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Abstract—The most common task of GPUs is to render images in real time. When rendering a 3D scene, a key step is to determine

which parts of every object are visible in the final image. There are different approaches to solve the visibility problem, the Z-Test being

the most common. A main factor that significantly penalizes the energy efficiency of a GPU, especially in the mobile arena, is the so-

called overdraw, which happens when a portion of an object is shaded and rendered but finally occluded by another object. This

useless work results in a waste of energy; however, a conventional Z-Test only avoids a fraction of it. In this article we present a novel

microarchitectural technique, the Omega-Test, to drastically reduce the overdraw on a Tile-Based Rendering (TBR) architecture.

Graphics applications have a great degree of inter-frame coherence, which makes the output of a frame very similar to the previous

one. The proposed approach leverages the frame-to-frame coherence by using the resulting information of the Z-Test for a tile (a buffer

containing all the calculated pixel depths for a tile), which is discarded by nowadays GPUs, to predict the visibility of the same tile in the

next frame. As a result, the Omega-Test early identifies occluded parts of the scene and avoids the rendering of non-visible surfaces

eliminating costly computations and off-chip memory accesses. Our experimental evaluation shows average EDP savings in the overall

GPU/Memory system of 26.4 percent and an average speedup of 16.3 percent for the evaluated benchmarks.

Index Terms—Graphics processors, mobile processors, portable devices, hardware architecture, processor architecture, energy-aware

systems, low-power design, hidden line/surface removal, visibility determination
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1 INTRODUCTION

MOBILE devices, such as smartphones, tablets or smart-
watches, have undergone a major evolution over the

recent years. Users increasingly demand more complex
applications on these devices, which requires higher perfor-
mance at similar energy consumption. As a consequence,
the energy efficiency is one of the most important aspects in
mobile devices [1], [2], especially in graphics applications
such as 3D games, for which the visual quality, richer
graphics details, higher screen resolutions, and smooth
movements are crucial for the best user experience.

Graphics workloads are generally executed in the GPU,
which draws a frame of a scene by executing a set of config-
uration commands followed by a set of draw commands.
When executing a draw command, the GPU first reads a set
of vertices that model the geometry in a 3D space and
applies some transformations to combine them into primi-
tives (commonly triangles) projected on the screen space.

Primitives are then discretized by the Rasterizer into ele-
ments known as fragments, for which a color in the screen is
computed by using user-defined programs (a fragment
shader) that, among other operations, apply a shading and
a lighting model and map textures.

Previous studies [3], [4] identify the GPU as one of the
most energy-consuming components on current SoCs due
to the large number of computations and memory accesses
needed to render a scene. Fig. 1 shows the power break-
down for a conventional Tile-Based Rendering (TBR) archi-
tecture, widely adopted in mobile GPUs [5]. In particular,
both the accesses to main memory and the activity of the
Fragment Processors are by far the two major contributors,
responsible for 53 and 42 percent, respectively, of the overall
GPU power dissipation whereas the Vertex Processors incur
a very minor energy consumption (2 percent) [6]. This is not
surprising since the fragments processed in a scene by the
Fragment Processors commonly outnumber the amount of
primitives by two orders of magnitude (our experimental
results show a ratio of 125:1 for the evaluated benchmarks).

Given the huge number of fragments to be processed in
every frame and the high computational cost of rendering a
single fragment, it is crucial not to waste precious resources
on shading fragments that will be later occluded by other
primitives. For that reason, the visibility determination is a
fundamental task of the graphics pipeline in order to detect
visible and occluded surfaces [7]. In particular, fragments
that appear behind others (for a given camera viewpoint)
are not visible in the final scene. The solution to the visibility
problem is not unique and multiple approaches can be
found in the literature [8], [9], [10] being the so-called Depth
Test (or Z-Test) [11], which performs a visibility test at the
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pixel granularity, the most widely implemented technique
in contemporary GPUs.

While the Depth Test ensures the correct visibility deter-
mination regardless of the order in which the scene is proc-
essed, it is often inefficient in the sense that each pixel in the
final screenmay be rendered multiple times. This problem is
usually referred to as overdraw, which is very common in
games with complex or poorly optimized scenes. Overdraw
occurs whenmore than one opaque fragment is drawn in the
same pixel position on the screen, as only the one closest to
the camera viewpoint is visible. To be more precise, in this
work we define overdraw as the fraction of fragments that
are processed by the Fragment Processors and are finally
occluded over the total amount of processed fragments.
Overdraw is undesirable, as it represents useless activity,
and an early and accurate visibility determination can signif-
icantly improve the performance and reduce the energy con-
sumption. Ideally, an optimal system would draw a single
opaque fragment per pixel (or screen position).

However, GPUs heavily suffer from overdraw which
directly depends on the order in which fragments are proc-
essed. In a worst-case scenario, in which primitives arrive in
a back-to-front order, a conventional Depth Test could not
avoid the rendering of the occluded fragments. To provide
an insight of the magnitude of this problem, Fig. 2 shows the
amount of overdraw for a set of modern games in a TBR
architecture (Section 5 will detail the evaluation methodol-
ogy). It can be observed that an average of 38 percent of the
shaded fragments are eventually occluded, with some games
such as Gravity (gra), Sniper3D (s3d) or Hot Wheels (hwl)
reaching an overdraw factor around or over 50 percent.

In this paper we propose the V-Test,1 a novel micro-
architectural technique that attacks overdraw and drasti-
cally reduces the amount of useless work performed by the
Fragment Processors. Our approach relies on exploiting the
frame-to-frame coherence (i.e., similarity between consecu-
tive frames) [12], [13] by leveraging information from the Z
values of the previous frame to speculatively detect which
fragments will be occluded, instead of using only informa-
tion from the current frame’s Z-Buffer. Our technique does
not introduce any error in the final rendered image since
fragments that are wrongly identified as occluded are
detected and eventually rasterized.

The main contributions of this work are the following:

� We propose a mechanism aimed at effectively reduc-
ing the overdraw factor within a scene, decreasing
the number of fragments processed as well as the
costly memory accesses to textures that they would
require, hence improving the energy efficiency of the
GPU while decreasing the execution time.

� We demonstrate that raw results of the Z-Buffer after
rendering a frame are useful for the visibility deter-
mination of the next frame even after applying a
coarsening factor of up to 16� 16 to the data.

� We show how to integrate our technique in a TBR
graphics pipeline. Experimental results, for a com-
mercial set of applications, show that the V-Test
achieves an average speedup of 16.3 percent and
energy-delay (EDP) savings of 26.4 percent for the
global GPU/Memory system.

The rest of the paper is organized as follows. Section 2
provides some background on the graphics pipeline of
mobile GPUs, how the visibility problem is commonly
solved, and reviews some other related works. Sections 3
and 4 describe the proposed V-Test and its implementation
details. Section 5 describes our evaluation methodology
whereas Section 6 quantifies and analyzes the achieved per-
formance and the energy efficiency and, finally, Section 7
summarizes the main conclusions of the work.

2 BACKGROUND AND RELATED WORK

2.1 Tile-Based Rendering Architectures

The architecture of modern GPUs can be categorized into
two main families depending on how they process a scene:
a) Immediate Mode Rendering (IMR), also known as full-
framebuffer rendering; or b) Tile Based Rendering (TBR).
While IMR processes and renders all the primitives on a
per-frame basis, and it is the common design choice for
high-end GPUs, TBR is aimed at improving the energy effi-
ciency, and thus, it is commonly implemented in mobile
GPUs. The key feature of TBR is that the screen area is
divided in small regions of a fixed size called tiles. This par-
titioning is done in a way that allows the tiles to be individ-
ually rendered and benefits from the use of small and fast
on-chip buffers for storing depth and output color values
for a given tile. This dramatically reduces the amount of
accesses to the main memory and the overall energy con-
sumption of the system. Since our proposal targets mobile

Fig. 1. Power breakdown for the baseline GPU used in our evaluation.

Fig. 2. Processed fragments broken down into visible and occluded ones
for the evaluated benchmarks. Occluded fragments represent the overall
amount of overdraw, and hence, a waste of resources.

1. Named after the Z-Test but making an analogy with the Greek
alphabet where V is the last letter, as Z is in the Latin alphabet.

4376 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 12, DECEMBER 2022



GPUs to further improve their energy efficiency, TBR is the
baseline architecture we have chosen for this work.

Fig. 3 shows the graphics pipeline of a TBR architecture,
which is composed of two fundamental phases: the Geome-
try Pipeline and the Raster Pipeline. It can be seen that both
phases are serialized, with the Tiling Engine acting as a
mediator in between. This serialization is mandatory since
the tile-based processing of TBR requires to process all the
geometry first to determine which primitives belong to each
tile. Only afterwards, the rasterization and rendering of the
fragments can be done on a per-tile basis.

The Geometry Pipeline starts with a memory access stage
to fetch the vertices of the scene. These vertices are trans-
formed by geometric operations and assembled into primi-
tives, typically triangles, which undergo a clipping process:
primitives that are outside of the visible part of the scene (i.e.,
the part that the camera captures in its volume of vision, also
known as frustum view) are removed and/or cut accordingly.
Additional steps such as backface culling can also be applied to
further reduce the number of primitives to be processed.
Next, the Tiling Engine sorts the primitives into tiles, i.e., each
tile contains a listwith all the primitives that totally or partially
fall inside the tile. These primitive lists (one per tile) are stored
inmainmemory and are the input data to the Raster Pipeline.

The Tiling Engine is in charge of scheduling the tiles to be
processed by the Raster Pipeline (also referred to as the Ras-
ter Unit). Note that multiple Raster Units can be used to pro-
cess different tiles in parallel. The processing of a tile consists
of several stages. First, the rasterizer tests the primitives at a
pixel granularity to determine the pixels covered by them. If
a pixel is covered by a primitive, the rasterizer interpolates
the value of the primitive’s attributes at the pixel’s position.

Fragments are then grouped into groups of 2x2 adjacent
fragments (a quad fragment) that are sent to the next stage
of the pipeline, the Early Z-Test, a stage right before the
Fragment Stage to avoid the shading of already-known
occluded fragments. Recall that the Z-Buffer stores the
depths of all the fragments processed so far. To determine if
the current fragment is occluded, its depth is compared
with that stored in the same position of the Z-Buffer. The
resulting quad fragments are sent to the Fragment Stage,
which contains the Fragment Processors. A Fragment Pro-
cessor executes a shader program to compute the colors of
each quad fragment which are stored in the Color Buffer.
Finally, a Blending Unit allows for transparency effects by
mixing the resulting colors with those already present in
same Color Buffer position.

2.2 Background on Visibility Determination

As cited earlier, the most common approach to determine
the visibility is the Depth Test, performed at fragment

granularity. Modern GPUs typically implement this test in a
stage called Early Z-Test by using a Z-Buffer that stores a
value for each position of the visible area. Each of these val-
ues is usually the depth of the nearest fragment of that posi-
tion. Thus, when a fragment is going to be processed, this
stage checks whether it is closer to the camera than the frag-
ment already present at the same position by comparing
both depths. If the current fragment is farther (deeper) than
the existing one in the Z-Buffer, it is discarded, avoiding
costly shading and texturing. Otherwise, the current
fragment’s depth is kept in the Z-Buffer (overwriting the
previous depth) which means that the current fragment is
the closest one to the camera so far.

The Z-Buffer for a tile is built on the fly. Therefore, the
Early Z-Test stage can effectively discard fragments when
they arrive in a front-to-back order, i.e., later fragments that
fall behind a closer one are discarded. However, the Early
Z-Test is totally ineffective to avoid the shading of occluded
fragments if they arrive in a back-to-front order. In any case,
the major advantage of an Early Z-Test is that it always
leads to the correct final image regardless of the order in
which fragments arrived to the Fragment Processors. Its
main drawback, on the other hand, is that its effectiveness is
far from optimal since it leaves a significant amount of
remaining overdraw, as it was shown in Fig. 2 (average
overdraw of 38 percent).

2.3 Related Work on Visibility Determination

Deferred Rendering. As opposed to traditional forward ren-
dering schemes, in which the visibility determination and
shading are performed on the fly as a whole, Deferred Ren-
dering (also known as Deferred Shading) consists of deter-
mining the visibility of the whole scene before shading any
fragment. Z-Prepass [14] can be seen as a basic Deferred
Rendering approach since it decouples the geometry proc-
essing from the shading. In particular, Z-Prepass is a soft-
ware technique able to eliminate overdraw caused by
hidden surfaces that consists of two rendering passes at the
application level. First, the entire geometry of the scene is
calculated and rasterized with a null fragment shader, so
that only the depth values are calculated and stored in the
Z-Buffer. In the second pass, the depth values are in their
final state, which allows the Early Z-Test to eliminate the
overdraw of opaque surfaces.

G-Buffers [15], [16] are also used by applications (in the
form of shader programs) to decouple the geometry proc-
essing from the shading, in addition to add more flexibility
for doing lighting and material computations, as the G-Buf-
fers can be used by the programmer for whatever needed.

A recent hardware-based Deferred Rendering approach
is implemented in the PowerVR architecture [17] by adding

Fig. 3. Overview of the graphics pipeline for a TBR architecture, depicting the main stages that graphics workloads pass through.
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a Hidden Surface Removal (HSR) stage in the traditional
TBR pipeline that avoids performing two rendering passes
at the application level. Instead, HSR iterates over all the
fragments within a tile just calculating their position and
depth to build a complete Z-Buffer before the actual shad-
ing pass is performed. This utilization of a Deferred Render-
ing scheme in a TBR pipeline is known as Tile-Based
Deferred Rendering (TBDR). Recent academic work
explored different alternatives of TBDR [8]. The main draw-
back of the best performing alternative is that it rasterizes
all primitives twice, and so fragments are processed twice
as well: once for calculating the depths in the visibility
determination phase, and again for calculating the rest of
attributes to continue down the pipeline. This forces design-
ers to either increase the pressure over the existing hard-
ware (with the subsequent degradation of the execution
time and energy consumption) or to include significant
extra hardware to perform the extra computations of the
HSR stage (duplicated rasterizer, Early Z-Test, and Z-
Buffer) [6].

Contrarily, our proposal does not introduce timing over-
heads in the pipeline, and the added structures (V-Table, E-
Buffer, correction queues; see Section 3) are small, on-chip
buffers. As a reference comparison point, in [8] it is pro-
posed Visibility Rendering Order (VRO), a technique that
attacks overdraw by sorting objects in a front-to-back order,
where authors quantitatively show that VRO outperforms
TBDR. We have compared V-Test with VRO (see Section 6)
showing that our approach beats VRO.

Another difference between Deferred Rendering (DR)
and V-Test is that while the former requires the second pass
to be done over the whole visible geometry, V-Test is highly
more selective by only doing the correction phase (similar
to DR’s second pass) over a small amount of fragments
whose visibility is mispredicted. I.e., only in the worst-case
scenario, in which V-Test would fail all the visibility tests,
meaning that all the fragments have to be sent to the correc-
tion phase for shading, V-Test would totally mimic the
behavior of DR, since in the normal rendering phase (equiv-
alent to DR’s first pass) it would resolve the visibility of all
the fragments while in the correction phase (equivalent to
DR’s second pass) it would perform the shading. As we will
see in the Results Section, on average, only a small number
of fragments have to be corrected, therefore outperforming
a hardware-based DR such as TBDR.

HiZ Occlusion Culling. On the other hand, IMR GPUs suf-
fer from a high memory BW utilization since the frame’s Z-
Buffer is stored in DRAM. To overcome this, HiZ (Hierar-
chical Z) occlusion culling was proposed [9], [18], [19], [20],
[21] to coarsely cull primitives detected to be occluded in a
region of the screen. This is implemented before the Early
Z-Test (which operates at a fragment-level) and provides an
earlier coarse Depth Test at a primitive-level. Therefore,
HiZ culling avoids memory accesses to the frame’s Z-Buffer
by determining the visibility of primitive “chunks” rather
than fragments. For that, a coarse-grained version of the
frame’s Z-Buffer is built on the fly. This buffer is called Hier-
archical Z-Buffer and is computed in a per-region basis
(given that the frame’s Z-Buffer is subdivided into regions)
for which a pair of ðZmin, ZmaxÞ are calculated and stored.
Consequently, primitives are sorted into these regions to

perform the coarse occlusion culling test. This Hierarchical
Z-Buffer can be further subdivided to get a coarser Z-Buffer,
and hence the “hierarchical” term. The first implementation
of a HiZ culling technique was proposed in [9], [18] as a
software approach. This early proposal leveraged complex
structures like oct-trees in order to efficiently determine the
visibility of whole objects. Another HiZ implementation
was proposed in [19] which implements a full hierarchy. In
[20] a simpler HiZ was implemented with a single hierarchy
level. In any case, HiZ does not replace the Early Z-Test
stage. Whereas HiZ is mainly aimed at saving memory BW
in IMR GPUs by saving costly accesses to the frame’s Z-
Buffer (in DRAM), a fragment-level Early Z-Test is still
required to avoid the overdraw of occluded fragments. It is
important to note that a HiZ is built on a per-frame basis,
therefore it cannot eliminate as much overdraw if primitives
arrive in a back-to-front order. Contrarily, V-Test further
reduces overdraw by leveraging a speculative visibility
determination since the Z-Buffer of the previous frame is
used to predict the visibility of the current one.

Other Recent Works. More recent works leverage frame
coherence to speculatively determine visibility. Visibility
Rendering Order (VRO) [8] is a technique that sorts objects
in a 3D scene based on the front-to-back order from the pre-
ceding frame. Another recent technique is Early Visibility
Resolution (EVR) [10] which uses the farthest point for each
tile in a frame to predict occluded primitives in the next
frame, with the aim of processing those presumably
occluded primitives as the final ones. Both VRO and EVR
use information from the preceding frame to re-sort the
order in which objects/primitives are processed in the cur-
rent frame to increase the effectiveness of the Early Depth
Test. VRO solves the visibility problem at the object level
while EVR solves it at the primitive level. Differently, our
V-Test operates at the much finer granularity of fragments,
being able to overcome not only inter-object overdraw but
also intra-object overdraw, therefore, capable of outper-
forming VRO as shown in Fig. 12.

3 THE V-TEST APPROACH

The proposed V-Test slightly modifies the behavior of the
Early Z-Test stage, where the visibility of fragments is deter-
mined. After performing the original Early Z-Test, and
updating the Z-Buffer if necessary, a second test is per-
formed but this time using an V-Buffer, a new structure
similar to the Z-Buffer which holds the Z values corre-
sponding to a given tile of the previous frame. If the V-Test
is passed, the fragment can proceed to shading. Otherwise,
the fragment is discarded since it is assumed it will be again
occluded in the current frame (as it was indeed occluded in
the previous frame according to the contents of the V-Buffer
which corresponds to the Z-Buffer of the previous frame).
Note that, unlike the Z-Buffer, which may be updated
whenever a fragment passes the Early Z-Test, the V-Buffer
is never updated regardless of the V-Test outcome. There is
no need for such updates because it is the Z-Buffer the one
in charge of keeping the most up-to-date Z values for the
current frame.

Fig. 4 shows the modifications made to the baseline TBR
architecture to implement our proposal (delimited by a
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dotted line to better differentiate them). Our technique
reduces overdraw with respect to TBR since each fragment
has to pass a second test. This V-Test can be seen as a backup
test for the cases when the traditional Early Z-Test does not
work efficiently (e.g., when primitives do not arrive in a
back-to-front order): we still have a second resort to discard
a potentially occluded fragment by using the Z value from
the previous frame. Due to frame-to-frame coherence, if a
fragment was occluded in the previous frame, it is highly
likely that it will also be occluded in the current frame.
However, this approach does not guarantee that fragments
discarded by the V-Test will not be visible in the final
image. It may happen that a fragment that does not pass the
V-Test is finally visible (e.g., an object that suddenly
appears in front of other objects) leading to a potential error
in the tile. For such cases, our approach implements a sim-
ple error detection and correction mechanism right after the
tile is shaded, which will be further detailed in Section 4.

To be more specific, three situations may happen regard-
ing both the Z-Test and the V-Test outcomes:

� Case 1: Early Z-Test not passed (regardless of the
V-Test result). The fragment is safely discarded as
the decision is based on information from the current
frame (Z-Buffer) and no speculation is done (no
errors are generated).

� Case 2: Early Z-Test passed, V-Test not passed. The
fragment is speculatively discarded as the decision
is based on information from the previous frame
(V-Buffer). This is the only case where a potential
error might be generated.

� Case 3: Early Z-Test passed, V-Test passed. The frag-
ment is sent to shading. Still, this could produce a
false positive test which may lead to overdraw if the
fragment is eventually occluded.

A main characteristic of a TBR graphics pipeline is that
the working unit is a tile. However, after finishing the proc-
essing of a tile, the valuable information contained in the Z-
Buffer is discarded. As we want those depth values to be
used in the next frame, the Z-Buffer must be preserved
somehow. We employ a frame-level structure called
V-Table to store the information of the Z values of all the
tiles from the previous frame. If we had decided to imple-
ment this structure in on-chip buffers, the storage needs for
a frame in Full-HD resolution (1920x1080 pixels) would be
around 8 MBytes, which would contradict the TBR philoso-
phy that encourages the use of small (on-chip) memories for
a better energy efficiency.

A second solution consists of storing the V-Table in
DRAM. The main drawback of such an approach is the
intensive use of main memory because of the extra transfers
needed before and after processing each tile, resulting in
prohibitive energy costs (recall that DRAM consumes more
than 50 percent of the baseline GPU’s energy, as reported in
Section 1). We quantitatively evaluated this solution of stor-
ing the V-Table in DRAM. Unfortunately, the net effect in
the overall system energy consumption was negative, since
the additional DRAM accesses more than offset the benefits
coming from the overdraw reduction, so using DRAM for
fully storing the V-Table was also discarded.

To efficiently cope with the storage needs associated to
our approach while not incurring in significant energy costs,
our final solution consists of not storing all the Z values
from the previous frame but a small set of representative
ones. Even though this results in a loss of information, as
we will describe next, we observed that just keeping a few
representative values per tile was as efficient as keeping the
complete tile’s Z-Buffer. Obviously, there is a small number
of induced errors for not using precise information but the
mechanism for detecting and correcting errors (see Sec-
tion 4.3 for additional details) fixes them. In addition, the
incurred overhead from the correction phase pays off with
respect to the saved energy from neither using large on-
chip memories nor relying on DRAM for storing the previ-
ous frame’s Z values. One alternative approach we have not
evaluated is a hybrid implementation where the Z values
are stored in DRAM while an on-chip V-Table is still used
as a cache for them to support much higher display
resolutions.

There are multiple ways of selecting a set of representa-
tive values to compress the V-Table. However, we avoided
traditional compression algorithms because of their hard-
ware complexity and energy cost. As commented before,
the V-Test already generates some errors (that are later cor-
rected) due to the fact it relies on depths from the previous
frame. Therefore, there is no need to be 100 percent precise
with the information to be used, since our approach can
afford some extra initial errors. I.e., a fast and simple
scheme that loses some information can be more appropri-
ate for our purposes than a complex lossless compression
scheme. As a trade-off solution, we decided to make use of
coarsening and conventional aggregate functions (e.g., maxi-
mum, minimum, arithmetic mean) to select the set of repre-
sentative Z values. The idea of coarsening is to keep a single
value for a set of neighbor pixels based on the observation
that neighbor pixels tend to have the same or very similar

Fig. 4. V-Test implementation over a TBR architecture. The newly added structures and hardware are delimited by a dotted line.
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depths. On the other hand, aggregate functions are simple
to implement in hardware.

We define a coarsening factor that represents the granular-
ity level we use to build theV-Table. For example, assuming
tiles of 9x9 pixels, a 3x3 coarsening factor will break the tile
down into 9 non-overlapping squares of 3x3 pixels. Then,
each of these 3x3 squares will go through the aggregate
function. The result will be a matrix of 3x3 elements contain-
ing the resulting values of the applied aggregate function.
Summarizing, we go from a 9x9 matrix down to a 3x3 one,
which reduces the storage needs by a factor of 9x. To better
illustrate this, Fig. 5 depicts this compression scheme based
on using a coarsening factor followed by an aggregate
function.

As a summary of the storage needs, Table 1 shows the
memory required by the V-Table depending on the coarsen-
ing factor for a common HD screen resolution (1280x720
pixels) and 16x16 pixel tiles. The 1x1 coarsening factor
means that all the tile pixels are stored in the V-Table, i.e.,
equivalent to not applying coarsening. The 16x16 coarsen-
ing factor is the maximum possible for the assumed tile size
(16x16 pixels) and means that the whole tile is represented
by a single pixel. To better understand how the V-Table size
is calculated, let us consider the case of an 8x8 coarsening
factor. In this case, only 4 values (2x2 coarse pixels of 8x8)
will be stored. Given that a 1280x720 screen has 3600 tiles
(80x45) and provisioning 32 bits for each Z value, the final
size of the V-Table will be 56.25 KiB (4 values � 3600 tiles �
4 bytes) resulting in a storage reduction of 64x with respect
to not using coarsening (the 1x1 case in Table 1).

Next, we have measured the amount of initial errors as a
result of using different coarsening factors along with dif-
ferent aggregate functions (maximum, minimum and aver-
age). Fig. 6 shows the fraction of errors with respect to the
total amount of processed fragments (including also the
shading and the residual overdraw) where each bar

represents the average of all the evaluated benchmarks. Let
us analyze first how the different aggregate functions
behave. The minimum function keeps the depth of the frag-
ments closer to the camera, so the V-Test is more restrictive
and ends up discarding more fragments than needed. Over-
draw is reduced at the cost of generating too many errors,
as it can be seen in Fig. 6. On the other hand, using the maxi-
mum function makes the V-Test more permissive since we
compare against the deepest Z of the group. Overdraw is
not reduced as much as with minimum but the number of
errors is highly reduced. Finally, using the average as the
aggregate function leads to a trade-off between errors and
overdraw. As our goal is to generate as few errors as possi-
ble because of the overhead of the correction phase, we
have chosen the maximum as the aggregate function for the
V-Table, i.e., the Z values of a group will be represented by
the most distant one to the camera.

Regarding the coarsening factor, Fig. 6 also shows that
the biggest possible coarsening factor of 16x16, when com-
bined with the maximum aggregate function, does not incur
a significant potential loss (less than 3 percent of errors). As
a result, for the final design of the V-Table we have chosen
to use a coarsening factor of 16x16 which in practice means
that each tile will be represented by only one Z value, in
particular the maximum one. This results in a reduction of
the storage needs by a factor of 256x without significantly
penalizing the potential. As for the storage needs, when
using a 16x16 coarsening factor, the size of the V-Table low-
ers to about 14 KiB (Table 1) which can be easily allocated
as a small on-chip buffer.

In any case, although the use of coarsening leads to a
very good compression ratio, other schemes aimed at reduc-
ing the storage needs with a potentially smaller accuracy
degradation will be considered for future work, such as pre-
cision reduction, quantization and downsampling.

4 EFFICIENT MANAGEMENT OF ERRORS

4.1 Scenarios That May Lead to Potential Errors

The main advantage of the V-Test is that it decreases the
number of quad fragments that are executed in the Frag-
ment Processors by means of speculatively discarding the
occluded ones based on the contents of the V-Table. The
downside is that it may lead to some errors. To better illus-
trate these scenarios, Fig. 7 shows the possible cases that

Fig. 5. Compression scheme example for a 3x3 coarsening factor over a
9x9 pixel tile. The Z-Buffer is processed in 3x3 pixel areas as determined
by the coarsening factor. For each area, the maximum is computed and
stored onto the V-Buffer. When all the 3x3 areas are processed, the
V-Buffer is flushed onto its corresponding position in the V-Table.

TABLE 1
V-Table Storage Needs for Some Coarsening Factors That are
Possible in a 16x16 Pixel Tile and Assuming a 1280x720 Screen

Resolution

Coarsening factor V-Table size

1x1 (or no coarsening) 3.52 MiB
2x2 900 KiB
4x4 225 KiB
8x8 56.25 KiB
16x16 14.06 KiB

Fig. 6. Effect of different coarsening factors (from 2x2 to 16x16) for 3
aggregate functions (min, max, average), showing the fraction of frag-
ments (normalized to the baseline) that are either visible, appear as ini-
tial errors (that have to be corrected), or are occluded. Each bar
corresponds to the average of the 10 evaluated benchmarks.
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could produce potential errors and how V-Test handles
them. Fig. 7a shows the initial scene (frame i) with two over-
lapping primitives rendered in back-to-front order. The first
of the analyzed cases (depicted in Fig. 7b) illustrates the case
of a primitive moving away from the camera. Recall that
each fragment of a primitive has a Z’ value from the previous
frame (retrieved from the V-Table) in addition to its current
Z value. In this particular case, as primitive B has moved
backwards, their fragmentswill fail theV-Test (Z > Z’).

Fig. 7c illustrates the case of using a d margin, a mecha-
nism aimed at mitigating errors that will be further
explained in Section 4.2, where a big amount of the errors
can be reduced provided that d is large enough to mask such
backward movement. Fragments from primitive B will now
pass the V-Test (Z < Z’ þ d) whereas the ones from primi-
tive A that were occluded in the previous frame will still
fail.

Fig. 7d shows the oppositemovement, i.e., a primitive that
comes closer to the camera (or conversely, when the camera
moves forward making the primitive to become closer). This
case does not generate errors since the current Z values are
closer than those from the previous frame (Z < Z’) and the
V-Test will pass as intended. At the most, this case could
generate overdraw. As an example, our benchmarks include
racing games such as Beach Buggy Racing or Hot Wheels
(refer to Table 3) where forward camera movements are
usual.

Another case that may lead to potential errors corre-
sponds to the lateral movement of a primitive, as in Fig. 7e.
In this example, as primitive B moves from left to right, it
hides the right-side part of primitive A while unveiling its
left-side part. In this case, some fragments from primitive A
that were occluded in frame i become visible in frame iþ 1,
leading to potential errors in the final image.

As a final case, Fig. 7f shows how the use of the maxi-
mum aggregate function with the coarsening scheme

considerably reduces those lateral-movement-based errors
in detriment of overdraw. In this case, since all the frag-
ments from primitive B will pass the V-Test, no errors will
be generated. However, as the two primitives are rendered
in back-to-front order, it will generate overdraw as in the
baseline.

Finally, note that any error, either coming from lateral
movements or as a result of using an “aggregated” Z value
to represent a whole tile, is solved by adding a final correc-
tion step as described in Section 4.3.

4.2 Mitigating Errors: The Delta (d) Margin

It is very common to have scenes in which the Z-Buffer of
many tiles remains constant across consecutive frames. In
this case, our technique acts ideally because it does not pro-
duce errors nor draws unnecessary fragments. However, as
described previously, there are other scenes in which the
objects or the camera move, which may affect a significant
amount of (or all) the tiles in the frame. As seen in the cases
depicted in Figs. 7b and 7c, a particular type of movement
that potentially lead to errors happens when objects move
away from the camera.

To be able to tolerate such movements while reducing
the amount of errors, we include a small safety margin for
the V-Table called delta (d) margin. By doing this, we relax
the V-Test condition so that it is equivalent to slightly mov-
ing the depths of all the fragments a bit farther. The ratio-
nale behind this d margin is to be more permissive by not
eliminating fragments that belong to primitives that have
slightly moved away from one frame to the next. By using
this safety margin, V-Test becomes more flexible and incurs
less errors. On the other hand, the amount of overdraw is
not significantly hurt because this dmargin is very small.

In essence, we are trading errors for overdraw, i.e., the d

margin helps reduce the amount of errors at the expense of

Fig. 7. Set of scenarios that could produce potential errors in Omega-Test. (a) Initial scene (frame i) with two overlapping primitives rendered in back-
to-front order. (b)-(f) depict the frame i+1 for a number of possible movements of primitive B. Cases (b) and (c) shows the primitive moving away from
the camera which lead to errors as depicted. In case (b) no d margin is used, thus producing errors in the area that primitive B overlaps with A. In
case (c) a d margin is used and errors are mitigated, only remaining those in the border of primitive A. Case (d) shows primitive B coming closer to
the camera. This case does not generate errors as current Z values are nearer than the V values, thus passing both tests. In cases (e) and (f) primi-
tive B moves laterally (panning). In case (e) no coarsening is used, producing errors on the area that primitive B unveils from A and it leaves overdraw
on the area it moves to. In case (f) a coarsening with the maximum aggregate function is applied which avoids the errors in (e) since theV values tend
to be farther than the Z values (thanks to using the maximum function).
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not being able to avoid some overdraw. To better under-
stand the effect of using this safety margin, we have ana-
lyzed a wide range of d values and measured how the
amount of errors and the overdraw factor are affected. It
can be observed in Fig. 8 that as we increase d, more frag-
ments pass the V-Test, resulting in higher overdraw. How-
ever, the number of errors is reduced. Contrarily, smaller d
values are less tolerant to depth changes in the V-Buffer,
causing more errors but being more effective at reducing
overdraw. Fig. 8 shows that the best d is 0.0005 for many
games (recall Z values are normalized in the range [0,1]
where 0 corresponds to the near plane and 1 represents the
far plane). Note also that frame-to-frame coherence has a
significant influence on d, because the more coherence the
smoother the movements will be and, therefore, smaller d

values will suffice.
However, using a static d for all the games does not pro-

vide the best trade-off, given the high variability that can be
found in games. To cope with this inter-frame variability,
we have implemented a very simple dynamic scheme that
defines a d value for each frame that is adapted depending
on whether the objects within a frame move away or not.

The adaptive technique changes d based on frame-level
overdraw/error ratios. We define a cost function (Equa-
tion (1)) whose inputs are the number of overshaded frag-
ments and errors. In (1) co is the relative cost associated to
overdraw and ce is the relative cost associated to errors,
always speaking in terms of energy. Experimentally, we
have quantified the cost of correcting an error to be about 3x
higher than shading a fragment, so the adaptive scheme pri-
oritizes reducing the amount of induced errors with weights
co ¼ 0:25 and ce ¼ 0:75. Finally, o and e represent the per-
frame amount of overdraw and errors, respectively

costðo; eÞ ¼ co � oþ ce � e: (1)

The dynamic d scheme uses a table of eight d values
(0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5); an index
pointing to the current d, a variable that indicates in which
direction we move this index, and two global counters to
account for the number of errors and overdraw for the
whole frame. The initial value for d is set to 0.0005 (since it
was the best static d). The adaptive scheme operates as fol-
lows. When finishing rendering a frame, the cost function
(1) is evaluated and compared with that of the previous

frame (held in a global register). If the current cost is higher,
we change the direction of the index of the d table, other-
wise, we move the index in the direction shown by the cited
variable. If the table limit is reached, the index saturates.

The dynamic d scheme is able to effectively reduce the
fraction of errors as intended. In particular, it can be
observed in Fig. 8 that the average fraction of errors (over
the total amount of fragments) is just 5.08 percent thanks to
using the dynamic d scheme.

Another approach we have evaluated is a per-tile d mar-
gin. However, we have not included this more refined
mechanism in the final implementation due to the storage
overhead and the poor benefit obtained. As each tile needs
to store its own d, 32KiB are required (assuming FullHD res-
olution, 16x16 tiles, and 4 bytes per d). The experimental
results showed that the initial errors were reduced, on aver-
age, from 5.08 to 5.02 percent making it not worthy.

4.3 Error Detection and Correction

As the V-Test might lead to discarding a fragment which is
visible in the final image, we need a mechanism to detect
and correct these errors. Errors are generated in the Early Z-
Test stage where it is checked whether a fragment must pro-
ceed or not to the Fragment Processors for shading. A frag-
ment that passes the Early Z-Test but not the V-Test (case 2
explained in Section 3) could be a potential error. However,
note that this fragment can be hidden by another visible frag-
ment rendered on top of it. In this case, the V-Test has
avoided an undesired overdraw case, saving useless work.
However, if no fragment is ever written in that position of
the tile, a gap would be left in the final Color Buffer. Obvi-
ously, these induced gaps cannot be propagated to the
Frame Buffer and a corrective action must take place.

To keep track of the potential errors, some additional
data structures are needed. In particular, we use a two-
dimensional array called E-Buffer, with the same dimen-
sions of a tile, where each element is associated to a pixel
and stores a primitive’s identifier. Once the Early Z-Test is
passed, we perform the V-Test. If the V-Test fails, we store
the primitive ID in its corresponding position in the E-
Buffer which indicates that this primitive could potentially
cause an error (or gap) in that position. Otherwise, if the
V-Test succeeds, we store in the E-Buffer a special ID (a �1
in our case). Therefore, a final �1 in any position of the

Fig. 8. Study of the ratio overdraw (occluded fragments) versus initial errors for several static dmargins (0.5, 0.05, 0.005, 0.0005 and 0) normalized to
the baseline. The last bar of each benchmark (dyn) corresponds to the dynamic d implementation.
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E-Buffer indicates that there is no error (or gap) left in that
position.

When all opaque primitives have been rasterized and the
Early Z-Test has no more fragments to check, the E-Buffer is
in a final state which identifies where the final errors (non-
rendered fragments) are located. At this point, the correc-
tion phase is ready to be performed. One important thing to
note is that this phase is only triggered if an error is found
in the E-Buffer, thus it is not unnecessarily launched when
there are no errors. To quickly verify this, a global counter
is used which is increased when a primitive ID is stored in
the E-Buffer (overwriting a �1); and it is decreased when a
�1 is stored (overwriting a valid primitive ID).

To better illustrate the process, Fig. 9 shows how the Cor-
rector works. First, it reads quad fragments from the E-
Buffer (step �1 ). In this example, the top-left quad contains 4
errors corresponding to 3 different primitives (IDs 5, 8, 4).
For each different primitive within the quad, a 4-bit (2x2) vis-
ibility mask is generated whose active bits are the pixels
that the primitive occupies inside the quad (step �2 ). Thus, a
quad can generate up to four visibility masks in the case
there are four errors with four different Primitive IDs (this
is the worst case). These masks along with the quad position
are inserted into the Positions-XY queue (step �3 ). If all the
valid primitives of a quad (according to the visibility mask)
are equal (this is the best case and, fortunately, the most
common) another global counter is incremented, indicating
the number of consecutive quads (in scan-line order) from
the same primitive. When a new primitive is found, an entry
is inserted into the Primitive-IDs queue (step �4 ), containing
both the ID of the previous primitive and the value of the
global counter (indicating the number of consecutive quads
from the same primitive) which is set to zero again.

To better understand how the Corrector works, Fig. 10
depicts an example with an E-Buffer containing different
errors. The entries in the E-Buffer with a number (a primi-
tive ID) correspond to positions where there is an error for
that particular primitive, whereas empty cells represent a
correct pixel (i.e., a �1). For the sake of visibility, we assume
4x4 pixel tiles. The final state of the Primitive-ID queue and
the Positions-XY queue for this example is also shown in
Fig. 10.

As soon as there is a primitive in the Primitive-ID queue,
the Tile Fetcher starts working on the corrections. Under

this correction mode, the Tile Fetcher rather than querying
the Tile Cache for a new primitive, gets it from the Primi-
tive-ID queue. Additionally, the number of quads of the
same primitive is provided by this queue to tell the Raster-
izer how many errors will be corrected. This mechanism
avoids, on the one hand, that the Tile Fetcher reads the
same primitive multiple times when correcting several
quad-fragments from the same primitive and, on the other
hand, to fill the Primitive-ID queue with redundant data.

Under the correction mode, the Rasterizer has a slightly
different behavior. In particular, only the fragments to be
corrected are generated for a given primitive. That is, if a tri-
angle only has one erroneous pixel, this is the only fragment
that will be generated. To do that, the Rasterizer calculates
the barycentric coordinates of the first fragment and the X
and Y increments, as usual. Note that the (X,Y) coordinates
where the error is located are obtained from the Positions-
XY queue, along with the visibility mask (refer to Fig. 9).
Then, the quad fragment is sent to the Fragment Processors
for a proper shading. Note that the quads submitted for cor-
rection do not undergo the Early Z-Test because they are
known to be visible.

After the correction phase, the graphics pipeline contin-
ues working as usual. When the tile is completely rendered
and the Color Buffer is computed and flushed, the pipeline
is ready to start with a new tile.

Finally, there is a challenging situation that happens
when the Tile Fetcher finds a transparent primitive. A primi-
tive is considered transparent if its blending attribute is
active, meaning that all the fragments from this primitive
have to mix their rendered colors with the existing ones in
the Color Buffer. The problem is that when the transparent
fragment is processed, the Color Buffer must contain the
color of the previously generated opaque fragment, and if it
has been erroneously filtered out by the V-Test, it would be
erroneously mixed with a black fragment. To overcome this
situation, the correction phase is triggered as soon as a
transparent fragment arrives in the Early Z-Test stage, to
make sure that any potential error in the opaque geometry
is corrected before processing the transparent fragment.
When the correction of the errors for opaque primitives is
done, the pipeline can continue processing the transparent
fragment and the normal operation of the Tile Fetcher is
resumed. This causes a stall in the pipeline that might hurt
the performance. Fortunately, such interleaving pattern is

Fig. 9. Correction phase. A number other than �1 in any location of the
E-Buffer indicates an error to be corrected. In this example there are 4
errors in the top-left quad, corresponding to primitives 5, 8, and 4.

Fig. 10. Example of the final state of the queues given an E-Buffer of 4x4
pixels (4 quads).
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not usual, as it does not comply with the OpenGL recom-
mendation about rendering order which states that trans-
parent primitives must be rendered after opaque ones to
produce the correct output image [22]. In particular, out of
the 10 evaluated benchmarks, only Maze 3D (maz) presents
this uncommon interleaving pattern with a small number of
primitives. As expected, V-Test produces the same output
as the baseline GPU, and due to the low occurrence of such
interleaving pattern, the performance of Maze 3D (maz) is
not degraded at all as it can be seen in Fig. 13.

5 EVALUATION METHODOLOGY

5.1 Simulator Infrastructure

We have used TEAPOT [23], a simulation framework that
includes a cycle-accurate simulator for GPUs, including
models based on Mali’s Utgard architecture [24]. TEAPOT
includes timing and power models based on well-known
tools: McPAT [25] for power estimation, and DRAMSim2
[26] for modelling DRAM and the memory controllers. The
benchmarks have been run either in a real smartphone or in
an Android Virtual Device (AVD) [27] to obtain a trace of

OpenGL commands. The OpenGL [28] traces have been
obtained with GAPID [29], a graphics debugger that allows
to inspect the graphics commands of animated applications.
In particular, the OpenGL trace is executed with the GAPID
replay tool (gapir) over an instrumented Gallium Softpipe
Driver [30] to obtain the final trace. This trace is consumed
by the cycle-accurate simulator, which produces timing
reports and a file of activity factors. Those activity factors
are employed by the power model to generate a power
report.

Table 2 shows the GPU simulation parameters, resem-
bling the ARM Mali-450 GPU that we have used to evaluate
our proposal. This Table also shows the configuration
parameters of the structures used by the V-Test (namely,
V-Table, E-Buffer, Primitive-ID queue and Positions-XY
queue). All these structures have been modelled and
included in the timing and power model of the GPU. In par-
ticular, their area overhead has been measured to be
2.29 percent of the total area of the GPU. As mentioned in
Section 3, the biggest structure is the V-Table (with a size of
14.06 KiB thanks to the 16x16 coarsening factor) which cor-
responds to a relative area of 1.70 percent of that of the GPU.

5.2 Benchmarks

Table 3 shows the set of benchmarks we have used in our
experimental evaluations. We employ commercial applica-
tions, which do not require any modification at the software
level to benefit from the V-Test. The games have been
selected based on their popularity in number of downloads
on the Google Play Store. Note that we have only consid-
ered 3D games since our technique does not apply to 2D
games. Fig. 11 shows a single frame for eight of the evalu-
ated benchmarks to provide an insight of the complexity
present on their scenes.

6 EXPERIMENTAL RESULTS

We have evaluated both a baseline GPU design and a GPU
that implements the V-Test with a coarsening factor of
16x16, the maximum function for “aggregation”, and with
the dynamic dmechanism for mitigating errors.

6.1 Overdraw Reduction

Fig. 12 shows a first set of results for theV-Test approach. In
particular, it reports a breakdown of all the rendered frag-
ments for each benchmark, differentiating the fraction of

TABLE 2
GPU Simulation Parameters

Baseline GPU Parameters

Frequency 600 MHz
Voltage 1.0 V
Scale Integration 22 nm
Screen Resolution 1280x720
Tile Size 16x16 pixels
Main Memory
Frequency 400 MHz
Voltage 1.5 V
Latency 50-100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Size 1 GiB
Queues
Vertex (Input & Output) 16 entries, 136 bytes/entry
Triangle & Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry
Color 64 entries, 24 bytes/entry
Caches
All of 64 bytes/line, 2-way associativity
Vertex Cache 4 KiB, 1 bank, 1 cycle
Texture Caches (x4) 8 KiB, 1 bank, 1 cycle
Tile Cache 128 KiB, 8 banks, 1 cycle
L2 Cache 256 KiB, 8 banks, 2 cycles
Color Buffer 1 KiB, 1 bank, 1 cycle
Depth Buffer 1 KiB, 1 bank, 1 cycle
Non-programmable stages
Primitive assembly 1 triangle/cycle
Rasterizer 1 attributes/cycle
Early Z test 8 in-flight quad-fragments
Programmable stages
Vertex Processor 4 vertex processor
Fragment Processor 4 fragment processors
V-Test hardware
V-Table 14 KiB
Positions-XY Queue 64 entries, 13 bytes/entry
Primitive-ID Queue 64 entries, 8 bytes/entry
E-Buffer 1 KiB
Corrector 4 quad-fragments/cycle

TABLE 3
Evaluated Benchmark Set

Benchmark Alias Description Downloads (M)

300 300 Hack & slash 10-50
Captain America cam Beat’em up 1-5
Sniper 3D Assassin s3d Shooter 100-500
Hot Wheels: Race Off hwl Racing 50-100
Vegas Crime Simulator vcs Sandbox & Crime 100-500
Maze 3D maz Labyrinth 10-50
Beach Buggy Racing bbr Racing 50-100
Counter Strike cou Shooter 10-50
Gravity gra Action 1-5
Temple Run tru Adventure arcade 100-500
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occluded fragments (overdraw –in yellow–), transparent
fragments, the induced errors by the V-Test (in red), and
the visible fragments (in dark blue). As our technique is
aimed at optimizing the visibility problem, it can only attack
the overdraw fraction. Note that an ideal visibility determi-
nation approach would remove this fraction completely.
For comparison purposes, we have evaluated VRO [8], an
advanced Hidden Surface Removal (HSR) technique that
sorts objects front-to-back based on frame-to-fame coher-
ence (see Section 2.3 for further details). On average, V-Test
reduces the baseline’s overdraw by 32.7 percent, still leav-
ing a residual overdraw of 4.5 percent that is unable to elim-
inate. These initial results show that our proposal is pretty
close to the ideal case, differently to VRO that leaves an
average residual overdraw of 22.2 percent. Although both
VRO and V-Test leverage frame-to-frame coherence to
reduce overdraw, they achieve their goals using quite dif-
ferent strategies. VRO works at a command granularity by
sorting commands so that they are processed in a front-to-
back order. V-Test, however, operates at a much finer gran-
ularity (fragment level) which is more effective since it can
avoid the useless shading of occluded fragments in primi-
tives of the same object (intra-object overdraw) or from par-
tially overlapping objects. It is worth noting that intra-object
overdraw is significant in the evaluated benchmarks and in

mobile games in general since they typically include com-
plex objects in a single draw call. For instance, in Hot
Wheels (hwl), the whole city in the background (made of
multiple and complex buildings - see Fig. 11) is a single
object rendered in a single draw call. As expected, there is a
lot of intra-object overdraw that VRO cannot eliminate
whereas the proposed V-Test can indeed.

On the other hand, errors (i.e., wrongly discarded frag-
ments that must be indeed shaded) may hurt performance
since they have to be fixed on the correction phase, so it is
desirable to reduce them as much as possible. On this
regard, our proposal generates an average of 5.1 percent ini-
tial errors that are fixed on the correction phase. As a side
note, the average number of errors to be fixed per tile is, in
absolute terms, just 13 out of 256 pixels in a 16x16 tile.

6.2 Speedup and Memory Utilization

Now, let us see the overall net impact on the execution time
due to both the overdraw reduction and the errors that have
been fixed. Fig. 13 shows the speedup achieved when the
V-Test is included in the graphics pipeline. It achieves an
average speedup of 16.3 percent, with a maximum speedup
of 32.7 percent for Gravity (gra). Fig. 13 also plots a configu-
ration with perfect visibility knowledge that shows an aver-
age upper bound of 17.9 percent for the speedup; and the
aforementioned VRO which achieves an average speedup
of 12.75 percent. As expected, V-Test is pretty close to the
perfect scenario because of the low residual overdraw it
leaves (a mere 4.5 percent) and beats VRO. Focusing on the
realistic V-Test, although it greatly reduces overdraw in
many applications, in some cases the execution time is not
reduced in the same proportion. This is because of the over-
head incurred on correcting errors and also due to the pipe-
line stall to wait for that correction phase. To provide an
insight on this, it is necessary to look at the accesses that
end up going to DRAM as a result of misses in the Texture
Cache (the equivalent to an L1 in a CPU). As expected,
applications with small textures are more likely to obtain a
higher hit rate in the Texture Cache, therefore, reducing
their overdraw does not save many DRAM accesses, and so
we are not saving as much latency. Contrarily, applications
with detailed textures exhibit a lower hit rate in the Texture
Cache and go more frequently to DRAM. As such, reducing

Fig. 11. Images of the evaluated benchmarks showing the complexity of the scenes.

Fig. 12. Breakdown of rendered fragments for the evaluated bench-
marks, comparing the the baseline GPU, VRO and V-Test.
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the overdraw factor in these games results in a more signifi-
cant impact. This is the case of Gravity (gra), Hot Wheels
(hwl) and Beach Buggy Racing (bbr).

To provide a better insight of this effect, Figs. 14 and 15
show the accesses to the Texture Cache, the L2 and DRAM.
While Fig. 14 breaks down the accesses to the Texture Cache
in hits and misses (the latter end up going to L2), Fig. 15
shows how many of the memory requests are served by
DRAM. Let us focus on two representative examples:
Counter Strike (cou) and Gravity (gra). First, recall from
Fig. 12 that they have a similar net overdraw reduction of
47.9 and 51.8 percent, respectively. However, these over-
draw reductions are translated into respective speedups of
17.4 and 32.7 percent. If we now look at their memory
behavior (Fig. 14) we observe that, thanks to using the
V-Test, there is a reduction in their overall number of mem-
ory accesses (46.2 and 41.2 percent, respectively) which cor-
relates with the reported overdraw reduction. However,
because of their different texture complexity, while Gravity
reduces its DRAM accesses by 30.3 percent, Counter Strike
barely reduces them (a mere 3 percent) as shown in Fig. 15.

6.3 Energy Savings

Next, let us focus on the energy savings achieved by the
V-Test and reported in Fig. 16. It can be seen that our
approach provides average energy savings of 15.17 percent
(and up to 26.9 percent for Gravity –gra–), outperforming
VRO which achieves average energy savings of 9.6 percent.

Games such as Vegas Crime Simulator (vcs), Gravity (gra)
or Beach Buggy Racing (bbr) achieve high energy savings
because of their texture complexity, as explained before,
since much of the cost of the overdraw comes from eventual
DRAM accesses due to misses in the upper cache levels.
Other benchmarks, such as Hot Wheels (hwl) or Counter
Strike (cou) also obtain high energy savings (around 18.7
percent) but not because of the poor caching behaviour of
their textures and rather because of the very high amount of
overdraw that is indeed exposed to the baseline TBR archi-
tecture, and which our proposal is able to remove.

As per the energy-efficiency of the overall GPU/Memory
system, Fig. 17 reports the Energy-Delay product (EDP) sav-
ings for each benchmark. It can be observed that V-Test
achieves EDP savings of 26.42 percent on average (reaching
a maximum of 42.65 percent in the case of Gravity –gra–)
whereas VRO achieves EDP savings of 20.34 percent on
average.

7 CONCLUSIONS AND FUTURE WORK

Overdraw plays an important role in the performance and
energy efficiency of mobile GPUs, and it is strongly related
to the approach used to resolve the visibility of the different
primitives. In this work we have proposed the V-Test, a
novel microarchitecture technique that resolves visibility by
using information of the Z-Buffer from the previous frame.
We have shown that our approach is much more effective
for removing overdraw than a traditional Early Z-Test,
which only uses information from the current frame and
whose Z-Buffer must be built from scratch every frame.

Our approach relies on frame-to-frame coherence; how-
ever, an unexpected depth change in a primitive could

Fig. 13. Speedup comparison (normalized to the baseline GPU) between
VRO, V-Test and a perfect HSR.

Fig. 14. Texture Cache accesses (normalized to the baseline GPU)
broken down into hits and misses that eventually go to L2.

Fig. 15. Total amount of DRAM accesses (normalized to the baseline
GPU) for the evaluated benchmarks.

Fig. 16. Energy savings normalized to the baseline GPU.
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potentially lead to an error in the final rendered image. We
have included an error detection and correction mechanism
to fix the small amount of errors that can appear in certain
tiles. Finally, to dramatically reduce the storage needs of the
underlying V-Buffer, we have also implemented a coarsen-
ing mechanism along with the use of an aggregate function,
which is highly effective and hardly impacts accuracy.
Overall, the V-Test reduces the average overdraw of scenes
by 32.7 percent, which results in an average speedup of 16.3
percent in addition to average EDP savings of 26.42 percent
for a set of commercial representative applications.

As part of the future work, we will consider new compres-
sion schemes for the V-Table aimed at reducing the memory
usage needs as well as improving its accuracy, such as quanti-
zation, downsampling and precision reduction. Another path
to explore is a per-tile d margin to more selectively detect
objects moving around the scene. These two approaches will
improve the efficiency of V-Test in terms of performance,
energy and area cost. On the other hand, it is common to give
control to the applications over features supported by theGPU
(Texture samplers, Occlusion queries, depth/stencil tests, Var-
iable Shading Rate, etc.) so they can be tuned to the application
needs. With such kind of control, the application could inform
through the render-loop, e.g., about changes of the transforma-
tion matrices, so V-Test could more accurately predict the
depth values of the next frame.
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