Architectural Support for Optimizing Huge Page Selection
Within the OS

Aninda Manocha Zi Yan Esin Tureci
amanocha@princeton.edu ziy@nvidia.com esin.tureci@princeton.edu
Princeton University NVIDIA Princeton University

Princeton, New Jersey, USA

Westford, Massachusetts, USA

Princeton, New Jersey, USA

Juan L. Aragén David Nellans Margaret Martonosi
jlaragon@um.es dnellans@nvidia.com mrm@princeton.edu
University of Murcia NVIDIA Princeton University

Murcia, Spain

ABSTRACT

Irregular, memory-intensive applications often incur high trans-
lation lookaside buffer (TLB) miss rates that result in significant
address translation overheads. Employing huge pages is an effective
way to reduce these overheads, however in real systems the num-
ber of available huge pages can be limited when system memory
is nearly full and/or fragmented. Thus, huge pages must be used
selectively to back application memory. This work demonstrates
that choosing memory regions that incur the most TLB misses for
huge page promotion best reduces address translation overheads.
We call these regions High reUse TLB-sensitive data (HUBs). Unlike
prior work which relies on expensive per-page software counters to
identify promotion regions, we propose new architectural support
to identify these regions dynamically at application runtime.

We propose a promotion candidate cache (PCC) that identifies
HUB candidates based on hardware page table walks after a last-
level TLB miss. This small, fixed-size structure tracks huge page-
aligned regions (consisting of N base pages), ranks them based
on observed page table walk frequency, and only keeps the most
frequently accessed ones. Evaluated on applications of various mem-
ory intensity, our approach successfully identifies application pages
incurring the highest address translation overheads. Our approach
demonstrates that with the help of a PCC, the OS only needs to
promote 4% of the application footprint to achieve more than 75%
of the peak achievable performance, yielding 1.19-1.33% speedups
over 4KB base pages alone. In real systems where memory is typ-
ically fragmented, the PCC outperforms Linux’s page promotion
policy by 14% (when 50% of total memory is fragmented) and 16%
(when 90% of total memory is fragmented) respectively.

CCS CONCEPTS

« Computer systems organization — Architectures; - Software
and its engineering — Virtual memory; Memory manage-
ment; Operating systems.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO °23, October 28—November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614296

Austin, Texas, USA

Princeton, New Jersey, USA
KEYWORDS

hardware-software co-design, cache architectures, memory man-
agement, virtual memory, operating systems, graph processing

ACM Reference Format:

Aninda Manocha, Zi Yan, Esin Tureci, Juan L. Aragén, David Nellans,
and Margaret Martonosi. 2023. Architectural Support for Optimizing Huge
Page Selection Within the OS. In 56th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO °23), October 28—November 01,
2023, Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3613424.3614296

1 INTRODUCTION

Increasingly large application memory footprints are becoming
problematic for modern virtual memory hierarchies as they incur
high address translation overheads that can limit overall workload
throughput. Specifically, irregular memory access patterns in ap-
plications cause high translation lookaside buffer (TLB) miss rates.
While TLB miss rates can be reduced by modifying the TLB size,
changing organization, or replacement policies [12, 42], these solu-
tions do not scale with large increases in memory size. Modern TLB
organizations still cover only a fraction of the total system memory
in production systems [48]. A cost-effective alternative is to utilize
huge pages [8], which map large, e.g. 2MB on x86, contiguous re-
gions of virtual memory to contiguous regions of physical memory,
increasing individual TLB entry coverage.

Fig. 1 presents a performance comparison when using 4KB pages
for all data (black) vs. 2MB pages for all data (blue) vs. greedy huge
page allocation in a system with 50% fragmented memory (orange)
while running a variety of applications selected to show varying
levels of sensitivity to huge pages. In all cases, huge pages provide
measurable performance improvements with speedups as high as
2% (geomean 1.3X), and TLB miss rate reduction by 2.9x on aver-
age. However, this ideal performance is rarely achieved in practice.
When Linux greedily allocates Transparent Huge Pages (THPs)
while memory is 50% fragmented, its performance rarely exceeds
the performance of using base pages alone. Many database ap-
plications also often suffer performance degradation when using
huge pages [7, 10, 13, 20, 40, 43, 49, 50, 53, 57, 62, 65]. Several fac-
tors contribute to this. First, huge pages require additional time to
prepare and map into an application’s memory space compared
to base pages [21, 60, 63]. Second, aggressive use of huge pages
can bloat an application’s memory footprint, wasting precious free

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613424.3614296
https://doi.org/10.1145/3613424.3614296
https://doi.org/10.1145/3613424.3614296

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Il 100% 4KB Pages @@ 100% 2MB Pages [Linux THP

TLB Miss %

Figure 1: TLB miss rate and application performance compar-
ison under various page sizes and Linux’s default huge page
promotion policy. 2MB pages have significant performance
potential, however, Linux’s greedy THP allocation fails to
achieve this performance in the presence of just 50% memory
fragmentation.

memory [29, 44]. Last, memory pressure can limit the availabil-
ity of large contiguous regions of physical memory to form huge
pages [45, 66].

Modern operating systems such as Linux handle these issues
inefficiently. This is because Linux lacks knowledge of individual
application behavior and cannot classify application data pages
by TLB sensitivities, despite its continuous effort to lower huge
page performance pitfalls (e.g. removing huge page creation at
page fault time, demoting underutilized huge pages, and adding
anti-fragmentation mechanisms). When system memory pressure
is high, limited huge pages are not allocated optimally to prioritize
TLB-sensitive data, hampering performance gains and wasting CPU
effort to create huge pages with low utility [37].

Prior works have aimed to improve on Linux’s aggressive al-
location policy by adding heuristics about page regions to huge
page promotion decisions [29, 39, 44, 68]. The OS monitors page us-
age (including recording, aggregating, and resetting data about all
pages present in the system), incurring significant overheads which
degrade both kernel and application performance. Additionally,
because tracking rich data information requires expensive per-page
storage overheads and using too much memory for such data is
always a concern, most proposals only use 1-2 bits, which do not
provide the desirable high resolution on page activity.

To minimize page tracking overheads, enrich page activity in-
formation, and improve OS huge page management, we propose a
hardware-OS co-design: the hardware tracks page utilization and
ranks huge page promotion candidates for high precision and low
overheads, while the OS continues to make huge page promotion
decisions for maximum flexibility. Our work discovers a strong
correlation between page reuse distance and the performance im-
provement brought by promoting these pages to huge pages. By
utilizing our hardware-tracked reuse information, Linux is able to

Manocha et al.

identify huge page promotion candidates faster, more precisely, and
with lower overheads than when using software-only approaches.
Our contributions can be summarized as follows:

e We develop a new characterization of memory access pat-
terns using page reuse distance at different page sizes, which
identifies huge page candidates whose promotions will im-
prove TLB miss rates the most.

e We design a novel hardware promotion candidate cache (PCC)
to track huge page (2MB)-aligned regions that collectively
incur the most page table walks from constituent base page
accesses. This tracking information serves as a proxy of our
access pattern characterization.

e We decouple OS page promotion decisions from page data
tracking performed by the PCC to relieve the OS from scan-
ning overheads and enable quicker promotion of candidates,
especially when the system is under memory pressure and
huge page resources are limited.

e We implement this approach in the Linux v5.15 kernel based
on offline PCC simulation and perform real-system perfor-
mance evaluations. We demonstrate single-thread speedups
of 1.19-1.33% over base pages alone, achieving 69-77% of ide-
alized huge page performance while requiring only 1-4% of
the application memory footprint be backed by huge pages.
When memory is 50% and 90% fragmented, the PCC outper-
forms Linux by 1.14X and 1.16X, respectively. The PCC con-
ceptis also multithread- and multiprocess-friendly, achieving
1.07-1.18X% and 1.07-1.15X speedups respectively.

2 BACKGROUND AND MOTIVATION

Hardware support for multiple page sizes in systems dates back
nearly three decades [63]. However, OS techniques to transparently
manage the use of huge pages is much more recent [35]. Today,
most modern operating systems, including Linux and FreeBSD,
are equipped with some variation of one or more levels of huge
page support. In this work, without loss of generality, we focus on
Linux’s huge page management policy and its implementation and
drawbacks.

2.1 Linux’s Existing Huge Page Policies

In Linux, a user can explicitly manage huge pages via the hugetlbfs
library [33] or the OS can automatically manage them via Trans-
parent HugePage (THP) support [35]. The latter allows users to
seamlessly execute applications without the source code modifica-
tions, manual management of huge page reservations, or memory
allocation API interceptions that hugetlbfs requires. Linux performs
THP promotion of 4KB pages to 2MB huge pages in two ways:
synchronously upon the first access to a huge page region and asyn-
chronously via the kernel daemon, khugepaged, that runs in the
background while applications are executing on the system.
Synchronous Promotion: In Linux, the first access to a memory
region results in a page fault to back the virtual address range with
a physical page. Linux leverages this opportunity to allocate the
region of memory as a 2MB huge page rather than a 4KB base page.
It checks the huge page eligibility of the faulting virtual address,
then allocates a 2MB huge page in physical memory to back the
virtual address if possible. This aggressive huge page allocation

Architectural Support for Optimizing Huge Page Selection Within the OS

policy can have a beneficial prefetching effect by preemptively
faulting in additional memory beyond just 4KB. However, this
can also lead to memory bloat, thus wasting free memory, if the
additional page data allocated does not end up being accessed [29,
44]. To alleviate this problem, Linux provides settings that can be
configured via madvise, so that a user has direct control (using the
MADV_HUGEPAGE flag) over which memory allocations are backed
by huge pages. Unfortunately, this increases code complexity and
similar to Linux’s aggressive policy, performance improvement
depends on the availability of free huge pages.

Furthermore, backing a newly touched page with a huge page can
incur a longer page fault latency because 512X data (2MB vs. 4KB)
needs to be zeroed and huge page allocation might take a much
longer time if no huge page is readily available. Because Linux
needs to reclaim in-use pages and compact memory, this process
can dramatically lengthen page fault time [40, 53]. In reality, huge
page allocations that typically take less than 1 second can spike to
90 seconds [21].

Asynchronous Promotion: To avoid lengthy page fault time
in synchronous huge page allocation, Linux provides a daemon
called khugepaged to promote huge pages system-wide and asyn-
chronously from application execution. This daemon periodically
scans virtual memory regions for matching physically contiguous
2MB regions that it can promote. System administrators can tune
khugepaged to be more or less aggressive or they can configure
via madvise which memory regions can be promoted. However,
determining the settings that might benefit an application the most
or deciding whether to use khugepaged globally across applications
in a machine is difficult at best.

Huge Page Demotion: When a huge page is no longer mapped
as a whole, Linux demotes the page by first splitting it into 512 4KB
base pages when memory pressure is high and then updating page
table entries to point to the new split pages so that unmapped 4KB
pages can be reclaimed. This avoids huge page capacity underuti-
lization. In addition, if a huge page is swapped out, it is split into
base pages, which are faulted back in individually instead of as a
huge page.

2.2 Prior Work on Huge Page Promotion

To address Linux’s huge page management inefficiencies, prior
research has aimed to strike a balance between performance, OS
overheads, and memory bloat [28, 29, 39, 44, 46, 68]. To remove huge
page creation from the application execution’s critical path, these
works have proposed software techniques such as page pre-zeroing,
huge page pre-allocation, user-directed promotion, and asynchro-
nous huge page creation [58]. These works utilize software-based
page monitoring, such as huge page region utilization, to guide
asynchronous promotion and demotion decisions.

For example, HawkEye [44] proposes an access coverage metric
that counts the number of base pages accessed within a huge page
region, within a predefined interval (1 second of tracking). It then
categorizes all huge page regions into buckets that are stored in
linked lists (for dynamic addition/removal of a region) based on
their base page access coverage count, ranging from 0 to 512. Re-
gions with coverage counts of 0-49 are placed in bucket 0, 50-99 in
bucket 1, and so on. HawkEye prioritizes regions in bucket 9 (access

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

coverage count is 450-512) for promotion and works backwards
through buckets as it promotes data.

While effective for some applications, decisions to trigger pro-
motion and demotion processes using heuristics rely on specific
tunable thresholds that may not be suitable for a wide variety of
applications. Furthermore, these solutions require the OS to record,
aggregate, and reset data about all pages present in the system,
which can incur significant tracking and scanning overheads that
degrade both kernel and application performance. Most proposals,
including HawkEye, only use 1-2 bits within the struct page struc-
ture maintained by the Linux kernel for physical page metadata
(64B per page) due to storage limits [27, 29, 39, 68]. These bits do
not provide the desirable high resolution on page activity. When
running HawkEye in a system with 256GB of RAM for example,
the OS must mark, monitor, and scan across access coverage data
from 64 million pages. Even if this data itself comprises a small
percentage of system memory;, it spans across 4GB total of struct
page metadata. Thus, scanning it continually significantly impacts
application performance. It is due to these tracking and scanning
overheads that Hawkeye’s promotion process must sleep for 30 sec-
onds between 1-second measurement intervals (scanning a limited
number of pages) to alleviate OS-level overheads.

3 PROMOTION CANDIDATE CACHE

This work builds upon state of the art by recognizing the value
of hardware-assisted page promotion. This section describes new
hardware support that alleviates the storage and kernel overheads
of tracking and selecting huge page candidates, outperforming prior
software-only solutions.

3.1 Characterizing Page-Level Reuse

To understand how virtual memory performance is impacted by
different page sizes, we first study page access patterns and the
corresponding TLB hit rates. We study 8 applications (further de-
scribed in Sec. 4) that vary in memory demands to capture a wide
spectrum of datacenter workloads. We analyze page reuse distance,
i.e. the number of accesses to other pages between two accesses to
a given page (4KB or 2MB), which reveals that for many applica-
tions there are three distinct categories of memory reuse occurring
within the virtual memory hierarchy.

(a) TLB-Friendly Accesses: These accesses exhibit high spatial
and/or temporal locality, e.g. sequential accesses. The correspond-
ing pages can have low or average reuse distances when the page
size is 4KB, but all have high TLB hit rates. Because the base page
size already achieves good TLB performance, there is little addi-
tional benefit of using huge pages.

(2) High-Reuse TLB-Sensitive Accesses: These accesses ex-
hibit low spatial and temporal locality with 4KB base pages but
exhibit good locality at the 2MB granularity. This behavior often
manifests in sparse data access patterns that have reuse. For exam-
ple, the frequency of pointer indirect accesses to vertex neighbor
data in graph applications correlates with vertex degree [14, 36].
These accesses are TLB-unfriendly at base page level (page reuse
distance is too high for pages to be retained in the existing TLB hi-
erarchy) yet they have good/low reuse at the huge page level (their
huge page translations will be well cached). Thus, these regions are

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

BFS: 2MB vs. 4KB Page Reuse Distance

o 10%°

2 o High TLB Hit Rate with 4KB

-g 108 x Low TLB Hit Rate with 4KB, High TLB Hit Rate with 2MB
a + Low TLB Hit Rate with 4KB and 2MB

w106

wn “Q »_ e *
03) 1 %00

o 4

° 10

o

©

o

o ﬁ X

= -

~N 100

10° 10t 10?2 10° 104 10° 10° 107 108
4KB Page Reuse Distance

Figure 2: Characterization of data accessed based on page
reuse distance with 2MB vs. 4KB pages, running BFS on a
Kronecker network. HUBs (blue) have low TLB hit rates with
4KB pages, but high TLB hit rates with 2MB.

the best promotion candidates because they are likely to achieve
higher TLB hit rates when backed by huge pages. We refer to these
regions as HUBs (High-reUse TLB-sensitive data) and these pages
are the ones we attempt to identify with our proposed solution.

(3) Low-Reuse TLB-Sensitive Accesses: These accesses ex-
hibit such little locality that even with huge pages, accesses are still
too infrequent to benefit from the additional coverage provided.
Page reuse distance remains high regardless of the page size. Con-
sequently, the OS should not prioritize these pages for promotion.

Fig. 2 visualizes these three types of access patterns by measuring
the average reuse distance of each page accessed when running
Breadth First Search on a power-law network using 4KB base pages
and 2MB pages respectively. For each 4KB page, we plot the reuse
distance of the 2MB region it falls in (y-axis) against its 4KB reuse
distance (x-axis). In this example, we consider a “low” reuse distance
as less than 1024, a common number of entries in a CPU’s second-
level TLB [23]. Pages with reuse distances lower than this are likely
retained in the TLB hierarchy because of their temporal locality.
Thus, page-size agnostic TLB-friendly accesses (green) appear on
the left of the scatterplot (low 4KB page reuse distances), HUBs
(blue) appear in the lower right, and low-reuse accesses (red) appear
in the upper right.

Based on these observations, it is clear that an ideal promotion
candidate tracking structure should ignore pages for which there is
already good TLB locality, and differentiate between the remaining
pages to identify HUBs, data for which a huge page upgrade will
improve the TLB hit rate.

3.2 Capturing Reuse Distance in Hardware

In practice, calculating page reuse distance requires recording all
page accesses. Software cannot obtain the information without
incurring significant overheads, e.g. making every memory access
trigger a software fault. Thus, prior works approximate this by
sampling pages using hardware access bits, but even sampling has
a nontrivial amount of overhead. We propose using hardware to
directly capture page reuse information, addressing the major short-
comings of prior work. This hardware has two primary features.
First, while prior approaches track page information for all pages
in the system, our design avoids tracking pages with TLB-friendly
accesses to significantly reduce the amount of page data to track and

Manocha et al.

scan. Our approach filters out these TLB-friendly accesses (green
in Fig. 2) because it only checks page accesses missed in the whole
TLB hierarchy, i.e. page accesses that result in page table walks. We
place our hardware after the last-level TLBs to achieve this.

Second, many prior works rely on huge page region utilization
(the number of base pages accessed within a huge page region) to
guide promotion decisions. This incurs significant storage overhead.
Instead, we use per-huge page region page table walk frequency as
this metric can distinguish HUBs (blue) from pages with low reuse
in 4KB that also have low reuse in 2MB (red).

We propose a promotion candidate cache (PCC) to track pages at
the 2MB/1GB granularity and identify huge page regions frequently
associated with page table walks as these regions are most likely to
benefit from promotion. The PCC is designed to be a small, fully-
associative structure whose sole responsibility is to assist the OS
with page size promotion decisions. It operates in parallel with
page table walks and the retrieval of page table mappings to fill the
TLBs, not on an application execution’s critical path.

The left side of Fig. 3 details the overall virtual memory hardware
datapath including the PCC. When a memory request to a 4KB page
from the CPU misses in the TLB hierarchy, it triggers a hardware
walk through the hierarchical page tables (1). Intel CPUs set an
access bit in each page table hierarchy entry from L4 to L1 when any
page from the sub-tree pointed by the entry is accessed [25]. Our
approach leverages these access bits to identify page table walks
incurred by cold TLB misses. To avoid polluting the PCC with cold
misses (and potentially filling the PCC with data accessed in a TLB-
friendly manner), our design checks the access bit(s) when a page
table walk occurs and inserts data into the PCC only if the bit(s)
are already set. If the hardware supports 1GB pages, the page table
walker first reaches the Page Global Directory (PGD) (2), checks
the access bit of the 1GB region accessed (3), and updates the 1GB
PCC (Sec. 3.2.3 describes this in detail) (4). Once the page table
walk reaches the Page Middle Directory (PMD) (5), the access bit is
checked (6). If the bit is already set, then the PCC is accessed with
the tag of the 2MB virtual address prefix (7), as this 2MB region
can be permitted into the PCC.

3.2.1 PCC Structure, Function, and Overheads. The right side of
Fig. 3 details PCC operation. When the PCC is accessed with a 2MB
virtual address prefix, its frequency, stored as an N-bit saturating
counter is updated. If the access results in a hit, then the frequency
simply increments. Otherwise, a victim is evicted if the PCC is full,
and the new 2MB virtual address prefix (a huge page promotion
candidate) is inserted with frequency 0. The PCC implements a
decay function for frequency; whenever the frequency counter
saturates for any given tag, all counters are halved to maintain their
relative order. Note that in the PCC design, the frequency is the
data field for each tag.

PCC Replacement Policy: Ideally all HUBs are backed by huge
pages, however, due to the costly nature of huge page creation,
the OS can only create so many huge pages at a given time. Thus,
promotion candidates ultimately need to be ranked in a priority
list so that huge page regions that will eliminate the most TLB
misses are promoted first. The most intuitive replacement policy to
is to use a Least Frequently Used (LFU) ranking of the PCC data.
Performing this sorting within the PCC can save the OS from a

Architectural Support for Optimizing Huge Page Selection Within the OS

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

| H . .
Hardware-Assisted Huge Page ! On Chip @ 2vsrage : Promotion Candidate Cache (PCC)
Candidate Identification U Tables & Operation
e 1GB Page H
Memory access misses in TLBs, causes PTW | 1 Tables E Miss
Lo Y] L1TLB . [PCC access]—lD[PCC full? Yes
First Level . >
Ce Page table walker reaches 1GB level (PGD)] I Page Table . Hit No [Ewct LFU,]
. LRU
Ce Page table walker checks 1GB access bit] L2 TLB o H [Inc;(::;ent] [I\;‘:;r:vzlm?:::g]/
o If accessed, access 1GB PCC with 1GB H
virtual address prefix 1GB PCC i
EE : | Tag (VA Prefix) Freq (n bits)
Ce Page table walker reaches 2MB level (PMD)] E 0x8A3149B7 250
- 2MB PCC 6 1GB virtual address prefix E 0x8A314980 232
CG Page table walker checks 2MB access bit] = [
- : [0x000023BF (LFU, LRU) |23
o If accessed, access 2MB PCC with 2MB o 2MB virtual address prefix :
virtual address prefix H

Figure 3: Overview of PCC operation. Left: Page table walks trigger accesses to the PCC(s) when the huge page region for a
memory request has been accessed at least once. Each PCC’s operation runs in parallel to page table walks. Right: Each PCC
tracks the frequency of page table walks per huge page (2MB or 1GB) region.

significant effort. However, a perfect implementation of this policy,
which must scan and reorder all PCC data, complicates the PCC
design and implementation compared to a simpler policy, such
as Least Recently Used (LRU), which may not as accurately sort
promotion candidates based on their frequency.

In our experiments we did not find replacement policy changes
to have significant impact on performance because the PCC size
is sufficiently large to capture the HUBs that have a large impact
on application runtime. In fact, there are often many entries in the
PCC with a frequency of 0 and thus LFU (with LRU as a tiebreaker)
and LRU select the same victims for eviction. Thus, we opt for the
simpler policy. However, in scenarios where the footprint of the
HUB:s far exceeds the PCC capacity and causes thrashing, the PCC
still tremendously helps huge page promotion by providing local
optimal candidates instead of global ones until all candidates are
promoted. An optimized replacement policy as well support for
huge page demotion (see Sec. 3.3.3) can mitigate this. We leave this
exploration for future work.

PCC Overheads: Each entry in the 2MB PCC stores a 40-bit
tag (2MB virtual address prefix) and an 8-bit frequency, totaling
6B. With a 128-entry 2MB PCC, this results in 768B of storage for
the tags and data combined. For an 8-entry 1GB PCC (see details
in Sec. 3.2.3), each entry stores a 31-bit tag (1GB virtual address
prefix) and 8-bit frequency, totaling 40B. Note that the total amount
of PCC storage, i.e. 808B, would only afford 50 additional TLB
entries, assuming 16B per TLB entry (8B for the virtual address +
8B for the physical address). With a 1024-entry L2 TLB, this only
increases TLB coverage by 5%, whereas spending the same amount
of hardware to identify pages worth promoting can enable 64K
(128 x 512) 4KB pages to be identified as promotion candidates into
2MB pages, a much better value proposition.

We use Cacti 7.0 [41] to obtain upper bound estimates for area,
power, and timing. We model each PCC as a 768B fully-associative
cache and measure the area to be 0.0019mm? (less than 1% of the L1
data cache area), the dynamic energy per PCC access as 0.0105n]

(13% of the L1 data cache access energy), and the access latency of
the PCC as 0.5ns (37% of the L1 data cache access latency), which
equates to about 2 cycles on our evaluation machine. We also note
that the PCC is only accessed following a page table walk. For a
given core, walk latencies are serialized and can span hundreds
of cycles, which separate consecutive accesses to the PCC. Thus,
PCC operation latencies are negligible and the PCC can afford full
associativity to avoid all conflict misses.

3.2.2 Per Core vs Shared PCCs. In a multicore setting, multiple
threads may perform memory accesses within the same (single
process) or different (multiprocess) virtual address spaces. Because
the number of huge pages depends on the amount and state of
physical memory, the OS must be able to manage these different
address spaces in order to create huge page mappings that maximize
application performance. To assist with this process, there are two
choices for the placement of the PCC design.

A single global PCC shared across all cores in the system can
track and organize the globally most frequently accessed HUBs.
This effectively places the responsibility of aggregating data from
multiple cores on the hardware. While this prevents the OS from
needing to perform any aggregation or sorting, this design decision
introduces additional PCC hardware complexity. First, multiple
page table walks can result in simultaneous updates to a single
structure. Second, this requires the PCC to be much larger in order
to support the memory footprint of the HUB:s for all applications
running on the system. Third, a single centralized structure must
be accessed across growing chip footprints. Finally, a user or the OS
may want to bias certain processes, i.e. prioritize data for specific
applications for page size promotion. If the hardware manages the
global ranking of all huge page candidate data, then it needs to be
aware of such bias, which also involves additional complexity.

Conversely, using a local PCC per core significantly reduces
hardware complexity. Each core has its own TLB hierarchy so the
corresponding PCC tracks the huge page regions that incur page
table walks the most. This design choice allows PCCs to remain

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

fairly small, since a PCC only needs to capture the HUBs for a
single core and large application memory footprints are typically
divided amongst multiple cores. The OS then becomes responsible
for aggregating and sorting the promotion candidate information
from each core before performing promotions.

3.2.3 1GB Page Support. As modern datasets continue to grow in
size, 1GB pages are becoming increasingly important and gaining
support in modern hardware [54, 56]. There are two ways the PCC
design can be extended to support 1GB pages (or another page size)
with the addition of a smaller PCC that tracks the frequency of
page table walks at the 1GB granularity. These page table walks can
arise from 4KB or 2MB page accesses, where the latter indicates
that the 2MB page size is not sufficiently preventing last-level TLB
misses.

To determine whether to promote 4KB pages that comprise a
1GB region with a high collective page table walk frequency, the
OS can compare the 2MB and 1GB PCC frequencies. That is, if
the frequency in a 2MB PCC entry is at least 512X less than the
frequency in the corresponding entry in the 1GB PCC, then 1GB is
a more suitable page size, as it would likely eliminate more page
table walks. If a 1GB page promotion candidate comprises both 4KB
and 2MB regions, then the entire region is collectively promoted
into a 1GB page.

Alternatively, this smaller 1GB PCC can track only 2MB huge
pages (data that have already been promoted) that frequently incur
page table walks at the 1GB granularity. Such data are not only
poorly served by the 2MB page size (frequent page table walks),
but also exhibit high temporal locality at the 1GB granularity and
thus can further benefit from another promotion. This is a direct
extension of determining when to promote 4KB pages into 2MB and
requires the hardware to have knowledge of which 2MB regions
tracked in the PCC correspond to data that have already been
promoted.

3.3 Operating System Integration

Operating systems manage memory resources, including huge page
promotion and demotion, but they lack application page utilization
information to make optimal page size decisions. Prior work has
shown that software-only page monitoring introduces significant
runtime overheads. Our proposed PCC design is able to minimize
these overheads. The PCC assists the OS with promotion decisions,
removing the burden of tracking and scanning from the OS while
still providing flexibility about when and what high-utility pages
to promote. In our OS integration with the PCC, we aim to opti-
mize huge page utility, that is, promote as few huge pages while
eliminating as many TLB misses as possible.

OS Behavior: Fig. 4 presents an overview of how the OS lever-
ages the PCC to select huge page promotion candidates. The con-
tents of the PCC can be periodically written into a designated region
of physical memory accessible by a device driver or read directly on
demand. This data is written in the same order as the priority list
maintained by the PCC. When the PCC is full or after a preset time
period, the CPU dumps PCC content to the designated memory
region and initiates a software interrupt. The OS then reads the data
from the memory region (A) and selects N huge page candidates
from the data to promote (B). Unlike prior works where the OS

Manocha et al.

Flushed G OS promotes candidates Periodic OS-Driven Huge Page
data L] Selection and Promotion
N 0x8A3149B7, 250
candidates || 0x8A314980, 232 @ Read PCC data (candidates)]
0x000023BF, 23
[— Select N candidates]

PCC /
0

shootdowns invalidate
promoted data from PCC)

[o Perform promotions (TLB]

Figure 4: Overview of how the OS periodically reads PCC
data to select N candidates for huge page promotion. The N
candidates are invalidated from the PCC by TLB shootdowns
during promotions.

may need to scan several GB of page data, the PCC aggregates page
data together in a single, smaller region of memory that is simpler
and quicker for the OS to scan. OS developers can design their own
policies to inform how the OS selects the N candidates. Last, the
OS performs the promotions, which cause TLB shootdowns (C).
When any TLB shootdown occurs, whether due to promotion or
another process such as page migration, the corresponding huge
page region, if it exists in the PCC, is invalidated from the PCC.
Normally, a TLB shootdown invalidates page table entries and the
OS does not promote regions with invalid entries. Promotion can oc-
cur before invalidations (serialized by the page table lock), wasting
effort, but this is rare. Either (1) a TLB shootdown invalidates PCC
entries or (2) the OS promotion thread triggers a TLB shootdown
that invalidates PCC entries (promoted candidates). Since there is
only one OS promotion thread (or multiple with a PCC lock for
exclusive candidate access), no stale promotion candidate can exist.

3.3.1 Promotion Frequency. The OS has direct control over when
and which pages to promote. It can operate as frequently as de-
sired, as long as the time to perform promotions does not exceed
the promotion interval. The PCC determines the maximum num-
ber of pages the OS can promote at a given time. Given that most
modern machines have around 32 cores and each PCC can store
up to C = 128 candidates (256MB of coverage per core), the OS
is not limited in practice. Our policy by default has the OS pro-
mote C pages per interval (shared across all PCCs), where C is the
individual PCC size. However, the user can write to a kernel param-
eter, regions_to_promote, to control the number of promotions
occuring per interval. In our empirical evaluations, we find this
promotion interval to be sufficient (detailed in Sec. 5). However,
this interval can be tuned, either by a user or automatically by the
OS, based on application memory consumption or system memory
pressure.

3.3.2 Multiple Threads and Process Fairness. We choose to place
the responsibility of promotion candidate data aggregation on the
OS. With many PCCs, the OS has a variety of options with respect
to how it prioritizes candidates for promotion. The most fair pol-
icy is a round-robin policy. However, this policy assumes that all
threads have similar memory usage and benefit equally from huge
pages, which is often not the case. A potentially higher performing
alternative is to prioritize the candidates with the highest frequency

Architectural Support for Optimizing Huge Page Selection Within the OS

values, as these candidates have incurred the most page table walks.
This is more expensive for the OS (comparing up to C frequencies
at once, where the system has C cores), but may pay off in terms
of performance. We evaluate both policies in Sec. 5. To bias the
promotion process, the user can write a value (0 = round-robin, 1 =
highest PCC frequency) to a kernel parameter, promotion_policy.

Allowing Process Bias: A user or the OS often wants to pri-
oritize the performance of a specific application or process. In
this case, the OS should also prioritize huge pages for the process
by promoting data for it until there are no more promotion can-
didates left (as tracked in the PCC(s)), before trying to promote
pages for other processes. The user can write to a kernel parameter,
promotion_bias_process, the process ID(s) to prioritize. The OS,
which knows about process information and associated PCC data,
can then adjust its promotion priority list accordingly, e.g. highest
PCC frequency or round robin amongst the biased processes if
there is more than one. In the future this mechanism should be
standardized with OS control and resource groups.

3.3.3 Page Demotion. When memory pressure is high, huge page
resources become very limited for new huge page creation. In such
scenarios, these resources should be utilized for the data that ben-
efits the most from promotions. If existing huge pages no longer
benefit the data they back, e.g. the data becomes cold, it is necessary
to demote them to free up contiguous memory regions and promote
candidates that can offer more performance improvement when
backed with huge pages.

The PCC can help identify demotion candidates by searching
for huge pages (data already promoted) that incur more page table
walks than others. If a 2MB page incurs page table walks with high
frequency, then the page size is not suitable and either the page
should be promoted to 1GB or demoted to 4KB if promotion is
not possible and promoting another 2MB region can yield better
performance. The OS has knowledge of which data have been
promoted and when scanning the data from the PCC, it locates
poorly used 2MB pages. When memory pressure is high and 1GB
page promotion is infeasible, it can compare this page with other
promotion candidates to decide whether to demote the page or not.

Furthermore, if a 2MB huge page is rarely accessed, the PCC
might not see this page and could lose demotion opportunities. In
this case, the OS needs to assist in determining demotion candidates
with huge page access information. For example, the existing Linux
multi-generation LRU algorithm can identify cold pages [34]. We
leave OS-assisted demotion to future work.

Application Phases: For some applications, data may be fre-
quently accessed in one phase and infrequently in another. Pages
that were promoted before a program phase change may later no
longer need to exist as huge pages, in which case it can be particu-
larly valuable to demote cold data. In our workloads this phasing
is not significant. We evaluate demotion in the context of memory
pressure, but leave more intelligent demotion candidate selection
that benefits multi-phase applications for future work.

4 EXPERIMENTAL METHODOLOGY

This work evaluates a variety of applications that exhibit vary-
ing TLB sensitivity, including irregular graph algorithms Breadth
First Search, Single Source Shortest Paths, and PageRank based

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Table 1: Evaluation Applications and Inputs

Application Input Nodes Edges Footprint
. Kronecker 25 34M 1.05B 10GB

ls?'r e:d}:}zlf;g;t Twitter ~ 53M 1.94B 17GB
eare Sd1Web 95M 1.96B 19GB
Single Source Kronecker 25 34M 1.05B 19GB
Shortest Twitter 53M 1.94B 34GB
Paths (SSSP) Sd1 Web 95M 1.96B 38GB
PageRank Kronecker 25 34M 1.05B 10GB
(I;“I%)e a Twitter ~ 53M 1.94B 17GB
Sd1 Web 95M 1.96B 19GB

Suite Application Input Size Footprint
canneal . 98MB 860MB

PARSEC dedup ™"V s72MB 838MB
mcf 3.2MB 5GB

SPEC2017 omnetpp native 18MB 252MB
xalancbmk 56MB 427MB

Table 2: Evaluation System Parameters

Intel Xeon CPU E5-2667 v3 @ 3.20 GHz

P
rocessor 2 sockets, 8 cores/socket, 2 threads/core
oS CentOS 7 - Linux v5.15
4KB: 64 entries, 4-way set associativity
L1D-TLB 2MB: 32 entries, 4-way set associativity
1GB: 4 entries, 4-way set associativity
L1I-TLB 4KB: 64 entrles,. 8-way set assoc.lat.1V}ty
2MB: 8 entries, full set associativity
L2 TLB 4KB&2MB: 1024 entries, 8-way set associativity
Memory 64GB DDR4 (per socket), 2 NUMA nodes
Per Core: 128 entries, full set associativity
2MB PCC 40-bit tags, 8-bit frequency counters

Up to 128 promotions every 30 seconds

on implementations from the GAP benchmark suite [4], as well
as memory-bound workloads from the PARSEC [5] and SPEC2017
benchmark suites [6, 30, 61]. Because graph application behavior
is typically dataset-dependent, we evaluate each graph workload
on synthetic power-law (Kronecker 25), real-world social (Twit-
ter), and real-world web (Sd1 Arc) networks. Data preprocessing,
particularly degree-based grouping (DBG) [14], has been shown to
improve baseline on-chip cache and TLB performance by coalesc-
ing frequently accessed data to occupy the same cachelines or TLB
entries [15, 37]. We report results for each of our 3 graph workloads
as the geomean performance of both sorted and unsorted networks,
totalling 6 datasets for each graph workload. Table 1 summarizes
the applications, datasets, and workload memory footprints we
evaluate.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Simulation and Real-System Infrastructures: To accurately
capture PCC hardware behavior, our evaluation is a two-step pro-
cess consisting of first, offline hardware simulation to capture the
4KB virtual address regions that incur the most page table walks and
model promotion of these regions, and second, online real-system
performance evaluation that includes OS behavior and overheads.

In the first step, we model and simulate the behavior of the CPU’s
data TLB hierarchy (L1 and L2 TLBs), so that the PCC receives all
page table walk information. We use Intel’s Pin tool [26] to extract
memory accesses during application execution and input these
accesses into the simulated TLBs. The PCC tracks 2MB-aligned
regions (where the tags are 2MB virtual address prefixes) that miss
in the last-level TLB, as described in Sec. 3.2. Within the simulation,
a periodic “promotion” process takes place every 30 seconds (cali-
brated based on number of memory accesses per second observed
in each application), extracting promotion candidates from the PCC
and removing them as if they have been promoted. We use the
same time interval as HawkEye [44] for a fair performance compar-
ison. During TLB+PCC simulation, the PCC candidate addresses as
well as the time when they are promoted are recorded in a trace
file. Tab. 2 summarizes details about the PCC parameters used in
simulation.

In the second step, the OS reads from the promotion candidate
address trace as if real hardware provided the data. The candidate
addresses identified by the PCC are used by the OS promotion logic
at the correct time during workload execution. A low-overhead
background thread performs userspace promotion system calls from
a Linux v5.15 kernel that we modified to support synchronous huge
page promotion after pages fault in. The system call we introduced
takes as input a range of data (formatted as a base address and
offset) to synchronously promote, i.e. try to promote immediately.
This is invoked in a similar fashion to madvise(), but is distinct in
how the kernel operates; the kernel asynchronously scans ranges
of data provided by madvise() and may not attempt to promote
the data immediately after the system call is invoked. This new
support is similar to a recent kernel patchset from Google allowing
userspace promotions for experimental purposes [58]. The simu-
lation does not need to consider physical memory, but promoted
virtual addresses must match in simulation and real-system eval-
uation. We set the randomize_va_space kernel parameter to 0 to
guarantee deterministic virtual address assignment [2] and ensure
real-system evaluations operate on the same regions captured in
simulation.

This two-step process emulates a system setup with a hardware
PCC identifying profitable promotion candidates and the OS period-
ically consuming the candidate information to perform promotions.
This demonstrates the real-system effect of these promotions, in-
cluding all page promotion overheads.

We perform our experiments on a 2-socket machine using Intel
Xeon processors and 128GB of total RAM, while running Linux
kernel v5.15. Table 2 provides detailed information about the sys-
tem and simulation parameters. Memory access latency can differ
when accessing local vs. remote NUMA nodes and Linux’s default
allocation policy can result in variable application runtimes for the
same huge page configuration. To eliminate this effect and mini-
mize non-determinism in our results, we use the numactl library
and invoke the —-membind and -physcpubind flags [31, 32] to bind

Manocha et al.

the process(es) to CPU(s) on NUMA node 1 and all memory alloca-
tions within that NUMA node. We also store graph data in tmpfs on
the remote NUMA node instead of loading from disk to eliminate
the NUMA impact on the page cache. We measure runtime perfor-
mance of an application as the workload’s elapsed wall clock time
after one full execution, and report the results of the geomean of 3
executions. Collectively, all of these measures eliminate experimen-
tal noise. Observed differences in performance from existing works
may arise from evaluation setup, e.g. executing the application only
once instead of repeatedly, where performance overheads may be
amortized.

Performance Utility Curve: To measure how well our ap-
proach optimizes huge page selection across different huge page
availability in a system, we evaluate performance while limiting
the number of huge pages used to back N% of the total applica-
tion memory footprint, where N ranges from 0 (baseline), 1, 2, 4,
..., 64, ~100%, totaling 9 data points per utility curve. The ~100%
configuration represents promotions occurring until 100% of all
huge page candidates tracked in the PCC are promoted (the most
aggressive case for our approach). However, the PCC might not
have visibility of 100% of the total application footprint since TLB-
friendly accesses may never experience page table walks. The utility
curve demonstrates the effect of memory pressure or fragmenta-
tion limiting huge page resources and shows the effective utility of
promoting additional huge pages in each application.

5 RESULTS AND EVALUATION

This section presents our real-system performance evaluation of
promoting pages recommended by the PCC in single-threaded,
multi-threaded, and multiprocess settings. In all experiments, the
baseline configuration uses 4KB base pages only, while the ideal
performance is achieved by allocating all application memory with
huge pages (no memory pressure).

5.1 Single Thread Performance

We first present evaluation results where the PCC is dedicated to a
single thread application running on one core.

Runtime Performance: Fig. 5 presents a comparison of the per-
formance utility curves with our PCC approach (blue) and HawkEye
(red), the state of the art in software-based huge page management,
for 8 irregular applications (described in Sec. 4). The top figure
shows workload speedup as the number of huge pages used ranges
from 0, 1, 2, ..., 64, ~100% of the application memory footprint (as
explained in Sec. 4). The black line above each curve represents the
peak achievable performance with huge pages (all application data
backed by huge pages), while the dotted green and orange lines
represent realistic performance evaluations of Linux’s policy when
memory is 50% and 90% fragmented, respectively.

For graph applications with larger memory footprints, our ap-
proach achieves 1.19-1.33% speedups over 4KB base pages (69-77%
of the ideal performance) when backing just 1-4% of the applica-
tion footprint with huge pages. The remaining applications are less
TLB-sensitive. dedup and mcf, which are optimized for low cache
miss rates, exhibit negligible sensitivity. However, our approach
does not hurt TLB-insensitive applications and due to its negligible
overheads, it can be enabled in a general-purpose system.

Architectural Support for Optimizing Huge Page Selection Within the OS

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

— PCC e HawkEye === Linux THP (50% Frag) Linux THP (90% Frag) === Max. Perf. with THPs
2.0
T T g
3 1.51——248-32100
b1.25] fFTIEEE e el -
’% l ol 5 ue e SO |
0.75 : | ; | 1 | } RErrPAT RPN SRR L AIRILEO0IEE
BFS SSSP PR canneal omnetpp xalancbmk dedup mcf
— PCC m— HawkEye === Linux THP (50% Frag) Linux THP (90% Frag) === Max. Perf. with THPs
30 N
025 \ e
20 ===
= 15W \
a 12 N——— \
ol | e att— e e VT
BFS SSSP PR canneal omnetpp xalancbmk dedup mcf

Figure 5: Single-thread runtime performance (top) and PTW rate (bottom) utility curve comparison between using a PCC (blue)
and HawkEye (red). Each line plots performance when huge pages back 0, 1, 2, 4, ..., 64, ~100% of the application footprint. For

all applications, the PCC approach outperforms HawkEye due to

For all applications our approach outperforms HawkEye because
HawkEye faces two key issues. First, while its access coverage
metric should favor HUBs (multiple sparse accesses can span across
a single huge page region within a page scanning period), this fully-
software approach cannot identify HUBs quickly enough because
it is limited by the number of pages it can scan during each period.
More specifically, within a scanning interval HawkEye scans the
same number of pages as khugepaged, i.e. 4096 (covering 8 huge
page regions), and therefore cannot perform as many promotions
as the PCC (up to 128) during a given interval.

Second, HawkEye’s metric loses out on performance opportu-
nity because it only records whether or not a base page is used
(no access or TLB miss frequency) and only considers the spatial
distribution of accesses across a huge page region. Regardless of
how distributed page accesses or TLB misses are within a huge
page region, the collective page table walk frequency of the region
is a good indicator of how many TLB misses can be saved from pro-
motion. For example, a huge page region may only be 25% utilized,
but a significant number of TLB misses leading to thousands of
page table walk (PTW) cycles may occur to these 25% of base pages.
Promoting this huge page region can avoid the TLB misses and
PTW cycles. HawkEye ignores this opportunity since the utilization
of the huge page region is below its promotion threshold. The PCC
approach can identify such regions using PTW frequency informa-
tion. Furthermore, promotion frequency or the OS policy can be
tuned based on workload demands to determine the number of PCC
entries to promote based on collective frequencies. We observe the
greatest discrepancy in HawkEye vs. PCC candidate selection for
PageRank, where the PCC identifies HUBs faster and better.

Page Table Walk Rates: The bottom of Fig. 5 presents the per-
centage of accesses that result in PTWs, i.e. miss in both TLB levels,
for the PCC approach and HawkEye. In general, PTW rate reduction
strongly correlates with application speedup. Graph applications
exhibit a 18% reduction in PTW rate on average. The plateauing of
PTW rates, which often occurs when 4% of the application footprint
has been promoted, indicates where performance improvements
plateau.

its hardware assistance.

HE Baseline W 4-Entry @@ 8-Entry I 16-Entry
BN 32-Entry I 64-Entry I 128-Entry [256-Entry
W 512-Entry [1024-Entry B Ideal

BFS SSSP PR

Figure 6: Sensitivity analysis of the impact of promotion
candidate cache size, ranging from 4 to 1024 entries, on ap-
plication runtime performance for graph applications. Bars
from left to right represent the performance of the baseline,
4-entry PCC, 8-entry PCC, ..., 1024-entry PCC, and the ideal

scenario where all data is backed by huge pages.

Sensitivity Analysis: PCC Size Fig. 6 studies the effect of PCC
size on graph application speedups. Our analysis focuses on these
workloads running on the Kronecker network due to their huge
page sensitivity; the PCC size has little to no impact on irregular
applications that have low TLB miss rates with 4KB pages. In Fig. 6
the PCC size ranges from 4 to 1024 entries (in powers of 2) while the
promotion footprint limit is set to 32% of the application footprint.
For all applications, runtime speedup steadily increases as the PCC
size increases from 4 to 32 entries. Each application has slightly
different diminishing return points with respect to performance
improvements, but for all applications, a 128-entry PCC achieves
the bulk of possible performance improvement. TLB miss rates also
plateau at this size.

5.1.1 Realistic Memory Conditions. Memory fragmentation is a
serious and common cause of memory pressure in datacenters [67].
To demonstrate how the utility curves translate to a realistic sce-
nario, e.g. where memory compaction often takes place to form
contiguous physical memory regions for promotions, we evaluate
the PCC approach when system memory is 50% and 90% fragmented.
We fragment memory by allocating one non-movable page in every

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

HEE Baseline @ HawkEye Linux THP

E== 128-Entry PCC EEE 128-Entry PCC + Demote

BFS SSSP

Figure 7: Speedup comparisons between 4KB pages, Hawk-
Eye, and the PCC approach with and without demotion when
system memory is 90% fragmented.

2MB-aligned region. Fig. 7 presents speedup comparisons between
4KB pages, HawkEye, Linux’s greedy THP policy, and the PCC
approach with and without PCC-driven demotion for the graph
applications when memory is 90% fragmented. The PCC approach
achieves the best performance, demonstrating 1.22%, 1.15x, and
1.16x speedups over the baseline, HawkEye, and Linux, respectively.
The PCC identifies the few promotion candidates that eliminate the
most TLB misses and therefore even when there are limited huge
page resources, this approach is able to find high-utility candidates.
Conversely, Linux’s greedy policy causes it to allocate huge pages
to data that are not TLB-sensitive and thus it runs out of huge page
resources before it can promote HUBs. HawkEye again is limited
by the number of 4KB pages it can scan during its measurement
period. We observe the same performance trends when memory is
just 50% fragmented, indicating that THP performance gains are
fairly sensitive to fragmentation.

Demotion: We evaluate page demotion using the PCC as de-
scribed in Sec. 3.3.3 to identify huge pages that are no longer well
served by the 2MB size. We observe negligible performance im-
provements with demotion in place because the PCC identifies
high-utility promotion candidates early in application execution
that experience high data reuse throughout execution. This is ex-
emplified in Fig. 5, where there are negligible performance gains
when backing all of the application memory with huge pages as
opposed to only 4%. Thus, even though demotion makes room for
new huge page creations when system memory is fragmented, the
new huge pages do not have as high utility in these applications.

5.2 Single Process, Multithread Performance

We evaluate our approach on multi-threaded applications, where
all threads belong to the same process and each thread runs on
a different core with individual per-core PCCs. In this case, the
OS gathers promotion information from multiple PCCs and makes
huge page promotion decisions for a single process because all
threads share the same address space. We show how OS policy can
affect performance.

Fig. 8 presents utility curve comparisons of our multi-threaded
graph applications running with 2-8 threads each. We focus on the
graph analytic workloads because these are particularly sensitive
to huge page usage. We compare two different OS policies when
selecting huge page candidates from multiple PCCs: Highest PCC
Frequency selects promotion candidates with the globally highest
PCC frequencies (blue). Round Robin selects candidates so that
huge pages are distributed equally across the threads (red). Unless

Manocha et al.

—— Highest PCC Frequency === Round Robin

—-- Max. Perf. with THPs

1.1
(% 2 Threads
g 0l cannsalies
8 1.0 v -
0
, | , | ,
0.95 BFS ‘ sSSP ‘ PR
—— Highest PCC Frequency === Round Robin
—==- Max. Perf. with THPs
1.1

4 Threads

BFS ‘ SSSP
—— Highest PCC Frequency
=== Max. Perf. with THPs

=== Round Robin

8 Threads

Speedup

=

‘.3
1
1
1
1
1
1
]
1
1
(]

1t
1
1
1
1
1
]
1

0.95 | |

Figure 8: Runtime performance comparisons of parallelized
graph applications running with multiple (2-8) threads (1
per core). The OS either uses a highest PCC frequency first
(blue) or round-robin policy (red) to select candidates from
the many PCCs.

a thread runs out of candidates in its PCC, huge pages will always
be distributed evenly amongst threads.

Overall, selecting candidates based on PCC frequency is slightly
more performant than opting for fairness via a round robin policy.
This is due to load imbalance; some threads incur more PTWs and
consequently reap more benefit from huge pages. When backing
1-4% of the application memory footprint with huge pages, our
approach achieves speedups of 1.07-1.18X (85-94% of ideal) with 2
threads, 1.04-1.13% (85-93% of ideal) with 4 threads, and 1.04-1.12x
(86-92% of ideal) with 8 threads. These speedups are lower than
single-thread gains for two reasons. (1) Due to parallelization, the
probability of memory compaction touching a specific page at the
same time as one of the threads, and total TLB shootdown rate due
to promotions, increases. (2) Atomic operations used in multithread
implementations cause serialization and with more threads this
becomes a larger part of the execution time that cannot be sped up
by reducing TLB misses.

Data undergoing promotion can conflict with application ac-
cesses and cause execution to stall for a very short period of time.
However, the probability of such conflicts increases when more
threads are executing and thus the OS must be careful not to pro-
mote too much data. Such overheads are often negligible, but can
become more apparent when the application runtime is very short,
as is the case when BFS runs with 8 threads and more than 16% of
the application footprint is promoted.

Architectural Support for Optimizing Huge Page Selection Within the OS

—— Highest PCC Freq. —— Highest PCC Freq.

= Round Robin = Round Robin
---- Max. Perf. with THPs " --=-- Max. Perf. with THPs
15 & 5120 ——————
%1 25 t 4096
8 : f 8 3072 j
8. 1.0 et Y 32048 // ___________
n £1024 7 Z”'
Il A L
0.75 PR ' mcf 2z 0 PR mcf

(a) 1 TLB-sensitive and 1 TLB-insensitive application

—— Highest PCC Freq. —— Highest PCC Freq.
= Round Robin = Round Robin
---- Max. Perf. with THPs " ---- Max. Perf. with THPs

15 Q6144
___________ £ 5120

Q

31.25 /‘/;—M 454096

o /7 < 3072 r
g 10 92048 /f'
n £ 1024

S ol
PR SSSP =z PR

(b) 2 TLB-sensitive applications

Figure 9: Runtime performance (left) and huge page usage
(right) when running two applications simultaneously. The
OS prioritizes highest PCC frequency first (blue) or operates
in a round-robin fashion (red) to select candidates.

5.3 Multiprocess Performance

When multiple processes run in the system, the OS is responsible
for distributing huge pages across them fairly. To understand how
the PCC approach affects multiprocess performance, we performed
two case studies where we ran two single-threaded applications
on two cores running in parallel. Each application accesses its own
PCC, but huge pages are a system-wide resource that are shared
amongst the processes.

The first study focuses on the TLB-sensitive graph application
PageRank (PR) running alongside mcf. Fig. 9(a) presents curves for
performance (utility) and huge page usage, i.e. number of promo-
tions when using the same two OS policies studied in the multi-
thread setting. With the round-robin policy, both applications re-
ceive the same number of huge pages until mcf’s execution finishes
first and the OS only provisions huge pages to PageRank. The PCC
frequency-based policy offers slightly better performance because
it heavily biases PageRank, which is much more TLB-sensitive.
However, more HUB promotions do not occur until later in execu-
tion when 16% of the memory footprint is promoted. Both policies
identify candidates where their promotions will significantly im-
prove performance. PageRank achieves more than 95% of the peak
performance possible when huge pages are limited to 8% of the
total memory footprint of the 2 applications, resulting in a speedup
of 1.1x. Meanwhile mcf performance remains unaffected.

The second study focuses on running two TLB-sensitive graph
applications, PageRank and SSSP, alongside each other. Fig. 9(b)
presents the performance and huge page usage curves. When back-
ing 1-2% of the application footprint with huge pages, the PCC
frequency-based OS policy favors PageRank. However, once huge
pages cover 4% of the footprint, the OS provisions huge pages to

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

SSSP, whose PCC entries have accumulated more frequency, and
both policies perform similarly. Although SSSP has a larger mem-
ory footprint, it has less TLB-sensitive data (thus fewer promotion
candidates in its PCC) than PageRank. When all PCC data is pro-
moted, more huge pages end up provisioned to PageRank. Both
PageRank and SSSP achieve 95% of their best possible performances
when huge pages are limited to only 16% of their combined memory
footprint, yielding 1.23x and 1.19%X speedups over using 4KB base
pages alone.

In summary, when a TLB-sensitive application runs alongside
an application that has little sensitivity to huge pages, the PCC
frequency-based policy is slightly more performant since one ap-
plication benefits much more from huge pages. The two policies
perform similarly when the TLB-sensitive application has many
more PCC accesses as the other application eventually runs out
of candidates. When more than 1 TLB-sensitive application runs
simultaneously, the round robin OS policy for huge page selection
performs best. This is because with the PCC frequency-based policy
it is possible for one application to starve the other application of
huge page resources due to higher PTW frequency counts that can
be phase-dependent.

5.4 Discussion

5.4.1 Design Alternatives. The PCC could be implemented in soft-
ware, which would increase portability and enable flexibility for
architectures with support for more page sizes, such as RISC-V [59].
However, this implementation would incur high overheads to up-
date and manage PCC data as well as the priority list for evictions.
Every TLB miss would trap into the OS for PCC updates, which
would interrupt the CPU pipeline and would be prohibitively expen-
sive, much like how software page table walkers have been replaced
by hardware walkers on most platforms. A hardware PCC does not
involve such complexities and works well with the hardware page
table walker.

Another design alternative would be to augment Page Walk
Caches (PWCs), which cache partial PTWs to shorten their latencies
and do so quite effectively. They can minimize PTW overhead to 1.1-
1.4 references/walk, while any leaf PTE requires a single access [25].
An infinite-sized PWC will approach a single reference/walk so
there is not significant room for improvement!. While the PWC and
PCC share similarities at first glance, residing in the same location
in the translation hierarchy, they track very different information.
PWCs do not reduce TLB miss rates, so applications still suffer from
multiple TLB lookups and miss cycles on the processor’s critical
path in addition to the residual walk overhead that caching cannot
eliminate. For example, a PWC entry caching a L4-L3 page structure
can point to a L2 page table page containing entries for both 2MB
huge pages and an L1 PTE. Because the PWC has no knowledge
about the page size accessed by the CPU, it cannot attribute access
frequency for any individual page, or well-defined groups of pages,
like the PCC does. Thus the PWC cannot (easily) be repurposed to
perform the PCC’s function.

The necessary changes to PWCs (and potentially the page table
walker) include adding page sizes of data accessed by the CPU to

True measurement of this requires prohibitively long simulation times given the
memory footprints and execution times of the applications we evaluate.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

PWC entries and requests to the PWC (key PCC information to
identify promotion vs. demotion candidates) as well as per-huge
page region PTW frequency counters (to better guide promotion
decisions). Augmenting the PWC would save more storage space
compared to a standalone PCC, since the PWC is also indexed by
virtual address prefixes like the PCC. Evaluating such a design is
beyond the scope of this work, as not all system effects, from the
TLB miss to the page table walk, can be accurately modeled via
simulation. We leave it as future work to develop such an evaluation
methodology and further optimize the PCC implementation.

Finally, a victim cache for the L2 TLB could capture HUBs as huge
page regions evicted due to TLB capacity constraints. However, a
cache too small cannot sufficiently track and rank promotion can-
didates and would get polluted with other data that is too sparsely
accessed to benefit from promotion. As the cache grows larger, it
approaches the PCC size.

5.4.2 Huge Page Allocation. In our experiments, all page data is
initially allocated as 4KB base pages and the PCC dynamically
selects promotion candidates. However, compiler or programmer
analysis can identify HUBs before workload execution and this
knowledge can guide the allocation of huge pages in lieu of dynamic
promotion. Aggressive allocations of huge pages can prevent TLB
misses if promotions occur at low frequency, but we note that the
PCC can identify HUBs within a few seconds and when memory
pressure is high, aggressive policies should be avoided.

5.4.3 Virtualization. In a virtualized environment, the guest OS
and hypervisor must coordinate for efficient huge page manage-
ment. If only the guest OS promotes a huge page, the hypervisor
might still back the guest huge page with base pages, resulting in
no performance improvement, since the TLB does not use 2MB
entries for the translation [52]. Thus, both the guest OS and hy-
pervisor need to promote guest and host pages, respectively and
together. The PCC can recommend guest virtual address regions
for the guest OS to promote to improve performance. The guest OS
can then initiate the promotion and a hypercall (from guest OS to
hypervisor) can invoke the hypervisor to promote the host pages as
well [54]. Such a design can be implemented by using an additional
bit to tag PCC entries as corresponding to guest vs. host pages, or
utilizing additional, smaller PCCs for guest page data.

6 ADDITIONAL RELATED WORK

Memory Management: Efficient memory management is an area
with much potential for improving huge page performance. To
avoid imbalanced data access issues for applications using huge
pages in NUMA systems, prior work proposes NUMA-aware page
placement algorithms that sample page accesses and track the nodes
they access to inform future placement decisions [9, 11, 17]. A
group of works also aim to optimize the placement and migration
of pages and huge pages in tiered and hybrid memory systems by
monitoring page access patterns and usage [1, 9, 17, 38, 55, 64].
Userspace memory allocation libraries are also often made aware
of huge pages for better huge page utilization [22].

TLB Improvements: Improved hardware support for virtual
memory translation has largely focused on isolated changes to
the TLB that can be performed without requiring OS involvement.

Manocha et al.

Existing hardware only supports discrete page sizes (4KB, 2MB,
and 1GB on x86) [23, 24, 33, 35], limiting the number of possible
huge page sizes. Prior works propose various new TLB concepts,
such as intermediate page sizes via entry coalescing [47, 51], any
power of two page sizes [19], a range of virtual addresses [16, 28], or
enabling holes in contiguous physical memory regions that are part
of huge page mappings [46]. For applications with a small number
of large contiguous memory ranges, direct segment proposes to
use memory segments in the OS to provision the ranges and [base,
size] format in the TLB to cache translations of these segments
and lower translation overheads even when huge pages are not
present [3].

Software techniques to group base pages strive to achieve the
same performance goal as huge pages [3, 16, 19, 54, 66]. Midgard
attacks the TLB coverage issue from a different angle. By introduc-
ing a new address space of virtual memory areas (an OS concept
of/data structure for representing contiguous virtual addresses with
the same permissions) as a new layer of translation, it significantly
reduces the number of translations to cache since virtual memory
areas are usually much larger than normal page sizes and much
smaller in numbers [18]. Overall, TLB optimization is orthogonal
to page size management; these approaches complement OS-driven
techniques for huge page management.

7 CONCLUSION

Deploying huge pages is an effective way of reducing TLB misses in-
curred in the virtual memory translation system. However, naive ap-
plication of huge pages can squander the availability of this limited
set of pages. This work proposes augmenting the OS with hardware-
based page promotion candidate identification, a novel approach
that frees the OS from the storage overheads and runtime complex-
ity needed in prior solutions. Our experimental results show that
promotion of pages recommended by the PCC yields 1.19-1.33%
application speedups (69-77% of the peak achievable performance)
on a real machine, while backing just 1-4% of the application mem-
ory footprint with huge pages. Our approach demonstrates that
explicit architectural support for what has historically been OS-
only functionality can make OS-driven huge page management
both practical and performant.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. This re-
search was supported in part by the DARPA Software-Defined
Hardware Program under agreement No. FA8650-18-2-7862 and NSF
Award No. 1763838. Aninda Manocha was also supported by the
NSF Graduate Research Fellowship. The views and conclusions con-
tained herein should not be interpreted as representing the official
policies or endorsements, either expressed or implied, of DARPA or
NSF. Prof. Aragdn was also supported by Grants TED2021-130233B-
C33 and PID2022-1363150B-100 funded by MCIN/AEI/10.13039/
501100011033, the EU NextGenerationEU/PRTR, and “ERDF A way
of making Europe”, EU.

Architectural Support for Optimizing Huge Page Selection Within the OS

REFERENCES

(1]

R
&

(6]

(71

(8]
(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17

=
&

[19]

[20]

[21

[22]

[23]

Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-
transparent Page Management for Two-tiered Main Memory. In Proceedings
of the 22nd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Xi’an, China). ACM, New York, NY,
USA, 631-644. https://doi.org/10.1145/3037697.3037706

Linux Audit. 2018. Configuring ASLR with randomize_va_space. https://linux-
audit.com/linux-aslr-and-kernelrandomize_va_space-setting/ [Retrieved Sep-
tember 2022].

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient Virtual Memory for Big Memory Servers. In Proceedings
of the 40th International Symposium on Computer Architecture (ISCA) (Tel-Aviv,
Israel). ACM, New York, NY, USA, 237-248. https://doi.org/10.1145/2485922.
2485943

Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP Benchmark
Suite. http://gap.cs.berkeley.edu/benchmark.html [Retrieved October 2022].
Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph. D. Dissertation.
Princeton University.

James Bucek, Klaus-Dieter Lange, and Jéakim v. Kistowski. 2018. SPEC CPU
2017: Next-generation compute benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (ICPE). Association for Com-
puting Machinery, New York, NY, USA, 41-42.

Kevin Burke. 2017. Unusually large (but constant) memory usage with transparent
huge pages enabled. https://github.com/nodejs/node/issues/11077 [Retrieved
October 2022].

Jonathan Corbet. 2011. Transparent huge pages in 2.6.38. https://lwn.net/Articles/
423584/ [Retrieved October 2022].

Jonathan Corbet. 2012. AutoNUMA: the other approach to NUMA scheduling.
http://lwn.net/Articles/488709/ [Retrieved October 2022].

Couchbase. 2022. Disabling Transparent Huge Pages (THP). https://docs.
couchbase.com/server/current/install/thp-disable.html [Retrieved October 2022].
Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013. Traffic Man-
agement: A Holistic Approach to Memory Placement on NUMA Systems. In
Proceedings of the 18th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (Houston, Texas, USA).
ACM, New York, NY, USA, 381-394.

Yannick Deville and Jean Gobert. 1992. A Class of Replacement Policies for
Medium and High-Associativity Structures. SIGARCH Computer Architecture
News 20, 1 (March 1992), 55-64. https://doi.org/10.1145/130823.130827
DigitalOcean. 2015. Transparent Huge Pages and Alternative Memory Allocators:
A Cautionary Tale. https://www.digitalocean.com/blog/transparent-huge- pages-
and-alternative-memory-allocators [Retrieved October 2022].

Priyank Faldu, Jeff Diamond, and Boris Grot. 2019. A Closer Look at Light-
weight Graph Reordering. In Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC). IEEE, USA, 1-13.

Priyank Faldu, Jeff Diamond, and Boris Grot. 2020. Domain-Specialized Cache
Management for Graph Analytics. In Proceedings of the 26th International Sympo-
sium on High-Performance Computer Architecture (HPCA). IEEE, USA, 234-248.
Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar, Adrian Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal.
2016. Range Translations for Fast Virtual Memory. IEEE Micro 36, 3 (May-June
2016), 118-126. https://doi.org/10.1109/MM.2016.10

Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra
Fedorova, and Vivien Quéma. 2014. Large Pages May Be Harmful on NUMA Sys-
tems. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference (USENIX ATC) (Philadelphia, PA). USENIX Association, USA, 231-242.
http://dl.acm.org/citation.cfm?id=2643634.2643659

Siddharth Gupta, Atri Bhattacharyya, Yunho Oh, Abhishek Bhattacharjee, Babak
Falsafi, and Mathias Payer. 2021. Rebooting Virtual Memory with Midgard. In
Proceedings of the 48th International Symposium on Computer Architecture (ISCA).
IEEE, USA, 512-525.

Faruk Guvenilir and Yale N. Patt. 2020. Tailored Page Sizes. In Proceedings of the
47th International Symposium on Computer Architecture (ISCA) (Virtual Event).
IEEE, USA, 900-912. https://doi.org/10.1109/ISCA45697.2020.00078

Hadoop. 2012. Recommendation to disable huge pages for Hadoop.
https://developer.amd.com/wordpress/media/2012/10/HadoopTuningGuide-
Version5.pdf [Retrieved October 2021].

Red Hat. 2019. Memory allocation latency in RHEL. https://access.redhat.com/
solutions/2607721 [Retrieved July 2023].

Andrew Hamilton Hunter, Chris Kennelly, Darryl Gove, Parthasarathy Ran-
ganathan, Paul Jack Turner, and Tipp James Moseley. 2021. Beyond malloc
efficiency to fleet efficiency: a hugepage-aware memory allocator. In Proceedings
of the 15th Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, USA, 257-273.

Intel. 2013. Intel Haswell. http://www.7-cpu.com/cpu/Haswell. html [Retrieved
October 2022].

[24

[25

[26

[27

S
&

[29

[30]

o
=

[32

(33

[34

(35]

[36

[38

[39

[41

[42

[43

[44

S
&

[46

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

Intel. 2015. Intel Skylake. http://www.7-cpu.com/cpu/Skylake.html [Retrieved
October 2022].

Intel. 2016. Intel® 64 and IA-32 Architectures Developer’s Manual. Volume 3A:
System Programming Guide, Part 1.

Intel. 2022. Pin - A Dynamic Binary Instrumentation Tool. https:
//www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-
binary-instrumentation-tool.html [Retrieved October 2022].

Akanksha Jain and Calvin Lin. 2016. Back to the Future: Leveraging Belady’s Al-
gorithm for Improved Cache Replacement. In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA). IEEE, USA, 78-89.

Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrian Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Unsal.
2015. Redundant Memory Mappings for Fast Access to Large Memories. In
Proceedings of the 42nd Annual International Symposium on Computer Architecture
(ISCA). ACM, New York, NY, USA, 66-78.

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens.
In Proceedings of the 12th Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association, USA, 705-721. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/kwon

Ankur Limaye and Tosiron Adegbija. 2018. A Workload Characterization of
the SPEC CPU2017 Benchmark Suite. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, USA,
149-158.

Linux Kernel Documentation. 2004. numactl - Control NUMA policy for processes
or shared memory. https://linux.die.net/man/8/numactl [Retrieved February
2022].

Linux Kernel Documentation. 2007. numa(3) — Linux manual page. https:
//man7.org/linux/man-pages/man3/numa.3.html [Retrieved February 2022].
Linux Kernel Documentation. 2021. hugetlb page. https://www.kernel.org/doc/
Documentation/vm/hugetlbpage.txt [Retrieved February 2021].

Linux Kernel Documentation. 2021. Multi-Gen LRU. https://docs kernel.org/
admin-guide/mm/multigen_Iruhtml [Retrieved March 2022].

Linux Kernel Documentation. 2021. Transparent Hugepage Support. https:
//www.kernel.org/doc/html/latest/admin- guide/mm/transhuge.html [Retrieved
February 2021].

Aninda Manocha, Juan Luis Aragén, and Margaret Martonosi. 2022. Graphfire:
Synergizing Fetch, Insertion, and Replacement Policies for Graph Analytics. IEEE
Trans. Comput. 72, 1 (March 2022), 291-304.

Aninda Manocha, Zi Yan, Esin Tureci, Juan Luis Aragén, David Nellans, and
Margaret Martonosi. 2022. The Implications of Page Size Management on Graph
Analytics. In Proceedings of the IEEE International Symposium on Workload Char-
acterization (ISWC). IEEE, USA, 199-214. https://doi.org/10.1109/IISWC55918.
2022.00026

Mitesh R. Meswani, Sergey Blagodurov, David Roberts, J ohn Slice, Mike Ig-
natowski, and Gabriel H. Loh. 2015. Heterogeneous Memory Architectures:
A HW/SW Approach For Mixing Die-stacked And Off-package Memories. In
Proceedings of the 21st International Symposium on High Performance Computer
Architecture (HPCA). IEEE, USA, 126-136.

Theodore Michailidis, Alex Delis, and Mema Roussopoulos. 2019. MEGA: Over-
coming Traditional Problems with OS Huge Page Management. In Proceedings of
the 12th International Conference on Systems and Storage (SYSTOR) (Haifa, Israel).
ACM, New York, NY, USA, 121-131. https://doi.org/10.1145/3319647.3325839
MongoDB. 2013. Disable Transparent Huge Pages (THP). https://www.mongodb.
com/docs/manual/tutorial/transparent-huge-pages/ [Retrieved October 2022].
Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP Labs 27 (2009), 1-24.

David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and
Richard Brown. 1993. Design Tradeoffs for Software-Managed TLBs. In Proceed-
ings of the 20th International Symposium on Computer Architecture (ISCA) (San
Diego, California, USA). ACM, New York, NY, USA, 27-38.

NuoDB. 2022. Recommendation to disable huge pages for NuoDB. http://www.
nuodb.com/techblog/linux-transparent-huge-pagesjemalloc-and-nuodb [Re-
trieved October 2022].

Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye: Efficient Fine-
Grained OS Support for Huge Pages. In Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (Providence, RI, USA). ACM, New York, NY, USA, 347-360.
https://doi.org/10.1145/3297858.3304064

Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge Pages
Actually Useful. In Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM, New
York, NY, USA, 679-692. https://doi.org/10.1145/3173162.3173203

Chang Hyun Park, Sanghoon Cha, Bokyeong Kim, Youngjin Kwon, David Black-
Schaffer, and Jachyuk Huh. 2020. Perforated Page: Supporting Fragmented Mem-
ory Allocation for Large Pages. In Proceedings of the 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, USA, 913-925.

https://doi.org/10.1145/3037697.3037706
https://linux-audit.com/linux-aslr-and-kernelrandomize_va_space-setting/
https://linux-audit.com/linux-aslr-and-kernelrandomize_va_space-setting/
https://doi.org/10.1145/2485922.2485943
https://doi.org/10.1145/2485922.2485943
http://gap.cs.berkeley.edu/benchmark.html
https://github.com/nodejs/node/issues/11077
https://lwn.net/Articles/423584/
https://lwn.net/Articles/423584/
http://lwn.net/Articles/488709/
https://docs.couchbase.com/server/current/install/thp-disable.html
https://docs.couchbase.com/server/current/install/thp-disable.html
https://doi.org/10.1145/130823.130827
https://www.digitalocean.com/blog/transparent-huge-pages-and-alternative-memory-allocators
https://www.digitalocean.com/blog/transparent-huge-pages-and-alternative-memory-allocators
https://doi.org/10.1109/MM.2016.10
http://dl.acm.org/citation.cfm?id=2643634.2643659
https://doi.org/10.1109/ISCA45697.2020.00078
https://developer.amd.com/wordpress/media/2012/10/ HadoopTuningGuide-Version5.pdf
https://developer.amd.com/wordpress/media/2012/10/ HadoopTuningGuide-Version5.pdf
https://access.redhat.com/solutions/2607721
https://access.redhat.com/solutions/2607721
http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Skylake.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://linux.die.net/man/8/numactl
https://man7.org/linux/man-pages/man3/numa.3.html
https://man7.org/linux/man-pages/man3/numa.3.html
https://www.kernel.org/doc/Documentation/vm/ hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/ hugetlbpage.txt
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://docs.kernel.org/admin-guide/mm/multigen_lru.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://doi.org/10.1109/IISWC55918.2022.00026
https://doi.org/10.1109/IISWC55918.2022.00026
https://doi.org/10.1145/3319647.3325839
https://www.mongodb.com/docs/manual/tutorial/transparent-huge-pages/
https://www.mongodb.com/docs/manual/tutorial/transparent-huge-pages/
http://www.nuodb.com/techblog/linux-transparent-huge-pagesjemalloc- and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pagesjemalloc- and-nuodb
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/3173162.3173203

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

[47]

[48]

[49]

[50

[51]

[52]

[53

[54

[55]

[56

o
N

[58

[59

[60]

[61]

[62

[63]

[64

[65]

[66]

[67

[68

Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. 2017. Hybrid
TLB Coalescing: Improving TLB Translation Coverage Under Diverse Fragmented
Memory Allocations. In Proceedings of the 44th International Symposium on Com-
puter Architecture (ISCA) (Toronto, ON, Canada). ACM, New York, NY, USA,
444-456.

Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer.
2022. Every Walk’s a Hit: Making Page Walks Single-Access Cache Hits. In
Proceedings of the 27th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (Lausanne, Switzerland).
ACM, New York, NY, USA, 128-141.

Percona. 2014. Why TokuDB Hates Transparent HugePages. https://www.
percona.com/blog/2014/07/23/why-tokudb- hates-transparent-hugepages/ [Re-
trieved October 2022].

Perforce. 2015. Tales from the Field: Taming Transparent Huge Pages on
Linux. https://www.perforce.com/blog/151016/tales-field-tamingtransparent-
huge-pages-linux [Retrieved October 2015].

Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceedings of the 45th Inter-
national Symposium on Microarchitecture (MICRO) (Vancouver, B.C., CANADA).
IEEE, USA, 258-269. https://doi.org/10.1109/MICRO.2012.32

Binh Pham, Jan Vesely, Gabriel H. Loh, and Abhishek Bhattacharjee. 2015. Large
Pages and Lightweight Memory Management in Virtualized Environments: Can
You Have It Both Ways?. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO). ACM, New York, NY, USA, 1-12.

PingCAP. 2020. Transparent Huge Pages: Why We Disable It for
Databases. https://www.pingcap.com/blog/transparent-huge-pages-why-we-
disable-it-for-databases/ [Retrieved October 2022].

Venkat Sri Sai Ram, Ashish Panwar, and Arkaprava Basu. 2021. Trident: Harness-
ing Architectural Resources for All Page Sizes in X86 Processors. In Proceedings
of the 54th International Symposium on Microarchitecture (MICRO) (Virtual Event,
Greece). ACM, New York, NY, USA, 1106-1120. https://doi.org/10.1145/3466752.
3480062

Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page Placement
in Hybrid Memory Systems. In Proceedings of the 25th International Conference on
Supercomputing (ICS) (Tucson, Arizona, USA). ACM, New York, NY, USA, 85-95.
https://doi.org/10.1145/1995896.1995911

RedHat. 2023. 8.3.3.3. Enabling 1 GB huge pages for guests at boot
or runtime. https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/6/html/virtualization_tuning_and_optimization_guide/sect-
virtualization_tuning_optimization_guide-memory-huge_pages- 1gb-runtime
[Retrieved April 2023].

Redis. 2022. Recommendation to disable huge pages for Redis. http://redis.io/
topics/latency [Retrieved October 2022].

David Rientjes. 2021. [RFC] Hugepage collapse in process context. https://lore.
kernel.org/linux-mm/d098c392-273a-36a4- 1a29-59731cdf5d3d@google.com/
[Retrieved February 2022].

RISC-V. 2020. The RISC-V Instruction Set Manual Volume II: Privileged Architecture,
Document Version 1.12-draft. Technical Report. EECS Department, University of
California, Berkeley.

Theodore H. Romer, Wayne H. Ohlrich, Anna R. Karlin, and Brian N. Bershad.
1995. Reducing TLB and memory overhead using online superpage promotion. In
Proceedings of the 22nd International Symposium on Computer Architecture (ISCA).
ACM, New York, NY, USA, 176-187.

Standard Performance Evaluation Corporation (SPEC). 2017. SPEC CPU 2017.
https://www.spec.org/cpu2017/ [Retrieved October 2022].

Splunk. 2022. Transparent huge memory pages and Splunk performance. https://
docs.splunk.com/Documentation/Splunk/7.3.2/ReleaseNotes/Splunkand THP [Re-
trieved October 2022].

Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. 1992.
Tradeoffs in Supporting Two Page Sizes. SIGARCH Computer Architecture News
20, 2 (April 1992), 415-424. https://doi.org/10.1145/146628.140406

Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2008. Hardware Monitors for
Dynamic Page Migration. J. Parallel and Distrib. Comput. 68, 9 (September 2008),
1186-1200. https://doi.org/10.1016/j.jpdc.2008.05.006

VoltDB. 2022. Recommendation to disable huge pages for VoltDB. https://docs.
voltdb.com/AdminGuide/adminmemmgt.php [Retrieved October 2022].

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Trans-
lation Ranger: Operating System Support for Contiguity-Aware TLBs. In Pro-
ceedings of the 46th International Symposium on Computer Architecture (ISCA)
(Phoenix, Arizona). ACM, New York, NY, USA, 698-710. https://doi.org/10.1145/
3307650.3322223

Kaiyang Zhao, Kaiwen Xue, Ziqi Wang, Dan Schatzberg, Leon Yang, Antonis
Manousis, Johannes Weiner, Rik van Riel, Bikash Sharma, Chungiang Tang, and
Dimitrios Skarlatos. 2023. Contiguitas: The Pursuit of Physical Memory Conti-
guity in Datacenters. In Proceedings of the 50th Annual International Symposium
on Computer Architecture (ISCA). ACM, New York, NY, USA, 1-15.

Weixi Zhu, Alan L. Cox, and Scott Rixner. 2020. A Comprehensive Analysis
of Superpage Management Mechanisms and Policies. In Proceedings of the 2020

Manocha et al.

USENIX Annual Technical Conference (USENIX ATC). USENIX Association, USA,
829-842. https://www.usenix.org/conference/atc20/presentation/zhu-weixi

https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.perforce.com/blog/151016/tales-field-tamingtransparent-huge-pages-linux
https://www.perforce.com/blog/151016/tales-field-tamingtransparent-huge-pages-linux
https://doi.org/10.1109/MICRO.2012.32
https://www.pingcap.com/blog/transparent-huge-pages-why-we-disable-it-for-databases/
https://www.pingcap.com/blog/transparent-huge-pages-why-we-disable-it-for-databases/
https://doi.org/10.1145/3466752.3480062
https://doi.org/10.1145/3466752.3480062
https://doi.org/10.1145/1995896.1995911
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-memory-huge_pages-1gb-runtime
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-memory-huge_pages-1gb-runtime
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-memory-huge_pages-1gb-runtime
http://redis.io/topics/latency
http://redis.io/topics/latency
https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/
https://lore.kernel.org/linux-mm/d098c392-273a-36a4-1a29-59731cdf5d3d@google.com/
https://www.spec.org/cpu2017/
https://docs.splunk.com/Documentation/Splunk/7.3.2/ReleaseNotes/SplunkandTHP
https://docs.splunk.com/Documentation/Splunk/7.3.2/ReleaseNotes/SplunkandTHP
https://doi.org/10.1145/146628.140406
https://doi.org/10.1016/j.jpdc.2008.05.006
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/3307650.3322223
https://www.usenix.org/conference/atc20/presentation/zhu-weixi

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Linux's Existing Huge Page Policies
	2.2 Prior Work on Huge Page Promotion

	3 Promotion Candidate Cache
	3.1 Characterizing Page-Level Reuse
	3.2 Capturing Reuse Distance in Hardware
	3.3 Operating System Integration

	4 Experimental Methodology
	5 Results and Evaluation
	5.1 Single Thread Performance
	5.2 Single Process, Multithread Performance
	5.3 Multiprocess Performance
	5.4 Discussion

	6 Additional Related Work
	7 Conclusion
	Acknowledgments
	References

