
DeSC: Decoupled Supply-Compute Communication
Management for Heterogeneous Architectures

Tae Jun Ham
Princeton University
tae@princeton.edu

Juan L. Aragón
University of Murcia
jlaragon@um.es

Margaret Martonosi
Princeton University
mrm@princeton.edu

ABSTRACT
Today’s computers employ significant heterogeneity to
meet performance targets at manageable power. In adopt-
ing increased compute specialization, however, the rela-
tive amount of time spent on memory or communication
latency has increased. System and software optimiza-
tions for memory and communication often come at the
costs of increased complexity and reduced portability.
We propose Decoupled Supply-Compute (DeSC) as a
way to attack memory bottlenecks automatically, while
maintaining good portability and low complexity. Draw-
ing from Decoupled Access Execute (DAE) approaches,
our work updates and expands on these techniques with
increased specialization and automatic compiler support.
Across the evaluated workloads, DeSC offers an average
of 2.04x speedup over baseline (on homogeneous CMPs)
and 1.56x speedup when a DeSC data supplier feeds
data to a hardware accelerator. Achieving performance
very close to what a perfect cache hierarchy would offer,
DeSC offers the performance gains of specialized commu-
nication acceleration while maintaining useful generality
across platforms.

Categories and Subject Descriptors
C.0 [General]: Hardware/software interfaces;
C.1.3 [Processor Architecture]: Other Architecture
Styles – Heterogeneous (hybrid) systems

Keywords
Accelerators, Communication Management, Decoupled
Architecture, DeSC

1. INTRODUCTION
Challenges in Moore’s Law performance scaling have

spurred wide-spread adoption of on-chip parallelism [29,
43] and increasing amounts of specialization and hetero-
geneity [12, 31]. Future systems from mobile to exascale
will employ ecosystems mixing general purpose cores,
specialized cores, and accelerators [40, 51].
While heterogeneous and specialized parallelism shows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MICRO-48, December 05-09, 2015, Waikiki, HI, USA
Copyright 2015 ACM ISBN 978-1-4503-4034-2/15/1 ...$15.00
DOI: http://dx.doi.org/10.1145/2830772.2830800

great leverage improving computation performance at
manageable power, its effective use raises additional chal-
lenges. First, the long-troubling “memory wall” becomes
even more challenging in many accelerator centric designs.
From an Amdahl’s Law point of view, as specialized ac-
celerators speed up computations, the communication or
memory operations that feed them represent even more
of the remaining performance slowdown [27, 50].
A second challenge in accelerator-oriented design is

that the software-managed communication tailoring used
to reduce communication cost often increases software
complexity and reduces performance predictability and
portability. For example, for a loosely-coupled accelerator
[12, 13] with scratchpad memory, transfers in and out of
it are typically tightly tailored to the scratchpad size. In
addition to blocking computations to fit the scratchpad,
programmers must also work to maximize the overlap
of computation and communication. Even worse, small
variations in accelerator design to adjust such storage’s
capacity or port count can require code to be rewritten
or reoptimized.
While using cache memories instead of scratchpads

can mitigate some concerns about programmer effort
and software portability, many issues remain. For ex-
ample, caches still require programmer effort to balance
computation and communication. Furthermore, since
caches expose variable communication latency to the ac-
celerator, this can force a more conservative hardware
design, either regarding computation speed or regard-
ing the use of at-accelerator data buffering. Finally, a
cache’s demand-fetched and line-at-a-time nature can in-
cur performance overhead when compared to a carefully
managed scratchpad memory system.
Attacking these challenges, our work seeks to improve

the performance, programmer effort, and software porta-
bility of heterogeneous systems. Decoupled Supply-Compute
(DeSC) is a communication management approach that
aims to provide the performance and energy efficiency of
scratchpad memory, while offering programmability simi-
lar to a cache-based approach. Inspired by [46], DeSC
employs compiler techniques to automatically separate
data access and address calculations from value compu-
tations. Once separated, the code is targeted at different
hardwares which can either be general-purpose cores or
hardware tailored to their role.
Figure 1 shows an overview of the proposed framework.

DeSC decouples host data memory access, performed
by a Supplier Device (SuppD), from value computation
performed by a Computation Device (CompD) using an
LLVM-based compile-time framework. Program source

191

code is input to the DeSC compiler, which then divides
the original program stream into the communication slice
on the SuppD device and the computation slice on the
CompD device. In running the communication slice,
the SuppD fetches and provides necessary memory data
to the CompD running the computation slice. On the
other side, the CompD receives input data from SuppD,
performs value computations, and where needed, pushes
output back to the SuppD to be stored in memory.

Supplier Device

Address
Computation

Load
Addr

Value
Computation Load

Value
Store
Addr

Load Value

Store Value

DeSC Compiler Pass

Communication
 Slice

Computation
 Slice

Mem Interface

Compile-Time

Run-Time

Communication Queue

 Computation Device

Figure 1: DeSC overview.

Decoupling communication from computation has sev-
eral advantages. First, the SuppD can be tailored to
the needs of address computation and memory access.
Units can be appropriately sized for a memory-heavy
workload, and the SuppD need not include floating point
units, for example. Second, the SuppD can run ahead of
the CompD in order to hide memory latency. Third, a
chip can be provisioned with arbitrary mixes of SuppDs
and CompDs in order to strike a good balance for an
expected workload. Having evaluated DeSC using LLVM
and Sniper, our contributions are:

• We propose a Decoupled Supply-Compute (DeSC)
framework which automates and optimizes commu-
nication for heterogeneous systems.

• We improve the original DAE by introducing hard-
ware/compiler support to benefit from out-of-order
communication and out-of-order commit of terminal
loads (Sections 3, 4).

• We introduce novel architectural support and com-
piler optimizations to avoid Loss of Decoupling
events (Section 5).

• We evaluate the optimized DeSC approach with
modern acceleratable workloads and explore spe-
cialization opportunities (Section 6).

• We use DeSC to significantly improve on-chip ac-
celerator performance compared to a baseline accel-
erator with its own cache (Section 7).

2. MOTIVATION

2.1 Decoupled Access/Execution (DAE)
In an early attempt to overcome memory wall issues

while retaining implementation simplicity, Smith pro-
posed the Decoupled Access/Execute Architecture (DAE)
[46]. DAE divides a program into two independent

streams, one containing all memory related instructions
(including address calculation and memory accesses) and
another containing all compute related instructions. A
pair of Access Processor (AP) and Execute Processor
(EP), connected by several FIFO queues, are responsible
of executing both streams. DAE improves memory la-
tency tolerance since the AP can run ahead of the EP
while overlapping data accesses with computation.

Original AP slice EP slice

for(i=0;i<100;i++) {
v1 = LOAD(&a[i])
v2 = LOAD(&b[i])
val = v1 + v2 * k
STORE(&c[i], val)

}

for(i=0;i<100;i++) {
v1 = LOAD(&a[i])
PRODUCE(v1);
v2 = LOAD(&b[i])
PRODUCE(v2);
STORE_ADDR(&c[i])

}

for(i=0;i<100;i++) {
v1 = CONSUME()
v2 = CONSUME()
val = v1 + v2 * k
STORE_VAL(val)

}

Table 1: Decoupled code example.

Table 1 shows an example of program code split into
access and execute portions. Data items a[i] and b[i] must
be accessed from memory and then passed over to the ex-
ecute side for computation. While implementations vary,
in some DAE-style systems, specific instructions such
as PRODUCE and CONSUME would support this, and DeSC
adopts this approach. The code example also illustrates
that in DeSC, a STORE instruction in the original pro-
gram is split into STORE_ADDR and STORE_VAL to decouple
address computation and value computation.
Prior work has explored many different aspects of the

DAE approach [1, 3, 14, 25, 46], but they do not specifi-
cally focus on data supply challenges for heterogeneous
systems. Our work more fully embraces today’s special-
ization trends by assuming that the CompD has no di-
rect access to memory (much like current loosely-coupled
accelerators or DySER [22]), and that the SuppD is spe-
cialized for data supply.

2.2 Challenges in Out-of-Order DAE
Figure 2 motivates our work by showing execution time-

lines for the same operations on different architectures.
Using small ROB and MSHR sizes, the figure illustrates
key bottlenecks that different approaches experience or
overcome. DeSC’s goal is to reduce or tolerate differ-
ent types of memory or execution latencies in order to
run programs faster and use hardware more efficiently.
In-order DAE architectures (Fig. 2b) were originally
envisioned as a lower-complexity latency tolerance alter-
native to out-of-order processors (Fig. 2a). However,
they are not exclusive approaches. In fact, Fig. 2c shows
them as complementary techniques.
One limitation with both Figs. 2b and c is that all

communications need to happen in order. The original
DAE idea [46] —striving for simplicity compared to then-
nascent OoO ideas—had to perform communication in-
order because the computation device was an in-order
core with only access to the head of a queue. On the
other hand, an out-of-order DAE architecture (Fig. 2c)
still requires in-order (commit time) communication to
avoid propagating mis-speculated data. In such cases,
even if a later load (in program order) has lower memory
latency, its data cannot be passed to the EP until all

192

LD
A1

LD
B1

LD
A2

LD
A3 LD

A4

LD
A5 LD

A6

A1+B1

B1*k

A2+B2

B2*k
A1+B1

B1*k

A2+B2

B2*k

B3*k

B4*k

A3+B3

A4+B4

LD
A1

LD
B1

LD
A2

LD
B2

LD
B3

LD
A4

LD
B4

LD
A5

LD
B6

LD
B5

LD
A3

LD
A6

LD
B7LD

A7 LD
A8

LD
B8

B1*k

B2*k

B5*k

B6*k

B5*k A5+B5

A1+B1

A2+B2

B3*k

B4*k

B5*k

A3+B3

A4+B4

A5+B5 B6*k

A6+B6

B7*k

B8*k

A7+B7

A1+B1

B1*k

A2+B2

B2*k

A3+B3

B3*k

A4+B4

B4*k

B5*k

LD
A4

LD
B4

LD
A3

B3*k

LD
B3

A3+B3

LD
A1

B1*k

LD
B1

A1+B1

LD
A2

B2*k

LD
B2

A2+B2

LD
A1

LD
B1

LD
A3

LD
B3

LD
A2

LD
B2

LD
A5

LD
B5

LD
B2

LD
B3

LD
B5

LD
B4

LD
B6

A3+B3

B3*k

A4+B4

B4*k

LD
A1

LD
B1

LD
A2

LD
A3 LD

A4

LD
A5 LD

A6

LD
B2

LD
B3

LD
B5

LD
B4

LD
B6

Figure 2: Motivational example for DeSC. For the code in Table 1, the dynamic instruction schedules are shown for several
approaches. Some instructions (address computation, store) were omitted for clarity. Arrows represent a data communication
between both sides on decoupled cases. ROB size of 4 and 2-issue width are assumed for OoO cores. Outstanding loads are
limited to 4. Each column can be understood as the occupancy of either the ROB (OoO cases) or the MSHRs (in-order case).

earlier loads are done.
One way of achieving out-of-order communication in an

OoO DAE is simply inserting data into communication
queues at issue time (i.e., out-of-order) as in Fig. 2d.
This speculative approach can communicate data earlier
at the expense of mis-speculated data being propagated,
making it necessary to flush communication queues on
all mispredicted branches. DeSC overcomes this limita-
tion by supporting out-of-order communication without
complex speculation recovery mechanisms.
Even with out-of-order communication, Fig. 2d’s de-

sign still fails to achieve significant performance improve-
ment. This is because its instruction commit happens
in-order. For example, in Fig. 2d, after communicating
a short-latency Load B, another load cannot be issued
since the long-latency Load A blocks the commit of Load
B and its ROB entry cannot be freed. A similar ar-
gument applies to the in-order core case. While the
original DAE assumed fixed memory latency and thus
all memory requests naturally returned in-order with-
out extra structures (e.g., load queue, MSHRs), modern
memory systems with variable memory latency require
structures like the load queue and MSHRs, to buffer re-
turned data values to insert them into the communication
queue in original program order. This requirement of
non-speculative, in-order communication or commit and
resulting resource constraints form a bottleneck. DeSC
(Fig. 2e) overcomes this second problem by allowing
out-of-order commit for certain loads with architectural/-
compiler support (Section 3.2).
Summarizing, DeSC (i) communicates data when ready

(out-of-order) without the need for mis-speculation re-
covery; and (ii) utilizes the SuppD’s OoO pipeline more
efficiently by allowing OoO commits. With these features,
DeSC offers significantly more latency-hiding benefits
than prior DAEs, and reduces key resource bottlenecks.

2.3 Loss of Decoupling Events in DAE
DeSC also improves on general DAE performance by at-

tacking several of the loss of decoupling (LoD) events (as
termed in [3, 17, 52]) that limit DAE performance. LoD
events occur when the data or control of the AP depends
on the EP, which limits AP runahead distance. There

are three primary categories of inter-core dependences
that cause LoD events as described below. Our work
on DeSC reexamines DAE approaches with additional
hardware/software support to reduce LoD events.

Case (a) Case (b) Case (c)

for(i=0;i<10;i++)
a[i] = a[i]*x

v = a[5] * y

v = a[i] * x
if (v > 0.5)
d = b[i]

v = a[i] * x
d = b[(int)v]

Table 2: Code examples incurring LoD events.

(a) Data Aliasing occurs when data is computed,
stored to memory and then later re-loaded from memory.
In this case, the AP may or may not stall depending on
the distance between the preceding store address instruc-
tion and following load instruction. If the value was not
computed by the time a dependent load happened, the
AP should stall until the value is computed by the EP
and passed to the AP. DeSC instead uses a novel hard-
ware optimization technique that enables store-to-load
forwarding within a decoupled scenario (Section 5.1).
(b) Computation Dependent Control Flow oc-

curs when a computed result determines the AP’s control
flow (e.g., a conditional exit). This happens in applica-
tions where a computed value must be communicated
back to the AP to determine a branch outcome, mak-
ing the AP stall. DeSC uses a compiler transformation
introduced in Section 5.2 to mitigate this.
(c) Computation Dependent Data Address oc-

curs when a computed result is used as an address for
a subsequent data load. This behavior is seen in some
scientific codes where a computed result is quantized
(e.g., histogram, interpolation). In such cases, the AP
stalls until it receives the address from the EP. Section
5.3 describes our software approach to mitigate this.

3. DeSC HARDWARE ORGANIZATION
Decoupled Supply-Compute (DeSC) communication

management consists of two specialized hardware units:
a supplier device (SuppD) and a computation device
(CompD), along with a hardware-software interface for
their interactions, and compiler techniques for targeting
them. Where DAE primarily envisioned two instruction-

193

STORE
ADDR

STORE

Cache, Memory Interface

Comm. Queue
 (FIFO Queue)

ID Data Fwd

:
:

:
:

:
:

Value Computation

LOAD

STORE
VALUE CONSUME

Comm. Buffer
(CAM)

ID Data Fwd

:
:

:
:

:
:

Register File

PRODUCE LOAD_
PRODUCE

Terminal Load
 Buffer

Store Address
Buffer

(FIFO CAM)

Addr Awt Cnt

:
:

:
:

:
:

LOAD_
PRODUCE

Addr

Store Value
Buffer

(FIFO Array)

Data Cnt

:
:

:
:

CONSUME

Supplier Device (SuppD) Computation Device (CompD)

Address Computation

Value

Figure 3: Hardware implementation of DeSC.

programmable processor cores with different roles, our
work is open to more specialization. That is, both SuppD
and CompD could be either processors or accelerators,
or (as we discuss here) processors with tailoring to each
of their roles.
Fig. 3 shows DeSC’s hardware implementation. Grey

boxes represent an abstracted view of the hardware mod-
ules that either calculate the memory addresses or com-
pute the output values. Here, SuppD is a nearly-general-
purpose core— an out-of-order pipeline with ROB, Reg-
File, and a number of integer functional units for calculat-
ing memory addresses—but sizing choices are tailored to
its role and no floating point functional units are needed.
Likewise, CompD can be another out-of-order core or
a specialized hardware accelerator for a particular ap-
plication. Either way, CompD is tailored to its role by
removing memory hierarchy access; the SuppD supplies
it with data as needed.
For data supply, a Communication Queue (CommQ)

interconnects SuppD to CompD, and feeds into a Com-
munication Buffer (CommBuf) from which value lookup
can be performed. The SuppD also includes a Store
Buffer for updating the memory hierarchy when a com-
puted value is returned. Finally, Table 3 lists the added
instructions on either side to support DeSC.

Supplier Device Computation Device

PRODUCE(Reg) Reg=CONSUME()

LOAD_PRODUCE(Addr)

STORE_ADDR(Addr) STORE_VAL(Reg)

Table 3: ISA extensions for DeSC.

3.1 Communication Mechanism
The CommQ is logically a FIFO hardware queue for in-

terconnecting SuppD and CompD. Data items are placed
into the CommQ by a PRODUCE instruction executed on
SuppD. In addition to a data value, each entry in CommQ
also holds a program-order id assigned at a PRODUCE in-
struction’s dispatch. In an out-of-order SuppD, data
is inserted at commit, thus guaranteeing that no mis-
speculated data can pollute the queue. Therefore, there
is no need for a recovery/flush mechanism. From there,
data are transmitted to CommBuf as space is available.
The CommQ size dictates the maximum run-ahead dis-
tance allowed between SuppD and CompD. Our evalua-
tions use a 512-item queue. Physically, this queue can be
implemented as RAM, with storage on both SuppD and

CompD sides. If CompD is a hardware accelerator, the
queue can also be logically mapped into the CompD’s
scratchpad memory.
The CommBuf is a CAM-based array on the CompD

side. In addition to a data value, each entry in Comm-
Buf holds a program-order id originated on SuppD and
propagated from the CommQ. This id allows a CONSUME
instruction (which also gets program-order id at dispatch)
to find the data produced by its counterpart. Because
we do not allow speculative data in the queue, for ev-
ery producing instruction on the SuppD side there will
be a consuming counterpart on the CompD side. If
the CONSUME is dispatched before its data arrives to the
CommBuf (rare), it remains in the CompD’s instruc-
tion window, waiting for its data to arrive. Whenever a
new data is moved into the CommBuf, the id and value
are reported to the instruction window which eventually
wakes-up the CONSUME. This CAM buffer enables data
to be consumed out-of-order for better performance but
the entry is not released until commit (enforcing that
no mis-speculated CONSUME instructions could evict any
item). The CommBuf size limits the degree of out-of-
order data consumption and load reordering (we used a
64-entry buffer). Compared to a single large searchable
buffer, the combination of CommQ and CommBuf lets
DeSC benefit from OoO data consumption with lower
area and energy consumption.

3.2 Exploiting Terminal Loads
Decoupled execution has highest leverage when the

SuppD side remains well ahead of the CompD. To support
that, the goal is to insert data into the queue as soon
as possible. Inserting speculative data to the CommQ
could achieve that, but would incur large overhead when
speculation turns out to be wrong. On the other hand,
forcing queue insertion to wait until traditional commit
time, often kills the benefit of out-of-order processing.
To overcome those limitations, DeSC allows an out-of-
order commit for limited cases called terminal loads while
preserving the benefit of out-of-order processing (Fig. 2e).
Terminal loads are defined as loads in which the fetched

value is going to be used only on the CompD side for
computational purposes. Thus, they have no dependent
instructions on the SuppD core. In traditional proces-
sors, a load instruction will have subsequent users of
the data, and thus terminal loads would be rare or non-
existent. However, they frequently appear in a decou-
pled architecture where a load’s consumer is part of the
CompD instruction stream. To the best of our knowl-
edge, DeSC is the first approach that exploits the specific
characteristics of terminal loads to avoid unnecessary
stalls in the SuppD core due to long latency loads (with
the same aim as many past approaches [37, 48, 15, 8]),
and thus, preventing stalls due to lack of space in the
SuppD ROB. In DeSC, terminal loads are determined at
compile-time (Section 4) and thus need relatively modest
hardware support. The compiler marks them using a
special LOAD_PRODUCE instruction (on the SuppD side)
that combines the original load request together with a
PRODUCE into one single instruction.

194

Original DeSC SuppD DeSC CompD

for (i=0;i<100;i++) {
idx = LOAD(&a[i])
tmp = LOAD(&v[idx])
val = tmp * c
STORE(&b[i], val)

}

for(i=0;i<100;i++) {
idx = LOAD(&a[i])
LOAD_PRODUCE(&v[idx])
STORE_ADDR(&b[i])

}

for(i=0;i<100;i++) {
tmp = CONSUME()
val = tmp * c
STORE_VAL(val)

}

Table 4: Code example for terminal loads.

Table 4 shows a code example for terminal loads. In
this example, LOAD(&a[i]) is not a terminal load because
its value will be reused for the next instruction. On the
other hand, LOAD(&v[idx]) is a terminal one because
its value will be only used for computation purposes (on
CompD). Thus, the compiler transforms the latter load
into a LOAD_PRODUCE instruction on the SuppD side.

Reorder Buffer
(ROB)

:
:

:
:

:
:

Terminal Load
Buffer (CAM)
ID … Cnt

:
:

:
:

Comm. Queue
(FIFO Queue)

ID Data Fwd

:
:

:
:

:
:

LOAD_PRODUCE
(Partial Commit)

PRODUCE
(Regular Commit)

LOAD_PRODUCE
(OoO Commit)

Figure 4: Out-of-order commit for terminal loads.

Figure 4 illustrates the hardware aspects of the ter-
minal load optimization. A LOAD_PRODUCE instruction
that reaches the head of the ROB is allowed to “partially”
commit if it is already issued. Note that partial commit
happens even if it has not completed yet (e.g., upon a
cache miss still awaiting to be serviced). It is then re-
tired from the ROB and moved to a separate Terminal
Load Buffer, a CAM-based structure, where it will re-
main until the data value is received and then inserted
into the CommQ. At that point, the terminal load can
fully commit, out-of-order. (Section 3.5 discusses excep-
tion handling and consistency.) On the CompD side, its
CONSUME counterpart will eventually receive the value on
a successful value lookup in the CommBuf.
Note that any load in the Terminal Load Buffer is

non-speculative since it reached the head of the ROB,
and so we still enforce that no mis-speculated data can
pollute CommQ/CommBuf (similarly as for PRODUCE in-
structions). Second, there are no dependent instructions
on the SuppD waiting for the loaded value, so no special
actions need be taken when the commit occurs. Because
this optimization directly enqueues the value to be passed
to the CompD, it does not use either registers or an extra
instruction unnecessarily on the SuppD side. Even more,
it also allows later loads to proceed, so the SuppD ROB
does not fill waiting on this load to finish.
Summarizing, even with a relatively small Terminal

Load Buffer (32 entries), this technique efficiently reduces
stalls, providing significant speedup as shown in Sec. 6.

3.3 Memory Update Mechanism
After computing a value, CompD might need to com-

municate it back to the SuppD side which is the interface
to the memory hierarchy. To manage that, a Store Ad-
dress Buffer (SAB) is needed on the SuppD side (Fig. 3).

This structure keeps information about all in-flight store
instructions in program order. Similar to the LSQ’s store
queue in a conventional processor, the SAB is a FIFO
structure that supports associative searches of a memory
address to (i) detect memory dependences and (ii) allow
decoupled store-to-load forwarding (Section 5.1). The
size of SAB limits the number of stores a SuppD device
can perform without waiting for CompD to generate
value of the store. Our evaluation uses a 128-entry SAB.
In DeSC, a store from the original instruction stream is

split into two: one for the SuppD in charge of providing
the address, and another for the CompD device providing
the data to be stored. In the SuppD, a STORE_ADDR
reserves an empty entry in the SAB at dispatch time
which holds the destination address when it becomes
ready. When this instruction reaches the head of the
ROB, it can safely retire from the SuppD regardless of
whether the value on the CompD side has been computed
or not. At that point, the “awaiting” bit (see Fig. 3) is
set to indicate there is an outstanding store waiting for
the data to arrive from the CompD.
Note that a STORE_ADDR instruction is always paired

(in program order) with a STORE_VAL instruction on the
CompD side. The STORE_VAL instruction communicates
the value back to the oldest entry (head entry) in the
SAB at commit time which checks the “awaiting” bit. If
set (which is the common case) the entry can be freed and
the value is submitted to the memory hierarchy (and the
store completes). In the rare case of finding the“awaiting”
bit not set (CompD has temporary surpassed the SuppD
core), the CompD core is stalled until the STORE_ADDR
pair commits (setting the “awaiting” bit) and we can
submit the value to memory and release the SAB entry.

3.4 Control Flow Management
Different from previous DAE-based approaches which

communicated branch outcomes between access/execute
processors through separate queues, the proposed DeSC
framework lets each side manage its own control flow inde-
pendently. This is a desired property since DeSC is aimed
at decoupled heterogeneous systems where the CompD
side could be implemented as a specialized computing ac-
celerator with its own internal control flow management
(or as a general-purpose core with a traditional branch
predictor). The SuppD side will typically implement
a conventional branch predictor and its corresponding
recovery mechanism.
Two key points allow DeSC to act asynchronously

in terms of control flow. First, CommQs never con-
tain mis-speculated data, a condition enforced by the
SuppD commit-time insertion policy used by PRODUCEs
and LOAD_PRODUCEs. Second, the CommBuf’s commit-
time deletion policy avoids wrong evictions by mis-speculated
CONSUME instructions (recall this does not prevent CompD
from reading data from the buffer out-of-order). As a re-
sult, as long as commited PRODUCEs and CONSUMEs follow
matching sequences, DeSC allows for control flow diver-
gences with the guarantee that a mispredicted path on
either SuppD or CompD side will be eventually flushed,
transparently to the other side, affecting neither the
correctness of the communication nor the computation.

195

3.5 Potential Issues and Solutions
Precise Exceptions. In order to provide precise excep-
tions, if any instruction in the SuppD ROB causes a fault,
all ongoing loads in the Terminal Load Buffer must first
complete and retire (since they are older) before the fault
can be serviced. On the other hand, in case of a faulting
terminal load (we assume the only possible faults at this
point are due to late rechecks of virtual memory trans-
lations, since most other cases would have arisen before
reaching the Terminal Load Buffer), it can be serviced
in appearance order with no additional implications.
Deadlock Prevention. To save on area and power, the
CommBuf has limited size (assume N), and thus CompD
can only consume from the N oldest (in program order)
instructions that were inserted into the CommQ. If the
out-of-order commit aggressively reorders many terminal
loads, it might allow N or more younger terminal loads
(or produce) to pass an older one. If those younger N
fill up the CommBuf, it is possible (though unlikely)
that none of the CompD’s in-flight CONSUME instructions
would be able to find their data (if they all were waiting
for older terminal loads). In that case both the CompD
and SuppD would stall, resulting in a deadlock.
To prevent this, our deadlock avoidance mechanism

limits the degree of reordering (i.e., how many younger
terminal loads or produce can “pass” a given terminal
load). The mechanism works as follows: each new ter-
minal load buffer entry resets its “counter” field to zero
(see Fig. 4). When a LOAD_PRODUCE fully commits, all
older terminal load’s counters are incremented. Similarly,
when a PRODUCE commits, all terminal load’s counters are
incremented. If the oldest entry’s counter ever reaches
N-1, it must commit before other entries. This mecha-
nism guarantees at least one item in the CommBuf to
be the oldest data that has not been consumed, thus,
avoiding deadlocks. Note, however, that the CompD
still has N-1 out-of-order items in the CommBuf to feed
from. Our experiments (CommBuf with N=64) show
this mechanism has negligible performance impact for
almost all workloads.
Memory Consistency. As explained in Section 3.2,
DeSC benefits from out-of-order commit for terminal
loads. By doing so, we give up the capability of sup-
porting load-to-load ordering and store-to-load in hard-
ware for better performance. On the other hand, DeSC
guarantees store-to-store ordering (with in-order memory
update) and load-to-store ordering (store can only be
visible when both STORE_ADDR commits). This results in
a unique memory consistency model that is stronger than
some weak memory models (e.g., ARM, POWER) but
weaker than stronger memory models (e.g., x86-TSO).
If a stronger consistency model is desired for some in-
structions, the ISA additions could include additional
ordering enforcement constructs.

4. DeSC COMPILER SUPPORT
The DeSC compiler (based on LLVM [32]) splits the

given source code into a communication slice and a com-
putation slice, which target the SuppD and CompD re-
spectively. By working on the LLVM intermediate rep-

resentation (IR), the DeSC compiler can handle source
codes written in any language with an LLVM front-end.
The communication slice is responsible for all loads;

it supplies required data to the computation slice using
PRODUCE or LOAD_PRODUCE instructions. The communica-
tion slice is also responsible for all address calculations
for both loads and stores. Store instructions in the origi-
nal code are split into a STORE_ADDR instruction for the
SuppD and a STORE_VAL pair for the CompD.
The computation slice has the following characteris-

tics. First and foremost, since it has no direct memory
system access, it cannot have load or store instructions.
Instead of loads, it uses a CONSUME instruction to receive
the data from a communication slice. In addition, the
computation slice performs all of the program’s value
computations. Where those are to be stored to mem-
ory, the CompD calculates the data values and asks the
SuppD to handle their storage using the STORE_VAL in-
struction. To generate the code slices, the compiler goes
through three primary steps as discussed here.

Slice Starting Set Operands
Not Tracked

Disallowed
Instruction

Communication
Slice

Load and
Store

Value operand
of Store

Fadd, Fmul,
Fdiv, etc.

Computation
Slice

Store Addr operand
of Store

Load

Table 5: Input for the slice construction algorithm.

1. Slicing: Using a fairly standard compiler slicing
approach [53], a backward slice is constructed for SuppD
and another for CompD. In each case, the algorithm
extracts a subset of the program based on propagations
backwards from the starting set given in Table 5. If it
encounters a disallowed instruction during the process,
the propagation stops. Instead, values needed at these
points will be received from the other slice through special
instructions that are inserted in later compiler stages.
2. Communication: The second compiler stage inserts
decoupling instructions to appropriately link SuppD and
CompD value communications. Within this stage, all
load instructions from the original program must be re-
placed by a PRODUCE instruction inserted into the commu-
nication slice, and a corresponding CONSUME instruction
in the computation slice. Compiler dependence analysis
identifies terminal loads by checking for dead values on
the SuppD after the point of the load. In such cases, the
LOAD_PRODUCE instruction is used instead of a PRODUCE, to
indicate terminality and allow for commit optimizations.
Similarly, store instructions must be handled as well.

All stores in the communication slice are replaced with
the STORE_ADDR, while the store counterparts in the com-
putation slice are replaced with the STORE_VAL instruc-
tion. For rare cases when a communication slice needs
to receive the value from a computation slice, a special
identifier (or magic address) is used to indicate that this
store is for CompD to SuppD communication. Thus,
STORE_ADDR(MagicAddr) and Load(MagicAddr) are in-
serted into the SuppD slice while a STORE_VAL instruction
is added to the CompD slice.
3. Integrating Control Flow: Finally, a third phase
of compilation handles control flow issues, particularly

196

between the SuppD and the CompD. By default, both
slices include all instructions that terminate basic blocks
(branch, jump, etc.) from the original source code. On
each side, the compiler then removes redundant instruc-
tions, because some control flows are only useful in on
one side or the other. From this simplified set of control
instructions, two backward control slices are constructed
for SuppD and CompD. In some cases, this may cause ad-
ditional disallowed instructions (Table 5) to return to the
code; if so, the compiler’s second step (Communication
transformations) is re-run to adjust for these.

5. LoD OPTIMIZATIONS FOR DeSC

5.1 Decoupled Store-to-Load Forwarding
To address the data alias LoD event (Fig. 2a), this

section presents a novel hardware optimization that en-
ables a decoupled store-to-load forwarding mechanism.
As briefly stated in Section 2.3, the AP of the traditional
DAE must stop whenever it sees a Load instruction de-
pendent on a previous Store whose value the EP has yet
to calculate. This conservative approach stalls the AP
until the data arrives back from the EP. However, for
“terminal loads” (i.e., LOAD_PRODUCE) whose only purpose
is to insert data into the CommQ, there is no reason
to stall the SuppD. Furthermore, the consumer of the
LOAD_PRODUCE (on CompD) may need the data much
later if both devices are decoupled enough (or it might
not even been dispatched yet). Instead of blocking the
execution of LOAD_PRODUCE on SuppD, we let this depen-
dent LOAD_PRODUCE proceed into the CommQ, eventu-
ally reaching the CompD side, as any other PRODUCE or
LOAD_PRODUCE, but carrying an index to its producing
store rather than the value itself. Once the value is
computed, the index allows the CONSUME pair to find its
data on CompD.
To support this technique, a Store Value Buffer (SVB)

is used to hold computed values on the CompD side
(Fig. 3) in case they need to be forwarded to upcoming
dependent loads. The SVB is implemented as a FIFO
array, and it is the counterpart to the SAB (that holds
addresses on the SuppD side). A STORE_VAL executed by
CompD reserves an entry in the SVB at dispatch time
(to preserve the program order). It updates the data
field after the value has been calculated. In addition, a
pair of global counters are needed (one on each side) to
track the number of removed entries for each SAB and
SVB buffer. By adding the number of older entries in
SAB/SVB to these counters, we can define an unique
st id per entry. Each of these global counters must be
large enough to guarantee that st ids are always unique
for in-flight instructions.
The matching mechanism works as follows. Every

LOAD_PRODUCE checks the SAB for a matching preced-
ing STORE_ADDR. If found, the st id is inserted into the
CommQ (instead of a data value) and the “Fwd” bit is
set. On the CompD side, the CONSUME pair will check
the “Fwd” bit for a forwarded item. If so, it subtracts
the SVB’s global counter value from the st id (in the
data field) to obtain the entry in the SVB from which

the CONSUME will get the computed data.
Finally, a value in the SVB must be kept long enough

to handle any upcoming forwarded LOAD_PRODUCE. To
precisely know when an SVB entry can be released, a
per-entry counter (“Cnt”in Fig. 3) is needed on both SAB
and SVB buffers to track the number of forwarded items
as follows. In the SuppD, each time a LOAD_PRODUCE finds
a match in the SAB, the entry’s “Cnt” is incremented.
When a STORE_ADDR commits and leaves the SAB, its
counter is sent to the STORE_VAL pair in CompD. There,
every time a forwarded item uses the value in SVB, the
counter is decremented. When the oldest SVB entry’s
counter becomes zero, it can be safely released. Sending
the counter value for every Store does not incur much
overhead since the counter can be very small (e.g., 4bit).

5.2 Conditional Branch Optimization

Original
(SuppD)

Original
(CompD)

Transformed
(SuppD)

Transformed
(CompD)

STORE_ADDR(Addr)
val = LOAD(Addr)
if (val > 0.1) {
LOAD_PRODUCE(&k)
STORE_ADDR(&k)

}

val = a[i]-b[i]
STORE_VAL(val)
if (val > 0.1) {
k = CONSUME()
k++
STORE_VAL(k)

}

LOAD_PRODUCE_CHK(&k)
STORE_ADDR(&k)

val = a[i]-b[i]
k = CONSUME()
if (val > 0.1) {
k++
STORE_VAL(k)

}
else
STORE_INV()

Table 6: Conditional branch optimization example.

As stated in Section 2.3, a conditional branch depend-
ing on computation causes the SuppD to stall until the
computed value returns (Fig. 2b). However, if executing
both paths of a branch is not as expensive as waiting
until the data value returns, it can be more beneficial to
simply execute both branch paths.
To take advantage of such a case, we propose a com-

piler transformation with architectural support. Table 6
shows the example case where this technique is beneficial.
In the original code, as the val variable depends on com-
putation, the SuppD has to wait until val is provided
by the STORE_VAL instruction. Then, the branch will be
evaluated and both LOAD_PRODUCE_CHK and STORE_ADDR
instructions will be executed if it is taken. However, in
this case, unconditionally executing the branch can be
much more beneficial than waiting for the CompD to pro-
vide the value. Thus, from the communication slice, the
branch and those instructions required to calculate the
branch outcome are removed. Then, instructions from
the branch target address are executed unconditionally.
To adjust to these changes in the SuppD slice, the

CompD slice is also transformed. All CONSUME instruc-
tions inside the branch are moved to the point just before
the branch. In addition to these, for every STORE_VAL
instruction inside the branch, a STORE_INV instruction is
added to the other path of the branch. This way, every
extra STORE_ADDR instruction executed in the communi-
cation slice will be invalidated accordingly. Note that
this transformation can potentially lead to a load excep-
tion. When an exception is found in LOAD_PRODUCE_CHK,
SuppD stalls and delay its processing until matching
CompD instruction is executed. Depending on the match-
ing CompD instruction, the exception can be processed

197

(if matching CompD inst is STORE_VAL) or ignored (if
matching CompD inst is STORE_INV).

BB1

BB2

BB3

BB4 BB1

BB2

BB3

Diamond Triangle

Figure 5: Conditional branch optimization target.

Currently, our compile framework performs this opti-
mization for triangle and diamond patterns, as shown in
Fig. 5 but it is also possible to apply this transforma-
tion for more complex patterns. To avoid the potential
performance degradation from converting a large condi-
tional basic block to an unconditional one, our framework
only performs this optimization when a conditional basic
block contains few instructions. More advanced heuristics
based on cost-benefit analysis are also possible.

5.3 Optimizations for Computed Address
A data address that depends on computation can cause

a stall as mentioned earlier (Section 2.3c). If the time
is sufficiently large, however, between when the CompD
generates a data item and when the SuppD consumes it,
the SuppD may not need to stall because data may have
already been updated to memory by the time SuppD
reads it. Therefore, the effect of this LoD can be reduced
by using compiler techniques that try to compute the
address as early as possible, with sufficient spacing before
its use. In addition, for loops, some transformations that
reduces the temporal locality of a computed address can
reduce the effect of this LoD. The most representative
example is Loop Distribution [52]. If a data address is
computed and used in the same loop, the loop can be
distributed at a point between data address computation
and a load using computed data address. When a loop is
sufficiently large, this is often enough to avoid the LoD.

6. DeSC EVALUATION: CMP

6.1 Evaluation Methodology
For cycle-level simulations of DeSC, we use a mod-

ified version of Sniper [6]. Specifically, we extended
Sniper’s cycle-level out-of-order processor model (instruc-
tion window-centric [7]) to support DeSC’s extended ISA
and proposed hardware components. Table 7 summarizes
the baseline simulation parameters used.

CPU 2.0Ghz 4-Way OoO Cores
32-entry Instr. Window / 32-entry ROB

L1 Cache 32KB / 4-way / 2ns Latency

L2 Cache 1024KB / 8-way / 10ns Latency

MSHR 16 MSHRs

DRAM 12.8GB/s Bandwidth

DeSC Interface 512-item Comm. Queue / 1 cycle Push Lat.
64-entry Comm. Buffer / 1 cycle Read Lat.
CommQ to CommBuf / 1 cycle Latency

128-entry SAB / SVB

Table 7: Architectural simulation parameters.

Our experiments are run on 16 workloads from the
Parboil [49] and Rodinia [9] suites. In each case, the com-
piler pass operates on the regions-of-interest as marked

by the suite developers (with start-timer calls). Some
benchmarks from these suites (e.g., bfs, b+tree, tpacf,
MummerGPU) are so communication-bound—with in-
sufficient value computation to overlap—that we do not
address them. Without value computation to balance
against, DeSC is no better than a single SuppD. The
compiler passes can identify imbalanced benchmarks and
only employ DeSC when promising. In addition, we ex-
cluded few computation-intensive benchmarks to avoid
redundancy while keeping three as representative cases
for them. In addition, three workloads were not included
to the experiment due to incompatibilities with the our
simulation framework.

LAVAMD MRIQ CUTCP SRAD CFD HOTSPOT LUD KMEANS LBM NN SGEMM PATH SPMV STENCIL NW BACKPROP

S
pe

ed
up

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
5.31 9.46

Compute Bound Workloads Moderately Compute
Bound Workloads

Moderately Memory
Bound Workloads Memory Bound Workloads

Baseline
Perfect L1 Cache

Figure 6: Workload categorization.

For the 16 studied workloads, Figure 6 compares the
baseline performance on a standard OoO processor to
that same processor with perfect L1 cache. From this,
we classify them into four categories based on memory-
boundedness. Workloads which get less than 5% speedup
from the perfect cache configuration are categorized as
computation-bound. Workloads with 5% to 50% speedup
are categorized as moderately computation-bound. Work-
loads which get more than 50% but less than 100%
speedup are categorized as moderately memory-bound.
Lastly, workloads with more than 100% speedup are
categorized as memory-bound.

6.2 DeSC on homogeneous CMP
Figure 7 shows DeSC’s speedup with varying degrees of

optimizations. For each workload, the 1st bar represent
the baseline case where single core is running a workload.
The next three bars show DeSC (a baseline OoO core for
SuppD / a baseline OoO core for CompD) speedups for
the different optimizations. The baseline DeSC (2nd bar)
gets little to no speedup over a single core. In particular,
for workloads with LoD events, performance was much
worse than baseline case. After applying specific LoD op-
timizations (Section 5.1, 5.2, 5.3) for each workload with
LoD event, those workloads get significant performance
improvement (3rd bar) compared to the case before LoD
optimizations were applied (2nd bar). The key to better
performance is out-of-order commit for Terminal Loads
(Section 3.2). As shown by the 4th bar, with the Terminal
Load optimization, around 70% speedup is achieved for
moderately compute-bound or memory-bound workloads
and 200% speedup is achieved for memory-bound work-
loads. Since compute-bound workloads are not limited by
memory performance, they see less speedup from DeSC.
It is natural to consider comparing DeSC against other

memory latency tolerance optimizations, and with that
in mind, the rightmost two bars in Figure 7 shows the
performance comparison between DeSC and perfect L1

198

LAVAMD MRIQ CUTCP AVG SRAD CFD HOTSPOT LUD KMEANS AVG LBM NN SGEMM AVG PATH SPMV STENCIL NW BACKPROP AVG

S
pe

ed
up

 o
ve

r
B

as
el

in
e

C
as

e

0

0.5

1

1.5

2

2.5

3
9.46

Compute-Bound Workloads Moderately Compute-Bound Workloads Moderately Memory-Bound Workloads Memory-Bound Workloads

Baseline
DeSC with no optimization
DeSC with LoD optimizations
DeSC with Terminal Load optimizations
Perfect L2 Cache
Perfect L1 Cache

0.
5x

 S
ca

le
d

ax
is

 fo
r

M
em

-B
ou

nd

0

1

2

3

4

5

6

Figure 7: Performance of DeSC system across different degrees of optimization compared against perfect L1/L2 cache case.
Memory-bound workloads use right Y-axis.

 LAVAMD MRIQ CUTCP SRAD CFD HOTSPOT LUD KMEANS LBM NN SGEMM PATH SPMV STENCIL NW BACKPROP

N
or

m
al

iz
ed

 R
un

tim
e

0

0.2

0.4

0.6

0.8

1

1.2

Compute-Bound Workloads Moderately Compute-Bound Workloads Moderately Memory-Bound Workloads Memory-Bound Workloads

Computation
Communication (Memory)
Comm. Queue Full
Store Addr. Buffer Full

Figure 8: DeSC runtime distribution graph (from left to right: base, SuppD, CompD).

Comp-Bound Mod. Comp-Bound Mod. Mem-Bound Mem-Bound

N
or

m
al

iz
ed

 S
pe

ed
up

0

0.5

1

1.5

2

2.5

3 Baseline (32)
Baseline with 2x ROB (64)
Baseline with 4x ROB (128)
Baseline with 8x ROB (256)
DeSC (SuppD ROB=32 & CompD ROB=32)

Figure 9: Average DeSC performance (per category) com-
pared against baseline with larger ROB.

32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256

N
or

m
al

iz
ed

 S
pe

ed
up

0

0.5

1

1.5

2

2.5

Comp-Bound Mod. Comp-Bound Mod. Mem-Bound Mem-Bound

Baseline (ROB=32/64/128/256)
Perfect L1 Cache (ROB=32/64/128/256)
DeSC (SuppD ROB=32 & CompD ROB=32/64/128/256)

0.
5x

 S
ca

le
d

ax
is

 fo
r

M
em

-B
ou

nd

0

1

2

3

4

5

Figure 10: Average DeSC performance (per category) across
varying ROB sizes.Memory-bound workloads use right Y-axis.

or L2 cache cases. Perfect L2 cache (5th bar) can be
interpreted as a realistic upper bound for existing work
on prefetching techniques which typically fetch to the L2.
Similarly, perfect L1 cache (6th bar) can be interpreted
as an extreme upper bound for prefetching techniques.
DeSC performs better than perfect L2 cache in most cases.
Where perfect L2 cache performed better (e.g., stencil),
DeSC is in fact limited by memory bandwidth which
does not affect the perfect cache. In cases such as spmv
or backprop, histogramming behavior or other value de-
pendencies mean that DAE-based prefetching would not
approach these perfect L2 cache speedups due to latency
on their critical path. We also note that DeSC sometimes
outperforms perfect L1. This occurs where DeSC benefits
from (i) offloading of address computation-parallelization;
and (ii) lower communication buffer access delay com-
pared to the L1 cache.
Figure 8 shows the distribution of runtime for either

baseline or SuppD and CompD. As expected, compute-
bound workloads spend most of the runtime on compu-
tation while memory bound workloads spend most of
the runtime on memory accesses. For many workloads,
however, DeSC removes almost all the communication
time. In memory-bound workloads, where it cannot,
this is either because the system is bandwidth-bound
(nw, stencil), or because memory latency is exposed be-
cause the application limits run-ahead distance (path,
spmv, backprop). Despite these limits, memory-bound
workloads still show huge speedup because DeSC elimi-

nates large portion of the time spent on communication.
Finally, in some computation-bound workloads (mriq,
lavamd, cfd, hotspot), SuppD stalls frequently due to a
full CommQ. In cases like this where CompD’s data con-
sumption speed is low, the SuppD could be power-gated
based on CommQ occupancy.
Figure 9 compares DeSC performance against a base-

line OoO core with varying degree of reorder buffer sizes.
On compute-bound workloads, DeSC performs similarly
to the baseline with a 32-entry ROB because its com-
puting ability is limited by the small CompD’s ROB
size (just 32 entries). For moderately compute/memory-
bound workloads, DeSC performance is similar to the
baseline with 4x or 8x ROB sizes. Finally, for memory-
bound workloads, DeSC performs much better than even
a baseline with a 256-entry ROB because it can benefit
more from its superior latency hiding capability.
Figure 10 shows DeSC speedup against a baseline OoO

core with varying ROB sizes. However, for this exper-
iment, DeSC SuppD’s ROB size was fixed to 32 while
CompD’s ROB sizes were matched to the baseline OoO
core. Speedup is pretty insensitive to ROB sizes for the
first three workload categories. In these cases, a SuppD
core with a 32-entry ROB is enough to maintain the ben-
efit of DeSC, achieving a performance close to a baseline
with perfect L1. On the other hand, for memory-bound
workloads, the average speedup decreases with increasing
ROB size. This is because (i) SuppD with ROB=32 fails
to supply enough data for increased CompD capability;

199

LAVAMD MRIQ CUTCP AVG SRAD CFD HOTSPOT LUD KMEANS AVG LBM NN SGEMM AVG PATH SPMV STENCIL NW BACKPROP AVG

S
pe

ed
up

 o
ve

r
B

as
el

in
e

C
as

e

0

1

2

3

4

5

Compute-Bound Workloads Moderately Compute-Bound Workloads Moderately Memory-Bound Workloads Memory-Bound Workloads

Baseline
DeSC(SuppD:32 / CompD:32)
DeSC(SuppD:64 / CompD:64)
DeSC(SuppD:32 / CompD:96)
DeSC(SuppD:96 / CompD:32)

Figure 11: Effect of ROB resource allocation for each device side in DeSC.

LAVAMD MRIQ CUTCP AVG SRAD CFD HOTSPOT LUD KMEANS AVG LBM NN SGEMM AVG PATH SPMV STENCIL NW BACKPROP AVG

S
pe

ed
up

 o
ve

r
B

as
el

in
e

C
as

e

0

1

2

3

4

5

Compute-Bound Workloads Moderately Compute-Bound Workloads Moderately Memory-Bound Workloads Memory-Bound Workloads

Baseline
DeSC(SuppD:2Ghz / CompD:2Ghz)
DeSC(SuppD:1Ghz / CompD:1Ghz)
DeSC(SuppD:1Ghz / CompD:2Ghz)
DeSC(SuppD:2Ghz / CompD:1Ghz)

Figure 12: Potential for frequency/voltage scaling in DeSC.

and (ii) external factors such as memory bandwidth (or
issue width) that limits the increase in performance (re-
sulting decrease in relative speedup). However, note that
DeSC still shows 1.6x-3x speedup over a single OoO core
with varying ROB sizes for memory-bound workloads.

6.3 DeSC on heterogeneous CMP
One feature of DeSC is that it supports considerable

diversity between SuppD and CompD design. This sec-
tion explores moderate design specialization, while the
following explores DeSC’s usage in accelerator scenarios.
Figure 11 explores the effect of ROB size in DeSC.

Increased ROB size improves both latency tolerance and
throughput of the core while increasing design complex-
ity of the OoO core. Second bar represents the baseline
configuration of DeSC which consists of two cores whose
ROB size is 32. And the third bar represents the configu-
ration where both core’s ROB size is increased to 64. As
expected, increased ROB case performs strictly better
than baseline case. However, simply increasing the ROB
size for both cores is not the best solution on DeSC. As
DeSC decouples communication and computation, it is
often much more beneficial to focus on enhancing one
of SuppD or CompD depending on application’s charac-
teristic. For example, in (moderately) compute Bound
workloads, focusing on increasing ROB size of CompD
is better than simply increasing both core’s ROB. Also,
increasing the ROB size of SuppD does not help at all
in those cases. On the other hand, in memory bound
workloads, focusing on increasing ROB size often results
in the best performance. Note that increasing SuppD
ROB did not result in increase of performance in some
memory bound workloads because they were bound by
external factors (e.g., memory bandwidth, issue width).
Figure 12 explores the potential for voltage/frequency

scaling in DeSC. For compute-bound applications, scal-
ing down SuppD frequency often retains full perfor-
mance while enabling power/energy saving. Likewise, for
memory-bound applications, reducing CompD frequency
can save power with little or no performance impact.
Exceptionally, in pathfinder, decrease in either SuppD
or CompD incurs large performance penalty because

SuppD’s throughput or CompD’s throughput becomes
the new bottleneck when frequency is halved.

7. DeSC EVALUATION: ACCELERATORS
While DeSC on CPUs already offers significant per-

formance benefits, this section also sketches out DeSC’s
performance potential for CompDs that are implemented
as a specialized hardware accelerators.

7.1 Methodology
Detailed modeling of hardware accelerator behavior is

very challenging, and most existing accelerator synthe-
sizers or modelers (e.g. [44]) do not directly connect to
the CPU simulator we require for the SuppD side. To
explore the design space, we approximate the behavior
of a hardware accelerator by deeply modifying Sniper.
The core idea is to mimic the behavior of nearly-

perfect operation scheduling that would occur in a non-
instruction accelerator, with performance primarily lim-
ited by true data dependencies. In essence, this is approx-
imated by using an OoO simulator with as few resource
constraints as possible. Thus for the performance of our
kernels to be run as if on an accelerator, we make the
issue/dispatch/commit width of the processor very large
(e.g., 256), and we likewise make the ROB unrealistically
large as well (e.g., 16K). We assume perfect ICache and
Branch Predictor behavior, and we change the instruction
latency to match the assumed computation latency for an
accelerator (e.g., 1ns @ 1Ghz as in Aladdin). We unroll
important loops by a certain factor to allow consider-
able parallelism within the kernel. Finally to enclose the
“accelerated instructions” as if in specialized hardware,
we simulate a Sync instruction just before and after the
accelerated kernel which forces them to complete without
any overlap with preceding or following instructions.
While this model for accelerated kernels is approxi-

mate, it has sufficient fidelity to support our goal of
broad exploration of SuppD and CompD tradeoffs for
accelerator-style usage. In order to validate our approach,
we compared our results against the state-of-the art pre-
RTL hardware accelerator simulator Aladdin. Fig. 13

200

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

N
or

m
al

iz
ed

 R
un

tim
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Triad Stencil BB_Gemm MD

Aladdin Result
Accelerator Model using Sniper

Figure 13: Accelerator model validation.

shows these validation results for four SHOC kernels
[16] that ship with Aladdin. Across different loop un-
rolling factors, the validation shows that while our Sniper
approach is not highly accurate (30% on average), the
accelerator execution times are within sufficient accuracy
for our design goals here. Note that our experiments
are not entirely dependent on an absolute accuracy of
the model because we compare two cases (an accelerator
with a cache hierarchy vs a DeSC system consisting of a
CompD accelerator and a SuppD) where both sides use
the same model.

7.2 DeSC with Hardware Accelerator CompD
Figure 14 explores the case where the CompD is a

hardware accelerator. Here, the baseline design assumes
an accelerator having its own cache hierarchy (identical
to the one assumed in the OoO core). DeSC bars assume
a computing accelerator having no memory hierarchy or
access (as previously described), but rather a CommQ
and CommBuf with a SuppD supplying data for it. The
second bar assumes a baseline DeSC configuration where
the SuppD is a small OoO core whose parameters are
as in Table 7. Remaining bars give the SuppD more
resources. On average, a baseline DeSC performs bet-
ter than cache-based accelerators in more than 60% of
the evaluated workloads. In the end, DeSC provides
more than 50% average speedup for three workload cate-
gories and provides around 30% for computation-bound
workloads. One interesting thing to note is that even
originally computation-bound workloads can noticeably
benefit from communication optimization with hardware
accelerators. This is because a computation hardware
accelerator, as expected, accelerates computation greatly
while leaving communication mostly intact.
There are few exceptional cases where DeSC performs

worse than cache-based accelerators such as spmv. Hard-
ware accelerators integrated with the cache can issue
all independent loads between synchronization points
while OoO based SuppD can only detect independent
loads within the instruction window. As SPMV has
non-terminal loads, SuppD often had limited effective
instruction window because non-terminal load frequently
blocked the head of ROB. On the other hand, hardware
accelerators were able to utilize higher levels of paral-
lelism for loads in that case. However, as mentioned,
this is not a general case. Usually, DeSC provides more
performance benefit mainly because it utilizes the SuppD
communication queue to dynamically manage the commu-
nication in a fine granularity rather than relying on static
coarse grained communication synchronization planned
by hardware designers.

8. RELATED WORK
Decoupled Access Execute Architecture: Decou-
pled Access Execute (DAE) architectures attack memory
latency by decoupling a program’s access and execute
streams and letting them run largely independently while
communicating data through architectural queues [36,
46, 47]. Later DAE work extended this by exploring
implementation details [21], analyzing LoD events [3],
analyzing communication/computation balance [26], pro-
viding compiler framework [52], and extending for vector
processors [18]. In addition, more recent work utilizes
DAE for various purposes such as optimizing indirect
loads [14], efficient DVFS [25, 30], and energy-efficient
graphics pipelines [1]. In all these papers, DAE aimed to
hide memory latency and was often viewed as a poten-
tially simpler alternative to superscalar processors. Our
work views DAE with an updated perspective aimed not
just at latency tolerance, but also as a solution to the
data-supply problem for heterogeneous or accelerator-
based processors. In addition, DeSC unifies and exploits
both out-of-order and DAE techniques.
Helper Thread & Runahead for Prefetching: In
addition to the split streams used in DAE, other work
has envisioned helper threads either constructed by hand
[11], compiler [28, 35], dynamic compilation [34, 54], or
hardware [10], which run in parallel with a main thread.
Helper threads speculatively prefetch some of the data
that the main thread may (or may not) use, in order to
reduce memory latencies seen by the main thread. Sim-
ilarly, Runahead execution [37], Performance-correctness
explicitly decoupled architecture [20] and Dual core ex-
ecution [55] utilizes idle/extra hardware resources to
prefetch useful data before main thread needs it. While
DeSC and helper threads / runahead share latency reduc-
tion and tolerance as a goal, they operate speculatively
and heuristically as prefetchers. In contrast, DeSC offers
a true data-supply solution that obviates the need for
memory connections from the CompD.
Automatic Parallelization Techniques: DeSC re-
lates to some automatic parallelization research, most
notably DSWP [41, 42]. DSWP parallelizes the pro-
gram to increase its memory latency tolerance utilizing a
hardware-aided inter-thread communication mechanism
called a synchronization array. A core difference between
DSWP and DeSC is that DSWP still targets a system
where all cores have access to the memory system while
we assume only some cores able to access it, which allows
us to encompass loosely-coupled accelerators.
Out-of-order Commit for latency tolerance: Con-
tinual flow pipeline [48], Kilo-instruction processor [15],
a Flexible heterogeneous multicore architecture [39] and
simultaneous speculative threading [8] tries to avoid ROB-
blocking on long-latency loads by allowing out-of-order
commits or offloading for loads and its dependent instruc-
tions. While the exact implementation varies, most utilize
relatively high-cost mis-speculation recovery mechanisms
such as checkpointing. In DeSC, we get the benefits of
OoO commit of terminal loads, but our hardware is much
simpler because terminal loads have no SuppD depen-
dents and because no speculation recovery is needed.

201

LAVAMD MRIQ CUTCP AVG SRAD CFD HOTSPOT LUD KMEANS AVG LBM NN SGEMM AVG PATH SPMV STENCIL NW BACKPROP AVGS
pe

ed
up

 o
ve

r
B

as
el

in
e

C
as

e

0

0.5

1

1.5

2

2.5

3 3.5262

Compute-Bound Workloads Moderately Compute-Bound Workloads Moderately Memory-Bound Workloads Memory-Bound Workloads

Baseline
DeSC(Base)
DeSC(Increased CommQ/SAB/SVB Size)
DeSC(Increased ROB)
DeSC(Increased Frequency)

Figure 14: Speedup of a hardware accelerator CompD with varying SuppD designs over an accelerator with cache.

Automated Accelerator Design: In part thanks to
high-level synthesis tools [4, 5, 19, 33, 38], accelerator-
centric design is easier and more widely-used than ever
before. However, the burden of communication manage-
ment for accelerators still primarily lies on programmers
or library writers. DeSC enables portable, low-effort,
high-performance data supply approaches.
Communication Management: Other related research
has studied automating and optimizing data communi-
cation between CPU and GPU [23, 24] or in distributed
memory systems [2, 45]. While similar in motivation
to DeSC, they study distinct scenarios, such as larger
memories or looser compute-memory couplings.

9. CONCLUSIONS
Overall, this paper envisions and evaluates DeSC, a

framework for decoupling memory and compute that has
been inspired by DAE, but updated and expanded for
modern, heterogeneous processors. With modest hard-
ware and compiler support, DeSC can offer significant
speedups both for general-purpose and homogeneous
scenarios as well as for more specialized or accelerator-
centric cases. DeSC gains particular leverage from its
optimizations for terminal loads on the memory supply
device, and for streamlining store-to-load dependences
from compute to supply side. With average speedups of
2.04x on CMP and 1.56x on accelerators across the eval-
uated workloads, DeSC strikes an important balance in
terms of “specialized generality”: the DeSC approach has
enough specialization to achieve significant performance
advantages, while still being general enough to port well
across different design implementations.

Acknowledgements
The authors would like to thank the anonymous reviewers
for very helpful feedback. Tae Jun Ham was supported
in part by a Samsung Fellowship. Prof. Aragón was
supported by a fellowship from the Spanish MEC under
grant “Subprograma Estatal de Movilidad del Profeso-
rado 2015”. This work was supported in part by the
DARPA PERFECT program (contract no. HR0011-13-
C-0003). This work was supported in part by C-FAR,
one of six centers of STARnet, a Semiconductor Re-
search Corporation program sponsored by MARCO and
DARPA. This work was supported in part by the NSF
under the grant CCF-1117147. This work was also sup-
ported in part by the Spanish MINECO under grant
TIN2012-38341-C04-03.

10. REFERENCES
[1] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Boosting

mobile GPU performance with a decoupled access/execute
fragment processor,” in Proc. 39th Annual International
Symposium on Computer Architecture, 2012.

[2] A. Basumallik and R. Eigenmann, “Optimizing irregular
shared-memory applications for distributed-memory systems,”
in Proc. 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2006.

[3] P. Bird, A. Rawsthorne, and N. Topham, “The effectiveness
of decoupling,” in Proc. 7th International Conference on
Supercomputing, 1993.

[4] “C-to-Silicon Compiler High-Level Synthesis,” Cadence, Tech.
Rep., 2011. [Online]. Available: http://www.cadence.com/rl/
Resources/datasheets/C2Silicon ds.pdf

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,
J. H. Anderson, S. Brown, and T. Czajkowski, “Legup:
High-level synthesis for FPGA-based processor/accelerator
systems,” in Proc. 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2011.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper:
Exploring the level of abstraction for scalable and accurate
parallel multi-core simulation,” in Proc. of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, 2011.

[7] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and
L. Eeckhout, “An evaluation of high-level mechanistic core
models,”ACM Transactions on Architecture and Code
Optimization, 2014.

[8] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin,
S. Yip, H. Zeffer, and M. Tremblay, “Simultaneous
speculative threading: A novel pipeline architecture
implemented in sun’s rock processor,” in Proc. 36th Annual
International Symposium on Computer Architecture, 2009.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in Proc. IEEE International
Symposium on Workload Characterization, 2009.

[10] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen,
“Dynamic speculative precomputation,” in Proc. 34th Annual
ACM/IEEE International Symposium on Microarchitecture,
2001.

[11] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen, “Speculative precomputation:
Long-range prefetching of delinquent loads,” in Proc. 28th
Annual International Symposium on Computer Architecture,
2001.

[12] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and
G. Reinman, “Architecture support for accelerator-rich cmps,”
in Proc. 49th Annual Design Automation Conference, 2012.

[13] E. Cota, G. D. Guglielmo, P. Mantovani, and L. Carloni, “An
analysis of accelerator coupling in heterogeneous
architectures,” in Proc. 52nd Design Automation Conference,
2015.

[14] N. C. Crago and S. J. Patel, “Outrider: Efficient memory
latency tolerance with decoupled strands,” in Proc. 38th
Annual International Symposium on Computer Architecture,
2011.

[15] A. Cristal, O. J. Santana, M. Valero, and J. F. Mart́ınez,
“Toward kilo-instruction processors,”ACM Transactions on
Architecture and Code Optimization, vol. 1, no. 4, Dec. 2004.

[16] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The
scalable heterogeneous computing (SHOC) benchmark suite,”
in Proc. 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, 2010.

[17] A. Djabelkhir and A. Seznec, “Characterization of embedded

202

applications for decoupled processor architecture,” in IEEE
International Workshop on Workload Characterization, 2003.

[18] R. Espasa and M. Valero, “Decoupled vector architectures,”
in Proc. 2nd IEEE Symposium on High-Performance
Computer Architecture, 1996.

[19] T. Feist, “Vivado Design Suite,,” Xilinx, Tech. Rep., 2012.
[Online]. Available:
http://www.xilinx.com/support/documentation/white
papers/wp416-Vivado-Design-Suite.pdf

[20] A. Garg and M. C. Huang, “A performance-correctness
explicitly-decoupled architecture,” in Proc. 41st Annual
IEEE/ACM International Symposium on Microarchitecture,
2008.

[21] J. R. Goodman, J.-t. Hsieh, K. Liou, A. R. Pleszkun, P. B.
Schechter, and H. C. Young, “PIPE: A VLSI decoupled
architecture,” in Proc. 12th Annual International Symposium
on Computer Architecture, 1985.

[22] V. Govindaraju, C.-H. Ho, and K. Sankaralingam,
“Dynamically specialized datapaths for energy efficient
computing,” in Proc. IEEE 17th International Symposium on
High Performance Computer Architecture, 2011.

[23] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I.
August, “Dynamically managed data for CPU-GPU
architectures,” in Proc. 10th International Symposium on
Code Generation and Optimization, 2012.

[24] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R.
Beard, and D. I. August, “Automatic CPU-GPU
communication management and optimization,” in Proc.
32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2011.

[25] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer,
and S. Kaxiras, “Fix the code. don’t tweak the hardware: A
new compiler approach to voltage-frequency scaling,” in Proc.
of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2014.

[26] L. K. John, V. Reddy, P. T. Hulina, and L. D. Coraor,
“Program balance and its impact on high performance risc
architectures,” in Proc. 1st IEEE Symposium on
High-Performance Computer Architecture, 1995.

[27] M. Kambadur, K. Tang, and M. A. Kim, “Harmony:
Collection and analysis of parallel block vectors,” in Proc.
39th Annual International Symposium on Computer
Architecture, 2012.

[28] D. Kim and D. Yeung, “Design and evaluation of compiler
algorithms for pre-execution,” SIGPLAN Not., vol. 37, no. 10,
Oct. 2002.

[29] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A
32-way multithreaded sparc processor,” IEEE Micro, vol. 25,
no. 2, Mar. 2005.

[30] K. Koukos, D. Black-Schaffer, V. Spiliopoulos, and
S. Kaxiras, “Towards more efficient execution: A decoupled
access-execute approach,” in Proc. 27th International ACM
Conference on International Conference on Supercomputing,
2013.

[31] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan,
“Heterogeneous chip multiprocessors,”Computer, vol. 38,
no. 11, Nov. 2005.

[32] C. Lattner and V. Adve, “LLVM: A compilation framework
for lifelong program analysis and transformation,” in Proc.
International Symposium on Code Generation and
Optimization.

[33] F. Liu, S. Ghosh, N. P. Johnson, and D. I. August, “CGPA:
Coarse-grained pipelined accelerators,” in Proc. 51st Annual
Design Automation Conference, 2014.

[34] J. Lu, A. Das, W.-C. Hsu, K. Nguyen, and S. G. Abraham,
“Dynamic helper threaded prefetching on the sun ultrasparc
cmp processor,” in Proc. 38th Annual IEEE/ACM
International Symposium on Microarchitecture, 2005.

[35] C.-K. Luk, “Tolerating memory latency through
software-controlled pre-execution in simultaneous
multithreading processors,” in Proc. 28th Annual
International Symposium on Computer Architecture, 2001.

[36] W. Mangione-Smith, S. Abraham, and E. Davidson, “The
effects of memory latency and fine-grain parallelism on
astronautics ZS-1 performance,” in Proc. 23rd Annual Hawaii
International Conference on System Sciences, 1990, vol. i,
1990.

[37] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead
execution: An alternative to very large instruction windows

for out-of-order processors,” in Proc. 9th International
Symposium on High-Performance Computer Architecture,
2003.

[38] A. Nanda, “Accelerate Performance and Design Productivity
with OpenCL on Altera FPGAs,” Altera, Tech. Rep., 2012.
[Online]. Available:
http://wl.altera.com/education/webcasts/all/source-
files/wc-2012-opencl/player.html

[39] M. Pericas, A. Cristal, F. J. Cazorla, R. Gonzalez, D. A.
Jimenez, and M. Valero, “A flexible heterogeneous multi-core
architecture,” in Proc. 16th International Conference on
Parallel Architecture and Compilation Techniques, 2007.

[40] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter
services,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, 2014.

[41] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I.
August, “Parallel-stage decoupled software pipelining,” in
Proc. 6th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, 2008.

[42] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I.
August, “Decoupled software pipelining with the
synchronization array,” in Proc. 13th International
Conference on Parallel Architectures and Compilation
Techniques, 2004.

[43] J. Rattner, “Making the right hand turn to power efficient
computing,” 2002. [Online]. Available:
http://www.microarch.org/micro35/keynote/JRattner.pdf

[44] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin:
A Pre-RTL, Power-Performance Accelerator Simulator
Enabling Large Design Space Exploration of Customized
Architectures,” in ACM/IEEE 41st International Symposium
on Computer Architecture.

[45] S. D. Sharma, R. Ponnusamy, B. Moon, Y. S. Hwang, R. Das,
and J. Saltz, “Run-time and compile-time support for
adaptive irregular problems,” in Proc. ACM/IEEE
Conference on Supercomputing, 1994.

[46] J. Smith, “Decoupled access/execute computer architectures,”
ACM Transactions on Computer Systems, vol. 2, no. 4, Nov.
1984.

[47] J. Smith, S. Weiss, and N. Pang, “A simulation study of
decoupled architecture computers,” IEEE Transactions on
Computers, vol. C-35, no. 8, Aug 1986.

[48] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and
M. Upton, “Continual flow pipelines,” in Proc. 11th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2004.

[49] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, G. D. Liu, and W.-m. Hwu, “Parboil: A
revised benchmark suite for scientific and commercial
throughput computing,” University of Illinois at
Urbana-Champaign, Tech. Rep. IMPACT-12-01, 2012.

[50] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the
multicore era,” J. Parallel Distrib. Comput., vol. 70, no. 2,
Feb. 2010.

[51] “OMAP4 mobile applications platform,” Texas Instruments,
Tech. Rep., 2011. [Online]. Available:
http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf

[52] N. Topham, A. Rawsthorne, C. McLean, M. Mewissen, and
P. Bird, “Compiling and optimizing for decoupled
architectures,” in Proc. ACM/IEEE Conference on
Supercomputing, 1995.

[53] M. Weiser, “Program slicing,” in Proc. 5th International
Conference on Software Engineering, 1981.

[54] W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating and
adapting precomputation threads for effcient prefetching,” in
Proc. IEEE 13th International Symposium on High
Performance Computer Architecture, 2007.

[55] H. Zhou, “Dual-core execution: Building a highly scalable
single-thread instruction window,” in Proc. 14th
International Conference on Parallel Architectures and
Compilation Techniques, 2005.

203

