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Abstract—Cache Replacement Policies are known to have
an important impact on hit rates. The OPT replacement policy
[27] has been formally proven as optimal for minimizing misses.
Due to its need to look far ahead for future memory accesses,
it is often reduced to a yardstick for measuring the efficacy of
other practical caches. In this paper, we bring the OPT to life,
in architectures for mobile GPUs, for which energy efficiency is
of great consequence. We also mold other factors in the memory
hierarchy to enhance its impact. The end results are a 13.8%
decrease in the memory hierarchy energy consumption and an
increased throughput in the Tiling Engine. We also observe a
5.5% decrease in the total GPU energy and a 3.7% increase
in frames per second (FPS).

Keywords-GPU; Caches; Cache Replacement; OPT; Belady;
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I. INTRODUCTION

Caches have long proven to be an effective technique

in bridging the performance gap between memory and

processors. The efficiency of caches is mainly influenced

by their size, associativity and replacement policy. Since the

advent of caches, a plethora of replacement policies have

been explored and evaluated. In 1966, Belady introduced the

MIN algorithm [7] that he later proved to be optimum with

regard to minimizing the number of misses. In 1970, Mattson

et al. proposed and proved optimum the OPT algorithm

[27]. These are the two well known, and often wrongly

interchanged, optimal replacement algorithms as explained

in [28].

Owing to their need to be cognizant of future accesses,

these algorithms are normally deemed infeasible. Regard-

less, these algorithms have been a source of inspiration for

many of the state of the art replacement policies and yet each

has remained a conceptual tool that is used for evaluating

other practical caches.

In this paper we bring the OPT algorithm to the real

world for Tile-Based Rendering (TBR) architectures, the

predominant architecture for mobile GPUs. We exploit a

particular characteristic of this architecture in order to real-

istically capture and store relevant information of the trace

of memory accesses before they are actualized.

In Raster Graphics Systems, GPUs generally contain

two distinct parts: a Geometry Pipeline that transforms the

geometry of a scene and a Raster Pipeline that paints the

transformed scene onto a screen. TBR architectures (further

detailed in Section II) introduce a sorting phase between

these two parts that bins subsets of this geometry into

Figure 1: LRU and OPT misses in a fully associative L1 for

our mobile graphics benchmark suite.

disjoint segments of the screen called tiles, and later retrieves

this binned geometry, belonging to each tile, tile by tile to

be processed by the Raster Pipeline. This process is called

tiling and the sorter is called the Tiling Engine (see Figure

2). A data structure called the Parameter Buffer is stored in

memory in order to bin and retrieve this geometry.

On an initial analysis on the accesses to the Parameter

Buffer for the benchmark suite explained later (see Table

II), we plot the behavior of the LRU and the OPT on a fully

associative L1 cache. Figure 1 depicts the L1 miss ratios

for both replacement policies for an increasing cache size.

It shows that OPT causes a drop in miss ratio much faster

than LRU. This LRU-OPT gap was seen to be larger for set-

associativities of 4 and 8, as shown later in Figure 12, and

hence our motivation to implement OPT for mobile GPUs.

Our work strives to hone the memory hierarchy efficiency

for the Parameter Buffer. Our primary focus is on reducing

the number of misses in all levels of memory. To the best of

our knowledge, this is the closest realistic implementation

of the OPT replacement algorithm presented in literature.

While this is widely known to be impractical for most

scenarios, TBR architectures are unique in that they build

and use up the Parameter Buffer in consecutive pipeline

stages, and that the stage that builds the data also possesses

the information to infer future reads. In this work, we

propose a practical approach to derive this information about

future accesses during binning, store it and then use it to

drive the replacement policy of the Tile Cache.

We also propose an alternative layout for the Parameter

Buffer to improve the load-balancing on the sets of the
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Figure 2: The Graphics Pipeline of a TBR GPU.

caches and thus further reduce conflict misses. In addition,

we provide a way to reduce the write-back operations of the

Parameter Buffer into the main memory by identifying dead

blocks of data and prioritizing the retention of potentially

live blocks of data.

We refer to this novel memory hierarchy organization

as Tile Cache with Optimal Replacement (TCOR), and we

show that it provides a 13.8% energy reduction in the

memory hierarchy and a 5x speedup in the Tiling Engine

on average, for a set of representative animated graphics

applications. We also report a decrease of 5.5% in total GPU

energy and a 3.7% increase in FPS, on average.

To summarize, this paper makes the following key con-

tributions:

• Presents an implementation of the OPT replacement

algorithm, for the first time in literature, for the Tile

Cache of mobile GPUs.

• Presents a new replacement policy in the L2 to amplify

the effects of OPT on higher levels of the memory

hierarchy.

• Shows that this new Tile Cache architecture provides

an energy reduction of 13.8% in the memory hierarchy,

on average, for a set of real world animated graphics

applications.

The rest of this paper is organized as follows. Section 2

presents some background on GPUs, with special emphasis

on how they manage the Parameter Buffer. Section 3 de-

scribes the proposed TCOR cache organization. We describe

the tools and workloads used to evaluate our technique in

Section 4. In Section 5, we present our experimental results

and analysis. In Section 6, we review some related work and

Section 7 summarizes the main conclusions of the paper.

II. BACKGROUND

Mobile GPUs typically implement a Tile-Based Render-

ing (TBR) architecture. The idea for TBR architectures was

initially proposed to facilitate parallel rendering [9], [29].

Tiles are disjoint segments of the frame that can be rendered

in parallel. TBR is now a common architecture adapted for

low-power graphics systems where instead of tiles being ren-

dered in parallel, they are rendered sequentially over small

tile-sized on-chip buffers, which allow to exploit locality and

significantly reduce power-hungry DRAM accesses and save

memory bandwidth. According to a work by Antochi et al.

[4], a TBR architecture reduces the total amount of external

data traffic by a factor of 1.96 compared to a traditional

GPU architecture.

A. Graphics Pipeline

Figure 2 shows the main stages of the Graphics Pipeline

and an overview of the memory hierarchy organization. In

Raster Graphics Systems, the Geometry Pipeline transforms

the geometric description of a scene and creates all the

primitives that fall inside the frustum view in accordance

with the camera’s viewpoint. On the other hand, the Raster

Pipeline discretizes each primitive into fragments that are

shaded and blended to produce the final screen image.

In a TBR architecture, the Raster Pipeline is designed to

render tiles rather than the full frame. These tiles are usually

square groups of adjacent pixels. This tiling improves local-

ity and allows keeping on chip most bandwidth-intensive

memory accesses. In order for this to happen, the geometry

needs to be sorted into subsets that will individually be

able to fully render the image for each of these tiles. There

are various methods of sorting. In the sorting classification

of rendering techniques, as described in [29], TBR can be

classified as a Sort-Middle technique. The process of tiling

is carried out by a new pipeline stage called Tiling Engine.

Thus, the Graphics Pipeline for TBR architectures consists

of three parts, namely the Geometry Pipeline, the Tiling

Engine and the Raster Pipeline, as shown in Figure 2.

Input data for the Graphics Pipeline consists of Vertices

and Textures. These vertices join to form different polygons

(usually triangles) called primitives and the textures are used

to enhance details on surfaces while rendering the scene.

A Draw Command triggers the Geometry Pipeline and the

Vertex Stage starts fetching vertices from memory using

an L1 Vertex Cache. It then transforms them according

to a vertex program provided by the user. The Primitive

Assembler takes the vertices in program order and joins them

to produce primitives. These primitives are fed as input to

the Tiling Engine.

The goal of the Polygon List Builder is to produce a list

for each tile with all the primitives that overlap it. This
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Figure 3: PB-Lists section of the baseline Parameter Buffer.

data is known as the Parameter Buffer. For this purpose,

the Polygon List Builder takes each primitive generated by

the Primitive Assembly in program order and appends it to

each list of every tile it overlaps. For each primitive, the

Raster Pipeline needs to know its attributes, which describe

characteristics of its vertices (e.g., color, normals, texture

coordinates, etc.). Since attributes occupy significant space

and primitives may overlap many tiles, the attributes of each

primitive are stored only once in the Parameter Buffer, and

the per-tile lists contain only the IDs of the primitives.

The Parameter Buffer is built and used up in the same

frame. After all the geometry is processed and binned, the

Tile Fetcher fetches the primitives corresponding to each tile

in the frame, one tile at a time. Tiles are processed in an

order specified by the Tiling Engine, and its primitives are

put into a FIFO queue for the Raster Pipeline to consume.

The Raster Pipeline renders each tile sequentially. For

this purpose, it takes each primitive from the FIFO queue

and identifies which pixels of the corresponding tile are

overlapped by the primitive. It then uses interpolation to

calculate attributes for each pixel and then generates quantas

of data called quads that consist of interpolated attributes

for a group of four pixels. These quads are put into a

FIFO queue from where the Early Z-Test takes them up

to eliminate quads that lie behind another opaque quad that

was previously processed. This stage uses a buffer called the

Z-Buffer to store the minimum depth of previously processed

quads. The remaining quads are put in a FIFO queue from

where the Fragment Stage takes them and assigns them to a

Fragment Processor. The Fragment Processors compute an

initial color for each pixel of a quad, taking into account the

lighting and textures provided by the program. After these

quads are processed, the output color of these quads are put

into another FIFO queue from where the Blending Unit takes

them up and computes the final color of pixels depending on

the transparency of each quad. These final colors are stored

in the Color Buffer. Some rendering techniques require

changing the depth of fragments in the Fragment Stage, in

which case the Early Z-Test is disabled and the Late Z-Test

employed. Note that both the Color Buffer and the Z-Buffer

have the size of just one tile, and thus can be stored on-

chip. The Color Buffer is flushed to the Frame Buffer in

main memory after a tile has been completely processed.

Figure 4: PB-Attributes section of the baseline Parameter

Buffer.

B. Parameter Buffer

As introduced before, the Parameter Buffer stores the

information needed for the Raster Pipeline to render each

tile independently. For each tile, the Rasterizer needs the

vertices’ attributes of the primitives that overlap that tile.

This information is stored in two sections: PB-Lists and PB-

Attributes.

Figure 3 illustrates the layout of PB-Lists in the baseline

design. PB-Lists stores a list for each tile containing the

primitives that overlap it. Since a primitive may appear in

multiple lists, only primitive IDs are stored in these lists,

whereas the attributes of each primitive are stored in PB-

Attributes. Each primitive of a list has its corresponding

metadata or PMD (Primitive Meta Data). A PMD in the

baseline stores a Primitive ID and the Number of attributes
that the primitive has. For convenience, the address of the

first attribute of a primitive is used as the Primitive ID. This

attribute is stored in PB-Attributes followed by the rest of

the attributes for a primitive. Sixteen such PMDs are stored

in a block of memory (we assume a cache line of 64 bytes).

As each tile is allotted a maximum of 1024 primitives, the

list for the next tile begins 64 blocks after the current one.

The first primitive list begins at a predetermined address in

memory that we refer to as PB-Lists Pointer.

Figure 4 illustrates the layout of PB-Attributes in the

baseline design. PB-Attributes stores the primitives in the

order that they arrive in the Polygon List Builder. Each

primitive has a variable number of attributes and each

attribute occupies 48 bytes (16 bytes for each vertex of the

primitive) and is block aligned. The first attribute of the first

primitive begins at a predetermined address in memory that

we refer to as PB-Attributes Pointer.

C. Tile Cache

The Tile Cache is used by the Tiling Engine to access

the Parameter Buffer. The Polygon List Builder builds the

Parameter Buffer and writes it into memory and the Tile

Fetcher reads it later from memory, both using the Tile

Cache. When a primitive is binned, a write request to

PB-Lists is generated to write its PMD for each tile it

overlaps. Then, a number of write requests to PB-Attributes

are generated in order to store the attributes of that primitive.
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Figure 5: Baseline memory hierarchy and memory organi-

zation.

For each tile, the Tile Fetcher generates a read request to

that tile’s list in PB-Lists. The PMDs obtained help generate

read requests for the attributes of all primitives in that tile.

Although memory requests may be completed out of order,

the Tile Fetcher has to pass the primitives to the Rasterizer

in the original order. For this purpose, when the Tile Fetcher

receives a reply from the memory hierarchy, the data is

stored in the cache, but primitive requests are tracked in

a temporary FIFO queue and a primitive is not put in the

output queue until it is completed and is the oldest one in

this temporary queue.

D. Memory Organization

Figure 5 depicts the main memory regions of a graphics

application (on the right) and the memory structures used to

store and access them (on the left). As it can be seen, there

are multiple L1 caches for instructions and data, connected

to a shared L2 cache, which is backed up by main memory.

III. TCOR

Our main goal in this work is to implement a Tile Cache

with an Optimal Replacement (TCOR) policy. As illustrated

in Figure 1, an optimal replacement policy, OPT, provides

significant benefits over a typical LRU scheme.

Conceptually, OPT requires a look into future memory

accesses in order to make a decision on replacement. In

particular, upon a cache miss, out of all the candidate lines

in the cache at that time, it replaces the one that will be

accessed the farthest away in the future. Candidate lines are

all the lines that are currently present in the cache for a

fully-associative cache, or in the set where this request will

be placed for a set-associative cache. Thus, the cache needs

to be cognizant of future accesses to be able to determine

a replacement. The main challenges associated with the

implementation of OPT are listed below.

1) A trace of future memory accesses needs to be pro-

cured to use OPT in a timely fashion.

2) Such a trace is expected to be large and it needs to be

stored and retrieved with ease.

3) Information relevant to making a replacement must be

present in the cache during replacement.

Figure 6: New layout of the PB-Lists section of the Param-

eter Buffer.

A. Our Solution

We obtain the trace of future memory accesses from

temporary data produced during the binning of primitives in

the Polygon List Builder. While binning a primitive, all tiles

that are overlapped by this primitive are identified. Note that

each primitive can appear in a given list (i.e., in a particular

tile) at most once, and the order in which the Tile Fetcher

will process the tiles is fixed and known beforehand. When

the Polygon List Builder generates the Parameter Buffer,

every time a new primitive is binned, for each list in PB-

Lists where it is appended, the ID of the next tile that will use

this primitive is included in the primitive metadata (PMD),

in addition to the primitive ID and the number of attributes

(see Figure 6). We dub this field the OPT Number.

Note that when the Parameter Buffer is built by the

Polygon List Builder, it does not perform any read but it only

writes each primitive exactly once into PB-Attributes. All

these writes will be compulsory misses that the replacement

policy cannot affect. Thus the accesses (writes) by the

Polygon List Builder need not use OPT.

Whenever a primitive is later read by the Tile Fetcher, an

access is generated for its PMD in the PB-Lists. The OPT

Number for that primitive in that particular tile is retrieved

from its PMD and stored in cache with the line assigned to

that primitive. Thus at the time of replacement, each line

will have information about its next access. OPT will select

the line whose next access is the farthest away, out of the

lines in the same set.

B. A New Layout for the Parameter Buffer

We introduce a new layout for PB-Lists as shown in

Figure 6. In the baseline, PB-Lists stores the list of primitives

consecutively in memory. Our benchmarks indicate to us

that most of the space dedicated to each list in memory

remains empty as the number of overlapped primitives are

much lesser than the maximum. This sparsity in PB-Lists

gives rise to higher cache conflicts among consecutive tiles

since their data is separated by a relatively large power of 2

(1024 primitives, 64 memory blocks). This causes most of

the data to be mapped just to a few sets of the cache, which

results in many conflict misses.
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Figure 7: The proposed Tile Cache is split into a Primitive

List Cache and an Attribute Cache.

To combat this, we introduce a new layout for PB-Lists

as shown in Figure 6. Here, the lists of primitives are stored

in an interleaved manner. The first tile begins at PB-Lists

Pointer in memory and stores a maximum of 16 PMDs in

that block. The list for the second tile begins at the next

block and so on. This collection of part of the lists of all

tiles (one memory block per tile) is marked as a section in

the figure. The next 16 PMDs of each list is stored after this

first section and so on.

C. The New Tile Cache

The main goal of the Tile Cache is to speedup and reduce

the energy consumption of the accesses to the Parameter

Buffer. Owing to the fact that the PB-Lists and the PB-

Attributes sections have very different access patterns, we

split the Tile Cache into two caches as shown in Figure 7,

each one accessing one of the two sections of the Parameter

Buffer. The one accessing PB-Lists is called the Primitive

List Cache and the other one the Attribute Cache.

1) The Primitive List Cache: The Primitive List Cache is

used to access the PB-Lists section of the Parameter Buffer.

This data is written once by the Polygon List Builder, but

writes happen at the granularity of primitives, so there is

reuse that can be exploited at the memory block level, since

each memory block contains 16 PMDs (that fits the size of a

cache line, 64 bytes). Later, each memory block is read only

once by the Tile Fetcher and the primitives it contains are

processed sequentially. Since PB-Lists accesses represent a

very minor percentage of the total memory bandwidth (a

PMD is four bytes long whereas an average primitive has

around 3 attributes, leading to 192 bytes) and its reuse is

quite limited, we use a conventional cache with an LRU

replacement policy for the Primitive List Cache.

2) The Attribute Cache: The Attribute Cache is dedicated

to accessing the PB-Attributes section of the Parameter

Buffer. Attributes belonging to a primitive are always ac-

cessed together, and are identified by their Primitive ID.

Thus, the granularity of access to this cache is a primitive.

Each primitive has a variable number of attributes, so we de-

couple the Attribute Cache into two structures: the Primitive

Buffer and the Attribute Buffer, as shown in Figure 8. The

Figure 8: The Attribute Cache.

Attribute Buffer stores the attributes themselves whereas the

Primitive Buffer stores pointers to those attributes.

Each line of the Primitive Buffer corresponds to a primi-

tive and stores three control bits, the tag, the OPT Number

and the Attribute Buffer Pointer (ABP). The Primitive Buffer

is indexed with the Primitive ID and each line in the cache

is tagged with the most significant bits to uniquely identify

the stored primitive. Each line also possesses a valid bit, a

lock bit and a dirty bit. The lock bit is used to prevent the

replacement of a cache line until the primitive that it stores

has been processed by the Rasterizer. The data that the line

holds (ABP) is actually a pointer to the first attribute of that

primitive in the Attribute Buffer. Lastly, the OPT Number

in each line is used for performing the OPT replacement.

Note that the addition of the ABP and the OPT Number

adds 22(10+12) bits to each primitive in the Attribute

Cache. But the baseline stores each primitive’s attributes in

separate lines and each line stores a tag. Since each primitive

has three attributes on average, we save 32(16*2) bits per

primitive. Thus, there is no overhead in terms of area.

An XOR-based indexing function [12] is used for map-

ping each primitive to a set. As explained in [36], this

mapping scheme helps in reducing conflict misses.

On the other hand, the Attribute Buffer stores all the

attributes corresponding to each primitive present in the

Attribute Cache. They are stored as a linked list of entries in

the buffer, since their number is variable. Each buffer entry

contains an attribute, a valid bit, a lock bit and a pointer to

the next entry in the list (null for the last attribute).

A linked list of free entries is also maintained within the

buffer to manage the allocation of available entries. A new

primitive can be added to the Attribute Cache provided there

are enough free slots in the Attribute Buffer to store all of

its attributes.The working of the cache is explained next.

3) Reads: Reads to the Tile Cache are done by the Tile

Fetcher when a tile is rasterized. In particular, for each tile,

the Tile Fetcher reads all its PMDs from PB-Lists (using the

Primitive List Cache) and for each PMD, it generates a read

request for its attributes to the Attribute Cache. The goal
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Figure 9: The Example Frame.

of these reads is to pass the attributes of a primitive to the

Rasterizer. The attributes are cached in the Attribute Cache

for later reuse, since a primitive may overlap multiple tiles.

To pass the attributes to the Rasterizer, instead of copying

them, the Attribute Buffer Pointer (ABP) is passed to the

Rasterizer in the Tile Fetcher output queue, for the sake of

energy efficiency.

A read request has the three fields provided by its PMD

(see Figure 8): the ID of the primitive, the number of

attributes of this primitive, and the OPT Number used for

replacement. Below we detail the main operations to be

performed for reads:

Hit - If the requested primitive is found in the Attribute

Cache, its corresponding line in the Primitive Buffer and

its attributes in the Attribute Buffer are locked until the

Rasterizer consumes that primitive (in the Attribute Buffer,

it suffices to lock the first attribute, since the rest are linked

and will not be released until the first one is). The OPT

Number of that line is then updated with the one provided

by the request. The Attribute Buffer Pointer (ABP) for that

primitive is pushed onto the output queue for the Rasterizer

to pick up and access.

Miss - If the Tile Fetcher request results in a miss, the

Primitive Buffer evicts a line, reserves it for the current

miss and locks it until the request for the current miss is

serviced. The cache also makes sure that there are sufficient

free slots in the Attribute Buffer for all the attributes in the

current miss. In case of a dearth of space, more primitives

are evicted using OPT. The cache then generates separate

requests for all the attributes of the current miss and puts

them in the MSHRs.

When the misses for all the said attributes are serviced,

the Tile Fetcher pushes the Attribute Buffer Pointer (ABP)

to the output queue.

Rasterizer Read - The Rasterizer obtains from its input

queue (i.e., the Tile Fetcher’s output queue), the pointer to

the first attribute of a primitive in the Attribute Buffer (the

ABP). It accesses all the attributes of this primitive from the

Attribute Buffer and then it unlocks all these entries in the

Attribute Buffer.

Figure 10: The Example: LRU vs OPT Cache states.

4) Writes: Writes to the PB-Attributes are done only

by the Polygon List Builder every time a new primitive is

processed. Each attribute is written only once, so all writes

will result in a miss. The OPT Number of a write request is

the ID of the first tile that will access this primitive in the

Tile Fetcher.

When the Polygon List Builder writes a new primitive in

PB-Attributes, a write request is made to the L1 Attribute

Cache. The cache checks if there are free lines in the

corresponding set of the Primitive Buffer, and if not, it

chooses either to evict a primitive or bypass the current

write to the L2. For this purpose, the OPT Number of each

line in the corresponding set is compared with the OPT

Number of the request to find the line with the highest OPT

Number. If the OPT Number of this line is greater than that

of the request, it means that the primitive in that line will be

accessed by the Tile Fetcher after the primitive in the current

request. In this case, the line is evicted and the request is

written in L1. If the OPT Number of this line is lesser than

that of the request, it means that all the primitives in the set

will be accessed by the Tile Fetcher before the primitive in

the current request. In this case, the request is bypassed and

written into L2. Finally, if the OPT Number of this line is

equal to that of the request (they both belong to the same

tile), the request is still bypassed and written into L2.

5) Evictions: Evictions are done only to unlocked prim-

itives. Unlocked lines are identified by checking the lock

bit associated with the line as well as the lock bit of

its first attribute in the Attribute Buffer. Before eviction,

the Attribute Cache checks if the line is dirty and if yes,

proceeds to generate a write request to the L2 for each of

the attributes belonging to that primitive.
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6) Replacement Policy: Upon a miss, the replacement

policy picks the line with the greatest OPT Number among

all unlocked lines of the set where the new primitive is going

to be stored. It must be noted that the replacement policy is

only applied when there are no empty lines in a set.

7) An Example: As an illustrative example, let us assume

that there are 3 primitives and 9 tiles in a frame. Let us

also assume that the Tile Fetcher follows a scanline order to

process the different tiles, that the cache is fully associative

and has space for only two primitives. Figure 9 shows the

layout of these primitives in the frame.

The Polygon List Builder will make 3 writes to the

Attribute Cache, one for each primitive. The Tile Fetcher

will make 9 reads to the Attribute Cache, one for each tile,

as each tile is overlapped by exactly one primitive.

Figure 10 compares our implementation of OPT with that

of LRU for this example. The figure shows twelve cache

states after each access by both Tiling Engine stages. The

first three states correspond to the three writes of the Polygon

List Builder and the remaining nine correspond to reads

of the Tile Fetcher. The initial state (not shown) is when

there are no primitives in the cache. The cache state is

represented by two rows corresponding to both cache lines.

There are three columns in each row. The first one indicates

which primitive occupies the line (a white color signifies an

unoccupied line). The second column represents the LRU

value (the least recently used line is marked as L) and the

OPT Number for the LRU and the OPT replacement policies

respectively. The last column indicates whether the line is

dirty. The state of the cache also indicates an L2 read and

an L2 write with a red square and a red circle respectively.

We can see that the first L2 write occurs for the third write

in both cases, but for LRU it is a write-back on eviction

whereas for our OPT it is a bypass. This is because the pink

primitive has a OPT Number of 3 which is greater than all

the primitives in the current state of the cache. When the

yellow primitive is later requested by the Tile Fetcher in

Tile 2, it results in an L2 read and write for the LRU since

the primitive is not present and one of the present primitives

(the pink primitive), which is dirty, needs to be evicted. Since

OPT has retained the yellow primitive, it avoids this miss.

Both policies have an L2 read and write in Tile 3 but notice

that our technique evicts the yellow primitive, which will

never be accessed again, whereas the LRU retains it. This

results in another L2 read for the LRU in Tile 4 to fetch the

blue primitive.

D. TCOR Enhancements for the L2

1) Identifying Dead Cache Lines: As commented above,

the Parameter Buffer is built and used up within each frame.

Each part of the Parameter Buffer becomes dead (i.e., no

further reads will occur) during the course of Tile Fetching,

after its last use in each frame. In case of PB-Lists, the list

for a given tile becomes dead after that tile has finished

being processed by the Tile Fetcher. As for PB-Attributes,

all attributes of a given primitive become dead after the last

tile that includes that primitive has finished being processed

by the Tile Fetcher. The information about the last tile

that uses this data can be derived from the Polygon List

Builder just like the OPT Number is derived. The idea is to

propagate this information for both sections of the Parameter

Buffer along with each block of memory and then use that

information to identify these blocks as dead in the L2 once

the corresponding tiles have finished being processed by the

Tile Fetcher.

To facilitate this idea, two fields are added to each line

in the L2. Firstly, the replacement policy should be able

to identify which cache lines hold data belonging to the

Paramater Buffer. A 2-bit field is added to each line in the

L2 to indicate whether the data in a line belongs to PB-

Lists, to PB-Attributes or to neither of them (L2 is shared

by several other L1 caches as shown in Figure 7). The second

field is a 12-bit value that stores the ID of the last tile that

will use this line in case the data belongs to the Parameter

Buffer.

Each line containing data from PB-Lists belongs to a

single tile (which is the last to access it). The required Tile

ID for these lines can be derived from its block address and

the starting address of PB-Lists. As an example, if the initial

address of PB-Lists is a relatively large power of two and

the number of tiles is also a power of two, then the tile ID

can be inferred just by extracting the least significant bits

of the memory block address. This is because the Tile Lists

are stored in an interleaved manner (see Figure 6). If powers

of two are not used, then a subtraction of the block address

from the initial address followed by a modulo operation with

the number of tiles, will produce the tile ID.

At the same time, a line containing data from PB-

Attributes (a single attribute per line) must be explicitly

tagged with the ID of the last tile that will access it. This Tile

ID is known when the Polygon List Builder computes the

OPT numbers. Since each attribute only has 48 bytes and

a block in memory is 64 bytes, the Polygon List Builder

stores, in these unused bits, the 12 bits of the ID of the last

tile that will access this memory block.

The L2 control logic also stores the Tile ID of the last

tile that finished processing in the Tile Fetcher. This value

is initially set to NULL. Every time the Tile Fetcher finishes

processing a tile, it sends a signal to the L2 and this value

is incremented.

Using the two new fields in the L2 cache lines and the

Tile ID of the last tile processed by the Tile Fetcher, we

can infer which lines in the L2 are dead. This information

is inferred and used every time a line has to be replaced in

a given set, as described below.

2) Replacement Policy Modification: Every time a line

is to be replaced, we first identify dead lines in the appro-

priate set. The replacement policy of the L2 is modified to
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Table I: GPU simulation parameters.

Global Parameters
Tech Specs 600MHz, 1V, 32nm
Screen Resolution 1960x768
Tile Size 32x32
Tile Traversal Order Z-order

Main Memory
Latency 50-100 cycles
Size 1GiB

Caches
Vertex Cache 64-bytes/line, 64KiB, 4-way, 1 cycle
Texture Caches (4x) 64-bytes/line, 64KiB, 4-way, 1 cycle
Tile Cache 64-bytes/line, 64KiB, 4-way, 1 cycle
L2 Cache 64-bytes/line, 1MiB, 8-way, 12 cycles

prioritize the eviction of dead lines, which are obviously

the best candidates since they will no longer be used. In

case the evicted line is dead, it does not have to be written

back to Main Memory even if it is dirty. With this, we

reduce write-backs to main memory. The second priority for

replacement is given to non Parameter Buffer data whereas

the live Parameter Buffer data is given the lowest priority.

Within each priority set, LRU is used.

The rationale for this prioritization follows. The L2 not

only caches Parameter Buffer data but also textures, vertices

and instructions. Texture, vertices and instruction cache lines

are always in a clean state whereas Parameter Buffer cache

lines may be dirty. Replacing a dirty line is more expensive

as it needs to be written back to Main Memory.

IV. EVALUATION FRAMEWORK

A. GPU Simulation Framework

We use the TEAPOT [5] simulation infrastructure to

evaluate our proposals. TEAPOT is a cycle-accurate GPU

simulation framework that allows to run unmodified An-

droid applications and evaluate the performance and energy

consumption of the modeled GPU. In order to do that,

TEAPOT includes timing and power models based on well-

known tools: McPAT [25] for power estimation, and DRAM-

Sim2 [33] for modelling DRAM and the memory controllers.

Table I shows the parameters employed in our simulations,

which resemble those of a contemporary mobile GPU.

B. Benchmarks

We use popular commercial animated applications

(games) as benchmarks. We have selected them based on

their popularity in the number of downloads in the Google

Play Store, and their variety to cover different types of

games.

Table II shows the ten Android games used to evaluate our

technique. We have 2D games like CCS and 3D games like

CRa. Games like RoK have a Parameter Buffer that leaves

a footprint of around 0.2MiB in memory whereas DDS

leaves around 1.8MiB. The average number of primitives

overlapped per tile in TRu is 11 whereas that in DDS is

Figure 11: LRU and OPT misses in a fully associative L1

for our Mobile Graphics Benchmark Suite (the inner graph

zooms in the marked area).

20.9 primitives. All these factors affect the effectiveness of

our technique. A larger Parameter Buffer means a higher

percentage of capacity misses which cannot be ameliorated

by cache replacement techniques. Whereas a higher number

of tiles overlapped per primitive means higher reuse, which

increases the effectiveness of the replacement algorithm.

RoK accesses textures with a footprint of around 6.8MiB

while SWa has a 0.4MiB footprint. CCS includes shader

programs with an average of 4 instructions per pixel whereas

DDS’ shader programs have an average of 20 instructions.

This affects the propagation of the effectiveness of TCOR

to the L2. It also affects the efficiency of the proposed L2

eviction policy, since the L2 is shared by all the L1 caches,

including instructions, textures, primitives and attributes.

V. EXPERIMENTAL RESULTS

In this section we first explore the isolated benefits of the

TCOR optimal replacement policy in the Attribute Cache.

Then, we evaluate the effects of TCOR on memory traffic,

power and performance.

A. Benefits of OPT Replacement Policy

In the introduction section (see Figure 1) we already

showed that, for a fully associative L1 Attribute Cache,

OPT provides a significant drop in cache misses for a wide

range of cache sizes when compared to LRU. Here, we

complement this study by showing that OPT reaches a lower

bound on the total cache misses with a much smaller cache

capacity than LRU.

We also show that OPT falls to the lower bound faster than

LRU for increasing set-associativity. Finally, we contrast

OPT, LRU, MRU and a state-of-the-art replacement policy

(DRRIP) against the lower bound, for varying cache sizes.

To compute this lower bound on the total number of

cache misses, we note that a unique characteristic of the

accesses to PB-Attributes is that each memory block will

be requested at least twice over the course of the tiling

process. Each primitive’s attribute is written exactly once
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Table II: Evaluated benchmarks from the Google Play Store.

Benchmark Alias Installs
(Millions) Genre Type Parameter Buffer

Footprint (in MiB)
Avg Prim

Re-use
Candy Crush Saga CCS 1000 Puzzle 2D 0.17 5.9
Sonic Dash SoD 100 Arcade 3D 0.14 6.9
Shoot Strike War Fire SWa 10 Shooter 3D 0.28 3.7
Temple Run TRu 500 Arcade 3D 0.55 2.8
City Racing 3D CRa 50 Racing 3D 0.86 2.0
Rise of Kingdoms: Lost Crusade RoK 10 Strategy 2D 0.2 3.6
Derby Destruction Simulator DDS 10 Racing 3D 1.81 1.4
Sniper 3D Snp 500 Shooter 3D 0.71 1.47
3D Maze 2: Diamonds & Ghosts Mze 10 Arcade 3D 1.22 2.4
Gravitytetris GTr 5 Puzzle 3D 0.12 6.9

Figure 12: LRU and OPT misses in a set-associative L1 for

our Mobile Graphics Benchmark Suite.

by the Polygon List Builder and read at least once by the

Tile Fetcher. Each write will result in a compulsory miss.

For reads, the primitives that cannot fit into the Attribute

Cache at the end of the Polygon List Builder will generate

a miss the first time they are read (and potentially additional

capacity misses). For instance, if we have 1000 primitives

and the Attribute Cache has a capacity for 128 primitives,

there will be at least 872 (1000-128) read misses, since at

the end of the Polygon List Builder, 872 primitives will not

be present in the Attribute Cache.

In general, let the total number of primitives be TP and

the maximum number of primitives in the Attribute Cache

be CP. Thus, adding the compulsory write and minimum

read misses, we can compute the following lower bound on

the total number of misses (LB) for any cache associativity

and replacement policy:

LB ≥ TP + (TP − CP ) ∀ CP < TP

LB ≥ TP ∀ CP ≥ TP

In Figure 11, we plot this lower bound together with the

miss ratios of both the LRU and OPT replacement policies,

for a fully associative L1 Attribute Cache and a range of

cache sizes. In this figure, we can see that OPT reaches this

lower bound near 55KiB whereas LRU reaches it at 375KiB.

In other words, OPT can reach its maximum potential for a

cache size that is 6.8 times smaller than that using an LRU.

Figure 13: LRU, MRU, DRRIP and OPT miss ratios in a

4-way L1 for our Mobile Graphics Benchmark Suite.

Next, we show the benefits of OPT for set-associative

caches. Figure 12 plots the miss ratio for an L1 Attribute

Cache for increasing cache sizes and varying set associativ-

ity for LRU and OPT. With increasing associativity, the miss

ratio falls to the lower bound much earlier for the OPT than

that for the LRU. Observe that the plot for an associativity

of 2 with OPT shows very similar benefits to those achieved

by the fully associative LRU.

Figure 13 compares OPT with LRU, MRU and (DRRIP

[22]) in a 4-way cache for a range of cache sizes. MRU

has the highest Miss Ratio followed by DRRIP which is

then followed closely by LRU. OPT shows a miss ratio that

falls quickly to the lower bound, with an increasing cache

size. DRRIP has been shown to outperform LRU for CPU

workloads (with mixed access patterns) for an LLC cache

where the reuse pattern is filtered of temporal locality by

lower level caches [22]. In this figure, we see that for our

L1 cache, with its unique workload for the Parameter Buffer,

DRRIP shows no benefits over LRU.

B. Evaluating TCOR

We now evaluate the benefits of TCOR on a baseline GPU

with the configuration described in Table I. We also report

results for a larger Tile Cache of 128KiB and an associativity

of 4. To match TCOR with the baseline, we assume a 16KiB

Primitive List Cache and a 48KiB Attribute Cache and in
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Figure 14: Parameter Buffer accesses to L2 normalized to

the baseline (64KiB Tile Cache).

Figure 15: Parameter Buffer accesses to L2, normalized to

the baseline (128KiB Tile Cache).

the second case, we have a 16KiB Primitive List Cache and

a 112KiB Attribute Cache.

1) Memory Traffic Reduction: TCOR is aimed at increas-

ing the effectiveness of caching the Parameter Buffer in the

memory hierarchy. In order to assess the effectiveness of

these improvements, we measure the number of Parameter

Buffer accesses to each level of the memory hierarchy.

L1. There are several differences between the Tile Caches

of the baseline and TCOR. Firstly, the baseline has only

one L1 dedicated to cache the Parameter Buffer whereas

in TCOR the cache is split to access different parts of

the Parameter Buffer. The split parts have a different set-

mapping and replacement policy, respectively. Secondly,

owing to the cache reorganization, each line of the Attribute

Cache corresponds to a primitive whereas for the baseline

Tile Cache and the Primitive List Cache, it is 64 bytes of

data. This makes the cost of a miss in the two L1 caches

different and thus miss ratios incomparable.

To compare the effectiveness of the L1 caches, we com-

pare the Parameter Buffer accesses made to the L2 in both

cases. Figures 14 and 15 show the decrease in L2 accesses

for TCOR. On average, we see around 33.5% and 37.1%

decrease in the 64KiB and 128KiB experiments respectively.

Note that in case of benchmarks with smaller geometry,

implying a smaller Parameter Buffer, the decrease in L2

accesses goes up to 64.4%. The benchmarks with the highest

average reuse of primitives (see Table II) are the ones that

show a large decrease in accesses. This was expected as the

higher the reuse, the more a replacement policy affects a

Figure 16: Parameter Buffer accesses to Main Memory

normalized to the baseline (64KiB Tile Cache).

Figure 17: Parameter Buffer accesses to Main Memory

normalized to the baseline (128KiB Tile Cache).

workload.

L2. Parameter Buffer accesses to Main Memory are

indirectly affected by the effectiveness of the L1 caches in

this design. First of all, the decrease in the L2 cache accesses

implies a possible decrease in L2 misses. Secondly, the L1

Attribute Cache has been optimized to retain attributes with

the shortest reuse distance. This implies that, on average,

when primitives are evicted and written to the L2, they

will have lower reuse henceforth. In addition to this, the L2

replacement policy modification introduced by TCOR helps

reduce the reads and writes of the Parameter Buffer into

Main Memory. Figures 16 and 17 show this experimentally.

We see around 93% and 94.1% decrease in Main Memory

accesses to the Parameter Buffer on average in the two

experiments. In all benchmarks except for three, TCOR has

been able to completely eliminate Parameter Buffer accesses

to Main Memory. DDS’s Parameter Buffer has a memory

footprint of 1.8MiB (see Table II). With a 128KiB L1 and

a 1MiB shared L2 cache, it is impossible to hold the whole

Parameter Buffer without making a spill to main memory.

And yet we see an impressive 53-58% decrease in accesses

for this benchmark. Overall, we see a huge decrease in writes

because of the reduced write-backs and a dramatic decrease

in reads because of the more effective replacement policy in

both the L1 and L2.

Total Main Memory Accesses. As shown in Figure 2,

Main Memory is accessed by the L2 cache and the Color

Buffer. The L2 is accessed by the Vertex Cache, Tile Cache,

Texture Caches and Instruction Caches. To evaluate the ef-
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Figure 18: Total Main Memory accesses (64KiB Tile Cache).

Figure 19: Total Main Memory accesses (128KiB Tile

Cache).

fect of TCOR on the overall Main Memory accesses, Figures

18 and 19 plot the total amount of accesses to main memory

for a 64KiB and 128KiB Tile Cache size respectively. We

can see that, on average, the benchmarks exhibit a decrease

of 13.9% and 13.3% in total Main Memory bandwidth. We

can observe that the benchmarks with a higher geometry

footprint benefit more from TCOR. In particular, CRa, DDS

and Snp get the highest benefits from TCOR since these are

benchmarks with more geometry and thus a larger Parameter

Buffer.

2) Energy: Energy-efficiency is beneficial for all comput-

ing systems but crucial for mobile devices. Figures 20 and 21

show the energy consumption of the memory hierarchy for

the baseline, TCOR without L2 enhancements and TCOR.

We can see that TCOR provides around 14.1% and 13.6%

decrease in the respective experiments and provides around

9% decrease without L2 enhancements. For high geometry

benchmarks like Snp, we see close to 24.2% decrease in

energy. This is because their Parameter Buffers are larger

and constitute a larger portion of the total memory accesses

in the GPU. Figure 22 plots the decrease in total GPU energy

and shows a 5.6% and 5.3% decrease in the respective

experiments.

3) Throughput: Our new faster Tiling Engine opens the

door to a more aggressive Raster Pipeline for future works.

We evaluate our new Tiling Engine independently, by mod-

eling an experiment where we resize its output queue to

have unlimited primitives, so that the Tiling Engine never

has to stall because of the slower Raster Pipeline. With

this, we calculate the number of primitives output by the

Figure 20: Energy consumed by the Memory Hierarchy (64

KiB Tile Cache).

Figure 21: Energy consumed by the Memory Hierarchy (128

KiB Tile Cache).

Tile Fetcher per cycle, the maximum being 1. Figures 23

and 24 show that, on average, our technique provides a 5x

speedup. This is in line with the decrease in L2 and main

memory Parameter Buffer accesses reported before. Note

that benchmarks like SoD come quite close to the maximum

with TCOR.

VI. RELATED WORK

Previous work on the Tiling Engine of TBR architectures

focused on the computational complexity of binning, resiz-

ing the Parameter Buffer and reducing memory overhead.

Our work improves the design of the memory hierarchy

in the graphics pipeline to efficiently cache the Parameter

Buffer.

Antochi et al. [2] explore a way to accurately calculate

which tiles are overlapped by each primitive, while reducing

the amount of computation. Another work [3] describes

several algorithms for sorting the primitives into bins and

evaluates their computational complexity and memory re-

quirements. There is also other work [39] that aims to

Figure 22: Decrease in Total GPU Energy wrt the baseline.
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Figure 23: Primitives output per cycle by the Tile Fetcher

(64KiB Tile Cache).

provide a concise tile list structure and an efficient over-

lap detection algorithm for mobile graphics processors to

reduce the memory overhead, CPU latency and computing

resources. Since large primitives may cover a significant

number of tiles, they need to be recorded in the primitive lists

of all related tiles. Hsiao et al. [20] propose a hierarchical

primitive lists structure to minimize the size of the Parameter

Buffer, list building time and data accesses to the Parameter

Buffer. All the above cited works do not target the design

of the memory hierarchy to improve the caching of the

Parameter Buffer. Our work is novel for its approach to the

memory hierarchy for the Tiling phase and most importantly

for implementing an OPT replacement policy in its L1 cache.

State-of-the-art replacement policies like Hawkeye [21],

Glider [16], Multiperspective [14], Perceptron [15] and

DRRIP have been proven to do better than LRU for CPU

workloads in the LLC (but not for L1) where the reuse

pattern is filtered of temporal locality by lower-level caches.

However, TCOR implements OPT for the L1 Tile Cache

which caches the Parameter Buffer that has a unique access

stream specific to TBR architectures.

In general, practical caches have never had optimal re-

placement policies although there is previous work for reg-

ister allocation [19], [17]. Regardless, many implementable

caches have been inspired from them. One such case is P-

OPT [6] which proposes a practical OPT-inspired replace-

ment policy for graph analytics workloads by exploiting the

next-reference information encoded in the graph’s represen-

tation. This work first proposes an OPT-inspired replacement

policy for the LLC by accurately predicting the memory

access stream of the application on a vertex granularity.

However, this policy is based on the assumption that all

memory accesses reach the LLC. It then uses an epoch-based

lossy compression approach to store this next-reference

information in some reserved ways of the LLC to realize

a practical implementation of the said policy at the cost of

some accuracy loss. Another inspired work is the Shepherd

Cache [31] where using part of the cache for lookahead, and

with that emulating OPT in the remaining cache, improves

L2 performance and bridges the LRU-OPT gap to around 30-

52%. Jain et al. [21] propose Hawkeye, a replacement policy

Figure 24: Primitives output per cycle by the Tile Fetcher

(128KiB Tile Cache).

that tries to look backwards over a sufficiently long history

of past memory accesses to learn and mimic the optimal

behavior. Over the years many more works have tried to

attack the replacement problem in different ways including

dead block eviction mechanisms like us [1], [8], [10], [11],

[13], [18], [22]–[24], [26], [30], [32], [34], [35], [37], [38],

[40]. To the best of our knowledge, this is the closest

practical implementation of OPT for caches presented in

literature, till date.

VII. CONCLUSIONS

In this work we introduced TCOR, a novel cache memory

architecture for the Tile Cache of mobile GPUs, whose main

innovation is a cost-effective implementation of the OPT

replacement algorithm [27], which was formally proven to

be an optimal solution for minimizing cache misses. We also

implemented a new replacement policy in the L2 to amplify

the effects of OPT on higher levels of the memory hierarchy.

OPT is generally deemed infeasible as it requires knowl-

edge of future accesses. We made the observation that the

memory access pattern to the Parameter Buffer of a TBR

GPU architecture is built and used up by consecutive stages

of the Graphics Pipeline, namely, the Polygon List Builder

and the Tile Fetcher. TCOR uses information from the

Polygon List Builder to infer the future accesses and then

uses it for replacement in the Tile Cache. We observed that

OPT minimizes misses to the same extent as an LRU cache

with 6.8 times the size. We modified the L2 to identify dead

cache blocks and prioritize the retention of potentially live

cache blocks. This helped improve the caching capabilities

of the L2 while reducing write-backs into main memory.

Experimental results showed that TCOR provides a 13.8%

decrease in the energy consumed by the whole mem-

ory hierarchy. We also observed higher energy savings in

benchmarks with a larger geometry footprint which allows

TCOR to tackle workloads with more complex geometry

in energy-constrained mobile devices. This more efficient

cache architecture also translates into a higher throughput

in the Tiling Engine which opens the door to more aggres-

sive Raster Pipeline implementations, including the use of

Parallel Renderers.
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