
The Implications of Page Size Management on Graph Analytics

Aninda Manocha1 Zi Yan2 Esin Tureci1

Juan Luis Aragón3 David Nellans2 Margaret Martonosi1

1Princeton University
2NVIDIA

3University of Murcia

Abstract

Graph representations of data are ubiquitous in analytic
applications. However, graph workloads are notorious for
having irregular memory access patterns with variable access
frequency per address, which cause high translation lookaside
buffer (TLB) miss rates and significant address translation
overheads during workload execution. Furthermore, these
access patterns sparsely span a large address space, yielding
memory footprints greater than total TLB coverage by orders
of magnitude. It is widely recognized that employing huge
pages can alleviate some of these bottlenecks. However, in
real systems, huge pages are not always available and the
OS often provisions huge pages suboptimally, significantly
reducing peak application performance. State-of-the-art huge
page management techniques employ heuristics, such as huge
page region utilization, to guide page size decisions. However,
these heuristics are often only optimal for specific memory
access patterns, or footprint sizes, and do not sufficiently adapt
to dynamic workload characteristics.

This work performs a comprehensive characterization of
the effects of page size allocation policy and page placement
on graph application throughput. We show that when system
memory is nearly full or fragmented (the common case in real
systems), huge page resources available to an application are
limited and their utility must be maximized. We demonstrate
that (1) awareness of single-use memory can eliminate the
use of precious huge page resources for data that receives
little benefit and (2) coupling degree-aware preprocessing of
graph data with programmer-guided use of huge pages boosts
performance by 1.26 – 1.57× over using 4KB pages alone,
while achieving 77.3 – 96.3% the performance of unbounded
huge page usage and requiring only 0.58 – 2.92% of the
memory resources. This manual, domain-specific optimization
of huge page efficiency in memory constrained systems
demonstrates that huge pages are a new class of resource
that must be intelligently managed by programmers or next-
generation OS policies to optimize application performance.

1. Introduction

Graph data structures are increasingly utilized in big
data analytics to relate entities, such as individuals in a
social network or web pages on the World Wide Web,
in an efficient manner. Many important graph data are

constantly growing in size and are sparse by nature, as most
vertices are only connected to a small fraction of the entire
network. Consequently, graph analytic workloads often
have substantial memory footprints, e.g. 10-500 GB, that are
accessed in cache-unfriendly access patterns, which hurt hit
rates and hamper performance. Prior works have targeted
this memory bottleneck by increasing the latency tolerance
and memory bandwidth efficiency of CPU architectures
for graph analytics through prefetching [5, 48], program
decoupling [34, 39], tailored caching techniques (including
cache partitioning [9, 13, 51], partial cachelines [22, 26, 33,
55, 56], specialized cache replacement policies [3, 47, 49]),
and domain-specific memory subsystems with specialized
engines or accelerators [1, 37, 38]. However, to the best
of our knowledge this work is the first to explore how
to optimize OS page allocation and size for graph data
structures to maximize the CPU’s virtual memory address
translation performance.

Page-based virtual memory hierarchies have historically
been optimized for dense, regular access patterns that
exhibit high spatial locality. Thus, while many general-
purpose applications incur negligible overhead from trans-
lation look-aside buffer (TLB) lookups, graph analytic
workloads often experience high TLB miss rates that impose
significant runtime overheads, as shown in Figures 1 and 2.
In modern operating systems (OSes), huge pages enable
virtual-to-physical page mappings to be stored at a larger
granularity, e.g. 2MB or 1GB, within the page tables. In
turn, the processor’s TLBs increase their reach across the
application’s memory footprint, which decreases address
translation overheads during execution.

However, huge pages require additional CPU time to
create and prepare and are difficult to manage as a system
resource [23, 41, 53]. Modern OSes provide mechanisms,
such as Linux’s transparent huge page (THP) policy, that
automatically employ huge pages to improve TLB coverage.
This work shows that using THPs achieves significant
performance gains for graph workloads when there are
abundant contiguous 2MB physical memory regions, but
common system-level effects causing memory pressure
significantly limit huge page availability. As a result, huge
pages often provide little benefit over 4KB base pages in
realistic machine scenarios, despite the additional CPU
overhead incurred for huge page creation.

199

2022 IEEE International Symposium on Workload Characterization (IISWC)

978-1-6654-8798-6/22/$31.00 ©2022 IEEE
DOI 10.1109/IISWC55918.2022.00026

Figure 1: Graph workloads achieve significant performance
improvement with huge pages (2MB) compared to only
using base (4KB) pages. However, with memory pressure
in real systems much of the huge page benefit vanishes.

Figure 1 presents a speedup comparison of several
graph workloads when employing 4KB pages only (blue),
an idealized situation where the system is freshly booted
without other applications running (orange), and a realistic
situation where other workloads are also running on the
system, emulated by limiting available memory to only
3GB greater than the application working set size and
fragmenting 50% of the free memory (green). On average
there is 1.63× runtime speedup achievable when there is
an abundance of huge pages available, indicating there is
a good performance improvement opportunity via huge
page usage for graph applications. However, when there is
system memory pressure, huge pages only provide a 1.02×
speedup over 4KB pages.
This work extends state-of-the-art in memory man-

agement policies for graph workloads by examining how
the memory allocation policy combined with application
knowledge and explicit page size management can improve
workload performance for analytic practitioners. Our con-
tributions are summarized as follows:

• We provide thorough characterization of the under-
studied impacts of virtual memory and page manage-
ment specifically on graph workload performance.
This work elucidates where existing OS mechanisms
fall short because they lack awareness to graph char-
acteristics and demonstrates that Linux’s THP policy
cannot achieve peak performance when free system
memory is near the size of the graph workload
memory footprint or is just 20% fragmented.

• We examine graph application access patterns and
provide new insights that enable programmers to
maximize the benefits of using huge pages. We
show that the irregularly accessed property array is
almost solely responsible for high TLB miss rates
on modern CPUs. Within this structure, memory
access frequencies are highly correlated with vertex
connectivity; we uncover a new opportunity to max-
imize performance while minimizing the number of
huge pages needed by the system.

• Based on these observations we design a methodol-
ogy for programmers to selectively and intelligently
utilize huge pages for graph workloads. We propose
repurposing lightweight preprocessing to coalesce
“hot” (based on vertex degree) but sparse data

Figure 2: When using 4KB pages (blue), graph analytics
experience high data TLB (solid) misses and second-level
TLB misses (striped). When Linux’s THP policy is enabled
and huge pages are readily available (orange), both TLB
miss rates are reduced significantly. However, when memory
pressure (green) limits the number of available huge pages,
Linux’s policy offers no TLB miss reduction.

into dense memory regions. With knowledge of
where this “hot” data is located within the virtual
address space, we selectively employ huge pages
at application level within just a small memory
region, e.g. 0.58 – 2.92% of the total footprint. This
demonstrates 1.26 – 1.57× speedup over Linux’s
THP policy in the presence of memory pressure
and fragmentation, coming within 77.3 – 96.3% of
the idealized performance.

2. Background and Motivation

We now present an overview of graph applications and
how their programming model affects their access patterns
into the memory system, as well as details on Linux’s THP
policy. This is necessary to understand how to exploit graph
analytic workload properties to improve address translation
performance.

2.1. Overview of Graph Analytic Workloads

Graph analytic workloads have three important program
aspects to consider: 1) data structures used to store graph
information, 2) loading and initialization of these structures,
and 3) the algorithms that operate on this data. We first walk
through these aspects, then discuss the address translation
problem.

2.1.1. Data Structures. Graph data is typically stored in
the Compressed Sparse Row (CSR) format, as it is the
most memory-efficient representation of sparse data. Fig. 3
presents an example CSR representation of a network G
(purple). First, the vertex array (gold) stores the cumulative
number of neighbors each vertex has (when traversing
in order of vertex IDs). Second, the edge array (green),
indexed by vertex array entries, stores the IDs of each
vertex’s neighbors. Third, the values array (blue) stores the
values of each edge in the network (if edges are weighted).
An additional array, the property array (red), tracks output
data that is dynamically read and updated for each vertex,
depending on the objective of the algorithm, e.g., shortest
paths from a given vertex.

200

Figure 3: A sparse network is most efficiently stored as
3 dense arrays in CSR format. The property array tracks
output data for a graph algorithm and is frequently and
irregularly accessed to read and update vertex data.

2.1.2. Data Loading and Initialization. Figure 4 presents
the pseudocode of the programming model for push-based
graph processing kernels, which is the most work-efficient
representation of many graph applications. First, all graph
data is loaded during an initialization phase (lines 1-5). CSR
and property array data are allocated and CSR data are
read into memory from files. In addition, the property array
(prop_array) is populated with initial vertex values, e.g.
–1 to represent a vertex that has not been visited.

2.1.3. Graph Algorithms. Once all data has been loaded
and initialized, the graph algorithm begins execution. Many
graph analytic implementations are both iterative and
frontier-based. The algorithm iterates through a worklist
of vertices to process one at a time. The algorithm runs
iteratively through frontiers, until no new vertices are added
to the worklist, i.e. it is empty (line 7). Vertex processing
consists of any necessary computations on a given vertex’s
data and iterating through its neighbors to determine if
updates need to be made.
When processing neighbors, graph algorithms read and

perform conditional updates of their property array data
(line 13). For example, in BFS, neighbors are updated if they
have not been visited. The neighbor ID retrieved from the
edge array indexes into the property array (highlighted in
gray), performing pointer-indirect accesses frequently in
the innermost loop of the algorithm. This access pattern
is primarily responsible for memory system bottlenecks in
graph analytic workloads. These accesses are not only cache-
unfriendly in a traditional memory hierarchy, but also have
a significant detrimental effect on the CPU’s address transla-
tion hierarchy, namely two-level TLBs. Even if a less storage-
efficient data representation were used, graph application
performance would continue to be bottlenecked by pointer
indirect memory accesses, as the algorithm’s graph traversal
depends on the sparse and irregular structure of a network.

2.2. Address Translation Problems

Fig. 2 presents the TLB miss rates of the corresponding
configurations, applications, and datasets presented in Fig. 1.
The height of each bar represents the first-level data TLB
(DTLB) miss rate. A DTLB miss can either hit in the

1 void init(csr G, unsigned long *prop_arr, ...)
2 G.vertex_array = read_vertex_file(...);
3 G.edge_array = read_edges_file(...);
4 G.edge_vals = read_values_file(...);
5 prop_arr = init_vertex_data();
6 void run(csr G, unsigned long *prop_arr, ...)
7 while (worklist.size > 0)
8 for (v = 0; v < worklist.size; v++)
9 process_vertex(v);
10 for (e = G.vertex_array[v]; e < G.

vertex_array[v+1]; e++)
11 process_edge(e);
12 neib_id = G.edge_array[e];
13 data = prop_arr[neib_id];
14 if (update_neib(data))
15 add_to_worklist(neib)

Figure 4: Typical flow of a graph processing workload where
data is initially loaded into memory from storage, then
executed over as a second step. The highlighted property
array access is responsible for the majority of virtual
memory system overheads.

second-level TLB (STLB) or miss and cause a page table
walk, indicated by the height of the shaded (striped) bars.
If an application only employs base 4KB pages (blue), it
experiences high DTLB miss rates ranging from 12.6–47.6%
(avg. 26.3%). Most DTLB misses result in STLB misses,
incurring costly page table walks to CPU caches and DRAM
that have long latencies. Address translation thus becomes
a bottleneck.
To overcome this bottleneck, most CPUs today support

huge pages in hardware with OS support to utilize huge
pages. When a system is freshly booted and Linux’s THP
policy is enabled, it aggressively allocates huge pages during
application initialization and nearly all data resides in
huge pages on the system. This decreases TLB miss rates
significantly to 4 – 26.7% (avg. 11.5%), under half the miss
rate of only using 4KB pages. This means huge pages are
a good solution to the address translation problem for
graph applications, but this improvement is not observed in
practice, as shown in Figure 1. Even with moderate amounts
of memory pressure and fragmentation, Linux’s policy has
negligible impact on TLB miss rates. To understand this, we
examine how huge pages are implemented and allocated
within an OS.

2.3. Linux Transparent Huge Page (THP) Support

In Linux, huge pages can be used explicitly via
hugetlbfs [32] or implicitly via Transparent Huge Page
Support [31]. The latter is more programmer-friendly as it
does not require boot-time or runtime page reservations,
explicit source code modifications, or memory allocation
API interceptions like hugetlbfs does. As a result, we focus
on THPs to minimize address translation overheads in graph
analytic applications.

2.3.1. How Linux’s THP Policy Works. Before we
dive into the performance optimization achieved by using
Linux’s policy, we first discuss how huge pages are created
and destroyed:

201

Huge Page Allocation: Huge pages can be created at
page fault time when an application first accesses a virtual
address without any backing physical page. The Linux
kernel receives the page fault triggered by the application,
checks the huge page eligibility of the faulting virtual
address, then allocates a 2MB huge page in physical memory
to back the virtual address if possible. Several factors affect
the huge page eligibility of a virtual address, including
whether the virtual address is within a 2MB-aligned region,
the region is bigger than 2MB, and the OS configuration
allows huge page creation at page fault time.

Huge Page Promotion: Huge pages can also be created
in place of existing virtual address regions backed by
normal 4KB pages, which we call promotion. The kernel
promotes a 2MB virtual address region by allocating a huge
page, copying data from the region to the huge page, and
updating the page table entries of the region. This provides
flexibility for when huge pages are created, but this process
is costly due to data copy time and page table maintenance
overheads. To avoid impacting applications directly, Linux
runs a kernel daemon, khugepaged, to periodically scan
application virtual address regions and promote eligible
regions in the background.

Huge Page Demotion: When a huge page is only
partially mapped in an application, it is underutilized.
Linux can demote huge pages to reclaim precious memory
resources and does so by splitting a huge page into 512
normal 4KB pages, then updating page table entries to point
to the new split pages so that unmapped 4KB pages can be
reclaimed. But when a huge page is fully mapped, Linux
does not perform any demotions.

2.3.2. Huge Page Inefficiencies. Greedy huge page usage
can minimize address translation overheads. However, in
reality, constrained memory (not enough free memory
available) and/or fragmented memory (free pages are not
contiguous when interleaved with in-use pages) can sub-
stantially reduce the number of huge pages available for
applications and increase the time the kernel spends on
huge page creation. This happens when the system has
run for a period of time and used pages across the entire
physical memory space. When memory is constrained, the
Linux kernel is able to reclaim free memory to create
new huge pages by swapping in-use data to disk, but this
takes additional CPU time and can penalize the application
runtime when huge pages are created at page fault time.
When memory is fragmented, the number of available huge
pages is decreased proportionally to the fragmented memory
area. In both scenarios, naïve use of huge pages can hurt
application performance. We will later explain further the
sources of huge page inefficiency in detail in Section 4.

3. Experimental Methodology

We perform all experiments on a real system and
carefully configure the system to minimize environmental
inference:

TABLE 1: Evaluation System Parameters.

Processor
Intel Xeon CPU E5-2667 v3 @ 3.20 GHz (Haswell)

2 sockets, 8 cores/socket, 2 threads/core

Operating System CentOS 7 - Linux v5.15

L1 Data TLB
4KB: 64 entries, 4-way set associativity
2MB: 32 entries, 4-way set associativity
1GB: 4 entries, 4-way set associativity

L1 Inst. TLB
4KB: 64 entries, 8-way set associativity
2MB: 8 entries, full set associativity

L2 TLB 4KB & 2MB: 1024 entries, 8-way set associativity

Memory 64GB DDR4 (per socket)

3.1. System Setup

We perform all evaluations using Linux kernel v5.15
on a 2-socket machine with Intel Xeon processors, where
each socket has 64GB of RAM. Tab. 1 presents the system
parameters in more detail. In our baseline configuration,
THPs are disabled system-wide and applications run using
4KB base pages only.
Our machine has 2 non-uniform memory access (NUMA)

nodes, where data access latency and bandwidth differ
between local and remote NUMA nodes. Without careful
control, the OS arbitrarily allocates memory from either
node. This causes non-deterministic runtime results due to
non-uniform data access at each run, which unnecessarily
complicates our performance analysis. To ensure determin-
istic results, we use the membind flag with numactl [29,
30] to bind the process running the application to CPU 0
and all memory allocations to NUMA node 1. We perform
this memory binding for all application runs, with and
without THPs enabled.
We note that processors can differ in their TLB pa-

rameters, e.g. newer processors may have larger TLB sizes.
However, even with more capacity, the TLB’s total coverage
is still significantly smaller than the memory footprint of
many irregular applications and address translation bottle-
necks remain. Furthermore, TLB size cannot be increased
indefinitely due to limitations on access latency and energy
consumption. We have performed the same performance
characterizations detailed in this work on a newer Broadwell
CPU and observed the same performance trends.

3.2. Applications and Datasets

We study the performance of three of the most com-
monly used graph processing algorithms that form the
basis of a wide range of applications. Many other graph
algorithms are built on top of variants of these core
workloads.

Breadth First Search (BFS): Given a starting (root)
vertex, determine the minimum number of hops to all
vertices. In addition to its direct use in network analy-
sis, e.g. LinkedIn degree separation, BFS forms the basic
building block of many other graph applications such as
Graph Neural Networks [54], Connected Components, and
Betweenness Centrality [10]. This algorithm only utilizes
the vertex array and edge array as inputs and updates the

202

TABLE 2: Evaluation Applications and Inputs.

Application Input Nodes Edges Footprint

Breadth First
Search (BFS)

Kronecker25 (Kr25)
Twitter (Twit)
Sd1 Arc (Web)

Wikipedia (Wiki)

34M
53M
95M
12M

1.05B
1.94B
1.96B
378M

8.5GB
16GB
16.5GB
3GB

Single Source
Shortest Paths
(SSSP)

Kronecker25 (Kr25)
Twitter (Twit)
Sd1 Arc (Web)

Wikipedia (Wiki)

34M
53M
95M
12M

1.05B
1.94B
1.96B
378M

12.5GB
24GB
25GB
5GB

PageRank (PR)

Kronecker25 (Kr25)
Twitter (Twit)
Sd1 Arc (Web)

Wikipedia (Wiki)

34M
53M
95M
12M

1.05B
1.94B
1.96B
378M

9GB
16GB
17GB
3GB

property array via pointer indirect accesses with a varying
frequency equal to the number of incoming neighbors of
each vertex.

PageRank (PR): Determine the “rank” or importance of
all vertices (e.g. pages), where vertex scores are distributed
to outgoing neighbors and updated until all scores converge
(do not change by less ε). Variants of PR are used in ranking
algorithms, e.g. of webpages, keywords, etc. Similar to BFS,
PR accesses only the vertex array and edge array in addition
to the property array. However, the number of accesses to
the property array is also determined by the number of
iterations until the convergence of rank values and therefore
depends on in- or out-degrees of vertices as well as the
threshold value ε.

Single-Source Shortest Paths (SSSP): Given a root
vertex, determine the minimum distance (sum of edge
weights) to all vertices. SSSP is utilized in navigation and
transportation problems as well as network utilization and
its more general form is the k-shortest paths algorithm. SSSP
utilizes the values array in addition to the arrays utilized by
BFS and PR. The property array is the most frequently and
irregularly accessed, however, edge and values arrays are
also accessed repeatedly at varying frequencies, depending
on the edge values as well as the connectivity patterns.

We perform our analysis with a synthetic power-law
network, Kronecker [8, 24], and 3 real-world social and web
networks, Twitter, Sd1 Arc, and Wikipedia [12, 25], creating
12 application/dataset configurations. Tab. 2 details the
network parameters and footprints of these configurations.

4. Characterizing THP Performance on
Graph Analytic Workloads

This section first analyzes where THPs can most effec-
tively provide performance improvements for graph analytic
data structures. Next, we describe sources of huge page
resource limitations. Then, we demonstrate how Linux’s
lack of application and data structure knowledge can harm
its THP policy’s performance gains when memory resources
are limited.

Figure 5: Speedup comparison between system-wide THPs
and huge pages selectively applied to individual data
structures. The property array benefits the most from huge
pages due to being accessed both frequently and sparsely
over a large virtual address space. Thus applying huge pages
selectively to this array closely matches system-wide THP
performance.

4.1. Graph Data Structure Analysis

Graph analytics utilize dense arrays to store vertex or
edge locations, or values, and thus different data structures
experience varying degrees of access frequency and irregu-
larity. Fig. 4 highlights that memory accesses occur most
frequently to the edge and property arrays, but the edge
array is accessed sequentially and the property array is
accessed irregularly. We therefore conduct an investigation
of each data structure’s sensitivity to huge pages by
selectively applying THPs to each data structure using
the madvise system call with the MADV_HUGEPAGE flag
at address addr (start of array) with size size (array size
in bytes).

THP Performance Analysis Fig. 5 compares the
application speedups over the baseline (4KB pages) across
different THP configurations when running BFS. To evaluate
how data structure performances compare to idealized
THP performance, there is no memory pressure in this
experiment. Applying THPs to the property array (purple)
yields a greater performance improvement than applying
THPs to the vertex (green) or edge array (red) and also
nearly matches the performance of system-wide THPs
(orange). With 4KB pages only, sparse neighbor data updates
can span a very large virtual address range, which leads to
severe thrashing in the TLBs. Therefore, the property array,
which experiences a majority of the TLB misses, reaps the
most benefit from huge pages.

4.2. Huge Page Resource Limitations

Figure 1 shows that huge pages can improve graph
application performance by reducing address translation
overheads in an ideal system. However, memory pressure
that appears in real systems can greatly decrease their effec-
tiveness. Through profiling and analysis we have identified
and classified two sources of inefficiency in applying huge
pages to graph analytics: (1) memory capacity constraints
and (2) memory fragmentation caused by movable and
non-movable memory allocations.
At fresh boot time, almost all system memory is free and

the OS can allocate as many huge pages as possible. As the

203

Figure 6: (1) When memory is fragmented by movable or non-movable pages, huge page regions become limited. (2) As
graph data structures are initialized on demand, huge pages are used. (3) If no huge pages exist, the OS performs expensive
memory compaction and reclamation to create new contiguous regions. (4) However, under heavy memory pressure the
OS cannot create new huge pages, leaving no option but to place data into remaining 4KB pages.

system runs, the OS assigns various tasks to memory. With
many applications running simultaneously, free memory
becomes constrained; contiguous regions of memory natu-
rally become fragmented by page allocations. Fragmentation
arises from (1) movable pages for most user space memory
and (2) non-movable pages for memory directly used by
the kernel. Memory compaction can mitigate the former
by grouping free pages together, but not the latter, which
typically worsens over time.

Fig. 6 illustrates how different sources of memory
fragmentation interfere with huge page efficiency. The first
row demonstrates how movable (light orange) and non-
movable (dark orange) pages fragment physical memory,
while the OS can still allocate huge pages as long as free
2MB huge page regions are available. As graph analytics
allocate memory for the vertex, edge, and values arrays,
the OS quickly uses up the huge page regions, as shown
in the second and third rows. Once all free 2MB regions
are used up, the OS requires extra effort, such as memory
compaction and/or page reclamation, to create huge pages
in place of regions that are fragmented by movable pages,
as shown in the third row.

Once the movable pages have been migrated and/or
reclaimed, the newly created huge page regions are utilized
by the remainder of the values array and property array.
Eventually, all 2MB huge page regions are used up and
the OS cannot allocate any more huge pages because the
remaining free memory is fragmented by non-movable
pages, a scenario which has been studied by prior works [17,
20, 41, 53]. As a result, the OS can only provide 4KB pages
for the remainder of the graph data to be allocated, i.e. the
property array, as shown in the fourth row. In summary,
when memory is constrained, fragmentation interferes with
huge page allocation for graph data. Since the property
array benefits most from huge pages, Linux’s THP policy
can lose significant performance opportunities.

4.3. Competition for Memory Resources

Creating huge pages requires 2MB ranges of contiguous
physical memory that are readily available when the OS has
abundant free memory to use. However, graph processing
often occurs on machines where the in-memory graph data
storage approaches the total system memory capacity. Sim-
ilarly, in virtualized environments, cloud service providers
attempt to maximize machine utilization and containerized
applications are packed to maximize utilization of system
resources such as CPU underutilization and memory capac-
ity [6], leading to scarce free system memory.
In addition to external causes of memory pressure, graph

analytic workloads often load a considerable amount of
data from disk initially. When data is stored in disk or
another secondary storage device and then accessed by an
application, the OS caches the data in memory (in a page
cache) to avoid needing to read the data from disk in the
future. However, this can reduce the amount of free memory
available to the application itself. During our constrained
memory experiments, fewer huge pages are created when
the page cache occupies free memory during data loading
time. Data loaded during initialization is read into memory
and the original data in the page cache is not used again,
resulting in free memory that cannot be reclaimed in time
for efficient application utilization. To avoid this type of
single-use memory interference, the page cache should be
eliminated when memory is constrained.
Linux provides a global knob, where a root user can

write 1 to /proc/sys/vm/drop_caches to drop all
page cache pages, however, this knob is too coarse grained.
The page cache can be controlled at a finer granularity by
using (1) direct I/O to bypass the page cache or (2) tmpfs to
control the page cache placement. Using tmpfs to store
graph data files in the remote NUMA node separates
the page cache from the local NUMA node where the
application runs and exclusively allocates memory. This is
faster than direct I/O, as data is read from the remote NUMA
memory instead of disk. While the exact methodology an
analytics developer uses to avoid huge page allocation

204

Figure 7: Performance comparisons between 4KB pages and THPs with (only 0.5GB of extra memory available relative to
application footprint) and without memory pressure. THP performance is very sensitive to memory pressure, while the
small page allocations are not.

interference can vary, it is imperative that developers are
aware of such sources of memory interference.
In addition, initialization can involve temporary data

structures, such as arrays for converting file data, that are
not used during application execution. Such data structures
reduce available memory temporarily and can hinder huge
page creation, which has long running application effects.
Graph analytic application developers must be acutely
aware of both memory allocation order as well as the
mechanisms in which they are loading data to avoid
squandering huge page resources.

4.3.1. THP Performance Under Memory Pressure.
Graph applications that are memory-intensive run alongside
other applications in datacenters and it is not uncommon for
datacenters to oversubscribe memory. Although in practice
the amount of memory pressure can vary significantly
throughout application execution, we utilize a synthetic
approach to introduce memory pressure at a variety of
levels in order to precisely quantify its effect.
For our evaluations we eliminate the page cache and

temporary data interference described above to analyze how
Linux’s policy affects performance in several constrained
memory scenarios. To constrain memory, we utilize the
memhog program to occupy a specified amount of memory,
M, on the same NUMA node as the application [27]. We
determine M based on the working set size (WSS) of the
application/dataset configuration and the degree to which
we want to constrain the available memory. For example,
to constrain BFS running on the Kronecker network (8.5GB
footprint) by 1×, we run memhog with 55.5GB on NUMA
node 1 (64GB total memory). To prevent the OS from
swapping out memory allocated by memhog, we use mlock
[28] to pin the program’s memory in physical memory.
Therefore, the application can only use the 8.5GB free
memory left.
Fig. 7 presents the performance impacts of using Linux’s

THP policy for all applications and datasets when there
is high memory pressure (+0.5GB relative to the WSS)
and the memory allocation order can either be natural
(property array allocated last) or optimized for graph
analytics (property array allocated first). All applications
exhibit similar trends. When there is no memory pressure,
Linux THPs offer significant performance gains (orange).
However, these gains are significantly reduced when there is

only 0.5GB of extra available memory in the system relative
to the application’s memory demands (red). Meanwhile, the
baseline performance remains unaffected (green). When
memory is constrained and the property array is allocated
last, this performance critical data structure is allocated
with fewer huge pages. Therefore, Linux THPs lose the
opportunity to increase performance.
On the other hand, when the order of memory allocation

is optimized for graph analytics to allocate the property
array first (purple), this data is prioritized for huge page
allocation and THP performance gains are much more
robust. The performance of Linux THPs with optimized
memory allocation, even when there is high memory
pressure, nearly matches the ideal performance. This is
because the OS is able to allocate huge pages for the entire
property array before huge pages become limited while
allocating data for CSR arrays. As a result, Linux THPs
save the primary TLB misses that result from property
array accesses.
To systematically investigate the performance impacts

of memory pressure, we swept through 7 different levels
of free memory relative to the application’s WSS ranging
from 0GB beyond the WSS to 3GB in 512MB increments.
We also investigated when memory is oversubscribed by
0.5GB to verify that all page management schemes suffer
when swapping occurs. We observe three distinct phases
when sweeping through these levels of memory pressure:

Low Memory Pressure Linux’s THP policy achieves
significant performance gains when memory pressure is
low. We observed that in our experiments, at least 2.5GB
of additional memory available (relative to the WSS) are
necessary to achieve the unbounded performance shown in
Fig. 1. For the applications and datasets we evaluate, 2.5GB
is sufficient for compaction and reclamation to operate
and fragmentation that naturally occurs from application
execution does not interfere with Linux’s ability to allocate
and use huge pages. However, the amount of memory
necessary for compaction/reclaim may vary with application
demands and system parameters.

Moderate Memory Pressure Linux’s THP policy per-
formance becomes suboptimal as memory pressure increases
to a moderate amount. We observe that performance gains
drop by 30% on average when there are 0-2GB of extra
memory available. System memory is naturally fragmented
and as memory becomes more constrained, fragmentation

205

inhibits huge page creation. The OS can no longer effort-
lessly create and use huge pages; extra OS kernel activities,
such as memory defragmentation, are needed and performed
to make contiguous huge page regions available in physical
memory. We systematically characterize the performance
impacts of memory fragmentation in the next section.

High Memory Pressure When memory is oversub-
scribed, page swapping occurs, which requires I/O opera-
tions to secondary storage and is much more costly relative
to all memory management operations that occur within
RAM. Therefore, swapping dominates application runtime.
When memory is truly constrained such that there is no
additional memory available or there is even a deficit of
0.5GB, the performance of base pages only and Linux’s THP
policy both degrade by an order of magnitude, resulting in
24.6× and 23.6× slowdowns, respectively, relative to the
baseline performance with no memory pressure.
In summary, our characterizations demonstrate that

memory pressure can significantly hurt huge page perfor-
mance opportunities. Memory fragmentation that naturally
occurs due to application and OS execution can limit the
number of huge pages available for Linux’s greedy policy.
With low memory pressure, fragmentation does not inter-
fere with THP performance because memory compaction
and reclamation can easily operate. However, as memory
pressure increases, the process of locating free huge page
regions becomes more time consuming and there are not
enough regions to provide for the entire application. Thus,
moderate to high memory pressure necessitates careful
consideration of huge page usage.

4.4. Memory Fragmentation

As memory becomes constrained, fragmentation be-
comes more apparent. Once free huge page regions run
out, the OS must scan fragmented memory to look for
compaction opportunities. Memory can be fragmented by
movable and non-movable pages, which affect huge page
creation differently.

4.4.1. THP Performance Under Fragmentation. In our
experiments, we focus on memory fragmentation caused by
non-movable pages, because memory compaction and/or
page reclaim can alleviate fragmentation caused by movable
pages. Because graph analytic workloads initialize all data
at the beginning, memory compaction and page reclaim can
help create huge pages early in the application execution
without impacting the actual algorithm’s performance.
However, non-movable page fragmentations are always
present, limiting the number of huge pages that can be
allocated to applications.
To understand the impact of fragmented memory sce-

narios on huge page availability, we first use memhog to
reduce the available memory on the node as previously
described, then fragment the remaining memory with non-
movable pages. We reduce the available memory to provide
the application with WSS+3GB. Sec. 4.3 shows that THPs
achieve substantial performance gains with this much

memory available and thus it is a suitable baseline to
evaluate fragmentation.
We define fragmentation level as the percentage of

the available memory where there does not exist a con-
tiguous 2MB region. We use a custom program, frag,
to fragment memory based on a specified level F. This
program first allocates 2MB pages, using the kernel func-
tion alloc_pages_node(), until F% of the available
memory has been allocated. It then splits each of these
2MB allocated pages, so they are treated as 512 4KB pages.
This allows pages to be freed as 4KB segments, rather than
as 2MB. Lastly, the program iterates through each 2MB
region (512 4KB pages) and frees pages 2-512. Therefore,
the first 4KB page at every 2MB-aligned memory region
remains allocated while the remaining memory is available.
These pages were allocated with alloc_pages_node()
without the __GFP_MOVABLE flag [21] to make them non-
movable.

4.4.2. THP Performance Under Memory Fragmenta-
tion. Fig. 8 presents the performance impacts of 50%
non-movable memory fragmentation in the presence of
low memory pressure (WSS+3GB) for all applications and
datasets and the memory allocation order is either natural
or optimized for graph analytics. All applications again
exhibit similar trends. When there is no fragmentation,
THPs offer significant performance gains (orange). When
the system memory is 50% fragmented, the OS cannot
easily find contiguous 2MB huge page regions to create
huge pages and THP benefits are significantly reduced (red).
Meanwhile, the baseline performance remains unaffected
(green).
Similar to the constrained memory scenario, when the

memory allocation order is optimized for graph analytics
such that that property array is allocated first, huge pages
are prioritized for this data structure that incurs the most
TLB misses. As a result, THPs provide performance gains
despite memory being fragmented. However, unlike in the
constrained memory scenario, where the available memory
can be used for huge pages due to its contiguity, THP
performance steadily declines with more fragmentation due
to non-movable pages, which limits the number of huge
pages available for the property array.

4.4.3. Sensitivity to Memory Fragmentation Levels.
We sweep through 4 levels of memory fragmentations with
a 3GB surplus of memory in relation to the WSS: 0%, 25%,
50%, and 75%. Fig. 9 displays the performance impacts
these fragmentation levels have on the baseline and THP
performances for BFS. We observe that for all datasets,
there is a significant drop in THP performance when the
available memory is just 25% fragmented (orange). This
is because there are not enough huge pages to allocate
for the property array. The corresponding TLB miss rates
consequently increase. However, optimizing the memory
allocation order regains some performance (green) and
THPs can provide significant runtime improvements over
the baseline, even when memory is 75% fragmented.

206

Figure 8: Speedup comparisons when employing THPs without and with 50% memory fragmentation and low memory
pressure. THP performance drops significantly at moderate memory fragmentation, whereas THPs with optimized allocation
order maintains 25% performance improvement over 4KB pages.

Figure 9: Sensitivity analysis to memory fragmentation for
BFS runtime without THPs (baseline) and with natural
and optimized THP memory allocation order. As the
memory fragmentation level increases from 0-75%, THP
performance degrades rapidly, suffering with only 25%
memory fragmentation. Optimized allocation maintains
good performance even at high fragmentation levels.

Our characterizations demonstrate that fragmentation
can impact Linux’s THP policy performance when memory
is constrained, or fragmented by non-movable kernel allo-
cations. In these scenarios, THPs may offer no performance
gains. However, prioritizing the property array for huge
page usage via optimized allocation order can regain some
or all of the performance lost. Sec. 5 discusses how huge
pages can be used more intelligently for the property array.

4.5. Summary

Our characterizations motivate the need for application-
aware page size management. First, we find that the most
frequent and irregular memory accesses correspond to
vertex neighbor data updates in a single property array
that is primarily responsible for the application’s overall
high TLB miss rate. Only using huge pages for this array
can substantially decrease application TLB miss rates by
12.52%, achieving 82.9% of the performance achieved by
using huge pages for the entire application. This allows
the OS to only use 2.92%, on average, of the huge pages
needed for the entire application.
Second, we show huge pages should not be naïvely

allocated for the entire application memory because their
resources are precious, especially when the system is under
memory pressure. We show that when there is high memory
pressure or fragmentation, the OS is not able to allocate
huge pages to all application memory. Allocating huge pages
without careful consideration until they are used up can
significantly decrease the performance gains of Linux’s
THP policy by 1.39× and 1.59×. However, optimizing

memory allocation to prioritize huge pages for the property
array regains most of the available performance, achieving
92.1% and 80% of the ideal performance under high
memory pressure and 50% fragmentation, respectively.
Thus, provisioning huge pages to applications based on
their program characteristics can greatly improve huge
page efficiency.

5. Tailoring Huge Page Usage to Graph Ana-
lytics

It is key to leverage application and data structure
knowledge to selectively utilize huge pages where they have
the greatest performance impact, i.e. the property array,
which substantially reduces the number of huge pages
necessary for the application. Utilizing huge pages for all
other arrays can lead to diminishing returns when there is
memory pressure. There are two levels of refinement: (1) tai-
loring huge page usage to only be within the frequently
and irregularly accessed property array and (2) selectively
applying THPs to “hot” pages within this data structure.
We discuss the details below.

5.1. Hot Page Identification

5.1.1. Variable Access Reuse. Within the property array,
different vertices experience varying amounts of reuse.
The distribution of access frequencies highly correlates
with vertex connectivity. Notably “hot” vertices have high
access frequencies and consequently higher reuse, yet even
hot pages incur frequent TLB misses because their reuse
distances are often much larger than TLB sizes. As a result,
the TLB miss latencies for hot data accumulate and lead
to significant address translation overheads. This problem
worsens as the data size increases since the TLB size is
fixed. Huge pages can better capture the reuse of hot data.
It is imperative, especially for very large graph data, to
prioritize the hottest data for huge page usage in order to
eliminate as many TLB misses as possible.
The hot data have a very small collective footprint

relative to the total memory footprint of the application.
However, because individual hot vertices can be interspersed
throughout the virtual address space, a single TLB entry
often cannot capture many of them. Therefore, preprocess-
ing needs to coalesce the hot data into a dense memory
region, where their entire footprint can easily be covered
with just a few huge pages, depending on the network size.

207

Figure 10: Speedup comparisons with system-wide THPs (applied to all data structures), degree-based grouping (DBG), and
applying THPs to all data structures with DBG (DBG+THP) or selectively to a percentage (50% or 100%) of the property
array while using DBG (DBG+Selective THP).

Figure 11: Speedup comparisons with system-wide THPs
and huge pages used for 0 – 100% of the property array for
BFS when memory is 50% fragmented. THPs for only 20%
of the property array outperforms system-wide THPs.

5.1.2. Degree-Based Preprocessing. Faldu et al. proposed
a lightweight reordering technique, Degree-Based Grouping
(DBG) to reduce the memory footprint of “hot” vertices and
improve the caching performance of graph analytics [14].

At a high level, DBG coarsely sorts vertex IDs by
categorizing them into bins based on their degrees. Each
bin has a minimum degree, e.g. vertices in the first bin
must have a degree greater than or equal to 32d, where d
is the average degree of the network. The order in which
vertices are arranged within each bin does not matter;
the bins are simply used to differentiate between levels of
degrees, or hotness. DBG uses 8 bins with the following
minimum degrees: 32d, 16d, 8d, 4d, 2d, d, 0.5d, and 0. Due
to the power-law nature of modern networks, a majority of
vertices occupy the last bin, however, these bins sufficiently
distinguish between hot and cold vertices. Once all vertices
have been placed into bins, a mapping of all vertex IDs
is generated by iterating through the bins in order from
hottest to coldest.

Sorting Overheads DBG is considered a lightweight
sorting algorithm because the graph structure is largely
preserved. The graph only needs to be traversed 3 times:
once to determine the degrees of all vertices, once to
place each vertex in a bin, and once to generate a new
ID for each vertex based on the mapping resulting from
the preprocessing. The sizes of these traversals are linear
with respect to the number of vertices in the network,
whereas the application itself performs traversals of sizes
based on the number of edges in the network. Because there

are typically many more edges than vertices in real-world
networks, this preprocessing often has low overhead.
We measure the preprocessing runtime overhead and

find that in most cases, DBG has negligible impacts on
the end-to-end application runtime. For SSSP and PR, DBG
incurs up to a 2.36% overhead (1.32% average). For BFS,
the application with the shortest runtime, DBG incurs up to
a 16.5% overhead for the Wikipedia network and 13% on
average. However, the ensuing caching improvements, both
in the traditional and virtual memory hierarchy, more than
offset this overhead. We perform preprocessing separately
in order to not interfere with the available memory for
huge pages and account for the preprocessing times when
measuring application runtimes.

5.2. Selective THP Usage

Once hot data have been coalesced, fewer huge pages
are necessary to sufficiently cover data regions where page
size promotions are worthwhile. With this preprocessing
knowledge, the programmer can perform application-aware
huge page management by utilizing madvise and adjust-
ing the length parameter to only apply THPs to s% of
the property array, where s is a predetermined percentage.
Fig. 10 summarizes the performance impacts of 2 levels

of selective THP use, 50% and 100% of the property array,
combined with degree-based preprocessing in the presence
of low memory pressure (+3GB) and 50% fragmentation
for all datasets and applications. Preprocessing alone via
DBG (green) provides some speedup for networks with
little to no community structure, such as the Kronecker
network, while many real-world networks, e.g. Twitter and
Wikipedia, naturally have hot vertices in close proximity
to one another, so DBG has little impact on the network
structure and performance. For all configurations, THPs
applied selectively to s = 100% of the property array
(brown) outperforms DBG with (red) and without (green)
system-wide THPs enabled. Selective THPs with s = 50%
(purple) also outperforms DBG (green) and THPs applied
system-wide (orange and red) for most configurations.

Sensitivity to THP Selectivity Levels We measure
the sensitivity of selective THP performance by sweeping
through backing 0 – 100% (increments of 20%) of the
property array by huge pages with both the original and
preprocessed (DBG) datasets. Fig. 11 demonstrates the

208

performance impacts of these selective THP configurations
on BFS when there is low memory pressure (+3GB), but the
free memory is 50% fragmented. For the original Kronecker
and Sd1 Arc web networks, using more huge pages for
the property array is always beneficial because the hot
vertices are spread throughout the data structure. For the
Twitter and Wikipedia networks, which naturally have
community structure, and all preprocessed datasets, there
are diminishing returns as more huge pages are used. This
is because the hot data only occupies a small fraction of
memory at the beginning of the property array; utilizing
huge pages for this region successfully eliminates TLB
misses and improves address translation overheads.

In all cases (with and without preprocessing), applying
huge pages to just 20% of the property array yields a
1.15× speedup over THPs applied system-wide. Ultimately,
by applying selective huge page allocation on top of
lightweight data preprocessing, we are able to achieve
1.26 – 1.57× speedups over the baseline and 1.18 – 1.49×
speedups over Linux’s policy by improving huge page
efficiency and reducing 2MB TLB thrashing, while using
huge pages for just 0.58 – 2.92% of the total application
memory. We note that these speedups we report are those
solely attributed to improved TLB miss rates; any other
improvement, e.g. on-chip cache performance improvement
from degree-based sorting, is present in the baseline and
with our page management strategy.

While these observations and manual tuning steps for
analytic applications are effective, they are just the first
step towards automatically identifying and exploiting the
asymmetric value of huge page allocations in graph analytic
applications. Our results demonstrate ample opportunity
for future work on automated software and hardware co-
designed runtime systems to exploit these trends.

6. Related Work

Transparent Huge Page Management: Various tech-
niques aim to address the issues that arise from Linux’s
greedy huge page allocation strategy. Applications using
huge pages in NUMA systems can suffer from imbalanced
data access issues [11, 16]. Memory bloat is common and
wastes free memory if not all data within a huge page
region is used. Prior works balance performance and bloat
by tracking memory accesses and demoting huge pages
when the number of accessed constituent base pages is
below a certain threshold [2, 23, 35, 36, 40, 45, 50, 58].
Memory fragmentation increases huge page allocation
latency, as the kernel must perform extra work such as
memory compaction. When applications page fault a huge
page, the long allocation latency sits in the critical path,
degrading overall application performance. Pre-zeroing,
asynchronous promotion, user-directed promotion, and
huge page preallocation are techniques to mitigate this
problem [23, 36, 40, 46, 58]. Furthermore, 1GB huge pages
are suitable for applications with larger than usual memory
footprints [44].

Although state-of-the art huge page management offers
improvements over Linux in the presence of system memory
pressure, its performance remains suboptimal compared
to the peak performance achievable by using huge pages.
Rather than perform costly access tracking and kernel
overheads to capture application-unaware heuristics [23,
40], our work highlights the opportunity of application and
data access pattern knowledge in identifying data worth
backing with huge pages.

TLB Improvements: A TLB is the hardware cache
for page table entries used to reduce address translation
time. TLB entries have limited size options (4KB, 2MB, and
1GB on x86_64) and the gap between them is very large
(512× apart on x86_64). A variety of works focused on TLB
optimization improve translation overheads by increasing
memory region contiguity. CoLT and RangeTLB coalesce
multiple page table entries of contiguous 4KB pages into
a single TLB entry to increase TLB coverage [15, 19, 42,
43]. Software techniques also propose to maximize the size
of contiguous memory regions in the system [15, 19, 53].
For applications with a small number of large contiguous
memory ranges, direct segment proposes to use memory
segments in the OS to provision these ranges and [base,
size] format in the TLB to cache the address translations of
these segments [7]. Midgard attacks the TLB coverage issue
from a different angle; by introducing a new address space
of virtual memory areas, it significantly reduces the amount
of translations that need to be cached since virtual memory
areas are usually much larger than normal page sizes and
much smaller in numbers [18]. Overall, TLB optimization
is orthogonal to page size management; these approaches
complement our techniques.

Graph Sorting: Although complete regularization of
graph data accesses is not possible for many graph algo-
rithms, it is possible, yet challenging, to increase temporal or
spatial cache locality through graph reordering. Reordering
vertex information improves the locality of data in graph
applications by coalescing addresses that are accessed more
frequently to occupy the same cacheline or TLB entry (same
virtual memory page). While degree-based graph sorting
improves temporal locality [4, 57], it can come at the cost
of destroying local “community structure,” resulting in poor
spatial locality. Similarly, graph sorting based on community
structure increases spatial locality at the cost of poor tem-
poral locality (in addition to a high preprocessing overhead)
[52]. DBG [14] attempts to balance spatial and temporal
locality optimization, where nodes are sorted based on
degree in a course-grained fashion such that short distance
spatial locality is preserved. This improves both cache and
TLB miss rates for data in highly connected portions of
memory, but large memory footprints (greater than the
capacity of the caching structures) are still problematic
for sorted datasets, especially when memory accesses are
irregular. Our technique expands the total TLB reach in
an intelligent and frugal manner, which is complementary
to data reordering optimizations. Furthermore, our work
uncovers the virtual memory impact of running graph
algorithms on both unsorted and sorted networks.

209

7. Conclusion

Huge pages can effectively alleviate address translation
overheads for memory-intensive graph applications in ideal
scenarios having little to no memory pressure. However,
application characteristics, namely irregular data access
patterns and highly biased access frequency across all data,
greatly impact the effectiveness of huge page utilization
and modern OS huge page management is often far from
optimal. When a system has limited and/or fragmented
memory, huge page resources become precious and naïve
huge page allocation policies cause huge page underutiliza-
tion, resulting in wasted effort attempting to create huge
pages. Despite prior research efforts to improve huge page
efficiency, there remains room for improvement. State-of-
the-art uses tuned heuristics, rather than access pattern
characteristics, and thus cannot reliably identify data that
benefits most from huge pages.
Our work demonstrates the value of application-aware

huge page management. For graph analytics, aggregating
frequently accessed data via preprocessing and allocat-
ing huge pages to the data structures that receive the
most benefit realizes significant performance improvements,
while only requiring huge pages for a small fraction of the
application memory. Specifically, we achieve 77.3 – 96.3%
of unbounded huge page performance and a speedup of
1.26 – 1.57× over using 4KB pages, while only requiring
0.58–2.92% of the application memory footprint be backed
by huge pages. This is a realistic amount of available THPs
to expect in real systems experiencing memory pressure.
Graph applications are representative of a worst-case

performance scenario for virtual memory and thus there are
few other known opportunities to improve the address trans-
lation bottleneck, and consequently overall performance, as
significantly as through efficient huge page management.
For this application domain, we conclude that huge page
resources are the next performance frontier that needs to
be managed by programmers, OSes, and next-generation
automated systems, in order to leverage application behavior
knowledge with real-time memory system resource tracking
to obtain peak performance.

Acknowledgments

We thank the anonymous reviewers for their feedback.
This research was supported in part by the DARPA SDH
Program under agreement No. FA8650-18-2-7862 and NSF
Award No. 1763838. Aninda Manocha was supported by
the NSF Graduate Research Fellowship. Prof. Aragón was
supported by Fundación Séneca-Agencia de Ciencia y
Tecnología, Región de Murcia, Programa Jiménez de la
Espada (21508/EE/21). The authors’ views and conclusions
contained herein should not be interpreted as representing
the official policies or endorsements, either expressed or
implied, of DARPA or NSF.

References

[1] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco, “Heterogeneous
memory subsystem for natural graph analytics,” in International

Symposium on Workload Characterization (IISWC). IEEE, Sep. 2018,
pp. 134–145.

[2] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: ACM, 2017, pp. 631–644. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037706

[3] V. Balaji, N. Crago, A. Jaleel, and B. Lucia, “Practical optimal cache
replacement for graphs,” in Proceedings of the 2021 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
2021.

[4] V. Balaji and B. Lucia, “When is graph reordering an optimization?
studying the effect of lightweight graph reordering across applications
and input graphs,” in 2018 IEEE International Symposium on Workload
Characterization (IISWC), 2018, pp. 203–214.

[5] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and
Y. Xie, “Analysis and optimization of the memory hierarchy for graph
processing workloads,” in Proceedings of the 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
2019, pp. 373–386.

[6] S. A. Baset, L. Wang, and C. Tang, “Towards an understanding
of oversubscription in cloud,” in 2nd USENIX Workshop on Hot
Topics in Management of Internet, Cloud, and Enterprise Networks
and Services (Hot-ICE 12). San Jose, CA: USENIX Association, Apr.
2012. [Online]. Available: https://www.usenix.org/conference/hot-ice
12/workshop-program/presentation/baset

[7] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, ser.
ISCA ’13. New York, NY, USA: ACM, 2013, pp. 237–248. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485943

[8] S. Beamer, K. Asanović, and D. Patterson, “The GAP benchmark
suite,” 2015.

[9] N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined
caches,” in Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2013, pp. 213–224.

[10] U. Brandes, “A faster algorithm for betweenness centrality,” Journal
of mathematical sociology, vol. 25, no. 2, pp. 163–177, 2001.

[11] J. Corbet, “AutoNUMA: the other approach to NUMA scheduling,”
http://lwn.net/Articles/488709/, 2012, [Online; accessed 04-Aug-2018].

[12] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software, vol. 38,
no. 1, 2011.

[13] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and D. Sanchez,
“KPart: A hybrid cache partitioning-sharing technique for commodity
multicores,” in Proceedings of 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2018, pp. 104–117.

[14] P. Faldu, J. Diamond, and B. Grot, “A closer look at lightweight
graph reordering,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC). United States: Institute of Electrical
and Electronics Engineers (IEEE), Mar. 2020, pp. 1–13, 2019 IEEE
International Symposium on Workload Characterization, IISWC-2019
; Conference date: 03-11-2019 Through 05-11-2019.

[15] J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Ünsal, “Range translations for
fast virtual memory,” IEEE Micro, vol. 36, no. 3, pp. 118–126, 2016.

[16] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and
V. Quéma, “Large pages may be harmful on numa systems,” in
Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, ser. USENIX ATC’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 231–242. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2643634.2643659

[17] M. Gorman and A. Whitcroft, “The what, the why and the where to
of anti-fragmentation,” in Linux Symposium, 2006, pp. 369–384.

210

[18] S. Gupta, A. Bhattacharyya, Y. Oh, A. Bhattacharjee, B. Falsafi, and
M. Payer, Rebooting Virtual Memory with Midgard. IEEE Press,
2021, p. 512–525. [Online]. Available: https://doi.org/10.1109/ISCA52
012.2021.00047

[19] F. Guvenilir and Y. N. Patt, “Tailored page sizes,” in Proceedings of
the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ser. ISCA ’20. IEEE Press, 2020, p. 900–912. [Online].
Available: https://doi.org/10.1109/ISCA45697.2020.00078

[20] M. S. Johnstone and P. R. Wilson, “The memory fragmentation
problem: Solved?” in Proceedings of the 1st International Symposium
on Memory Management, ser. ISMM ’98. New York, NY, USA: ACM,
1998, pp. 26–36. [Online]. Available: http://doi.acm.org/10.1145/2868
60.286864

[21] L. Kernel, “Get free page (gfp) flags,” https://elixir.bootlin.com/linux
/v5.15/source/include/linux/gfp.h#L88, 2022.

[22] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and
L. Shannon, “Amoeba-cache: Adaptive blocks for eliminating waste in
the memory hierarchy,” in Proceedings of the 45th Annual International
Symposium on Microarchitecture (MICRO), 2012, p. 376–388.

[23] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated
and efficient huge page management with ingens,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). Savannah, GA: USENIX Association, Nov. 2016, pp. 705–721.
[Online]. Available: https://www.usenix.org/conference/osdi16/techn
ical-sessions/presentation/kwon

[24] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,”
Journal of Machine Learning Reseach (JMLR), vol. 11, pp. 985–1042,
Mar. 2010.

[25] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[26] L. Li, A. B. Hayes, S. L. Song, and E. Z. Zhang, “Tag-split cache
for efficient GPGPU cache utilization,” in Proceedings of the 2016
International Conference on Supercomputing (ICS). ACM, 2016.

[27] Linux Kernel Documentation, “memhog(8) — Linux manual page,”
https://man7.org/linux/man-pages/man8/memhog.8.html.

[28] ——, “mlock(2) — Linux manual page,” https://man7.org/linux/man-p
ages/man2/mlock.2.html.

[29] ——, “numa(3) — Linux manual page,” https://man7.org/linux/man-p
ages/man3/numa.3.html.

[30] ——, “numactl - Control NUMA policy for processes or shared
memory,” https://linux.die.net/man/8/numactl.

[31] ——, “Transparent Hugepage Support,” https://www.kernel.org/doc/h
tml/latest/admin-guide/mm/transhuge.html.

[32] ——, “hugetlb page,” https://www.kernel.org/doc/Documentation/vm/
hugetlbpage.txt, 2022.

[33] A. Manocha, J. L. Aragón, and M. Martonosi, “Graphfire: Synergizing
fetch, insertion, and replacement policies for graph analytics,” IEEE
Transactions on Computers, March 2022.

[34] A. Manocha, T. Sorensen, E. Tureci, O. Matthews, J. L. Aragón,
and M. Martonosi, “GraphAttack: Optimizing data supply for graph
applications on in-order multicore architectures,” ACM Transactions
on Architecture and Code Optimization, vol. 18, no. 4, pp. 1–26, Sep
2021.

[35] M. R. Meswani, S. Blagodurov, D. Roberts, J. o. Slice, M. Ignatowski,
and G. H. Loh, “Heterogeneous memory architectures: A hw/sw
approach for mixing die-stacked and off-package memories,” in 2015
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), February 2015, pp. 126–136.

[36] T. Michailidis, A. Delis, and M. Roussopoulos, “Mega: Overcoming
traditional problems with os huge page management,” in Proceedings
of the 12th ACM International Conference on Systems and
Storage, ser. SYSTOR ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 121–131. [Online]. Available:
https://doi.org/10.1145/3319647.3325839

[37] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in International symposium on Microarchitecture
(MICRO), October 2018.

[38] A. Mukkara, N. Beckmann, and D. Sanchez, “PHI: Architectural
support for synchronization- and bandwidth-efficient commutative
scatter updates,” in Proceedings of the 52nd Annual International
Symposium on Microarchitecture (MICRO), 2019, pp. 1009–1022.

[39] Q. M. Nguyen and D. Sanchez, “Pipette: Improving core utilization on
irregular applications through intra-core pipeline parallelism,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 596–608.

[40] A. Panwar, S. Bansal, and K. Gopinath, “Hawkeye: Efficient
fine-grained os support for huge pages,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
347–360. [Online]. Available: https://doi.org/10.1145/3297858.3304064

[41] A. Panwar, A. Prasad, and K. Gopinath, Making Huge Pages Actually
Useful. New York, NY, USA: Association for Computing Machinery,
2018, p. 679–692. [Online]. Available: https://doi.org/10.1145/3173162.
3173203

[42] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb coalescing:
Improving tlb translation coverage under diverse fragmented
memory allocations,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17. New
York, NY, USA: ACM, 2017, pp. 444–456. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080217

[43] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt:
Coalesced large-reach tlbs,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-45. Washington, DC, USA: IEEE Computer Society, 2012, pp.
258–269. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2012.32

[44] V. S. S. Ram, A. Panwar, and A. Basu, “Trident: Harnessing
architectural resources for all page sizes in x86 processors,” in
MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1106–1120. [Online]. Available:
https://doi.org/10.1145/3466752.3480062

[45] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hybrid
memory systems,” in Proceedings of the International Conference on
Supercomputing, ser. ICS ’11. New York, NY, USA: ACM, 2011, pp. 85–
95. [Online]. Available: http://doi.acm.org/10.1145/1995896.1995911

[46] D. Rientjes, “[rfc] hugepage collapse in process context,” https:
//lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3
d@google.com/, 2021.

[47] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to
the cache replacement problem,” in Proceedings of the 52nd Annual
International Symposium on Microarchitecture (MICRO), 2019, pp. 413–
425.

[48] N. Talati, K. May, A. Behroozi, Y. Yang, K. Kaszyk, C. Vasiladiotis,
T. Verma, L. Li, B. Nguyen, J. Sun, J. Morton, A. Ahmadi, T. Austin,
M. O’Boyle, S. Mahlke, T. Mudge, and R. Drelinski, “Prodigy:
Improving the memory latency of data-indirect irregular workloads
using hardware-software co-design,” in International Symposium on
High Performance Computer Architecture (HPCA), 2021.

[49] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2016.

[50] M. M. Tikir and J. K. Hollingsworth, “Hardware monitors
for dynamic page migration,” J. Parallel Distrib. Comput.,
vol. 68, no. 9, pp. 1186–1200, Sep. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2008.05.006

211

[51] N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko,
E. Ebrahimi, N. Hajinazar, P. B. Gibbons, and O. Mutlu, “A case
for richer cross-layer abstractions: Bridging the semantic gap with
expressive memory,” in Proceedings of the 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 207–220.

[52] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing by
graph ordering,” in Proceedings of the 2016 International Conference
on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1813–1828.

[53] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation
ranger: Operating system support for contiguity-aware tlbs,” in
Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 698–710. [Online]. Available:
https://doi.org/10.1145/3307650.3322223

[54] J. You, R. Ying, and J. Leskovec, “Position-aware graph neural
networks,” in Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, ser. Proceedings of Machine Learning Research, K. Chaudhuri
and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 7134–7143.
[Online]. Available: http://proceedings.mlr.press/v97/you19b.html

[55] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect memory
prefetcher,” in Proceedings of the 48th Annual International Symposium
on Microarchitecture (MICRO), Dec 2015, pp. 178–190.

[56] C. Zhang, Y. Zeng, and X. Guo, “Scrabble: A fine-grained cache with
adaptive merged block,” IEEE Transactions on Computers, vol. 69,
no. 1, pp. 112–125, 2020.

[57] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in 2017 IEEE International
Conference on Big Data (Big Data), 2017, pp. 293–302.

[58] W. Zhu, A. L. Cox, and S. Rixner, “A comprehensive analysis
of superpage management mechanisms and policies,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, Jul. 2020, pp. 829–842. [Online]. Available: https:
//www.usenix.org/conference/atc20/presentation/zhu-weixi

212

Appendix

1. Abstract

This artifact description provides information about the
complete workflow necessary to generate and analyze the
characterizations and results detailed in our manuscript, “The
Implications of Page Size Management on Graph Analytics”.
We have provided public access to the graph applications
and datasets (networks) we evaluated, the necessary software
packages, and the experiment scripts we have written to
systematically characterize virtual memory and system effects.

2. Artifact check-list (meta-information)

• Algorithm: Characterization of the impacts of huge page
management techniques on graph analytic application
runtime and TLB performance.

• Program: Breadth-First Search (BFS), Single-Source Short-
est Paths (SSSP), and PageRank.

• Compilation: Intel C++ Compiler.
• Binary: Binaries for applications are generated via C++

compilation of source code, binaries for software tools
(e.g. to limit or fragment memory) are provided, but can
be regenerated using the source code provided.

• Run-time environment: Modified Linux v5.15 kernel.
Linux’s transparent huge page policy is enabled (system-
wide) or set to madvise (programmer-directed).

• Hardware: Intel Xeon CPU E5-2667 v3 @ 3.20 GHz with
2 sockets, 8 cores/socket, and 2 threads/core.

• Run-time state: RAM is either freely available, limited
but large contiguous chunks are available, or fragmented
such that few large contiguous chunks are available.

• Execution: Linux shell scripts are provided to automate
experiment execution (details below).

• Metrics: Application execution time speedup, Translation
Lookaside Buffer (TLB) miss rate (% of TLB accesses that
result in a miss in the first- and second-level TLBs).

• Output: Application execution time (seconds), TLB miss
rate, and page table walk rate.

• Experiments: We measure the performance impacts
of huge pages on graph application runtime and TLB
performance. We investigate the application performance
impacts of: (1) 4KB base pages only, (2) 2MB huge pages
only, (3) 2MB huge pages for a single data structure while
the remaining data are backed with 4KB pages, (4) 4KB
base pages when there is memory pressure: limited free
(0-3GB available) and/or fragmented memory (25-100%),
(5) Linux’s policy when there is memory pressure: limited
free (0-3GB available) and/or fragmented memory (25-
100%), (6) Linux’s policy when there is memory pressure
and the order of memory allocations is optimized for
graph analytics, and (7) selective huge page use for
data that frequently incurs TLB misses when there is
memory pressure: limited free memory (3GB available)
and fragmented memory (50%)

• How much disk space required (approximately)?:
100GB.

• How much time is needed to prepare workflow
(approximately)?: 1 hour.

• How much time is needed to complete experiments
(approximately)?: 2 weeks.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: CC-BY 4.0.
• Data licenses (if publicly available)?: CC-BY 4.0.

• Workflow framework used?: Linux shell scripts and
Python v3.4.

3. Description

3.1. How to access. All application source code, links
to public datasets and modified Linux kernel source code,
software utilities, and workflow (automated experiment
execution) scripts are available at https://github.com/ama
nocha/graphs_thp_management.

3.2. Hardware dependencies. We perform our character-
izations and evaluations using an Intel Haswell Processor.
To replicate these results, an x86 machine (support for 4KB
and 2MB page sizes) with at least 2 NUMA nodes and at
least 20GB of RAM available per node is necessary.

3.3. Software dependencies. We have modified the Linux
v5.15 kernel source to provide support for programmer-
driven huge page usage via system calls. This customized
version is used for all experiments and is available at https://
github.com/amanocha/graphs_thp_linux. It must be cloned,
compiled, and installed onto the machine. Additionally,
Python3 and numactl are needed to run experiments.

3.4. Data sets. We use the following datasets in our
evaluations as well as their reordered variants:

1) Kronecker25 (synthetic power-law network)
2) Twitter (real social network)
3) Sd1 Arc (real web network)
4) Wikipedia (real social network)

All datasets are available at https://decades.cs.princeton.e
du/datasets/big/. We perform reordering using the Degree-
Based Grouping method (https://faldupriyank.com/papers/
DBG_IISWC19.pdf). While we have provided the reordered
datasets, we also provide the source code for regenerating
them.
For more details, visit https://github.com/amanocha/gr

aphs_thp_management#datasets.

4. Installation

Linux Source Code First clone our Linux kernel source
code repository:

git clone https://github.com/amanocha/
graphs_thp_linux.git

Then compile and install the code:

cd graphs_thp_linux
cp config .config
sudo yum group install "Development Tools"
sudo yum install ncurses-devel bison flex

elfutils-libelf-devel openssl-devel
make -j [NUM_CORES]
sudo make modules_install
sudo make install
sudo reboot

After reboot verify that the code was installed correctly
(you should see 5.15.0-rc6+ as the kernel version):

uname -r

213

Perf Linux’s perf tool is needed to measure TLB miss
rates. To install it:

cd graphs_thp_linux/tools/perf/
make -j [NUM_CORES]
cp perf /usr/bin/perf

Workflow To install our workflow code, clone our reposi-
tory:

git clone https://github.com/amanocha/
graphs_thp_management.git

Then run the following to set up software utilities and
directories needed to run the experiments:

cd graphs_thp_management/numactl
bash make.sh
cd ../utils
make
cd ..
mkdir results

Datasets must be downloaded from https://decades.cs.p
rinceton.edu/datasets/big/ and stored in a local folder,
e.g. local_data. Then run the following commands to
mount the datasets on a specific NUMA node NUMA_NODE:

cd graphs_thp_management
mkdir data
sudo mount -t tmpfs -o size=100g,mpol=bind: [

NUMA_NODE] tmpfs data
cp -r [PATH_TO_DATASETS]/* data/

5. Experiment workflow

Details on experiment setup and all scripts are described
at https://github.com/amanocha/graphs_thp_managem
ent#experiments. We provide scripts to characterize and
evaluate the following:

TLB Miss Rates: To characterize the impacts of TLB
misses and address translation overheads on graph analytics,
run the following command (output will be stored in
results/ tlb_char/):

sudo bash thp.sh 1 all all

Data Structure Analysis: To characterize the perfor-
mance impacts of utilizing huge pages for individual data
structures in graph analytics, namely the vertex array, edge
array, and property array, run the following command
(output will be stored in results/data_struct/):

sudo bash thp.sh 2 all all

Constrained Memory: To characterize the perfor-
mance impacts of memory pressure on Linux THP perfor-
mance, the scripting environment must first be configured.
Open the file constrained.sh in a text editor and modify
lines 7 and 8 based on the NUMA node ID and the amount
of memory available (in MB) on the node (e.g. NUMA node
1 has 64GB of RAM):

NUMA_NODE=1 # NODE NUMBER
MAX_RAM=64000 # AMT OF MEM ON NODE

Then run the following (output will be stored in
results/constrained_mem/):

sudo bash constrained.sh

Fragmented Memory: To characterize the perfor-
mance impacts of memory fragmentation on Linux THP
performance, the scripting environment must be first be
configured. Open the file frag.sh in a text editor and modify
lines 9 and 10 based on the NUMA node ID and the amount
of memory available (in MB) on the node (e.g. NUMA node
1 has 64GB of RAM):

NUMA_NODE=1 # NODE NUMBER
MAX_RAM=64000 # AMT OF MEM ON NODE

Then run the following (output will be stored in results/
frag_mem/):

sudo bash run_frag.sh 4

Selective THP: To characterize the performance impacts
of selective THP usage, run the following (output will be
stored in results/select_thp/):

sudo bash run_frag.sh 5

6. Evaluation and expected results

The experiment scripts automatically generate results.
The directory structure of the results is described at https:
//github.com/amanocha/graphs_thp_management#results.
For each application/dataset configuration, there is an

output folder $APPLICATION_$DATASET that contains
application execution output in app_output_x_i.txt,
where x is the transparent huge page setting and i is the
iteration number (each experiment is run 3 times). The end
of the output shows the following:

total kernel computation time: [TIME_IN_SEC]
user time: [USER_TIME_IN_SEC]
kernel time: [KERNEL_TIME_IN_SEC]

TLB output is recorded in results_i.txt (average is
recorded in results.txt) and appears as follows:

TLB Miss Rate: [%]
STLB Miss Rate: [%]
Page Fault Rate: [%]

When there is no memory pressure, runtime performance
should always improve over 4KB pages only when Linux’s
transparent huge page policy is used. As memory becomes
more limited (but not oversubscribed) or more fragmented,
then the performance improvements should decrease until
there are essentially no improvements at all. Selective
huge page usage should provide performance improvements
regardless of whether there is system memory pressure.

7. Experiment customization

Linux shell scripts are customizable to adjust the amount
of memory to limit and the level of memory fragmentation.

8. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact
-review-badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

214

