
Boustrophedonic Frames: Quasi-Optimal L2
Caching for Textures in GPUs

Diya Joseph∗, Juan L. Aragón†, Joan-Manuel Parcerisa∗ and Antonio González∗
∗ Universitat Politècnica de Catalunya, Barcelona, Spain

† Universidad de Murcia, Murcia, Spain

Abstract—Literature is plentiful in works exploiting cache
locality for GPUs. A majority of them explore replacement
or bypassing policies. In this paper, however, we surpass this
exploration by fabricating a formal proof for a no-overhead
quasi-optimal caching technique for caching textures in graphics
workloads. Textures make up a significant part of main memory
traffic in mobile GPUs, which contributes to the total GPU
energy consumption. Since texture accesses use a shared L2
cache, improving the L2 texture caching efficiency would decrease
main memory traffic, thus improving energy efficiency, which is
crucial for mobile GPUs. Our proposal reaches quasi-optimality
by exploiting the frame-to-frame reuse of textures in graphics.
We do this by traversing frames in a boustrophedonic1 manner
w.r.t. the frame-to-frame tile order. We first approximate the
texture access trace to a circular trace and then forge a formal
proof for our proposal being optimal for such traces. We also
complement the proof with empirical data that demonstrates the
quasi-optimality of our no-cost proposal.

Index Terms—GPU; Caches; Graphics; Texture; Low-power;

I. INTRODUCTION

Cache replacement policies and bypassing techniques are

a common design space exploration ground in GPUs due

to their high memory bandwidth usage. Although this has

been extensively explored for GPGPU workloads, it has not

been so for graphics workloads. In this paper, we surpass

this exploration of replacement and bypassing policies by

fabricating a formal proof for a no-overhead quasi-optimal

caching mechanism for textures in graphics applications. With

this we extend to the community a solid framework for

studying texture caching (including bypassing), by skipping

the exploration of non-optimal heuristics that will most likely

incur a non-trivial hardware overhead.

Low-power GPUs are widely known to adopt a Tile-Based

Rendering (TBR) architecture. In fact, high-end desktop GPUs

are also known to adapt tiling in recent times [53]. Tiles
are disjoint segments of the frame that have no data depen-

dencies within themselves and can be rendered in parallel.

The graphics pipeline in TBR architectures has four major

types of memory accesses to main memory. They correspond

to the Frame Buffer (final colors of the frame), Geometry

(geometric description of the scene), Parameter Buffer (a data

structure that enables the tiling of the frame), and Textures

(images that enhance details of a surface of an object). Figure 1

1Boustrophedon is a style of writing in which alternate lines of writing are
reversed in order. This is in contrast to most modern languages, where the
order of lines is the same, usually left-to-right.

Fig. 1. Distribution of types of main memory accesses for real-world graphics
applications in mobile GPUs.

plots the distribution of accesses to main memory among the

various types of accesses in the graphics pipeline, for a set

of real-world animated graphics applications that makes up

our benchmark suite. We see that around 36% of accesses are

texture accesses. Energy efficiency is crucial in mobile GPUs

and main memory accesses constitute a significant part of the

energy consumed by GPUs.

Most contemporary applications that use GPUs require a

high frame rate to sustain the perception of continuity while

rendering realistic animations. This results in most frames

being almost identical to the previous frame. This structured

relationship between successive frames is known as frame-

to-frame coherence. We profile our benchmark suite to find

that 99% of texture accesses to the L2 are block reuses, 44%

of which can be attributed to frame-to-frame coherence. This

provided a strong motivation to explore the L2 texture caching

efficiency.

Our benchmark suite consists of a wide variety of real-world

animated graphics applications as explained in section IV.

Upon profiling our benchmark suite, we observe that texture

accesses follow several typical patterns:

• Frame coherence implies that a texture trace almost fully

repeats itself in consecutive frames.

• We observe that, for each frame, 55% of L2 texture

accesses are intra-frame reuse, 44% are inter-frame reuse,

and 1% are new accesses.

• Each frame typically has a large working set resulting in

large inter-frame texture reuse distances.

• The intra-frame texture reuse distances are short and can

be cached efficiently with an LRU policy.

These access patterns suggest that some research is needed

on how to improve L2 cache effectiveness for inter-frame

124

2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT)

979-8-3503-4254-3/23/$31.00 ©2023 IEEE
DOI 10.1109/PACT58117.2023.00019

Fig. 2. The Graphics Pipeline of a TBR GPU.

reuses (without worsening intra-frame reuses). This work

shows that a very simple solution is very close to optimal, and

provides detailed insights and a formal proof of the reason for

this quasi-optimality. This simple solution consists in reducing

some inter-frame reuse distances by reversing the trace order

every second frame. In other words, traversing all the frames

boustrophedonically. Intuitively, the reversal starts the texture

access trace with textures that were last processed in the pre-

vious frame, thus reducing some inter-frame reuse distances.

Reversing the trace order is approximated by reversing the

order in which the tiles of a frame are rendered in a TBR

graphics pipeline. Note that tiles may be processed in any

order as far as their overlapping primitives are rendered in

program order.

To have a better theoretical foundation for our intuition, we

first approximate our texture traces to a circular trace: one

that repeats a fixed sequence of accesses to distinct memory

blocks with no repetitions within the sequence. Previous works

like [18], [40] have shown that LRU works very poorly with

circular traces. The solution in that work was a change in

the replacement policy to adapt to these traces in order to

mitigate their effect on caching. However our proposal is

unique to TBR GPUs and we prove that if the circularity is

broken by reversing the order of the sequence in alternate

iterations, LRU not only gets improved but produces the

same miss ratio as OPT (an optimal replacement policy) [35]

and OPTPT (an optimal placement—with bypassing—and

replacement policy) [36]. Furthermore, given this additional

degree of freedom to change the order of accesses in each

iteration of the sequence, we also prove that LRU, with this

alternating order, still gives us the minimum possible miss

ratio.

To support our approximation, we first demonstrate empiri-

cally the structural similarities between our texture traces and

the circular trace, w.r.t. the properties of the circular trace

that make the LRU with alternate order optimal. Secondly, we

demonstrate empirically, how close the tile reverse ordering

approximates a pure reverse ordering of the texture access

stream. Finally, we explain why reversing the tile order every

other frame incurs no extra cost.

As an addition to quasi-optimality at no cost, our proposal

achieves a 9.9% decrease in memory hierarchy energy.

To summarize, this paper makes the following key contri-

butions:

• Fabricates a formal proof for the quasi-optimality of a

no-cost L2 caching mechanism for textures in GPUs.

We believe this formal proof of optimality is the main

contribution of this paper since it proves that there is

no need to investigate in alternative complex L2 cache

management schemes for texture caching.

• Demonstrates the quasi-optimality empirically.

• Secondary to this, shows that this no-cost proposal trans-

lates to a 2% speedup and a 9.9% decrease in memory

hierarchy energy.

The rest of this paper is organized as follows. Section II

presents some background while Section III describes the

proof of the quasi-optimality of our proposal. We describe the

tools and workloads used to evaluate our technique in Section

IV. In Section V, we present our experimental results and

analysis. In Section VI, we review some related work and

Section VII concludes the paper.

II. BACKGROUND

Mobile GPUs typically implement a Tile-Based Rendering

(TBR) architecture. The idea of TBR architectures was ini-

tially proposed to facilitate parallel rendering [11], [38]. Tiles
are disjoint segments of the frame that can be rendered in

parallel. TBR is now a common architecture adapted for low-

power graphics systems where instead of tiles being rendered

in parallel, they are rendered sequentially over small tile-

sized on-chip buffers, which allow to exploit locality and

significantly reduce power-hungry DRAM accesses and save

memory bandwidth. According to a work by Antochi et al.

[3], a TBR architecture reduces the total amount of external

data traffic by a factor of 1.96 compared to a GPU architecture

that is not tile-based (a.k.a., Immediate Mode Rendering).

A. The Graphics Pipeline

Figure 2 shows the main stages of the Graphics Pipeline

and an overview of the memory hierarchy organization. In

raster graphics systems, the Geometry Pipeline transforms the

geometric description of a scene and creates all the primitives
that fall inside the frustum view in accordance with the

camera’s viewpoint. On the other hand, the Raster Pipeline

discretizes each primitive into fragments (at pixel granularity)

that are then shaded and blended to produce the final screen

image.

In a TBR architecture, the Raster Pipeline is designed to

render tiles rather than the full frame. These tiles are usually

square groups of adjacent pixels. This tiling improves locality

125

and allows keeping on chip most bandwidth-intensive memory

accesses. In order for this to happen, all the geometry needs

to be sorted into subsets that will individually be able to fully

render the image for each of these tiles. The process of tiling

is carried out by a new pipeline stage called Tiling Engine.

Thus, the Graphics Pipeline for TBR architectures consists

of three parts, namely the Geometry Pipeline, the Tiling

Engine, and the Raster Pipeline, as shown in Figure 2.

Input data for the Graphics Pipeline consists of vertices

and textures. These vertices join to form different polygons

(usually triangles) called primitives and the textures are used

to enhance details on surfaces while rendering the scene. A

Draw Command triggers the Geometry Pipeline which fetches

vertices and joins them to produce primitives. These primitives

are fed as input to the Tiling Engine.

The goal of the Polygon List Builder is to produce a list

(Parameter Buffer), for each tile of the screen, containing

all the primitives that overlap it. After all the geometry is

processed and binned, the Tile Fetcher fetches the primitives

corresponding to each tile in the frame, one tile at a time.

Tiles are processed in an order specified by the Tiling Engine,

and their primitives are put into a FIFO queue for the Raster

Pipeline to consume. Since tiles have no data dependencies

among themselves, they can be processed in any order.

The Raster Pipeline renders each tile sequentially. For

this purpose, the Rasterizer takes each primitive from the

FIFO queue and identifies which pixels of the current tile

are overlapped by the primitive. It then uses interpolation to

calculate attributes for each pixel, a set of data called fragment.
The fragments of every four adjacent pixels are grouped to

form a quad fragment (or simply quads), and these quads

are sent to the Early Z-Test stage. This stage uses a tile-

sized buffer called the Z-Buffer to store the minimum depth

of previously processed opaque fragments on each tile’s pixel

coordinate in order to eliminate those that lie behind and are

invisible. The non-discarded quads are then sent to a shader

core (SC), which computes an initial color for each pixel of

a quad, taking into account the lighting and textures provided

by the shader program. The output colors are then sent to the

Blending Unit. This unit computes the final color of pixels,

depending on the transparency of each quad, and stores them

in the Color Buffer. Some rendering techniques require that the

SC changes the depth of fragments, in which case the Early

Z-Test is disabled and the Late Z-Test is employed. Note that

both the Color Buffer and the Z-Buffer have the size of just

one tile, and thus can be stored on-chip. Finally, the Color

Buffer is flushed to the Frame Buffer in main memory, after

a tile has been completely processed. Quads are propagated

between stages through FIFO queues.

B. Memory Organization

Figure 2 illustrates that there are multiple L1 caches for

different data structures used by different parts of the pipeline,

backed by a shared L2 cache, which is ultimately backed up

by main memory.

C. Tile Orders

It is imperative to this paper to understand that tiles can be

processed in any order throughout the frame as long as the

primitives in the frame, and thus within each of these tiles,

are processed in program order. Intuitively, although tiles have

no data dependencies among themselves, the Parameter Buffer

and texture accesses do possess locality among tiles. Typically,

spatially closer tiles have more locality in the Parameter Buffer

as primitives have a higher chance of overlapping tiles that

are close together. Textures, on the other hand, have spatial

and temporal locality at the borders of the tiles. That is,

adjacent tiles with shared edges are likely to access the same

texture blocks of memory. Textures may also repeat in random

locations throughout the frame (e.g., trees that have the same

texture) and thus some tiles that are far away may also have

locality.

The most well-known orders in graphics are Scan-line and

Z-order. The Z-order is quite popular in computer graphics

and image processing due to certain properties that enhance

locality in memory accesses and its ease of implementation.

In this work, we use the Z-order for traversing tiles within a

frame.

D. OPT and OPTPT

We prove the optimality for the approximated memory

reference trace by comparing formally derived observations of

an optimal replacement policy (OPT) and an optimal place-

ment (bypassing) and replacement policy (OPTPT). The OPT

replacement policy was formally proved optimal by Mattson

et al. [35]. Conceptually, OPT requires a look into future

memory accesses in order to make a decision on replacement.

In particular, upon a cache miss, it replaces the line in the

corresponding set that will be accessed the farthest away in

the future. On the other hand, OPTPT was proved optimal

by McFarling [36]. This policy is the optimal replacement

and placement policy for a cache that allows bypassing. On

a cache miss, it compares the next access of all the memory

blocks in the corresponding set as well as the memory block

that caused a miss. In case there is any block in the set that

will be next accessed farther away in time than the block that

caused a miss, then a normal OPT replacement is performed.

In case the block that caused a miss has the next access farther

than any of the blocks already in the set, then the block is

bypassed in that cache. Both of these policies require perfect

knowledge of future accesses and are thus deemed infeasible.

Yet they have helped evaluate the efficacy of caching policies

all through literature.

III. QUASI-OPTIMAL TEXTURE CACHING

Figures 1 and 11 show that, on average, textures contribute

towards 33.7% of main memory accesses and 63.6% of the

last level (L2) cache misses. The main contribution of this

work is identifying a dominant pattern in texture memory

accesses to the L2 cache across multiple frames and proposing

and justifying a no-overhead, quasi-optimal technique to ex-

ploit reuse in texture accesses to the L2 that reduces costly

126

main memory accesses, thus reducing energy consumption

and increasing performance. Note that energy consumption is

critical in mobile GPUs and performance is crucial for real-

time rendering applications.

The main challenges with exploring the texture access reuse

in the L2 and proposing quasi-optimal caching and proving it

quasi-optimal are the following.

• Identifying the dominant pattern for texture accesses in a

shared L2 cache.

• Discovering both short-term and long-term reuse dis-

tances in the pattern and deciding how to maximally

exploit both types.

• Given the added degree of freedom of the decision of tile

order in each frame, proposing a no-cost optimal caching

solution with this added freedom.

A. Our Approach

Upon profiling our benchmark suite, we observe that texture

accesses follow several typical patterns:

• Frame-to-frame coherence implies that a texture trace

almost fully repeats itself in consecutive frames.

• We observe that, for each frame, 55% of L2 texture

accesses are intra-frame reuse, 44% are inter-frame reuse,

and 1% are new accesses.

• Each frame typically has a large working set resulting in

large inter-frame texture reuse distances.

• The intra-frame texture reuse distances are short and can

be cached efficiently with an LRU policy and contempo-

rary L2 associativities.

We choose to preserve the caching efficiency provided by

LRU for intra-frame reuses and instead focus on caching

inter-frame reuses by exploring the design space opened up

by the freedom to choose the tile order in each frame of a

TBR architecture. We propose using a boustrophedonic tile

order: i.e., to reverse the tile order in every second frame (that

approximates the reversal of the texture access stream). We

dub this combination of LRU with a reverse order in every

alternate frame as LRU RO and the baseline LRU with the

conventional forward order in all frames as LRU FO. We

also use the suffixes RO and FO for the rest of the re-

placement policies that we use for comparison. It is important

to note that the tile order within a frame remains unchanged as

the baseline Z-order. As part of our analysis, we approximate

the texture trace to a circular trace to investigate the potential

for inter-frame caching and formally prove that LRU RO is

optimal for such an approximated trace. We then support our

approximations with empirical data showcasing the structural

similarities between our texture traces and the circular trace,

w.r.t. the properties of the circular trace that make LRU RO
optimal. Secondly, we demonstrate empirically how closely

the tile reversal order approximates a pure reverse ordering of

the texture access stream in a frame. We end the section by

providing further insights into texture caching.

Fig. 3. A circular trace with seven distinct accesses.

B. Optimality Proof

We approximate the texture access trace of the L2 cache,

along multiple frames, to a circular trace, to formally analyze

caching for inter-frame reuses. A circular trace, as explained

before, is a trace where a loop of ′s′ number of distinct

memory blocks (in a fixed order) are repeatedly accessed

infinitely. Figure 3 shows an example of a circular trace. A

circular trace is known to defeat the LRU replacement policy

in a fully associative cache of size ′j′, if s > j. This implies

that the miss ratio in such a case would be 1 (no hits). At the

same time, a circular trace is also known to work quite poorly

for the OPT replacement policy if s > j. Note that all proofs

and observations, henceforth, for fully-associative caches can

be extended for set-associative caches, as each set in the cache

behaves like an independent fully-associative cache of the size

equivalent to the associativity of the cache.

A previous work [37] formally calculates the Steady State

Miss Ratio (SSMR) for a circular trace with the optimal

replacement policy (OPT), as follows. As before, the number

of distinct memory block accesses in the loop is s and the size

of the cache is j.

SSMR =
s− j

s− 1
∀ s > j

If we were to go a step further and estimate the benefits

of an optimal replacement policy with optimal bypassing, we

would use the OPTPT (OPT Pass-Through) bypassing policy,

formally proved optimal by McFarling [36]. According to the

proof in this paper, the SSMR for OPTPT for a circular trace

is as follows.

SSMR =
s− j

s
∀ s > j

In Section II, we explained that tiles may be processed in

any order as long as their overlapping primitives are rendered

in program order. Assuming, for now, that this extends to

the texture access order, we introduce a degree of freedom

to our approximated circular trace. We define a new trace

pattern called loop traces where a loop of s number of

distinct memory blocks (in any order) are repeatedly accessed

infinitely. This implies that each iteration could have any

order allowed by the permutations of s blocks. Note that both

circular traces and “alternate reverse order” traces are a subset

of loop traces. In this subsection, we first put a lower bound

to the minimum possible miss ratio for a loop trace given any

replacement policy, bypassing and order of accesses in each

iteration. We then calculate the miss ratio for LRU RO in an

“alternate reverse order” trace and find it equal to the lower

bound in a loop trace.

127

1) Theorem 1: For a fully associative cache of size j, given

that a set of distinct accesses s has to repeat infinitely in a loop

form and we have control over the order of the accesses for

each iteration (i.e., it is a loop trace), the maximum number of

hits in each iteration (other than the first) is j, ∀ s > j since

this is the maximum number of blocks that can be stored in

the cache; or it is s, ∀ s <= j since this is the number of

blocks in each iteration. Therefore, the lowest possible miss

ratio after infinite M iterations (i.e., the lowest SSMR) is given

as follows.

SSMR >= lim
M→∞

s+ (M − 1) ∗ (s− j)

M ∗ s ∀ s > j

⇒

SSMR >=
s− j

s
∀ s > j

2) Theorem 2: For a fully associative cache of size j, given

that a set of distinct accesses has to repeat in a loop form

and we have control over the order of the accesses for each

iteration, the SSMR for LRU RO is calculated as follows.

For every iteration other than the first iteration, the number

of hits is again exactly equal to the size of the cache. This is

because the state of the LRU stack after a finished iteration

has, from top to bottom, the exact same order as the order of

blocks accessed in the next iteration (reverse order of previous

iteration). Thus, the first j accesses will be hits. Therefore, if

the loop continues for M cycles, the number of misses would

be s + (M − 1) ∗ (s − j) and the number of accesses would

be M ∗ s. Therefore, the SSMR is the same as in Theorem 1.

SSMR =
s− j

s
∀ s > j

Theorem 1 delivers a lower bound for the SSMR for loop

traces but does not prove if there exists a replacement or

placement policy that can achieve this SSMR. Theorem 2

shows us that LRU RO reaches this lower bound. This

automatically implies that OPT RO and OPTPT RO will

also reach the lower bound as they have been proven to be

optimal.

We conclude from here that, for a loop trace where s > j,

the minimum SSMR is s−j
s . For a circular trace, LRU has

a miss ratio equal to 1, OPT has a miss ratio equal to s−j
s−1 ,

and OPTPT has the lowest miss ratio equal to s−j
s . On the

other hand, for the alternate reverse order, all three, LRU, OPT

and OPTPT, have the SSMR equal to s−j
s , the lowest possible

SSMR for loop traces.

C. Interesting Derivations

To better visualize the theorems and the above analysis,

let’s look at Figure 4. It shows the misses, hits and bypasses

for LRU, OPT and OPTPT with both circular and alternate

reverse orders for an example loop trace with seven distinct

accesses (A, B, C, D, E, F, G), assuming a cache size of

3. For the circular order, we clearly see that 1) LRU gives

no hits; 2) OPT and MRU behave similarly; and 3) OPTPT

Fig. 4. Circular and “alternate reverse order” traces with LRU, OPT, OPTPT
and MRU in a cache of size 3.

Fig. 5. IIRD (Max, Min, last-last, last-first) of FO and RO.

achieves the optimal miss ratio by bypassing almost all misses

(seen in black). For the alternate reverse order, we see the

same behavior from all three LRU, OPT and OPTPT. Note

here that OPTPT in alternate reverse order does not bypass a

single access and still achieves the minimum possible SSMR.

This implies that the characteristic of reversing the order itself

has led to the optimal hits and does not require bypassing

anymore. This is because the OPT stack and the OPTPT stack

are in the same state as the LRU stack in this loop order.

This observation also demands the following discussion on

the triumph of LRU RO over bypassing.

Caches are often bypassed if it is known that the memory

blocks that are going to be fetched will not have any reuse in

the future or the reuse distance is so large that the capacity

of the cache forces an eviction before such a reuse could take

place. Bypassing requires heuristics to know which memory

blocks to bypass. Wrong bypassing can easily lead to worse

caching. Note that heuristics usually have hardware overheads.

The proof above shows how LRU with reverse order is as

good as perfect bypassing, for loop traces. Thus, it seems

that LRU RO has essentially bypassed cache bypassing for

loop traces, provided the aforementioned degree of freedom

to change orders.

Note that the fact that MRU FO behaves similar to

OPT FO indicates that MRU FO should also behave better

than the baseline (LRU FO). We shall explore this in Section

V-C.

128

Fig. 6. Distribution of intra-frame reuse distances within each set averaged
over the benchmark suite.

Fig. 7. Distribution of inter-frame reuse distances within each set averaged
over the benchmark suite.

D. Approximation of Texture Traces

In this subsection we first approximate texture traces to a

loop trace and then approximate it to a circular trace. We also

show that upon the pure reversal of these texture traces in

every second frame, these traces approximate to an ’alternate

reverse order’ trace. Note that these approximations are only

valid when using LRU, OPT or OPTPT policies.

As mentioned before, there are two major characteristics of

a loop trace. One is that this trace is a set of distinct accesses

that keeps repeating in every iteration of an infinite loop.

The second is that there are no repetitions of accesses within

each iteration. For texture traces, loop iterations correspond

to frames. Let’s first explore the frame-to-frame coherence for

textures, i.e., if a set of distinct accesses repeats itself every

iteration.

Figure 3 shows that for a circular trace with s distinct

accesses, each access will have an inter-iteration reuse distance

of s−1. Introducing an extra access in the second iteration, the

reuse distance would increase by 1 and thus be s. Similarly, in

the case of a deletion, the inter-iteration reuse-distance (IIRD)

would be s− 2. Generalizing,

IIRD = (s − 1) + Insertions − Deletions

Figure 5 shows the average inter-frame reuse distance (IIRD

for texture traces) in yellow (labeled last-first FO) and the

average distinct accesses per frame minus 1 (s-1) per set in

brown (labeled Max), over 30 frames for all the benchmarks in

our benchmark suite. We see that on average both the values

are almost equal, indicating that insertions and deletions in the

texture trace between two consecutive frames must be equal.

Empirical data tells us that insertions (new texture blocks

accessed) amount to only 1% of accesses in every frame. This

implies that deletions must be as few as insertions. Thus, the

set of distinct accesses in every frame is approximately the

same.

Figure 6 plots the fraction of texture accesses that have

an intra-frame reuse distance (within each set, for a cache

with 2048 sets) corresponding to the bins in the x-axis, for

30 frames, averaged over all applications in our benchmark

suite. Figure 7 plots the same for the fraction of inter-frame

reuse distances. It can be seen that around 55% of accesses are

intra-frame reuses thus 55% are repetitions within an iteration.

And yet on careful observation, we note that around 31% of

these have a reuse distance of zero, meaning that they are

consecutive accesses to the same block. These will be hits for

all replacement policies and most placement policies. Thus we

only need to worry about the rest of the 24% of the accesses.

These 24% violate the second characteristic of loop traces.

But, when talking about inter-frame caching in our texture

trace with an LRU RO or LRU FO, what matters for the

LRU or OPT stack at the beginning of a frame is the sub-

trace of the last access to each block in the previous frame.

As for the current frame, the accesses that will benefit from

inter-frame reuses are the first accesses to each block. The rest

of the accesses in the current frame will be intra-frame reuses

and we see in Figure 6, that these have small reuse distances

and can be cached easily with an LRU with conventional

associativities. Michaud [37] also proves that for a given trace,

all LRU hits are OPT hits, therefore these intra-frame reuses

will also be cached by the OPT. Note that the shortness of

intra-frame reuses are not an accident and can be attributed

to the intra-frame tile order, Z-order, that preserves texture

locality among adjacent tiles.

So, to prove that texture traces are approximately circular

traces (w.r.t. the properties of LRU FO, OPT FO and

OPTPT FO), we prove that the sub-trace of last accesses

to all blocks in the previous frame and the sub-trace of first

accesses to all blocks in the current frame (same tile order)

are identical. Similarly, to prove that upon fully reversing

the texture trace for every other frame, the texture traces

become approximately “alternate reverse order” traces (w.r.t.

the properties of LRU RO, OPT RO and OPTPT RO),

we would prove that the sub-trace of last accesses to all blocks

in the previous frame and the sub-trace of last accesses to all

blocks in the next frame (same tile order) are identical. These

last accesses of the second frame will become the first accesses

when this frame uses a reverse tile order.

There are many metrics to quantify the similarity between

two sequences or traces (in this case). Since we deal mostly

with reuse distances, we propose a metric that uses reuse

distance to quantify the similarity. Given a loop trace with

s distinct accesses, the maximum average inter-iteration reuse

distance (IIRD) is (s − 1). This is because there are only

s distinct accesses, so the maximum possible IIRD for each

reuse can only be (s− 1). The case where each reuse has this

maximum reuse distance (s− 1) happens only when the loop

trace is a circular trace. On the other hand, the minimum sum

of IIRDs in a loop trace is 0+1+2...+(s−1) = ((s−1)∗s)/2
and this is possible only when the loop trace is an alternate

129

Fig. 8. Distribution of the number of L2 texture accesses per set per tile.

reverse order trace. This implies that the minimum average

IIRD for a loop trace is (s−1)/2. In summary, for loop traces,

IIRD ranges between (s − 1)/2 and (s − 1). The closer it is

to the maximum, the closer the sub-trace is to a circular trace.

The closer it is to the minimum, the closer the sub-trace is to

an alternate reverse order trace.

We collect last access sub-traces and first access sub-traces

for all frames in a simulation with our baseline tile order for

frames (forward order). In Figure 5 we plot the maximum

IIRD, the average IIRD between the last access sub-trace of a

frame and the first access sub-trace of the next frame (labeled

as last-first FO), and the average IIRD between the last access

sub-trace of a frame and the last access sub-trace of the next

frame (labeled as last-last FO). We find the first two values

to be very close to each other and thus our texture traces

are approximately circular traces for LRU FO, OPT FO
and OPTPT FO. We also find the first and third to be

almost equal and thus our texture traces (when purely reversed

for every second frame) are approximately “alternate reverse

order” traces for LRU RO, OPT RO and OPTPT RO.

Note that pure reversal of a texture trace in a frame is not

possible (further discussed in the next subsection). In Figure 5

we also plot the minimum IIRD and the average IIRD between

the last access sub-trace of a frame and the first access sub-

trace of the next frame from simulations done with alternate

reverse tile order in frames. We find this IIRD to be very close

to the minimum with a slight error. This error can be attributed

to the fact that we do a tile reversal and not a full reversal of

the trace.

E. Reverse the whole texture order in the L2

In order to implement LRU RO we need to reverse the

order of texture accesses in every alternate iteration. Here, the

iteration corresponds to a frame. Quads belonging to distinct

screen locations access textures, as explained in Section II.

The Graphics Pipeline requires primitives to be processed in

program order but tiles have no data dependencies and can be

processed in any order. Thus the degree of freedom allowed

for the change of texture order in a frame has the granularity

of a tile. Having said that, note that it is not the aggregated

trace to the whole cache but the trace of accesses to each set

in the cache that needs to be reversed. This is because the

optimality was proved for a fully associative cache and thus

applies to each individual set of the cache separately. Figure 8

plots the distribution of the number of texture accesses to

a set in the L2, per tile. Note that we do not include zero

accesses to this distribution as we observe that in every tile

a significant number of sets do not receive any access in the

L2. The figure shows us that there is a negligible number of

times when a set receives more than one texture access within

a tile for ten out of twelve applications. This clearly indicates

that if we reverse just the tile order in consecutive frames, we

would be closely approximating the full texture access stream

reversal for every set, for these ten applications. As for the two

other applications, we see that most of the time, the number

of accesses is a maximum of two per set in every tile. This

implies that for these applications, reversing the tile order will

have a texture trace that will stray a bit from the pure reverse

texture trace. This observation is supported by the empirical

data in Figure 5 as discussed in the previous subsection.

F. Hardware Overhead

In the baseline (LRU FO), for a given frame, while

processing the nth tile, Z-order just requires bit-swizzling of

the binary value of n. The Tile Fetcher increments the value of

n whenever it starts a new tile, in order to calculate the tile ID

of the next tile to be processed in the Z-order. In the baseline,

the value of N is reset to 0 at the start of a new frame to repeat

the tile order. For alternate reverse order, you would retain

the value of n from the last frame and either increment or

decrement n, opposite to whatever was chosen in the previous

frame. For example, if the first frame starts with n = 0, it

will keep incrementing and end at n = T − 1, where T is

the number of tiles in a frame. So now, the second frame will

start with n = T −1, decrement and then end with n = 0. All

the operations for a tile, starting from accessing its primitives

from the Parameter Buffer, to finally flushing its color buffer

to the main memory, requires address calculation with this

calculated tile ID. Thus, it is clear to see that reversing the

tile order results in no additional cost in hardware.

G. Putting things together

Texture traces can be approximated to circular traces for the

properties used in this paper. We propose reversing the order

of every other iteration (frame) to have a shorter inter-frame

reuse distance for most accesses. To achieve this, we propose

traversing tiles in every consecutive frame in the reverse order

w.r.t. the previous frame. We proved the quasi-optimality of

this proposal in the subsections above and support it with

empirical data in Section V.

IV. EVALUATION FRAMEWORK

A. GPU Simulation Framework

We use the TEAPOT [5] simulation infrastructure to evalu-

ate our proposal. TEAPOT is a cycle-accurate GPU simulation

framework that allows to run unmodified Android applications

and evaluates the performance and energy consumption of the

modeled GPU. In order to do that, TEAPOT includes timing

and power models based on well-known tools: McPAT [33] for

power estimation, and DRAMSim2 [43] for modeling DRAM

130

TABLE I
EVALUATED BENCHMARKS FROM THE GOOGLE PLAY STORE.

Benchmark Alias Installs
(Millions) Genre Type Texture Footprint

(in MiB)
Tex in mainmem

accesses (%)
Crazy Snowboard CrS 5 Sports 3D 0.7 15.1
Gravitytetris GrT 5 Puzzle 3D 0.7 3.9
Angry Birds 2 AgB 100 Puzzle 3D 0.9 20.2
Captain America CAm 5 Action 3D 1.3 33
Derby Destruction Simulator DDS 10 Racing 3D 1.4 18.2
Sniper 3D Snp 500 Shooter 3D 1.8 33
Clash of Clans CoC 500 Strategy 3D 2.0 46.3
Candy Crush Saga CCS 1000 Puzzle 2D 2.4 52.9
3D Maze 2: Diamonds & Ghosts Mze 10 Arcade 3D 2.4 34.7
City Racing 3D CRa 50 Racing 3D 2.6 42.6
Real Steel World Robot Boxing RSt 50 Strategy 3D 4.2 57.7
Rise of Kingdoms: Lost Crusade RoK 10 Strategy 2D 6.9 74.5

TABLE II
GPU SIMULATION PARAMETERS.

Global Parameters
Tech Specs 600MHz, 1V, 32nm
Screen Resolution 1960x768
Tile Size 32x32
Tile Traversal Order Z-order

Main Memory
Latency 50-100 cycles
Size 1GiB

Caches
Vertex Cache 64-bytes/line, 64KiB, 4-way, 1 cycle
Texture Caches (4x) 64-bytes/line, 64KiB, 4-way, 1 cycle
Tile Cache 64-bytes/line, 64KiB, 4-way, 1 cycle
L2 Cache 64-bytes/line, 1MiB, 8-way, 18 cycles

and the memory controllers. Table II shows the parameters

employed in our simulations, which resemble those of a

contemporary mobile GPU.

B. Benchmarks

We use popular commercial animated graphics applications

(games) as benchmarks. We have selected them based on their

popularity, in the number of downloads in the Google Play

Store, and their variety to cover different types of games.

Table I shows the twelve Android games used to evaluate

our technique. We have 2D games like CCS and 3D games

like CRa. Games like RoK have a texture footprint of around

6.9MiB in memory whereas CrS and GrT have around

0.7MiB. This affects the benefits of our proposal w.r.t. the

baseline (LRU FO). Textures in RoK contribute to 74.5%

of the total accesses to main memory whereas in GrT it

contributes to just 3.9%. This affects the caching efficiency

for textures translating to a decrease in main memory accesses.

Then there are games that are memory-bound and others that

are compute-bound, determining how our proposal translates

into speedup and energy efficiency.

V. EXPERIMENTAL RESULTS

In this section, we first empirically confirm the quasi-

optimality of LRU RO in simulations, using an ideal ar-

chitecture where the L2 receives only texture accesses. We

Fig. 9. Decrease in cache misses of LRU RO w.r.t. LRU FO, with
increasing trace size for a fully-associative cache of size 8.

also comment on how the LRU is a good candidate to exploit

inter-frame reuse distances while holding on to the caching of

intra-frame reuses. Secondary to the proof of quasi-optimality,

we evaluate the full system and present the performance and

energy benefits of LRU RO with a practical architecture with

a shared L2 Cache that receives all types of accesses. In the

end, we analyze MRU FO to emphasize that choosing a

replacement policy needs to be done with all types of reuses

of the texture in mind along with geometry and the Parameter

Buffer accesses. All the above analysis is w.r.t. the baseline,

LRU FO.

A. Quasi-Optimality

In Section III, we proved the quasi-optimality of LRU RO
for the texture access stream to the L2. To demonstrate

the quasi-optimality for our benchmark suite, we model an

experiment with simulations where the GPU has perfect L1

caches (all accesses are hits) except for L1 texture caches.

This ensures that no Geometry and Parameter Buffer accesses

go to the L2 and the L2 is populated solely by texture accesses.

We first set an upper bound for the benefits achieved by

LRU RO w.r.t. the baseline. For a perfect loop trace in a fully

associative cache, we know that for s <= j, both LRU RO
and LRU FO produce zero misses in each loop iteration (in

the steady state). For s > j, LRU FO produces s misses and

LRU RO produces s−j misses in each loop iteration (in the

steady state). Thus the equation for the ‘Fraction of Decrease

131

Fig. 10. Decrease in L2 texture misses with different replacement policies, bypassing and tile orders.

in Misses’ (FDM) of LRU RO w.r.t. LRU FO, for perfect

loop traces is as follows.

FDM =
s− (s− j)

s
=

j

s
∀ s > j

FDM = 0 ∀ s <= j

The equations above tell us that the maximum achievable

decrease is j
j+1 and it occurs at s = j + 1, which, for an

associativity of 8, is 0.88 at s = 9. The equation also tells us

that the decrease is 0 up until s = j and then at s = j + 1
achieves the maximum, thereafter behaving like a hyperbola,

that decreases asymptotically to zero. Figure 9 shows us this

behavior of LRU RO w.r.t. the baseline for a fully associative

cache of size 8. Thus this graph shows the upper bound FDM

(for each set in the cache) of our texture traces, that have been

approximated to a circular trace.

Now, we showcase the near-optimality of LRU RO. Fig-

ure 10 shows the percentage decrease in L2 misses of the

L2 cache w.r.t. the baseline, for LRU RO and four other

theoretical techniques. Note that the applications are arranged

in the ascending order of their texture footprint per frame as

listed in Table I. The theoretical techniques have two of each

order: the forward order and the “alternate reverse order”. Both

orders have simulations with just OPT and OPT with perfect

bypassing (a.k.a. OPTPT). These policies are not realizable in

hardware and have been simulated using a stack algorithm.

The first thing we note is the clear relation between the

texture footprint and the decrease of L2 misses with optimal

caching. This is in accordance with the prediction in Fig-

ure 9. We see that on average we get a reduction of 43.6%,

47.7%, 50.4%, 52.9% and 55% in LRU RO, OPT FO,

OPTPT FO, OPT RO and OPTPT RO, respectively.

Table I shows us that CrS, GTr and AgB have a texture foot-

print lower than 1MiB (the size of the L2 cache) and yet they

show a high decrease in L2 misses. This implies a set-mapping

load imbalance in texture accesses for these applications and

that some sets do get access traces larger than the associativity

of the cache, even though the footprint is smaller than the size

of the cache. Note that even though benchmarks with a high

texture footprint per frame show less decrease in L2 misses,

the main point is that LRU RO reaches very close to the

optimal that is simulated with the theoretical techniques. This

is indeed the main highlight of this paper, that even if for some

benchmarks, the improvement in caching is not as high as the

others, it is very close to the maximum achievable caching

for textures. Another interesting observation is that, in GTr,

AgB, Snp and CCS, the LRU RO is performing better than

OPT FO as expected from the explanation in section III-B.

We clearly see that LRU RO is quite close to the optimal

policies as the theory indicated before. Even with some

dormant access patterns that make the texture access pattern

different from circular traces and an approximate reversal (in

tile granularity) of the texture order, LRU RO is able to

closely reach the optimal.

These numbers indicate a significant reduction in main

memory accesses and thus possibly a reduction in energy. But

measuring full system benefits on this ideal state of the system

where the L1 Vertex Cache and the L1 Tile Cache are perfect,
is not meaningful. So, we show power and performance

numbers in the next section.

B. Full System Evaluation

Here, we evaluate the performance and energy benefits

of LRU RO w.r.t. the baseline by simulating a GPU with

the parameters given in Table II, for our benchmark suite.

The benefits of LRU RO on a shared L2 cache will be

proportional to the percentage of texture misses in the L2.

Figure 11 shows the distribution of L2 misses arranged in the

ascending order of the percentage of texture misses. To better

analyze patterns in the rest of this subsection, we plot the

benchmarks in this ascending order.

1) Main Memory Accesses: Figure 12 plots the percentage

decrease of main memory accesses in LRU RO. On average,

we get a 5.6% decrease and for some applications like AgB
and CCS, it goes up to 12.9% and 16.6%, respectively.

Note that the percentage for textures in the distribution of L2

misses, as shown in Figure 11, correlates with the decrease in

main memory accesses, as expected. The clear outliers to this

observation are RSt and RoK. Table I shows that both these

applications have the highest texture footprints that are around

4× and 7× the size of the cache. In these cases, even the

OPTPT cannot bring a significant decrease in texture accesses,

as demonstrated in Figure 10.

132

Fig. 11. Distribution of types of L2 misses.

Fig. 12. Decrease in main memory accesses of LRU RO w.r.t. LRU FO.

2) Performance: Figure 13 shows the speedup of

LRU RO w.r.t. the baseline. GPUs are designed to hide

memory latency. Thus, the translation of improved caching on

performance is usually poor. For the evaluated benchmarks,

we see an average speedup of 2%, going up to about 7% for

CCS and CrS. Performance is crucial for real-time rendering,

therefore, this is a noticeable improvement given the fact that

it comes at zero cost.

3) Energy: Figure 14 shows the percentage decrease in

memory hierarchy energy. We see that Figures 12 and 14

have a close correlation for most benchmarks. CrS is an

outlier for this observation because it gets an extra decrease in

energy because of the significant decrease in execution time,

as can be seen in Figure 13. We see a 9.9% decrease on

average and around 24% in CrS, AgB and CCS. It must be

noted that decrease in total GPU energy also shows a similar

correlation with Figure 12 except for AgB which indicates

that this application is not memory-bound w.r.t. energy, for

the full GPU. We see a 2.6% decrease in total GPU energy

on average. For CCS this goes up to 9.9%. We reiterate that

energy efficiency is crucial for mobile GPUs and this decrease

has been achieved with zero cost.

C. Other Replacement Policies

The goal of this subsection is to show that choosing an-

other replacement policy to compare with LRU RO is not

straightforward. As explained in section III-C, MRU FO has

the potential to result in a better miss ratio than LRU FO
for loop traces. Figure 15 shows the decrease in L2 misses

of LRU RO and MRU FO w.r.t. the baseline (LRU FO)

in an L2 that is populated only by textures. We see that, on

average, MRU FO behaves worse than the baseline by 3.6%.

In GTr, MRU FO produces around 2.6× more misses than

the baseline (LRU FO). This shows that MRU might be good

to cache inter-frame reuses but destroys the caching of intra-

Fig. 13. Speedup of LRU RO w.r.t. LRU FO.

Fig. 14. Decrease in memory hierarchy energy of LRU RO w.r.t.
LRU FO.

frame reuses which have short reuse distances. This indicates

that choosing a replacement policy that safeguards all types of

reuses is important to reach optimal caching for texture traces.

VI. RELATED WORK

Works that have addressed the issue of locality in the

caches of GPUs, take various directions to propose solutions

to exploit it. Specifically for textures in graphics workloads,

there is previous work [4] on prefetching texture memory in

the L1 texture caches. Another work [8] proposes a NUCA

organization for the L1 texture caches to increase their ef-

fective overall capacity. Focusing on texture locality-aware

workload scheduling to different shader cores with software

modifications, Ukarande et al [48] report a 4% speedup

when exploiting Texture Cache locality on high-end desktop

graphics workloads. Another work [21] also exploits Texture

Cache locality by scheduling quads that are closer in screen

coordinates. Another work [39] shows improved cache locality

in simulations for virtual reality stereo rendering by mapping

tiles for left and right eyes to the same shader core.

Other recent works with graphics workloads have explored

memory bandwidth reduction in TBR architectures using vari-

ous methods. Early Visibility Resolution (EVR) [1] is an HSR

technique that speculatively predicts the visibility of objects in

a scene before the Raster Pipeline to avoid computation and

texture accesses of fragments that will eventually be discarded.

Rendering Elimination [2] is a technique that detects tiles

that produce the same color across adjacent frames to avoid

redundant computation and texture accesses. Another work,

TCOR [22], explores memory bandwidth reduction by target-

ing another major source of main memory accesses in TBR

architectures, which is the Parameter Buffer. D.Voorhies [49]

proposed to rasterize primitive pixels in a boustrophedonic

manner to improve texture locality in localized areas within

a frame. This is orthogonal and completely differs from our

133

Fig. 15. Decrease in L2 texture misses of MRU FO and LRU RO w.r.t.
LRU FO.

full frame reversal, which optimises texture caching for the

L2 over multiple frames.

All the above are specifically for graphics and are orthog-

onal to our proposal and do not address inter-frame cache

locality.

As for GPGPU workloads, many more works have targeted

cache locality to improve performance. There are many works

in literature [9], [24], [29], [31], [32], [47], [50], [56], [57],

[59], [61] that explore cache bypassing to improve GPU cache

locality. Some works have targeted cache locality across kernel

launches for parent-child kernels [52] or generic dependent

kernels [16]. Other works like [7], [25], [30] have also

studied the impact of warp throttling on locality for GPGPU

workloads. Whereas others like [20], [27], [28], [42], [51],

[58], have studied the impact of warp-scheduling, within a

GPU core. Another work [10] proposes a Cooperative Caching

Network (CCN), a ring network among L1 caches of a GPU,

to reduce L2 bandwidth demand.

Apart from this, many works like [6], [12]–[15], [17]–[19],

[23], [26], [34], [40], [41], [44]–[46], [54], [55], [60] have

proposed heuristics to improve caching in caches for general

purpose workloads but all of them with hardware overhead.

Works like [18], [40] have studied the shortcomings of a

circular trace and proposed an effective modification to the

LRU in order to improve caching. While this is a solution for

general purpose workloads, our solution is specific to TBR

GPUs where we do not change the replacement policy but

rather the memory access trace itself to reach near-optimal

caching.

VII. CONCLUSIONS

In this work we have proved that a zero-cost, quasi-optimal

L2 Caching mechanism for textures in low-power GPUs is

quasi-optimal, by means of a theoretical proof, and then

demonstrating it empirically.

We first approximated the texture trace to a generic sequence

and formally proved our proposal (Boustrophedonic Frames)

for traversing the tiles within a frame in the reverse order

of that of the previous frame, to achieve quasi-optimality

in the design space of replacement policies, bypassing and

tile orders. We then supported the approximation through

empirical data extracted from our benchmark suite, composed

of real-world animated graphics applications.

Finally, we have demonstrated the quasi-optimality of our

proposal through empirical data collected by running our

benchmark suite on a simulation framework with a contem-

porary mobile GPU micro-architecture. Secondary to this, we

have shown that our proposal gives a 2% speedup and a 2.6%

decrease in total GPU energy. For one benchmark, this goes up

to 7% speedup and 9.9% decrease in GPU energy. Note that,

since traversing the frame in the reverse order simply requires

a switch from an increment operation to a decrement operation

at the end of each frame, it does not incur any additional cost.

However, it must be noted that the decrease in texture

accesses alone is much higher than the decrease when other

types of accesses are introduced in the L2. This shows that

there is still potential in trying to leverage this proposal’s full

potential by using a caching scheme that is orthogonal to our

proposal and that targets the other types of data accesses in the

L2. TCOR [22] is one such example that targets the Parameter

Buffer in the L2 cache and reduces main memory accesses by

evicting dead blocks (belonging to the Parameter Buffer) from

the L2. This could help enhance the caching for textures in

the proposed alternate reverse order.

ACKNOWLEDGMENT

This work has been supported by the CoCoUnit ERC

Advanced Grant of the EU’s Horizon 2020 program (grant

No 833057), the Spanish State Research Agency (MCIN/AEI)

under grant PID2020-113172RB-I00, the ICREA Academia

program and the AGAUR grant 2020-FISDU-00287. We

would also like to thank the anonymous reviewers for their

valuable comments.

REFERENCES

[1] M. Anglada, E. de Lucas, J.-M. Parcerisa, J. L. Aragón, and A. González,
“Early Visibility Resolution for Removing Ineffectual Computations in
the Graphics Pipeline,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 635–646.

[2] M. Anglada, E. de Lucas, J.-M. Parcerisa, J. L. Aragón, P. Marcuello,
and A. González, “Rendering Elimination: Early Discard of Redundant
Tiles in the Graphics Pipeline,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2019, pp. 623–
634.

[3] I. Antochi, B. Juurlink, S. Vassiliadis, and P. Liuha, “Memory band-
width requirements of tile-based rendering,” International Workshop on
Embedded Computer Systems, pp. 323–332, 2004.

[4] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Boosting mobile
gpu performance with a decoupled access/execute fragment processor,”
SIGARCH Computer Architecture News, vol. 40, pp. 84–93, 2012.

[5] ——, “Teapot: A toolset for evaluating performance, power and image
quality on mobile graphics systems,” ACM International Conference on
Supercomputing, p. 37–46, 2013.

[6] M. Chaudhuri, “Pseudo-lifo: The foundation of a new family of replace-
ment policies for last-level caches,” IEEE/ACM International Symposium
on Microarchitecture, pp. 401–412, 2009.

[7] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu,
“Adaptive cache management for energy-efficient gpu computing,” in
International Symposium on Microarchitecture. IEEE, 2014, pp. 343–
355.

[8] D. Corbalán-Navarro, J. L. Aragón, J.-M. Parcerisa, and A. González,
“Dtm-nuca: dynamic texture mapping-nuca for energy-efficient graphics
rendering,” in 2022 30th Euromicro International Conference on Par-
allel, Distributed and Network-Based Processing, PDP 2022. IEEE,
2022, pp. 144–151.

134

[9] H. Dai, C. Li, H. Zhou, S. Gupta, C. Kartsaklis, and M. Mantor, “A
model-driven approach to warp/thread-block level gpu cache bypassing,”
in Design Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[10] S. Dublish, V. Nagarajan, and N. Topham, “Cooperative caching for
gpus,” Transactions on Architecture and Code Optimization, 2016.

[11] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth,
S. Molnar, G. Turk, B. Tebbs, and L. Israel, “Pixel-planes 5: A
heterogeneous multiprocessor graphics system using processor-enhanced
memories,” ACM Siggraph Computer Graphics, vol. 23, no. 3, pp. 79–
88, 1989.

[12] H. Gao and C. Wilkerson, “A Dueling Segmented LRU Replacement
Algorithm with Adaptive Bypassing,” JWAC 2010 - 1st JILP Worshop on
Computer Architecture Competitions: cache replacement Championship,
2010.

[13] J. Gaur, R. Srinivasan, S. Subramoney, and M. Chaudhuri, “Efficient
management of last-level caches in graphics processors for 3d scene
rendering workloads,” Annual IEEE/ACM International Symposium on
Microarchitecture, 2013.

[14] A. González, C. Aliagas, and M. Valero, “A data cache with multiple
caching strategies tuned to different types of locality,” ACM Inter-
national Conference on Supercomputing 25th Anniversary Volume, p.
217–226, 1995.

[15] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-
managed cache design,” IEEE/ACM International Symposium on Com-
puter Architecture, 2000.

[16] M. Huzaifa, J. Alsop, A. Mahmoud, G. Salvador, M. D. Sinclair,
and S. V. Adve, “Inter-kernel reuse-aware thread block scheduling,”
Transactions on Architecture and Code Optimization, vol. 17, 2020.

[17] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm
for improved cache replacement,” IEEE/ACM International Symposium
on Computer Architecture, pp. 78–89, 2016.

[18] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High perfor-
mance cache replacement using re-reference interval prediction (rrip),”
International Symposium on Computer Architecture, p. 60–71, 2010.

[19] D. A. Jiménez, “Insertion and promotion for tree-based pseudolru last-
level caches,” IEEE/ACM International Symposium on Microarchitec-
ture, p. 284–296, 2013.

[20] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “Owl: Cooperative thread
array aware scheduling techniques for improving gpgpu performance,”
SIGPLAN, vol. 48, 2013.

[21] D. Joseph, J. L. Aragón, J.-M. Parcerisa, and A. González, “Dtexl:
Decoupled raster pipeline for texture locality,” in 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2022, pp. 213–
227.

[22] D. Joseph, J. L. Aragón, J.-M. Parcerisa, and A. González, “TCOR:
A Tile Cache with Optimal Replacement,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2022,
pp. 662–675.

[23] M. Kharbutli and Y. Solihin, “Counter-based cache replacement algo-
rithms,” International Conference on Computer Design, pp. 61–68, 2005.

[24] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram, “Access pattern-
aware cache management for improving data utilization in gpu,” in
International Symposium on Computer Architecture, 2017, pp. 307–319.

[25] H.-K. Kuo, T.-K. Yen, B.-C. C. Lai, and J.-Y. Jou, “Cache capacity aware
thread scheduling for irregular memory access on many-core gpgpus,”
in Asia and South Pacific Design Automation Conference (ASP-DAC),
2013, pp. 338–343.

[26] A.-C. Lai and B. Falsafi, “Selective, accurate, and timely self-
invalidation using last-touch prediction,” International Symposium on
Computer Architecture, pp. 139–148, 2000.

[27] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “Cawa: Coordinated warp
scheduling and cache prioritization for critical warp acceleration of
gpgpu workloads,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture. ACM, 2015, p. 515–527.

[28] S.-Y. Lee and C.-J. Wu, “Caws: Criticality-aware warp scheduling for
gpgpu workloads,” in International Conference on Parallel Architectures
and Compilation. ACM, 2014, p. 175–186.

[29] ——, “Ctrl-c: Instruction-aware control loop based adaptive cache
bypassing for gpus,” in 2016 IEEE 34th International Conference on
Computer Design (ICCD), 2016, pp. 133–140.

[30] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal,
“Locality-aware cta clustering for modern gpus,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems. ACM, 2017, p.
297–311.

[31] A. Li, G.-J. van den Braak, A. Kumar, and H. Corporaal, “Adaptive
and transparent cache bypassing for gpus,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2015.

[32] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou,
“Locality-driven dynamic gpu cache bypassing,” in Proceedings of the
29th ACM on International Conference on Supercomputing. ACM,
2015, p. 67–77.

[33] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing model-
ing framework for multicore and manycore architectures,” IEEE/ACM
International Symposium on Microarchitecture, p. 469–480, 2009.

[34] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency,”
IEEE/ACM International Symposium on Microarchitecture, pp. 222–233,
2008.

[35] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2,
pp. 78–117, 1970.

[36] S. A. McFarling, “Program analysis and optimization for machines with
instruction cache,” Ph.D. dissertation, Stanford University, 1991.

[37] P. Michaud, “Some mathematical facts about optimal cache replace-
ment,” Transactions on Architecture and Code Optimization 2016,
vol. 13, no. 4, pp. 1–19, 2016.

[38] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classifica-
tion of parallel rendering,” IEEE computer graphics and applications,
vol. 14, no. 4, pp. 23–32, 1994.

[39] J.-H. Nah, Y. Lim, S. Ki, and C. Shin, “Z2 traversal order: An interleav-
ing approach for vr stereo rendering on tile-based gpus,” Computational
Visual Media, vol. 3, no. 4, pp. 349–357, 2017.

[40] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” IEEE/ACM
International Symposium on Computer Architecture, p. 381–391, 2007.

[41] J. T. Robinson and M. V. Devarakonda, “Data cache management
using frequency-based replacement,” ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, 1990.

[42] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-aware warp
scheduling,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2013, p. 99–110.

[43] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle ac-
curate memory system simulator,” IEEE Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, 2011.

[44] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-
address filter: A unified mechanism to address both cache pollution
and thrashing,” International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 355–366, 2012.

[45] I. Shah, A. Jain, and C. Lin, “Effective mimicry of belady’s min policy,”
2022 IEEE International Symposium on High-Performance Computer
Architecture, pp. 558–572, 2022.

[46] Y. Smaragdakis, S. Kaplan, and P. Wilson, “Eelru: Simple and effective
adaptive page replacement,” ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems, p. 122–133,
1999.

[47] Y. Tian, S. Puthoor, J. L. Greathouse, B. M. Beckmann, and D. A.
Jiménez, “Adaptive gpu cache bypassing,” in Proceedings of the 8th
Workshop on General Purpose Processing Using GPUs. ACM, 2015,
p. 25–35.

[48] A. Ukarande, S. Patidar, and R. Rangan, “Locality-aware cta scheduling
for gaming applications,” ACM Trans. Archit. Code Optim., vol. 19,
2021.

[49] D. A. Voorhies and N. J. Foskett, “ Method, apparatus and article of
manufacture for boustrophedonic rasterization,” in US Patent 6,650,325,
2003.

[50] B. Wang, W. Yu, X.-H. Sun, and X. Wang, “Dacache: Memory
divergence-aware gpu cache management,” in International Conference
on Supercomputing, 2015, pp. 89–98.

[51] B. Wang, Y. Zhu, and W. Yu, “Oaws: Memory occlusion aware warp
scheduling,” in International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2016, pp. 45–55.

[52] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Laperm: Locality
aware scheduler for dynamic parallelism on gpus,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
2016, pp. 583–595.

135

[53] Wikipedia, “Tiled rendering,” https://en.wikipedia.org/wiki/Tiled
rendering.

[54] W. A. Wong and J. Baer, “Modified lru policies for improving second-
level cache behavior,” International Symposium on High-Performance
Computer Architecture, pp. 49–60, 2000.

[55] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, and
J. Emer, “Ship: Signature-based hit predictor for high performance
caching,” IEEE/ACM International Symposium on Microarchitecture, p.
430–441, 2011.

[56] X. Xie, Y. Liang, G. Sun, and D. Chen, “An efficient compiler framework
for cache bypassing on gpus,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2013, pp. 516–523.

[57] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang, “Coordinated static
and dynamic cache bypassing for gpus,” in International Symposium on
High Performance Computer Architecture, 2015, pp. 76–88.

[58] Y. Zhang, Z. Xing, C. Liu, C. Tang, and Q. Wang, “Locality based warp
scheduling in gpgpus,” Future Generation Computer Systems, vol. 82,
pp. 520–527, 2018.

[59] C. Zhao, F. Wang, Z. Lin, H. Zhou, and N. Zheng, “Selectively gpu
cache bypassing for un-coalesced loads,” in International Conference
on Parallel and Distributed Systems (ICPADS). IEEE, 2016, pp. 908–
915.

[60] Zhenlin Wang, K. S. McKinley, A. L. Rosenberg, and C. C. Weems, “Us-
ing the compiler to improve cache replacement decisions,” International
Conference on Parallel Architectures and Compilation Techniques, pp.
199–208, 2002.

[61] X. Zhu, R. Wernsman, and J. Zambreno, “Improving first level cache
efficiency for gpus using dynamic line protection,” in Proceedings of the
47th International Conference on Parallel Processing. ACM, 2018.

136

