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Abstract—Modern mobile GPUs integrate an increasing num-
ber of shader cores to speedup the execution of graphics
workloads. Each core integrates a private Texture Cache to apply
texturing effects on objects, which is backed-up by a shared
L2 cache. However, as in any other memory hierarchy, such
organization produces data replication in the upper levels (i.e.,
the private Texture Caches) to allow for faster accesses at the
expense of reducing their overall effective capacity. E.g., in a
mobile GPU with four shader cores, about 84.6% of the requested
texture blocks are replicated in at least one of the other private
Texture Caches.

This paper proposes a novel dynamically-mapped Non-
Uniform Cache Architecture (NUCA) organization for the private
Texture Caches of a mobile GPU aimed at increasing their
effective overall capacity and decreasing the overall access latency
by attacking data replication. A block missing in a local Texture
Cache may be serviced by a remote one at a cost smaller than
a round trip to the shared L2. The proposed Dynamic Texture
Mapping-NUCA (DTM-NUCA) features a lightweight mapping
table, called Affinity Table, that is independent of the L2 cache
size, unlike a traditional NUCA organization. The best owner
for a given set of blocks is dynamically determined and stored
in the Affinity Table to maximize local accesses. The mechanism
also allows for a certain amount of replication to favor local
accesses where appropriate, without hurting performance due to
the small capacity loss resulting from the allowed replication.
DTM-NUCA is presented in two flavors. One with a centralized
Affinity Table, and another with a distributed Affinity Table.
Experimental results show first that the L2 pressure is effectively
reduced, eliminating 41.8% of the L2 accesses on average. As for
the average latency, DTM-NUCA performs a very effective job at
maximizing local over remote accesses, achieving 73.8% of local
accesses on average. As a consequence, our novel DTM-NUCA
organization obtains an average speedup of 16.9% and overall
7.6% energy savings over a conventional organization.

Index Terms—mobile devices, GPUs, graphics pipeline, cache,
NUCA, energy efficiency.

I. INTRODUCTION

Mobile devices such as smartphones, tablets or smart-

watches, have dramatically evolved in the last decade and

nowadays are very complex devices able to perform a huge

variety of tasks such as playing video games, watching high-

resolution videos, doing video calls, messaging and surfing

the internet. The more tasks a device executes, the more

energy is consumed and, hence, the more heat is generated.

In this context, energy efficiency has become a key design

challenge, playing a critical role in the mobile arena, in which

the user experience heavily depends on battery autonomy,

portability and low heat. Regarding the video games segment,

smartphones integrate increasingly powerful GPUs able to

render complex graphics scenes in high resolutions. Users

also demand higher-quality graphics to play on their devices,

leading to more complex scenes with more elaborated shading

and lighting effects. In this highly demanding scenario, the

energy efficiency of mobile GPUs has become a central design

challenge. Prior works have pointed out that the GPU is

one of the major contributors in energy consumption in a

mobile SoC because of their powerful computing capabilities

[1]–[4]. Current mobile GPUs can feature more than 8 pro-

cessing units with their own local caches. These processing

units are usually known as Vertex or Fragment Processors,

depending on the elements they process. This work focuses

on the Fragment Processors (also known as Shader Cores)

as they are the most power-hungry processing units within

the Graphics Pipeline [5] (68.1% of the total GPU power

in our experiments) and presents a novel and energy-efficient

organization of their private Texture Caches, whose purpose

is to store recently used texture data.

As the number of processing elements increases in any sys-

tem, the complexity to efficiently interconnect them becomes

more challenging. When it comes to GPUs, the more Fragment

Processors the more replication in their private Texture Caches

because of the data locality and the increasing sharing degree1

which significantly reduces their effective capacity. Figure 1

shows the average replication degree in the Texture Caches

of the Fragment Processors for all the texture block requests

right after they have been serviced, broken down into how

many of the Texture Caches hold each block. For the sake of

visibility, only 4 Fragment Processors have been considered.

It can be seen that about 50% of the serviced blocks are fully

replicated in all the Texture Caches, whereas 15.4% of the

serviced blocks reside in exactly one of the caches (i.e., unique
blocks, as opposed to replicated blocks that are present in

more than one cache). Overall, it is observed that 84.6% of

the blocks are replicated up to some extent, which leads to a

significant waste of the Texture Caches’ effective capacity.

To tackle this storage waste and improve the overall access

1Texture block replication naturally appears as a result of the massive
parallelism in graphics workloads where scene objects are divided into
triangles, which are disaggregated into independent fragments –that share the
same texture– and are simultaneously shaded in multiple Fragment Processors.
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Fig. 1. Replication degree of the evaluated benchmarks (see Table II) broken
down into the number of Fragment Processors keeping the serviced block.

latency to textures, this paper proposes a novel NUCA organi-

zation for the private Texture Caches, called Dynamic Texture

Mapping-NUCA (DTM-NUCA), that exploits the peculiarities

of texture access patterns. With this organization we pursue

a 2-fold goal: 1) increase the effective overall capacity of

Texture Caches by reducing data replication; and 2) shorten

the overall access latency to textures. In the proposed NUCA

approach, a block missing in a local Texture Cache can be

serviced by a remote one at a latency cost smaller than a round

trip to the shared L2. This is accomplished by using a very

lightweight dynamic scheme to map sets of texture blocks to

particular Fragment Processors, and by implementing a 2D-

mesh interconnection network to drive all the traffic among

the different Texture Caches.

It is important to note that, unlike conventional private

caches on general-purpose multicore systems, Texture Caches

do not need a directory to track coherence since textures are

read-only data which do not suffer from read-modify-write

access patterns. However, DTM-NUCA uses a small Affinity

Table to track the ownership of texture blocks. For a given

texture block address, the Affinity Table returns the Fragment

Processor who owns the block at that particular moment.

This owner dynamically changes over time to better adapt

to the access pattern behavior with the aim of maximizing

local accesses over remote ones. Additionally, our approach

introduces a mechanism to allow for a small amount of

replication to favor local accesses where appropriate with a

minimal impact on performance despite the small capacity

loss from the allowed replication. DTM-NUCA is presented

in two flavors. One design option uses a centralized Affinity

Table aimed at maximizing the overall capacity of the Texture

Cache, at the expense of increasing the remote accesses. A

second design option relies on a distributed Affinity Table

which also aims to reduce the access latency to texture blocks

by further allowing local accesses.

The main contributions of this work are:

• We propose a novel NUCA organization targeting the

private Texture Caches of a GPU which is able to

interconnect many nodes with a very small ownership

mapping table to reduce overheads.

• We reduce the replication degree of Texture Caches which

results in an average 8× increase of the overall effective

capacity (for the case of 32 Fragment Processors).

• We reduce the pressure over the shared L2 by eliminating

41.8% of its accesses on average, significantly reducing

the access latency to textures.

• Overall, this results in an average speedup of 16.9% and

a reduction of the energy consumption of 7.6%.

The rest of the paper is organized as follows. Section

II provides some background on mobile GPUs and NUCA

organizations. Section III describes the proposed DTM-NUCA

whereas Section IV presents two practical hardware implemen-

tations. Section V explains the evaluation methodology and

Section VI reports the experimental results of our proposal.

Section VII summarizes the main conclusions of this work.

II. BACKGROUND AND RELATED WORK

A. The Graphics Pipeline

The graphics pipeline in a typical GPU consists of two parts:

the Geometry Pipeline, a front-end that transforms the vertices

of the input primitives (commonly triangles) from the local

coordinates to the perspective view coordinates; and the Raster

Pipeline, a back-end that assigns color to each screen space

pixel covered by these primitives, applies textures, resolves

visibility through a depth test and writes colors to the frame

buffer in main memory.

There are two main rendering modes: Immediate-Mode

Rendering (IMR) and Tile-Based Rendering (TBR). In IMR,

each triangle transformed in the Geometry Pipeline is im-

mediately sent down the Raster Pipeline for further pixel

processing. Graphical objects that are overlapped by others

generate a lot of pixels that are not visible in the final scene.

Part of them are culled during a visibility stage like the Z-test,

but many of them are not, which produces a large amount

of useless work (a problem known as overdraw). In IMR,

the problem is even worse because the colors of those pixels

are not only computed but also written multiple times into

memory, which increases memory traffic and wastes energy.

In contrast, TBR completely avoids this useless memory traffic

by splitting the screen into equally-sized small square regions

called tiles, and processing them one at a time. Since each tile

is small enough so that all its pixels may be stored in local

on-chip memory, each pixel color is not transferred to main

memory until the whole tile is rendered, hence, each pixel

is written only once. Overall, TBR reduces off-chip memory

accesses and is more energy efficient which make it more

suitable for mobile GPUs.

B. Tile-Based Rendering (TBR)

Figure 2 depicts the pipeline of a TBR architecture. The

first stage corresponds to the Vertex Fetcher which loads the

vertices that compose the scene from main memory. A private

on-chip Vertex Cache, connected to the shared L2, is used

to speed up the process. A vertex is defined by a set of

attributes, including position, color, normal vector and texture

coordinates. Vertices are then sent to the Vertex Processors

which apply a vertex shader, a user-defined program to

transform them from model-space coordinates to screen-space

coordinates. The transformed vertices are sent to the Primitive

Assembly stage where they are appropriately grouped to form
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Fig. 2. Overview of the graphics pipeline of a TBR GPU, also adding a Hidden Surface Removal (HSR) phase.

primitives (typically triangles). These primitives are clipped

and culled, to discard back-facing ones and those falling

outside the view volume, and passed over to the Tiling Engine.
The Tiling Engine stores the primitives and their attributes

into the so-called Parameter Buffer, a big structure held in

main memory. The Polygon List Builder identifies the screen

tiles overlapped by each primitive to generate, for each tile,

a list of overlapped primitives. These lists are stored in the

Parameter Buffer as well. Once all the geometry has been

processed and stored in the Parameter Buffer, the Tiling Engine

starts scheduling the screen tiles in sequence. For each tile, its

primitives are fetched from the Parameter Buffer, cached in the

L2 and Tile Cache, and passed over to the Raster Pipeline.
In the Rasterizer, each primitive is discretized into fragments

by interpolating the attributes of its vertices. A fragment is the

set of attributes associated with a pixel in the screen. Frag-

ments are checked for visibility in the Early Z-Test stage based

on depth information stored in a tile-sized on-chip Z-Buffer.

Visible fragments are processed in the Fragment Processors

by executing a fragment shader, another user-defined program

that applies a shading and a lighting model to produce its final

color. Fragments are processed in groups of 2x2 called quads
to facilitate texture filtering and computation of gradients.

The shading process accesses textures through a private on-

chip Texture Cache attached to each Fragment Processor to

reduce access latency and save DRAM bandwidth. Finally,

output colors are processed in the Blending Unit, which also

manages translucent pixels, using a tile-sized on-chip Color

Buffer which is eventually flushed into DRAM.

C. Tile-Based Deferred Rendering (TBDR)
TBDR is an evolution of TBR in which overdraw is totally

eliminated. TBDR adds a Hidden Surface Removal (HSR)

phase at the beginning of the Raster Pipeline to eliminate

occluded fragments and avoid their costly rendering. While

working on a given tile, the HSR phase processes the primi-

tives of the next tile to generate its Z-Buffer beforehand, thus

completely eliminating any overdraw that would appear by

otherwise failed Z-Tests. To that end, a Rasterizer and an extra

Early-Z Test unit with its own Z-Buffer are used.

D. Background and Related Work on NUCA Organizations
A conventional NUCA cache is characterized by four poli-

cies that determine its behavior: 1) a bank placement policy to

decide where to place an incoming block from a set of possible

banks; 2) a bank search policy to locate the block within the

set of banks in which can be placed, or raise a miss if not

found; 3) a bank replacement policy that determines what to

do with an evicted block; and 4) a bank migration policy to

determine where to move a frequently accessed block.

The placement policy is crucial as it determines the op-

erational behavior and complexity of the NUCA design. The

simplest approach, S-NUCA [6], uses a static mapping scheme

in which the cache’s bank/slice is solely determined by the

memory address (using a fixed function that assigns memory

addresses to a particular bank/slice; e.g., using the lower bits

of the block’s address). A static mapping does not incur

storage overhead, however, each block is always assigned

to the same bank, regardless of whether the data is more

frequently accessed by other cores. Alternatively, D-NUCA [6]

allows for a higher placement flexibility since a block can be

dynamically migrated into any of the bank sets at the expense

of a costly locating overhead (each bank set must be searched

either through a centralized tag store or by broadcasting the

tags to all the banks in the set).

There are more complex schemes like R-NUCA [7] that

applies a different placement policy depending on each access

class (i.e., to private or to shared data) and performs a

rotational interleaving within a cluster of cores. Other works

[8]–[12] allow for different placement flexibility. In [13] a

NUCA organization for CMPs is presented, which reduces the

access latency by using a cost-effective function that places

the data closer to their owners. In [14] the same mechanism

is improved by allowing some victims and replicas. In [15]

replicas and victims are also leveraged to increase data locality

by using an adaptive method based on the cache’s bank/slice

pressure. In [16] a NUCA with a dynamic partitioning scheme

at the shared level is presented, which dynamically controls

how much available capacity a cache’s slice has. NuRAPID

[17] decouples data placement from tag placement, and places

frequently-accessed data into the fastest slices to reduce the

data migration rate. Despite the high number of proposed

NUCA schemes, only S-NUCA is implemented in commercial

processors and it continues to be an active research topic [18].

Our proposed DTM-NUCA differs from the aforementioned

works in that it is the first NUCA organization targeting the

private L1 Texture Caches of GPUs (which have the peculiarity

146



b0 b1 b2 b3

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13a14a15

p0 p1 p2 p3 p4 p5 p6 p7

Fig. 3. Grouping scheme of texture blocks into buckets. This simple example
shows an address space with 16 blocks at addresses (a0-a15) that belong to
8 pages (p0-p7) which are grouped (modulo 4) into 4 buckets (b0-b3).

that store read-only data, thus, not involving a coherence

protocol) and primarily focuses on reducing block replication

with a much simpler mapping scheme based on the temporary

ownership of texture blocks.

III. A NUCA ORGANIZATION FOR TEXTURE CACHES

The main goal of the proposed DTM-NUCA organization

is to increase the overall effective cache size of the Fragment

Processors by reducing the replication degree, so both the

number of L2 accesses and overall access latency are reduced.

To do so, we organize the private Texture Caches as a NUCA

where each Fragment Processor has a temporary exclusive

access to a specific range of texture blocks. Another important

feature of DTM-NUCA is that it uses a dynamic mapping

scheme based on how Fragment Processors access textures.

A. Bucket-based Ownership of Texture Blocks

Our approach uses a dynamic mapping scheme, similarly

to a conventional D-NUCA. However, instead of using a big

directory with the size of the shared (L2/L3) level, we use a

small buffer, called Affinity Table, to track the ownership of

blocks. Storing the bank owner for each block in memory

would result in a prohibitive Affinity Table that could not

be kept on-chip. To reduce the storage overhead, instead of

tracking the bank owner for each memory block, our approach

groups a number of contiguous blocks into a smaller number

of buckets so that tracking the ownership of these buckets

significantly reduces the storage needs of the Affinity Table.

Grouping all blocks into n buckets could use a simple

modulo function of the block’s address (a) such as “address a
belongs to bucket b, where b = a mod n”. However, we found

that keeping a small number of adjacent blocks within the

same bucket tends to favor locality. Therefore, our grouping

function considers pages of m consecutive blocks instead of

individual blocks (the page address p is simply derived from

the block address a as: p = a / m). Therefore, the grouping

of all pages into n buckets follows a similar modulo function

“page p belongs to bucket b, where b = p mod n”. Figure 3

illustrates this grouping of memory blocks into buckets.

As depicted in Figure 4, the Affinity Table is implemented

as a small buffer with one entry per bucket, containing one

saturating counter per Fragment Processor plus a field to

identify the current owner. In our evaluation we have used

4-bit saturating counters, and 5 bits to identify the owner (as

our baseline setting has 32 Fragment Processors). We have

experimentally determined that 32 buckets suffice to achieve a

good storage and performance trade-off. This 32-entry Affinity

FP0 FP1 FP2 FP3
current
owner

offsetblock address
bucket

requested texture
address

current
owner

Fig. 4. Affinity Table overview for 4 Fragment Processors and 8 buckets.

Table results in a total size of 4256 bits (or 0.51 KiB). It

works as follows. When a request from a Fragment Processor

arrives in the Affinity Table, the bucket identifier is used to

index it and the current owner for that bucket is retrieved (see

Figure 4). Additionally, the saturating counter of the requester

Fragment Processor is incremented.

B. Dynamic Ownership Tracking

Fragment Processors access to their local Texture Caches

to perform the texturing process. However, as the scene

changes from one frame to the next (e.g., because of graphics

objects movements and/or camera movements) each Fragment

Processor accesses different texture blocks. Therefore, a static

mapping leads to performance degradation because of the

huge amount of remote accesses. To mitigate this issue, we

allow the ownership of texture blocks to dynamically change.

To make this feasible, we define a coarse-grained ownership

assignment policy based on the use of buckets. To determine

a bucket’s owner (i.e., which Fragment Processor a bucket

belongs to), we account the number of accesses of each

Fragment Processor to each bucket. Every time a Fragment

Processor accesses a texture block, its bucket is calculated

and its corresponding counter is incremented. These counters

inform what Fragment Processor has accessed each bucket

more times so far, and hence, it is the best owner for it.

Initially, all the counters are set to zero and the first Frag-

ment Processor that accesses a bucket acquires the ownership.

Whenever a counter saturates, a reset event happens consisting

of halving (a 1-bit right-shift operation) all the counters, in-

cluding the one that is saturated. Then, the ownership changes

to the processor whose counter is saturated (the owner could

remain the same). To avoid ownership ping-ponging effects,

because two or more Fragment Processors perform a similar

number of accesses to a bucket, the saturating counter must be

greater than the one from the current owner plus a percentage.

Even though DTM-NUCA aims to have a unique owner

for each bucket, due to the high sharing degree that some

particular texture blocks exhibit among Fragment Processors,

it could be beneficial if such blocks could be served by more

than one owner. For such cases, our approach allows for

a certain amount of replication to favor local accesses and

improve performance. Due to the mentioned affinity changes,

there is a point in which a texture block can be replicated in

both an old and a new owner. During this time, the block from

the old owner can still be utilized since local Texture Caches

are probed first, and the block is served locally in case of

a hit, regardless of a recent ownership change. However, in
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order to consolidate the new owner and avoid replication for

long periods of time, the LRU counters are not updated when

the local cache of a just-exchanged owner serves the block.

This way, the old owner will eventually evict the block from

its Texture Cache in a natural way.
A final related issue has to do with the inertia for changing

the ownership due to the use of saturating counters. If a

Fragment Processor frequently accesses a particular bucket,

and later another Fragment Processor starts doing the same,

it will pass some time until the second Fragment Processor

gets the ownership of the bucket. This inertia exacerbates

with bigger counters. There are two ways of mitigating it:

1) reduce the size of the saturating counters, but this would

also reduce the accuracy of the owner assignment; 2) make

a reset of all the counters and recompute the ownership for

the buckets every certain amount of time, called epoch. An

epoch is measured in terms of texture accesses, so every

time the total amount of accesses exceeds the epoch length,

a counter reset event takes place. Determining an appropriate

epoch length is important since long epochs will make the

inertia problem remain, whereas short epochs will lead to

lots of affinity changes. In this work, we have determined the

epoch duration experimentally to find a good trade-off between

remote accesses and affinity changes. Different epoch lengths

were evaluated (100, 1K, 10K, 20K, 50K and 100K texture

accesses) and the best trade-off was obtained for an epoch

length of 20K texture accesses.

IV. DTM-NUCA DESIGN OPTIONS

The Affinity Table can be physically implemented in two al-

ternative options, either as a centralized structure or distributed

over the different nodes (Fragment Processors).

A. Centralized Affinity Table
In the centralized approach, all the nodes access the same

table. The advantage is that all the nodes share up-to-date

information regarding the ownership of each bucket. However,

a centralized approach 1) leads to contention when multiple

nodes try to access it concurrently, 2) imposes serialization

when updating the ownership information, and 3) incur extra

latency and energy per access for the nodes that are further

away from the Affinity Table. All of that makes the centralized

scheme a potential bottleneck.
In the baseline architecture each Fragment Processor can

only access its private Texture Cache, which is connected by

a common bus to the shared L2 cache. In order to directly

interconnect Fragment Processors to each other and allow

accessing to remote Texture Caches, the proposed DTM-

NUCA uses a 2D-mesh network composed of routers that

redirects the requests to the destination Fragment Processor

using an X-Y routing mechanism. Figure 5-(a) shows this

interconnection network. The latency of routing a request is

one cycle.

B. Distributed Affinity Table
As mentioned above, a centralized Affinity Table imple-

mented as another node in the interconnection network leads
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Fig. 5. Interconnection networks for 9 nodes (where each node is a Fragment
Processor plus a Texture Cache). (a) Centralized scheme with the Affinity
Table in the center. (b) Distributed scheme with a per-node Affinity Table.

to contention and higher access latencies. To avoid that, we

propose a distributed approach for the Affinity Table, as

depicted in Figure 5-(b), in which each node has its own local

version which is later synchronized with the rest, at the very

large granularity of epochs (defined as 20K texture accesses,

as stated in Section III-B) by using a simple broadcasting

protocol which works as follows.

Initially, all Fragment Processors own all the buckets since

there has been no communication among them yet. At every

epoch, the Affinity Tables get synchronized by broadcasting

all the owned buckets over the interconnection network. It

is important to note that a synchronization event does not

impose any stall in the operation of the Fragment Processors.

The broadcasting process is made in the background and each

Fragment Processor updates its local Affinity Table on-the-

fly, as packets arrive, by updating the ownership of each

bucket with the most up-to-date owner. In the special case

of two counters having exactly the same value, the ownership

is assigned to the node with the lowest identifier. Therefore,

Fragment Processors continue working without waiting until

the synchronization is completed. A minor side effect of this

lazy synchronization approach is that, right at the beginning

of an epoch, the ownership information is not fully updated

but this has a negligible effect in comparison with the epoch

length. It will simply happen that a Fragment Processor will

retrieve the same owner as right before the epoch change. In

any case, it is guaranteed that the ownership information will

be fully propagated to all Fragment Processors after a delay.

V. EVALUATION METHODOLOGY

A. Simulator infrastructure

In order to validate and evaluate the performance of our

proposal, we have used the Teapot framework [19], which in-

cludes a cycle-accurate simulator that models a modern mobile

GPU based on the Mali Bifrost architecture. Teapot also mod-

els a TBDR architecture which constitutes our baseline GPU

configuration. To model the memory subsystem, Teapot uses

DRAMSim2 [20], a cycle-accurate simulator for modeling

DRAM and the memory controllers. The GPU power and area

is modeled by integrating McPAT [21], a tool that calculates

the power, area and timing of each component within the

architecture. To obtain the simulator traces, a modified version
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TABLE I
SIMULATION PARAMETERS.

Baseline GPU Parameters
Frequency 600 MHz
Voltage 1.0 V
Technology node 22 nm
Screen resolution 2160x1080
Tile size 32x32 pixels

Main Memory
Frequency 400 MHz
Voltage 1.5 V
Technology node 32 nm
Latency 50-100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Size 1 GiB, 8 banks

Queues
Vertex (Input & Output) 16 entries, 136 bytes/entry
Triangle & Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry
Color 64 entries, 24 bytes/entry

Caches
Block size 64 bytes (all caches)
Vertex Caches (× # VPs) 4 KiB, 1-cycle lat, 2-way assoc
Texture Caches (× # FPs) 16 KiB, 2-cycle lat, 4-way assoc
Tile Cache 32 KiB, 2-cycle lat, 2-way assoc
L2 Cache 1 MiB, 8 banks, 18-cycle lat, 8-way assoc
Color Buffer 1 KiB, 1-cycle latency
Depth Buffer 1 KiB, 1-cycle latency

Non-programmable stages
Primitive assembly 1 vertex/cycle
Rasterizer 1 attribute/cycle
Early Z-Test 8 in-flight quad-fragments

Programmable stages
Vertex processing stage 4 Vertex Processors (VPs)
Fragment processing stage 32 Fragment Processors (FPs)

DTM-NUCA parameters
Number of buckets 32 buckets
Access counters size 4 bits
Page size 8 blocks
Affinity Table size 0.51 KiB
Routing latency 1 cycle/hop
Epoch length 20K texture accesses

of GAPID [22] has been used, a Graphics API Debugger de-

veloped by Google that, among other things, extracts OpenGL

traces from a mobile device. GAPID allows to capture an

OpenGL trace while running a game and then replay the trace

over a modified version of the Gallium Softpipe renderer [23]

(from the Mesa 3D project) that gives us the final trace to be

used with Teapot. Table I shows the simulation parameters and

the baseline GPU configuration used to evaluate the proposed

DTM-NUCA organization. Regarding the area overhead, the

centralized Affinity Table occupies 0.02% of the total GPU

area, while the distributed version occupies 0.54%.

B. Benchmarks

To evaluate DTM-NUCA we have chosen a set of com-

mercial and very popular games (based on their number

of downloads) available from the Google Play Store. The

evaluated scenes have been selected to get a representative

and realistic use-case scenario for each game. Table II shows

some characteristics of each working set.

VI. EXPERIMENTAL RESULTS

In addition to the baseline configuration (consisting of

a private Texture Cache on each Fragment Processor), we

have evaluated three NUCA architectures. The first one is

a conventional D-NUCA that instead of replicating the data

between caches and having a directory with a list of sharers,

it completely avoids the replication by allowing only a single

sharer per directory entry. Note that such a scheme requires a

directory whose size depends on the L2 cache size. Against

this implementation, we compare our two proposals: DTM-

NUCA with a centralized Affinity Table, and DTM-NUCA

with a distributed Affinity Table (labeled as DTM-NUCA and

DTM-NUCA-Dist, respectively). In all cases, we consider 32

Fragment Processors and 32 Texture Caches.

Since the aim of our proposal is to increase the effective

capacity of the Texture Caches, our first experiment measures

the amount of L2 accesses that have been reduced due to this

aggregated capacity. Figure 6 shows the amount of L2 accesses

normalized to the baseline configuration for the three NUCA

architectures. As expected, D-NUCA produces the lowest

number of accesses to L2 (46.2% average reduction) because it

completely eliminates replication and maximizes the effective

capacity of the Texture Cache, so we can consider it as our

upper bound. On the other side, DTM-NUCA reaches a 41.8%

reduction, close to the optimum capacity, while DTM-NUCA-

Dist achieves a more modest reduction of 33.3%. This is due

to the delayed synchronization between Affinity Tables, which

leads to some accuracy loss since until the synchronization

takes place, some Affinity Tables may differ and assign the

same bucket to different Fragment Processors.

Figure 7 further illustrates the benefits of DTM-NUCA by

comparing its total amount of L2 accesses against a baseline

Texture Cache ranging from 16KiB to 512KiB. As shown,

a 16KiB DTM-NUCA (red line) has almost the same L2

accesses as the baseline with 8× more capacity (128KiB),

while a 16KiB DTM-NUCA-Dist (yellow line) achieves the

same L2 accesses as a baseline 4× bigger (64KiB).
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Fig. 6. Normalized L2 accesses for the different NUCA designs with respect
to the baseline.
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TABLE II
EVALUATED BENCHMARKS FROM THE GOOGLE PLAY STORE.

Benchmark Alias Description Downloads (Mill.)
Vertex shader

instr. (Mill.)
Fragment shader

instr. (Mill.)
Execution Time

(Mill. cycles)

Beach Buggy Racing bbr Racing 100-500 96 2052 749
Derby Destruction Simulator dds Racing & Battle royale 10-50 165 4993 1140
Gravity gra Action 1-5 74 355 144
Hellrider hrd Racing 1-5 112 3534 868
Hot Wheels hwl Racing 50-100 431 2073 950
Maze 3D maz Labyrinth 10-50 131 4420 1112
Sniper 3D s3d Shooter 100-500 144 1600 684
Sonic Dash snd Adventure arcade 100-500 87 4154 1219

16 KiB 32 KiB 64 KiB 128 KiB 256 KiB 512 KiB
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Fig. 7. Normalized L2 accesses of DTM-NUCA with respect to the baseline
setting with varying sizes.
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Fig. 8. Local and remote accesses to the Texture Caches for the evaluated
NUCA organizations.

However, our aim is to also increase the local accesses as

a measure to reduce the total access latency. This is done by

allowing a small degree of replication on the local caches.

The downside is a reduction of the overall capacity. Figure 8

shows the accesses to textures broken down into local and

remote accesses, which in turn are broken down into L2 hits

and misses. As it can be seen, DTM-NUCA and DTM-NUCA-

Dist produce slightly more L2 misses than D-NUCA (as

discussed before) but have an impressive number of local hits

(an average of 66.3% and 73.9%, respectively), much more

than the 27.5% achieved by D-NUCA, which shows a large

amount of remote hits. This is because the replication-free

scheme of D-NUCA completely neglects whether an access

is made to the local cache or to a remote one. Moreover, D-

NUCA lacks a data migration mechanism to maximize local

accesses on-the-fly, unlike DTM-NUCA and DTM-NUCA-

Dist, thanks to the Affinity Table. Since DTM-NUCA-Dist
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Fig. 9. Speedup of NUCA organizations with respect to the baseline.
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Fig. 10. Normalized energy for the evaluated NUCA organizations.

allows more replication due to the synchronization delay of the

Affinity Tables, it gets more local accesses than the centralized

DTM-NUCA, in detriment to the overall effective capacity.

This demonstrates the goodness of the dynamic assignment of

buckets performed with the Affinity Table.

The performance of DTM-NUCA is reported in Figure 9.

We can observe performance improvements of up to 30.2%

and 30.4% in the case of bbr using DTM-NUCA and DTM-

NUCA-Dist respectively. On average, DTM-NUCA and DTM-

NUCA-Dist get a speedup of 16.9% and 15.7%, respectively.

However, D-NUCA suffers an average slowdown of 22% be-

cause of its poor migration policy which only allows migration

whenever a block is evicted from the owner cache. This causes

a lot of remote accesses that increase the access latency.

Figure 10 shows the energy consumption of the evaluated

architectures broken down into memory and GPU energy. Note

that the main sources of energy savings are the dynamic energy

because of the speedup, and the reduction of accesses to L2.
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Fig. 11. Scalability of DTM-NUCA for different number of nodes.

The best results are obtained in bbr and maz for the case

of DTM-NUCA-Dist, achieving reductions of up to 11.1%

and 10.3% respectively. On average, DTM-NUCA and DTM-

NUCA-Dist obtain respective energy savings of 6.9% and

7.6%. For the same reason as for speedup, D-NUCA is worse

than the baseline, increasing the energy a 4% on average.

Finally, we focus on the scalability of the proposed ap-

proaches. Figure 11 shows the speedup of both flavors ranging

from 4 to 32 Fragment Processors. As it can be observed,

with only 4 Fragment Processors DTM-NUCA gets an average

speedup of 10.2% whereas DTM-NUCA-Dist achieves 7.0%.

As the number of nodes grows, the speedup (normalized to

the baseline with the same number of nodes) increases, but the

increment lowers on each step. Although DTM-NUCA gets the

best performance, DTM-NUCA-Dist tends to converge with

DTM-NUCA as the number of cores increases.

VII. CONCLUSIONS

This paper proposes DTM-NUCA, a dynamically-mapped

NUCA organization targeting the private Texture Caches of

mobile GPUs with the goal of increasing their overall effective

capacity by reducing block replication. Unlike traditional

NUCA organizations, this scheme incorporates a very small

table (Affinity Table) whose size is independent of the L2

size. Some replicas are deliberately allowed in order to im-

prove the local access to Texture Caches without penalizing

performance. DTM-NUCA presents two variants regarding

the implementation of the Affinity Table: a centralized and

a distributed design. Our proposal is able to reduce the L2

pressure by 41.8% on average. Local accesses are maximized,

reaching 73.8% on average. Overall, these improvements lead

to an average speedup of 16.9% and energy savings of 7.6%

over a traditional private cache configuration.
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