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Abstract—Contemporary GPU architectures have multiple
shader cores and a scheduler that distributes work (threads)
among them, focusing on load balancing. These load balancing
techniques favor thread distributions that are detrimental
to texture memory locality for graphics applications in the
L1 Texture Caches. Texture memory accesses make up the
majority of the traffic to the memory hierarchy in typical
low power graphics architectures. This paper focuses on
improving the L1 Texture cache locality by focusing on a new
workload scheduler by exploring various methods to group the
threads, assign the groups to shader cores and also to reorder
threads without violating the correctness of the pipeline. To
overcome the resulting load imbalance, we also propose a minor
modification in the GPU architecture that helps translate the
improvement in cache locality to an improvement in the GPU’s
performance. We propose DTexL that envelops these ideas and
evaluate it over a benchmark suite of ten commercial games,
to obtain a 46.8% decrease in L2 Accesses, a 19.3% increase
in performance and a 6.3% decrease in total GPU energy. All
this with a negligible overhead.

Keywords-GPU; Caches; Graphics; Scheduling; Texture Lo-
cality; Low-power;

I. INTRODUCTION

Graphics applications go through the different stages of

the GPU graphics pipeline, being the stage in the shader

cores the one that represents the vast majority of execution

time and energy consumption. In this stage, the color of each

pixel is computed, which requires a significant number of

memory accesses, mainly to data structures that define the

texture of the different objects, and computations to apply

lighting and other visual effects. Graphics workloads are

highly parallel since the computations for each pixel are

independent, so the application is typically decomposed into

a huge number of threads. The shader cores (aka shaders)

are highly multithreaded to increase throughput and hide

memory latency.

Shader cores (SCs) executing graphics workloads access

texture data through L1 Texture Caches to reduce traffic to

main memory. Memory latency is less of a problem with

graphics workloads because it can be tolerated in current

GPUs through multithreading, which is easily exploited by

leveraging these workloads’ massive inherent parallelism.

Performance in that context mainly depends on throughput,

i.e. on the ability of multithreading to keep a high occupancy

of the shader cores, and is highly correlated to the number

of threads simultaneously processing.

Figure 1: Normalized Mean deviation of number of threads

per processor for two different schedulers: one that focuses

on Load Balancing versus another that improves Texture

Cache locality.

Figure 2: Normalized L2 accesses for two different sched-

ulers: one that focuses on Load Balancing versus another

that improves Texture Cache locality.

Tile-Based Rendering (TBR) architectures, the predom-

inant architecture for mobile GPUs, process and render

disjoint subsets of the screen called tiles. Conventional TBR

architectures exclusively process one tile at a time within an

SC. This can lead to periods of lower thread occupancy in

the SCs if the workload is not evenly distributed among the

different SCs, thus reducing the multithreading efficiency

and increasing the impact of Texture Cache misses in the

core throughput.

Thread schedulers for SCs in contemporary GPUs focus

on workload balancing such that SCs are assigned a similar

number of threads for each tile. Interestingly, we found that

load balancing schedulers lead to memory block replication

in the private L1 Texture Caches and thus decrease their

aggregated capacity. We explore various thread schedulers

that focus on decreasing the memory block replication but

we find that they produce a higher workload imbalance in

the SCs. Figures 1 and 2 compare two workload schedulers,

one focusing on Load Balancing and the other one on

Texture Memory Locality. Figure 1 plots the average of

the normalized mean deviations in the number of threads

assigned to each SC in each tile. On the other hand, Figure 2
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plots the L2 Accesses produced with the scheduler that

focuses on texture cache locality, normalized to those of

the one focused on load balancing. These results clearly

show that where one scheduler wins in load balancing, the

other wins in texture cache locality. This provided us with

a motivation to explore thread schedulers that focus on both

goals, hoping that the combination of both achievements will

increase performance and reduce energy.
In TBR GPU architectures, tiles can be processed in any

order. For each tile, a number of threads are generated,

one for each quad of the scene (a quad is a group of

four adjacent fragments, which corresponds to four adjacent

pixels). These threads can be assigned to the different SCs

following different policies. Overall, by changing the order

in which tiles are processed and the assignment of threads

to SCs, the memory access patterns can be significantly

changed, which can have a great effect on the locality of

the memory references.
The Texture Memory Hierarchy of TBR GPUs has a

private L1 texture cache associated with each SC. The

private L1 Texture Caches are backed by a shared L2 cache

which is then backed by main memory. In this paper, we

influence the texture memory access pattern by scheduling

threads to SCs to favor texture locality over load balancing.

We do this in two ways. One by manipulating the distribution

of threads among the SCs and hence manipulating the

memory accesses among the private L1 texture caches in a

way that minimizes cache block replication and increases

the aggregated capacity of the Texture Caches. And the

second by reordering the memory access pattern (on a tile

granularity) in time by controlling the order in which tiles

are processed by the graphics pipeline. We also tweak the

Raster Pipeline in the TBR architecture to overcome the

load imbalance and translate the caching improvements into

a cumulative benefit on the GPU’s performance and energy.
To summarize, in this paper we propose to improve

texture caching in shader cores by means of a novel thread

scheduling and a reordering of the memory access pattern

to the Texture Memory Hierarchy. In order to translate this

improvement into GPU performance, we propose a minor

modification in the baseline Graphics Pipeline. Together

we call this proposal Decoupled architecture for Texture

Locality (DTexL). DTexL achieves an average of 19.3%

increase in performance (frames per second) and 6.3%

decrease in total GPU energy evaluated over a set of ten

commercial graphics applications.
To summarize, this paper makes the following key con-

tributions:

• Proposes and evaluates different workload schedulers

for the SCs to improve Texture Caching for graphics

workloads in mobile GPUs.

• Proposes and evaluates two tile orders in conjunc-

tion with the workload schedulers to improve Texture

Caching for graphics workloads in mobile GPUs.

• Provides a decrease of 46.8% in total L2 accesses with

the proposed workload scheduler.

• Proposes a minor modification in the graphics pipeline

in order to translate the caching improvement into a

19.3% increase in FPS and 6.3% decrease in total GPU

energy.

The rest of this paper is organized as follows. Section 2

presents some background on GPUs, with special emphasis

on workload scheduling and tile pipelining in TBR GPUs.

Section 3 describes DTexL. We describe the tools and

workloads used to evaluate our technique in Section 4. In

Section 5, we present our experimental results and analysis.

In Section 6, we review some related work and Section 7

summarizes the main conclusions of the paper.

II. BACKGROUND

Mobile GPUs typically implement a Tile-Based Render-

ing (TBR) architecture. The idea for TBR architectures was

initially proposed to facilitate parallel rendering [10], [30].

Tiles are disjoint segments of the frame that can be rendered

in parallel. TBR is now a common architecture adapted for

low-power graphics systems where instead of tiles being ren-

dered in parallel, they are rendered sequentially over small

tile-sized on-chip buffers, which allow to exploit locality

and significantly reduce power-hungry DRAM accesses and

save memory bandwidth. According to a work by Antochi

et al. [1], a TBR architecture reduces the total amount of

external data traffic by a factor of 1.96 compared to a GPU

architecture that is not tile-based (a.k.a. Immediate Mode

Rendering).

A. Graphics Pipeline

Figure 3 shows the main stages of the Graphics Pipeline

and an overview of the memory hierarchy organization. In

Raster Graphics Systems, the Geometry Pipeline transforms

the geometric description of a scene and creates all the

primitives that fall inside the frustum view in accordance

with the camera’s viewpoint. On the other hand, the Raster

Pipeline discretizes each primitive into fragments (at pixel

granularity) that are then shaded and blended to produce the

final screen image.

In a TBR architecture, the Raster Pipeline is designed

to render tiles rather than the full frame. These tiles are

usually square groups of adjacent pixels. This tiling im-

proves locality and allows keeping on chip most bandwidth-

intensive memory accesses. In order for this to happen,

all the geometry needs to be sorted into subsets that will

individually be able to fully render the image for each of

these tiles. There are various methods of sorting. In the

sorting classification of rendering techniques, as described

in [30], TBR can be classified as a Sort-Middle technique.

The process of tiling is carried out by a new pipeline stage

called Tiling Engine.
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Figure 3: The Graphics Pipeline of a TBR GPU.

Thus, the Graphics Pipeline for TBR architectures consists

of three parts, namely the Geometry Pipeline, the Tiling

Engine and the Raster Pipeline, as shown in Figure 3.

Input data for the Graphics Pipeline consists of vertices

and textures. These vertices join to form different polygons

(usually triangles) called primitives and the textures are used

to enhance details on surfaces while rendering the scene.

A Draw Command triggers the Geometry Pipeline and the

Vertex Stage starts fetching vertices from memory using

an L1 Vertex Cache. It then transforms them according

to a vertex program provided by the user. The Primitive

Assembler takes the vertices in program order and joins them

to produce primitives. These primitives are fed as input to

the Tiling Engine.

The goal of the Polygon List Builder is to produce a list,

for each tile of the screen, containing all the primitives that

overlap it. This data is arranged in a structure known as the

Parameter Buffer. For this purpose, the Polygon List Builder

takes each primitive generated by the Primitive Assembly

in program order and appends it to each list of every tile

it overlaps. For each primitive, the Raster Pipeline needs

to know its attributes, which describe the characteristics of

its vertices (e.g., color, normal vectors, texture coordinates,

etc.). Since attributes occupy significant space and primitives

may overlap many tiles, the attributes of each primitive are

stored only once in the Parameter Buffer, and the per-tile

lists contain only the IDs of the primitives.

The Parameter Buffer is built and used up in the same

frame. After all the geometry is processed and binned, the

Tile Fetcher fetches the primitives corresponding to each tile

in the frame, one tile at a time. Tiles are processed in an

order specified by the Tiling Engine, and their primitives are

put into a FIFO queue for the Raster Pipeline to consume.

Since tiles have no data dependencies among themselves,

they can be processed in any order.

The Raster Pipeline renders each tile sequentially. For this

purpose, the Rasterizer takes each primitive from the FIFO

queue and identifies which pixels of the current tile are over-

lapped by the primitive. It then uses interpolation to calculate

attributes for each pixel, a set of data called fragment. The

fragments of every four adjacent pixels are grouped to form a

quad, and these quads are sent to the Early Z-Test stage. This

stage uses a tile-sized buffer called the Z-Buffer to store the

minimum depth of previously processed fragments on each

tile’s pixel coordinate in order to eliminate those that lie

behind another previously processed opaque fragment. The

non-discarded quads are then sent to a shader core (SC),

which computes an initial color for each pixel of a quad,

taking into account the lighting and textures provided by

the shader program. The output colors are then sent to the

Blending Unit. This unit computes the final color of pixels

depending on the transparency of each quad, and stores them

in the Color Buffer. Some rendering techniques require that

the SC changes the depth of fragments, in which case the

Early Z-Test is disabled and the Late Z-Test is employed.

Note that both the Color Buffer and the Z-Buffer have the

size of just one tile, and thus can be stored on-chip. Finally,

the Color Buffer is flushed to the Frame Buffer in main

memory, after a tile has been completely processed. Quads

are propagated between stages through FIFO queues.

To increase throughput, the Raster Pipeline, from the

Early Z-Test stage onwards, is implemented with several

parallel pipelines that operate independently (for simplicity,

we will assume four pipelines in the rest of this paper), each

having its own SC and a private L1 texture cache. Both

the Z-Buffer and the Color Buffer are partitioned into four

banks, so each pipeline operates on its disjoint portion of the

buffer to avoid access conflicts and improve bandwidth. The

partitioning of these buffers implies that the quads generated

by the Rasterizer must be scheduled to the four pipelines

according to a static mapping that depends on their tile

coordinates.

B. Quad Scheduling

Contemporary GPUs focus on load balancing for thread

scheduling such that SCs are assigned a similar number of

threads for each tile [16]. Interestingly, load balancing sched-

ulers lead to memory block replication in the private L1

texture caches and thus decrease their aggregated capacity.

This works well for balancing resource utilization. As long

as overlapping primitives are not rendered in front-to-back

order, the occluded fragments can not be culled by the Early

Z-test and they end up rendered one on top of the other,

wasting processing resources, a phenomenon known as
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Figure 4: Barriers in the Raster Pipeline to manage the

progress of tiles. Each color represents a different tile. Each

pipeline stage processes a single tile at a given time.

overdraw. Furthermore, some pixels require the computation

of multiple fragments if they are transparent. In other words,

in most scenes, geometry is not uniformly distributed over

the frame[8], but rather some regions are richer than others

in depth complexity (number of overlapping surfaces), which

makes them prone to suffer more overdraw. Thus, mapping

many adjacent quad locations to the same processor could

lead to considerable load imbalance because it increases

the likelihood that quads of a highly overdrawn region are

mapped to the same processor. Therefore, to achieve load

balancing w.r.t. the number of quads assigned to each SC,

the quads must be scheduled to SCs in a fine-grained fashion

such that adjacent screen-neighboring quads do not go to the

same SC.

On the other hand, adjacent quads show texture block

reuse and thus assigning them to different SCs with private

L1 caches leads to block replications which could have

been avoided had they gone to the same SC. Each quad

accesses various neighboring texels from a large texture

map. Adjacent quads frequently access the same texels or

texels lying in the same cache line, more so in trilinear

and anisotropic filtering than in bilinear filtering [11]. Thus,

assigning adjacent quads to different SCs leads to replica-

tion of blocks in the private L1 caches, and reduces the

effectiveness of the available storage.

This tension between favoring load balancing and locality

is the main focus of this work.

Commercial GPUs have not disclosed the details of the

quad grouping and subtile mappings they use except the

fact that they use fine-grained scheduling to favor workload

balance. We thus decided to explore the whole design space

by having a reasonable number of representations from fine-

grained mappings and choose the one that provides the best

load balancing based on empirical data, as the final baseline,

as we will see in Section V-A. We also explore a reasonable

number of representation from coarse-grained mappings and

choose the one that provides the best texture locality for our

proposal.

Figure 5: Baseline memory hierarchy and memory organi-

zation.

C. Barriers

Since the on-chip buffers (the Z-Buffer and the Color

Buffer) are sized to accommodate only one tile at a time,

the pipeline stages that use these buffers (Early Z-Test

and Blending, respectively) cannot move to the next tile

before finishing the processing of the current tile. As for

the Fragment Stage, multiple tiles could be processed si-

multaneously at the cost of providing a reorder mechanism

so that the Blending Stage receives all quads belonging to

one tile before starting to receive quads from another tile.

This is necessary because quads are essentially warps in

the GPU core and may not finish in the same order as they

started because of various reasons such as Shader Programs,

Texture Memory misses and Warp Scheduling. To avoid the

high cost of reordering, the Fragment Stage is also limited

to the execution of one tile at a time. To enforce these

requirements, barriers are placed before the Early and Late

Z-Test, the Fragment stage and the Blending stage, such

that these stages are only fed quads from a new tile when

all the quads from the previous tile have finished processing

in that stage. The red lines in Figure 4 illustrate the barriers

put in the Raster Pipeline. It must be noted though that

these barriers have nothing to do with thread synchronization

constructs often used in GPGPUs to synchronize threads

within an SC (a.k.a GPU Core) or between pipeline stages to

assure Draw Command dependencies set by the programmer.

These barriers are internal hardware barriers put in different

stages of the Raster Pipeline in order to ensure that each

raster stage processes only one tile at a time.

D. Memory Organization

Figure 5 depicts the main memory data structures of a

graphics application (on the right) and the memory hierarchy

used to store and access them (on the left). As it can be

seen, there are multiple L1 caches for instructions and data,

backed by a shared L2 cache, which is ultimately backed up

by main memory.

III. DTEXL

The main contribution of this work is to favor texture

locality during quad scheduling and still preserve load
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balancing in the SCs. We do this by controlling how the

stream of memory accesses is scheduled to the set of shader

cores (SCs) so as to improve the caching capabilities within

the private L1 Texture caches (favoring locality, reducing

replication and maximizing the aggregated capacity) and

then tweaking the Raster Pipeline to counter the subsequent

load imbalance and achieve a significant improvement in

GPU performance and energy.

The main challenges associated with favoring texture

locality in quad scheduling while still preserving load bal-

ancing are listed below.

• Quads are scheduled to the four SCs according to

a mapping that partitions the tile into four disjoint

Subtiles. If the overdrawn [8] quads are not evenly

distributed among the Subtiles then there is a load

imbalance w.r.t. the number of quads among the SCs.

The easiest way to overcome this imbalance is to use

a fine-grained mapping that assigns spatially adjacent

quads to different SCs. Six examples of such a mapping

are shown in Subfigures 6(a)-6(f).

• Quads that are adjacent in screen coordinates have a

high chance for spatial locality in their texture accesses

as their texels may be mapped to the same cache blocks.

These adjacent quads may also have temporal locality

depending on the kind of filtering used in the texturing

process (bilinear, trilinear, anisotropic, etc.). I.e., a quad

accesses adjacent texels around it which are then reac-

cessed by a number of neighboring quads depending on

the applied texture filtering. So grouping adjacent quads

will lead to better caching in the L1 texture caches.

Subfigures 6(g)-6(j) show rectangular, triangular and

square-shaped groupings (Subtiles), respectively.

• At a higher level, tiles also share edges with their

adjacent tiles. These shared edges are a potential area

for temporal and spatial locality for textures. Thus,

making sure that adjacent Subtiles from consecutive

tiles go to the same SC will enhance texture locality.

• Quad schedulers focused on texture locality tend to map

coarse-grained regions to the same SC, which causes a

significant load imbalance that leads to equal or worse

total GPU performance as compared to fine-grained

schedulers aimed at load balancing.

A. Our Approach

The mapping of memory accesses among the different

private L1 texture caches is synonymous to the mapping

of quads among the SCs. To facilitate the understanding

of our texture locality-aware mapping, we first explain

the grouping of quads into Subtiles and then how these

Subtiles are assigned to SCs. For illustrative purposes, we

are considering the case of 4 SCs and so quads are assigned

to 4 Subtiles.

On the other hand, it is important to recall that the order of

these memory accesses on a tile granularity depends on the

order that tiles are processed by the Raster Pipeline. Since

the Graphics Pipeline does not impose any restriction on the

tile processing order, we propose a new tile order aimed at

maximizing the Texture Memory locality.

The resulting load imbalance is then overcome by propos-

ing a decoupled Raster Pipeline explained at the end of this

Section.

B. Quad Mapping

Each SC has its private L1 Texture Cache. The caching

effectiveness of each L1 cache has a correlation with the

quads that are assigned to each processor. As explained in

Section II, the Tile Fetcher processes tiles in a predefined

fixed order after which the Rasterizer produces all the quads

belonging to each primitive of a tile in the order that the

Tile Fetcher fetched primitives (this order is set by the

programmer). These quads are then mapped to one of the

four banks of the Z-Buffer. We will henceforth call the group

of quads mapped to one bank, a Subtile. Each of these

Subtiles is then allotted to one of the SCs. Thus, the locality

in the L1 of each SC depends on how the Rasterizer maps

quads into Subtiles.

1) Quad Grouping: As explained in Subsection II-B,

a tile may have more quads concentrated in a particular

region because of highly overdrawn primitives concentrated

in that region. As the amount of overdraw is unknown

beforehand, in order to achieve a balanced number of

quads in each Subtile, a simple mapping policy consists

of distributing quads in a fine-grained interleaved manner

as shown in Subfigures 6(a)-6(f). This balances the number

of quads over the SCs at the expense of increasing texture

block replication across the different L1 caches, therefore

minimizing the potential locality that could be exploited.

Note that Subfigures 6(a) and 6(b) make sure that for each

quad, no adjacent quad goes to the same SC as itself. On the

other hand, for each quad, Subfigures 6(c) and 6(d) allow

at most 2 diagonal neighbor quads to go to the same SC

and Subfigures 6(e) and 6(f) allow at most 2 vertical or 2

horizontal neighbor quads to go to the same SC. These 6

thus cover a reasonable variation over the infinite possible

fine-grained mappings.

In order to reduce texture block replication and to preserve

the potential locality in the L1 texture caches, the subtiling

must be done so that the maximum number of quads in

each Subtile are spatially adjacent. This results in the various

possible shapes for the Subtiles illustrated in Subfigures 6(g),

6(h), 6(i) and 6(j). However, these subtilings increase load

imbalance due to the overdraw clustering effect of primitives

commented above.

2) Subtile Assignment: Each Subtile could be assigned

to any of the SCs. Depending on the tile processing order,

many tiles share at least one edge with a previously pro-

cessed tile. Potential texture locality exists not only among

spatially adjacent quads within a tile but also between two
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(a) FG-xshift2 (b) FG-yshift2 (c) FG-xshift1-1 (d) FG-xshift1-2 (e) FG-xshift0

(f) FG-yshift0 (g) CG-xrectangle (h) CG-yrectangle (i) CG-triangle (j) CG-square

Figure 6: Various fine-grained (FG) and coarse-grained (CG) quad groupings. Each screen location (a quad) is mapped to

one SC. Each color represents a different SC.

(a) Z-order (b) Hilbert

Figure 7: Tile Orders. Each square is a tile. The squares get

darker as the sequence progresses. Note that both Z-order

and Hilbert process adjacent tiles sooner than tiles far away.

adjacent Subtiles that lie in different tiles but share an edge.

Therefore, mapping these Subtiles to the same SC reduces

block replication and potentially increases locality in the

L1 texture caches. The importance of Subtile assignment

is better understood with the example of tile orders as

explained next.

C. Tile Orders

The order in which quads are processed by an SC affects

the order of the memory accesses to the texture memory

hierarchy. On the one hand, quad reordering across primi-

tives violates the correctness of the graphics pipeline. That

is to say that quads from another primitive cannot start

processing until the ones from the current primitive are

finished. However, tiles are totally independent entities and

can be processed in any order, therefore, quad reordering

on a tile granularity does not affect the correctness of the

pipeline. We thus explore different tile orders and their

effects on the texture memory hierarchy.

The most well-known orders in graphics are Scan-line

and Z-order. Scan-line order processes tiles in a row-by-row

fashion. Z-order, shown in Subfigure 7(a), is quite popular in

computer graphics and image processing because of certain

properties that enhance locality in memory accesses. In

mathematical analysis and computer science, space filing

curves like Z-order, Hilbert curve or Lebesgue curve map

multidimensional data to one dimension while preserving

locality of the data points. Figure 7 shows the Z-order and

the Hilbert order for a squared frame split into 16 tiles.

Hilbert order has been less explored in computer graphics

and it proves to be a strong competitor for preserving local-

ity. Several works like [19], [20] and [13] show that Hilbert

performs better than Z-order for particular workloads. But

the main trade-off is the calculation of the Hilbert order.

While Z-order is easy to calculate with bit swizzling of

the scan-line IDs of a data point, Hilbert requires multiple

floating point operations to calculate the Hilbert ID of a

data point. This is an overhead in many applications that

use space-filing curves. However, for the case of Tile orders

in the context of a TBR architecture, where the number of

tiles is usually in the order of a few thousands (depending on

the resolution of the frame to be rendered), this calculation

can be precomputed to avoid such an overhead. Another

issue is that Hilbert order works best for squared dimensions

whereas mobile screens are mostly rectangular. We propose

a Hilbert order that has been adapted to a rectangular region.
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(a) Z-const (b) Z-flp (c) HLB-const (d) HLB-flp1

(e) HLB-flp2 (f) HLB-flp3 (g) Sorder-const (h) Sorder-flp

Figure 8: Various Subtile mappings with CG-square and CG-yrect. The white circle shows the Tile ID of each tile. Each

screen location (subtile) is mapped to one SC. Each color represents a different SC. Subfigures 8(g) and 8(h) use CG-yrect

while the rest use CG-square.

We apply the Hilbert order on a square sub-frame with

8X8 tiles and then traverse all the sub-frames in the frame

boustrophedonically or, in other words, in the shape of an

S.

D. Tile Order and Subtile Assignment

For illustrating purposes, Figure 8 shows a frame con-

taining 16 tiles with eight Subtile assignments, using a

combination of one of two quad groupings (CG-square and

CG-yrectangle) with one of three tile orders (Z-order, Hilbert

order and S-order). In Subfigures 8(a), 8(c) and 8(g), we see

that as we progress along the Z-order, the Hilbert order and

the S-order respectively, Subtiles that go to the same SC

and therefore use the same L1 texture cache, do not share

an edge. Whereas, in the five remaining subfigures, we see

a rearrangement in the assignment of Subtiles to SCs. The

main motivation here is to assign adjacent Subtiles belonging

to adjacent tiles to the same SCs without favoring any SC

over the course of the frame. In Subfigure 8(d), the Subtile

assignment has been simply flipped along the shared edge

of consecutive tiles. For example, when going from Tile1 to

Tile2 the Subtiles are reassigned so that subtiles in Tile1 that

are assigned to SC2 and SC4, share an edge with the subtiles

assigned to the same SCs in Tile2. Similarly, going from

Tile2 to Tile3, the shared edge is assigned to SC3 and SC4.

The same happens in Subfigure 8(b) but with Z-order. In

both cases, note that SC4 is favored to always have a shared

edge. Whereas, SC1 never gets shared edges. Subfigure 8(e)

and 8(h) overcome this imbalance by favoring different SCs

over the course of the frame. When going from an even tile

to an odd tile, HLB-flp2 flips along the shared edge and then

also flips the non-sharing subtiles amongst themselves. For

example, in Subfigure 8(e), when going from Tile2 to Tile3

SC3 and SC4 share an edge like before but SC1 and SC2

also interchange their places. The long-term effect of this,

considering the whole frame, is that no one SC is favored

for edge sharing. Note that in Subfigure 8(f), we flip all four

Subtiles every 16 tiles such that the same FP is not at an

advantage or a disadvantage every time.
Let us now summarize the benefits and disadvantages of

each of analyzed subtile assignments.

• Mapping the same quadrants to the same SCs in all

the tiles leads to the L1 texture caches not exploiting

all the potential locality (see Subfigures 8(a), 8(c) and

8(g)).

• Flipping tiles around the axis of the shared edge as

we traverse the tiles allows adjacent Subtiles to go to

the same L1 caches. However, one subtile always gets

the advantage of having a shared edge at all times (see

Subfigures 8(b) and 8(d)).

• Subfigures 8(e), 8(f) and 8(h) fight this imbalance that

gives a fair share of shared edges to all SCs over the

course of the frame.

E. Decoupled-Barrier Architecture
In our approach, each SC receives a subset of a given

tile. Depending on the number of quads in each SC, their

workload complexity, and the state of the private L1 Texture
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(a) FG-xshift2 (b) CG-square

Figure 9: Each subfigure shows FG-xshift2 and CG-square

quad grouping, respectively, for one tile. The overlapped

quads of primitive in 9(a) are evenly distributed among SCs

while for 9(b), they are not.

Figure 10: Overview of the proposed Decoupled Barrier

Architecture. Each color represents a different tile. Each

SC can now process a different subtile, at a given time,

depending on the progress of subtiles.

caches at that time, different SCs will finish their set of

assigned quads (in a Subtile) at different times. Thus, each

SC will have to wait until the last SC finishes its subtile,

leading to idle time in the SCs.

Let’s look at an example shown in Figure 9 to understand

this imbalance. This Figure shows a tile with FG-xshift2

grouping on the left and CG-square on the right. The tile

will have multiple primitives overlapping it and they will

access various textures. For the sake of simplicity, we only

show one primitive in the down-right corner. Let us assume

that the primitive has a relatively heavy workload (e.g. long

shader programs, multiple long latency texture accesses).

The length of the shader program has a proportional impact

on the throughput of the SC whereas a main memory access

may or may not be hidden by multithreading. In each of the

two cases, the primitive overlaps 17 quads. In the FG-xshift2

case (depicted on the left), this heavy workload is more

evenly distributed than in the CG-square case. If the rest

of the primitives in the tile have a relatively low workload,

then in the CG-square case, SC3 got an unfair share of quads

with a heavy workload. Thus SC3 has a potential to finish

the last whereas SC0 got none of them and has a potential to

finish the tile first and will need to sit idle until SC3 finishes.

Contrarily, all SCs in the FG-xshift2 case got a near-equal

share of the primitive’s quads thus reducing the imbalance

in execution time.
To avoid this, we propose a new architecture for the

pipeline. As explained in Section II, the Raster Pipeline in

the baseline places barriers at the input of the final three

stages of the Raster Pipeline, namely the Early Z-Test (since

we choose Early Z-Test, Late Z-Test is disabled for this

example), the Fragment Stage and the Blending, as shown

in Figure 10 for the reasons mentioned in Section II. These

barriers make sure that the subsequent stage does not start

a new tile until the previous one has completed in that

stage. Finally, when Blending finishes processing a tile,

the whole Color Buffer (all banks) containing the whole

tile is flushed into memory, before starting the next tile in

Blending. Blending then starts updating the Color Buffer

with the new tile’s colors. Recall that the Color Buffer and

the Z-Buffer are tile-sized but multi-banked. We leverage

this banking to decouple the barriers in the final three stages.

In our experiments, these three stages have 4 parallel units

working independently (4 banks per buffer and 4 SCs),

with a maximum throughput of 1 quad per cycle each. The

scheduler assigns to each parallel unit a section of the tile

that we call subtile. Since these subtiles are disjoint, the

baseline requirement of having all the units in the same stage

working on a single tile may now be relaxed to just having

each parallel unit working on a single subtile. In other words,

the barriers among stages are now decoupled so that each

stage can start a new subtile when it finishes the previous

one, without having to wait until the remainig subtiles are

also finalized. Note that the banks are all the same size and

thus the subtiles need to be one-fourth the size of a tile.
As an example, let’s compare Figure 4 and 10 to better

understand the functionality of a decoupled architecture. In

Figure 4 we clearly see that each parallel unit of each of the

raster stages is processing different subtiles of the same tile.

Whereas in Figure 10 going from the back to front order

in raster stages, we see that the second parallel unit in the

present state is two tiles ahead of the third parallel unit.

This just means that the second parallel unit is processing a

subtile from Tile N+6 because it finished subtiles from Tiles

N+4 and N+5 early and was able to go ahead because of

the decoupling. Note that during the execution of the rest

of the frame, this parallel unit might slow down and others

speed up and finish the frame around the same time.
Decoupling requires only 2 changes as listed below.

• Change the Color Buffer to be able to flush each bank

individually. This does not add any additional cost as

it just requires the storage of the Tile ID separately for

each of the banks so that the bank can be flushed to

the correct address in memory. What this achieves is

the ability for parallel units in the Blending Stage to

start a new subtile from the next tile without waiting
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Table I: Evaluated benchmarks from the Google Play Store.

Benchmark Alias Installs
(Millions) Genre Type Texture Footprint

(in MiB)
Candy Crush Saga CCS 1000 Puzzle 2D 2.4
Sonic Dash SoD 100 Arcade 3D 1.4
Temple Run TRu 500 Arcade 3D 0.4
Shoot Strike War Fire SWa 10 Shooter 3D 0.2
City Racing 3D CRa 50 Racing 3D 2.8
Rise of Kingdoms: Lost Crusade RoK 10 Strategy 2D 6.8
Derby Destruction Simulator DDS 10 Racing 3D 1.4
Sniper 3D Snp 500 Shooter 3D 1.8
3D Maze 2: Diamonds & Ghosts Mze 10 Arcade 3D 2.4
Gravitytetris GTr 5 Puzzle 3D 0.7

Table II: GPU simulation parameters.

Global Parameters
Tech Specs 600MHz, 1V, 32nm
Screen Resolution 1960x768
Tile Size 32x32
Tile Traversal Order Z-order

Main Memory
Latency 50-100 cycles
Size 1GiB

Caches
Vertex Cache 64-bytes/line, 8KiB, 4-way, 1 cycle
Texture Caches (4x) 64-bytes/line, 16KiB, 4-way, 1 cycle
Tile Cache 64-bytes/line, 64KiB, 4-way, 1 cycle
L2 Cache 64-bytes/line, 1MiB, 8-way, 12 cycles

for all the subtiles in the Color Buffer to be flushed to

memory.

• Modify the barriers in the inputs of Early Z-test,

Fragment Stage and Blending. The Early Z-Test has

4 parallel pipelines, each used by one subtile. Imple-

menting a decoupled barrier just means ensuring the

previous subtitle has finished processing in one parallel

pipeline before starting a new subtile in that parallel

pipeline. The same applies to the other two stages.

Thus Decoupled architecture has a negligible area over-

head. Since we are increasing throughput in the final 3 stages

of the pipeline by eliminating this waiting period, this puts

pressure on the first two stages and mainly the Tile Fetcher.

We find that the Fragment Stage is a major bottleneck of

the Raster pipeline. Thus this pressure still does not migrate

the bottleneck to the Tile Fetcher, as can be corroborated by

the speedup of the whole pipeline in Section V-C2.

Our proposal thus solves the issue of idle time in SCs

and thus reduces load imbalance significantly. Thus the idle

time between two tiles is reduced to near zero for each SC.

Note that in case the Subtile mapping function favors any

one SC at all times, this SC will finish the frame before the

rest and will sit idle towards the end of the frame. In order

to combat this, mapping functions should be impartial to

SCs over the period of a frame. This impartiality is depicted

by Hilbert-flip2 (Subfigure 8(e)), Hilbert-flip3 (Subfigure

8(f)) and Sorder-flip (Subfigure 8(h)). Whereas Hilbert-flip1

(Subfigure 8(d)) always allots SC3 with a shared edge. While

our decoupled architecture will ensure load balancing for the

majority of the time, this partiality may lead to an imbalance

in the time taken for each SC to finish the frame.

Note here that the Fragment Stage is known to be a

bottleneck for the graphics pipeline and SC performance has

a major effect on the performance of the GPU as we will

see in Section V.

IV. EVALUATION FRAMEWORK

A. GPU Simulation Framework

We use the TEAPOT [3] simulation infrastructure to

evaluate our proposal. TEAPOT is a cycle-accurate GPU

simulation framework that allows to run unmodified An-

droid applications and evaluate the performance and energy

consumption of the modeled GPU. In order to do that,

TEAPOT includes timing and power models based on well-

known tools: McPAT [28] for power estimation, and DRAM-

Sim2 [32] for modeling DRAM and the memory controllers.

Table II shows the parameters employed in our simulations,

which resemble those of a contemporary mobile GPU.

B. Benchmarks

We use popular commercial animated applications

(games) as benchmarks. We have selected them based on

their popularity in the number of downloads in the Google

Play Store, and their variety to cover different types of

games.

Table I shows the ten Android games used to evaluate

our technique. We have 2D games like CCS and 3D games

like CRa. Games like RoK has a texture footprint of around

6.8MiB in memory whereas SWa has around 0.2MiB. Upon

further characterization of our benchmark suite, we also

observed that the reuse of texture memory blocks also varies

greatly across different games.

V. EXPERIMENTAL RESULTS

In this Section we first explore the effects of the fine-

grained and coarse-grained Quad Groupings on load bal-

ancing and on texture access locality. We then choose a

representative for load balancing as the baseline and the best
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Figure 11: Average L2 Accesses normalized to FG-xshift2

(fine-grained in blue and coarse-grained in pink).

Figure 12: Average normalized Mean Deviation in quad

distribution normalized to FG-xshift2 (fine-grained in blue

and coarse-grained in pink).

one for texture access locality for our proposed technique

and analyze the total performance and workload imbalance

of both approaches without a decoupled architecture. Finally,

we evaluate DTexL: we explore DTexL with all the Subtile

assignments shown in Figure 8 and their effects on caching,

performance and energy.

A. Quad Grouping

Figure 11 plots the average L2 accesses of the eight quad

groupings shown in Figure 6, normalized to those of FG-

xshift2. On the other hand, Figure 12 plots the average

normalized mean deviation in quad distribution, normalized

to that of FG-xshift2. The fine-grained groupings are shown

in blue and the coarse-grained ones in pink. Comparing

the two figures, the trade-off between texture locality and

load balancing is quite stark. As explained in Section III,

fine-grained groupings like FG-xshift2 achieve better load

balancing because they avoid clustering overdrawn pixels to

one SC. Whereas coarse-grained groupings like CG-square

help exploit spatial locality of the texels accessed by adjacent

quads.

Another observation is that the groupings that show more

load balancing vertically than horizontally, and hence more

adjacency horizontally than vertically, show better texture

locality and worse load balancing. For example, CG-xrect

and CG-yrect show a 40% and 45% decrease in L2 accesses

and a 6× and 10× increase in load balancing of quads. This

implies that averaging over all benchmarks, there is more

overdraw clustering horizontally than vertically. One reason

could be that in most scenes, gravity forces objects to be

more horizontally shaped than vertical or diagonal.

For the rest of the paper, we choose FG-xshift2 as the

baseline to represent the fine-grained and CG-square to

Figure 13: Speedup of CG-square and CG-yrect w.r.t. FG-

xshift2.

Figure 14: FG-xshift2 vs CG-square execution time imbal-

ance in SCs.

represent the coarse-grained. We also explore CG-yrect since

it shows a decrease in L2 accesses similar to CG-square.

B. Performance in a Non-Decoupled Architecture

Figure 13 plots the speedups of CG-square and CG-

yrect over the baseline FG-xshift2. It shows that CG-square

does not provide any speedup even though we see a 46.8%

decrease in L2 Accesses in Figure 11. We could have

assumed that this is because multithreading hides memory

latencies so well that this improvement in caching does not

contribute towards total performance. But Figures 14 and 15

tell a different story: the potential performance improvement

enabled by a better cache behavior is offset by a worse load

balancing.

Figure 14 plots the mean deviation in SC execution time

to complete a tile (normalized to the mean of all SCs, in

percent) for both the FG-xshift2 and CG-square mappings,

and depicts it in a violin plot including the min, max, average

and the distribution. It clearly shows that the normalized

mean deviation is higher in the case of CG-square (and it

can go up to 150% for TRu) whereas it has an average of

around 5% in the case of FG-xshift2.

Figure 15 plots the mean deviation in number of quads

processed per SC to complete a tile (normalized to the

mean of all SCs, in percent) for both approaches, and here

it also shows that the coarse-grained mapping based on

texture locality has a higher deviation. This deviation in

number of quads per SC contributes towards the deviation

in execution time, but it is not the only reason. Each quad

comes with a different intensity of workload (depending

on things like length of shader programs, number of long
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Figure 15: FG-xshift2 vs CG-square Quad distribution im-

balance in SCs.

latency texture accesses, etc). Adjacent quads that belong to

the same primitive tend to have the same workload intensity.

Thus, fine-grained mappings tend to balance the workload

intensity among different SCs, too. Both factors together

(number of quads and workload intensity) contribute towards

the deviation of execution time in different SCs. We counter

the impact of this imbalance on aggregated performance

by using the Decoupled-Barrier Architecture of the raster

pipeline.

C. DTexL

In this subsection we apply the various subtile assign-

ments shown in Figure 8 with DTexL and explore the

benefits in texture cache locality, performance and energy

w.r.t. the baseline. The baseline here has a fine-grained Quad

Grouping (FG-xshift2) and Z-order as its tile order with the

non-decoupled barrier architecture.

1) Texture Locality: Figure 16 plots the percent decrease

in total L2 accesses w.r.t. the baseline for the eight com-

binations of Quad Mappings and Tile Orders displayed in

Figure 8 as well as an upper bound. It shows that Quad

Mapping and Tile Orders can combine to reduce the gap

between the L2 Accesses of the baseline and the upper

bound by 80%. Note that a higher decrease in L2 accesses

indicates lesser replication of texture memory blocks in the

private L1 caches.

The upper bound can be computed by running simulations

with a single SC and Texture cache instead of 4, but resized

to be 4× the size of the original private L1 caches. This

arrangement avoids the loss of effective aggregated cache

capacity caused by block replication, and the loss of locality

caused by mapping quads that access the same texture cache

line to different SCs.

It can be observed that without shared-edge aware subtile

mapping, the L2 accesses decrease 40.7% on average in

both Zorder-const and HLB-const. While HLB-flp1, HLB-

flp2 and HLB-flp3 all show around 46.5% decrease in

L2 accesses, Sorder-const and Sorder-flp show a slightly

better 46.8% decrease. This trend is varying across the

benchmarks. And yet the common theme is that HLB-flp1,

HLB-flp2, HLB-flp3, Sorder-const and Sorder-flp show the

best results. We should also note that these results are very

close to the upper bound.

One important point to note here is that most adjacent

quads share texture blocks and hence mapping quads into

different SCs will always lead to some replication in the L1

texture caches. Thus the upper bound is conservative and

not necessarily achievable and yet these mappings are able

to reduce the gap between the baseline and the upper bound

by 80%.

Having seen such a drastic decrease in L2 accesses, one

might expect a decrease in L2 misses too. However, quad

mapping variations within a tile, that reduce replication of

memory blocks in the private L1 texture caches, are targeted

towards improving the short-term reuse of texture memory

accesses. So, as expected, we did not see any notable

changes in the L2 misses in our results (although not shown

here), and hence no changes in main memory accesses.

2) Performance: On analysis, we found that all subtile

assignments show a similar effect on performance even with

their differences in L2 accesses. This is because multithread-

ing hides memory latency and only drastic changes in L2

accesses can show a significant change in GPU performance.

Having said that, HLB-flp2 had the best performance among

the proposed subtile assignment in Figure 8 and thus we

now study this assignment. Figure 17 plots the speedup

of DTexL (HLB-flp2) w.r.t. the baseline (fine-grained FG-

xshift2 without decoupled-barrier architecture). We also plot

the speedup of a fine-grained (FG-xshift2 with Z-order)

with a decoupled-barrier architecture in order to make a

wholesome comparison. On average we see a significant

1.2× speedup and in GTr we see close to 1.4× speedup

for DTexL. We also see a 1.09× speedup for FG-xshift2.

These results corroborate our findings in Subsection V-B

that both fine-grained and coarse-grained quad groupings

show an imbalance in SC execution time per tile and that

the imbalance is more pronounced in the coarse-grained

case. What we see here is that the decoupled architecture

has been able to overcome this imbalance and provide a

speedup for both cases. The higher speedup for HLB-flp2

shows us that benefits in texture caching provided by coarse

grained quad groupings (a drastic 46.8% decrease in L2

Accesses) has translated into a speedup despite the fact that

GPUs are usually good at hiding memory latencies using

multithreading. This can be attributed to two facts. One that

improvement in texture cache locality is drastic in coarse

grained groupings and two that SC performance in TBR

architectures is more susceptible to memory latency due to

periods of low occupancy in the SCs.

3) Total GPU Energy: Figure 18 plots the decrease in

total GPU energy of FG-shift2 (Z-order) and HLB-flp2,

both with a decoupled-barrier architecture, w.r.t. FG-xshift2,

without a decoupled-barrier architecture. We see a decrease

in total energy of 6.3% on average, and around 8.8% for

CCS and 10.6% for GTr. Note that this is a significant
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Figure 16: Decrease in L2 accesses for various subtile mappings w.r.t non-decoupled FG-xshift2.

Figure 17: Speedup w.r.t. Non-Decoupled FG-xshift2.

Figure 18: Decrease in total GPU energy w.r.t. Non-

Decoupled FG-xshift2.

achievement as energy efficiency is crucial in mobile GPUs

and this is achieved with a negligible hardware cost. We

also note a 3% decrease for FG-xshift2 with a decoupled

architecture. Note that there is a strong correlation between

Figure 17 and Figure 18 indicating that reduction in energy

comes mainly from a decrease in L2 accesses and execution

time.

VI. RELATED WORK

Previous work on workload scheduling in GPUs has

focused on load balancing because schedulers are generically

designed for graphics as well as general purpose workloads.

Our work focuses on proposing a texture locality aware

scheduler and a minor modification to the Raster Pipeline to

overcome the load imbalance caused by the scheduler.

Kerbl et al.[16] have proposed a static workload scheduler

that focused on scheduling tiles among different raster units

assuming a parallel tile rendering architecture with multiple

Raster Units. This scheduler focused on load balancing to

ensure that an equal number of threads are assigned to each

Raster Unit. It did this by exploring fine-grained scheduling

of tiles that avoided assigning the adjacent tiles to the same

Raster Unit. This avoided cluster scheduling of tiles which

we know causes load imbalance. Other works like [10] and

[29] explore dynamic workload scheduling that also focused

on scheduling tiles among different raster units assuming

a parallel tile rendering architecture with multiple Raster

Units. Yet none of these works focus on workload scheduling

based on cache access locality.

Focusing on locality-aware workload scheduling,

Ukarande et al [34] report a 4% speedup when exploiting

Texture Cache locality on high-end desktop graphics

workloads by clustering CTAs that are close in screen

coordinates. Other works like [25], [21] and [4] take a

similar approach by proposing a CTA scheduling focused

on L1 Data Cache locality but for GPGPU workloads,

and resulted in performance improvements. It must be

noted here that all the works above propose only software

modifications and they work on a CTA granularity unlike

DTexL that proposes a hardware solution for a quad

scheduler for mobile GPUs.

Many works have previously targeted cache locality in

GPUs for GPGPU workloads. Some works have targeted

cache locality across kernel launches for parent-child kernels

[37] or generic dependent kernels [12]. Other works like

[18], [5], [25] have also studied the impact of warp throttling

on locality for GPGPU workloads. Whereas others like

[31], [36], [22], [23], [40], [14], have studied the impact of

warp-scheduling within a core on locality, also for GPGPU

workloads. Other works like [17], [26], [27], [33], [39], [42],

[38], [7], [41], [35], [24] have explored cache bypassing to

improve GPU cache locality. Another work [9] proposes a

Cooperative Caching Network (CCN), a ring network among

L1 caches of a GPU, to reduce L2 bandwidth demand.

As for graphics workloads, there is previous work [2]

on prefetching texture memory in the L1 texture caches.

Another work [6] proposes a NUCA organization for the

L1 texture caches to increase their effective overall capacity.

Another work [15] has proposed improving locality of the
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L1 Tile Cache in a GPU for graphics workloads.
All the above techniques focus on cache locality in GPUs

but most of them are specific for GPGPU workloads and

at the same time the techniques are orthogonal to DTexL,

which focuses on texure locality aware quad scheduling for

graphics workloads in mobile GPUs.

VII. CONCLUSIONS

Contemporary GPUs use simple load balancing schedulers

in order to assign workloads into the shader cores. These

schedulers often prevent the texture caches from exploiting

the potential texture locality between adjacent quads by

placing them in different cores.
In this work we have proposed a novel workload schedul-

ing for the shader cores in TBR architectures for mobile

GPUs focusing on improving Texture Cache locality while

still preserving the desired load balancing. We preserve

this load balance by also proposing a minor change in the

Raster Pipeline of the TBR architecture in order to translate

the improvement in caching into an improvement in GPU

performance. We call our proposal DTexL.
Experimental results show that the best of DTexL leads

to a drastic decrease of 46.8% in L2 accesses, averaged

over a benchmark suite that has 10 contemporary gaming

applications. Such an L2 access decrease closes the gap

between that of the baseline and a conservative upper bound

by 80%. We also observed a significant increase in the

imbalance in execution time for different cores for each tile

and proposed a minor change in the pipeline in order to

leverage that imbalance and convert it into a 1.2× speedup

in GPU performance on average, and a 1.35× speedup for

one case. This also leads to a 6.3% decrease in total GPU

energy.
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A. González, “Dtm-nuca: dynamic texture mapping-nuca
for energy-efficient graphics rendering,” in 2022 30th
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, PDP 2022: Valladolid, 9-11
March 2017: proceedings. Institute of Electrical and Elec-
tronics Engineers (IEEE), 2022, pp. 144–151.

[7] H. Dai, C. Li, H. Zhou, S. Gupta, C. Kartsaklis, and M. Man-
tor, “A model-driven approach to warp/thread-block level
gpu cache bypassing,” in 53rd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[8] M. F. Deering, “Data complexity for virtual reality: Where do
all the triangles go?” in Proceedings of IEEE Virtual Reality
Annual International Symposium. IEEE, 1993, pp. 357–363.

[9] S. Dublish, V. Nagarajan, and N. Topham, “Cooperative
caching for gpus,” ACM Trans. Archit. Code Optim., vol. 13,
2016.

[10] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, and L. Israel,
“Pixel-planes 5: A heterogeneous multiprocessor graphics
system using processor-enhanced memories,” ACM Siggraph
Computer Graphics, vol. 23, no. 3, pp. 79–88, 1989.

[11] P. S. Heckbert, “Survey of texture mapping,” IEEE Computer
Graphics and Applications, vol. 6, no. 11, pp. 56–67, 1986.

[12] M. Huzaifa, J. Alsop, A. Mahmoud, G. Salvador, M. D.
Sinclair, and S. V. Adve, “Inter-kernel reuse-aware thread
block scheduling,” ACM Trans. Archit. Code Optim., vol. 17,
2020.

[13] H. V. Jagadish, “Analysis of the hilbert curve for represent-
ing two-dimensional space,” Information Processing Letters,
vol. 62, no. 1, pp. 17–22, 1997.

[14] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K.
Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Owl: Cooperative thread array aware scheduling techniques
for improving gpgpu performance,” SIGPLAN Not., vol. 48,
2013.

[15] D. Joseph, J. L. Aragón, J. M. Parcerisa, and A. González,
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