower than the decay ones, but the 
increase of dynamic power consumption due to the loose of 
information is also lower. Flautner et al. [4] showed that a drowsy 
cache putting to sleep all cache blocks periodically achieves 54% 
leakage power savings with a negligible performance degradation 
(about 1%). 
Li et al. [9] evaluated the use of state and non-state preserving 
techniques in caches. The authors showed that for a fast L2 cache 
(5-8 cycles latency) decay techniques are superior in terms of both 
performance loss and energy savings to drowsy ones. 
An alternative to traditional decay is to use quasi-static, four-
transistor (4T) memory cells. 4T cells are approximately as fast as 
6T SRAM cells, but do not have connections to the supply voltage 
(VSS). Rather, the 4T cell is charged upon each access, whether read 
or write, and it slowly leaks the charge over time until, eventually, 
the value stored is lost. In [11], it was proposed to apply decay 
techniques to branch predictors by using 4T cells. By doing this, 
some of the drawbacks of using gated-VDD transistors are 
eliminated, since an access to a 4T cell automatically reactivates the 
cell, whereas reactivating a 6T cell from the “sleep” mode is 
somewhat more complex, requiring extra hardware involved in 
gating the supply voltage. 
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Studies by Zhou et al. [20] show an adaptive time based mechanism 
suited for caches to dynamically disable cache lines in order to 
reduce leakage power dissipation. This mechanism uses the cache 
tag array, which is never switched off, in order to track if there are 
many induced cache misses and adapt the decay interval 
accordingly. 
Regarding the work on Value Prediction, in the literature it can be 
found a plethora of studies and proposals. The last value predictor 
was introduced by Lipasti et al. [10]. This is the most basic 
prediction mechanism and, basically, it assumes that the next value 
produced by an instruction will be the same as the previous one. A 
generalization of the last value predictor leads to the stride value 
predictor (STP). Introduced by Gabbay et al. [6], it uses the last 
value produced by an instruction plus a stride pattern. The finite 
context method value predictor (FCM), introduced by Sazeides et al. 
[17], uses the history of recent values, called the context, to 
determine the next value. This is implemented by using two-level 
prediction tables. The first level stores the context of the recent 
history of the instruction. The second level stores, for each possible 
context, the value which is most likely to follow it. The differential 
finite context method value predictor (DFCM), introduced by 
Goeman et al. [7], joins the two previous predictors into one 
structure. DFCM works like FCM (two-level prediction tables), but 
it stores the differences between the values instead of the values 
themselves, plus the last value of the instruction. This allows DFCM 
to capture stride patterns. For non-stride patterns, DFCM works just 
like the FCM predictor. 

6. Conclusions 
This paper proposes Adaptive Value Prediction Decay (AVPD), a 
mechanism able to dramatically reduce the leakage energy of 
traditional Value Predictors with negligible impact on prediction 
accuracy nor processor performance by dynamically locating VP 
entries that have not been accessed for a noticeable amount of time. 
Once those unused entries have been located, AVPD switches them 
off to prevent them from leaking and, therefore, making Value 
Prediction an energy-efficient approach for low-power processor 
designs. The proposed AVPD extends the static decay approach in 
order to better exploit the program behaviour as well as the 
differences between sections of code where the VP can be under-
utilized.  
The AVPD mechanism requires just slight modifications, with 
virtually no extra hardware overhead compared to the static decay 
scheme (just two additional global counters). AVPD combines the 
best attributes, for the purpose of VP decay, of two previous 
adaptive decay schemes. From [12] it inherits the time-based 
scheme of detecting early shutoffs but shuns adaptation of the decay 
interval per entry. Conversely, it inherits adaptation of a single 
global decay interval from [20] but discards miss ratio measurement 
since that would require tags. In addition, in our scheme, the 
aggressiveness of the adaptation is easily controlled by two 
parameters (increasing and decreasing thresholds). 
Initially, we present in this work an analysis on the leakage-
efficiency of the static decay approach when applied to traditional 
Value Predictors (Stride, DFCM and FCM). After that, we evaluate 
the leakage-efficiency of the proposed AVPD showing that it can 
indeed surpass the leakage energy savings provided by the static 
decay approach (and even an oracle static decay). The average 
leakage energy savings for the best known configuration of the 

adaptive mechanism for a moderated predictor size of around 10 KB 
are 32%, 64% and 77% for the three evaluated predictors, Stride, 
DFCM and FCM, respectively. Compared to the best static decay 
scheme, AVPD provides significant additional average leakage 
energy savings (e.g., 14% for a 5 KB DFCM and 24% for a 5 KB 
FCM). 
Finally, the present work tries to show that the use of low-power 
prediction structures could still make Value Prediction a power-
performance efficient mechanism suitable for high performance 
processor designs. 
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