
Tiny but Mighty: Designing and Realizing Scalable Latency
Tolerance for Manycore SoCs

Marcelo Orenes-Vera
Princeton University

Aninda Manocha
Princeton University

Jonathan Balkind
UC Santa Barbara

Fei Gao
Princeton University

Juan L. Aragón
University of Murcia

David Wentzlaff
Princeton University

Margaret Martonosi
Princeton University

ABSTRACT
Modern computing systems employ significant heterogeneity and
specialization to meet performance targets at manageable power.
However, memory latency bottlenecks remain problematic, partic-
ularly for sparse neural network and graph analytic applications
where indirect memory accesses (IMAs) challenge the memory
hierarchy.

Decades of prior art have proposed hardware and software mech-
anisms to mitigate IMA latency, but they fail to analyze real-chip
considerations, especially when used in SoCs and manycores. In
this paper, we revisit many of these techniques while taking into
account manycore integration and verification.

We present the first system implementation of latency tolerance
hardware that provides significant speedups without requiring any
memory hierarchy or processor tile modifications. This is achieved
through a Memory Access Parallel-Load Engine (MAPLE), inte-
grated through the Network-on-Chip (NoC) in a scalable manner.
Our hardware-software co-design allows programs to perform long-
latency memory accesses asynchronously from the core, avoiding
pipeline stalls, and enabling greater memory parallelism (MLP).

In April 2021 we taped out a manycore chip that includes tens of
MAPLE instances for efficient data supply. MAPLE demonstrates
a full RTL implementation of out-of-core latency-mitigation hard-
ware, with virtual memory support and automated compilation
targetting it. This paper evaluates MAPLE integrated with a dual-
core FPGA prototype running applications with full SMP Linux, and
demonstrates geomean speedups of 2.35× and 2.27× over software-
based prefetching and decoupling, respectively. Compared to state-
of-the-art hardware, it provides geomean speedups of 1.82× and
1.72× over prefetching and decoupling techniques.

CCS CONCEPTS
• Computer systems organization→Multicore architectures;
Reconfigurable computing; Heterogeneous (hybrid) systems.

ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527400

KEYWORDS
memory, latency tolerance, decoupling, modular RTL

ACM Reference Format:
Marcelo Orenes-Vera, Aninda Manocha, Jonathan Balkind, Fei Gao, Juan L.
Aragón, David Wentzlaff, and Margaret Martonosi. 2022. Tiny but Mighty:
Designing and Realizing Scalable Latency Tolerance for Manycore SoCs. In
The 49th Annual International Symposium on Computer Architecture (ISCA
’22), June 18–22, 2022, New York, NY, USA.ACM,NewYork, NY, USA, 14 pages.
https://doi.org/10.1145/3470496.3527400

1 INTRODUCTION
The “memory wall” becomes even more challenging in accelerator-
rich systems. From the perspective of Amdahl’s Law, as specialized
accelerators speed up computation, memory operations that supply
data represent a bigger portion of the runtime [53]. Workloads with
cache-unfriendly irregular memory access patterns are particularly
bottlenecked, such as those in the domains of graph analytics and
sparse linear algebra. Their irregularity arises from IndirectMemory
Accesses (IMAs) that require many off-chip, long-latency accesses
to DRAM. Software optimizations to reduce memory latency often
require increased code complexity and reduced portability, and can
incur overheads that limit performance gains [31]. Thus, hardware
innovations are necessary.

Table 1 shows much of the 40 years of prior work in latency mit-
igation of IMAs. One might think that these hardware innovations
are easy to include in real chips, but that is often not the case due
to complex core or cache modifications [9, 41, 54, 56], the need for
new ISA instructions [15, 43, 45, 55, 59], or excessive area overheads
per core [22, 62]. Moreover, deep microarchitecture changes are
hard to make in practice because of the verification burden. For
SoC integration, it is often easier to incorporate off-the-shelf cores.

These observations are not abstract for us; our exploration into
the prior work in latency tolerance started with the goal of fabricat-
ing a chip to efficiently process sparse algebra and graph analytic
workloads. Prior work has leveraged SMT and beefy OoO to hoist
accesses and thus mitigate the latency of IMAs [35, 45, 58]. How-
ever, we choose to use many slim in-order cores instead of a few
out-of-order (OoO) cores, because latter are generally not effective
for irregular memory accesses without additional specialization. In-
order cores with specialized hardware to handle irregular accesses
offer better performance density for our application domain [56].

Previously proposed latency tolerance techniques fall short ana-
lyzing trade-offs that arise from manycore integration or real-chip

817

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3470496.3527400
https://doi.org/10.1145/3470496.3527400
https://creativecommons.org/licenses/by/4.0/

ISCA ’22, June 18–22, 2022, New York, NY, USA Marcelo Orenes-Vera, et al.

Core 2 . . .

MAPLE

Main Memory (DRAM)

Core 3
MAPLE

 Last Level Cache (LLC)

Core 1
Fetch

&A[B[i]]

Consume

Consume
Produce

Figure 1: MAPLE is an area-efficient alternative to fetch irreg-
ular memory patterns. Each MAPLE can supply data for up
to 8 cores in parallel. For clarity we depict the two scenarios
of cores using MAPLE separately. The arrows are MAPLE
API operations (off-the-shelf cores can target MAPLE using
Memory-Mapped loads and stores). In decouplingmode, Core
1 runs ahead of time producing pointers to irregular memory
locations for MAPLE to fetch and store in one of its scratch-
pad hardware queues; Core 2 is consuming already fetch data
from MAPLE queue; For prefetching, Core 3 is using MAPLE
as a prefetching engine, scheduling in advance a series of
indirect accesses of the shape A[B[i]]; Core 3 can thus fetch
cache-averse patterns using MAPLE, and fetch regular pat-
terns using the memory hierarchy. MAPLE operations can
fetch directly from DRAM or from the LLC, as desired.

implementations, such as precise per-core area overheads or engi-
neering effort needed to verify such core modifications.

OurApproach:This paper introduces aMemoryAccess Parallel-
Load Engine (MAPLE), the world’s first taped-out NoC-connected
hardware thatmitigatesmemory latency and improves performance
without requiring processor tile or memory hierarchymodifications.
In this paper, we implement, verify, and evaluate MAPLE’s RTL,
integrated into an open-source manycore framework through the
NoC in a scalable, tiled, manner. Figure 1 highlights two scenarios
that leverage MAPLE’s specialization for memory latency tolerance
and timely supply of data to processing units. MAPLE supports
decoupling and prefetching techniques through its API. These are
not custom ISA instructions but regular load and store instructions
from user mode to read and write to a MAPLE instance through
simple Memory-Mapped IO (MMIO) (see Section 3).

MAPLE offers a flexible programming model that extends far
beyond scheduling a task to an engine that subsequently raises an
interrupt upon completion (e.g. DMA engines). Utilizing MAPLE’s
hardware queues enables decoupling of data-produce and com-
pute operations for latency tolerance. Previously, this fine-grained
supply capability has only been supported through new ISA instruc-
tions and deep microarchitectural changes [22, 49], which made it
difficult to adopt in practice.

Off-the-shelf cores can produce (store) data into MAPLE, and
consume (load) from it as if they were interacting with a software
queue, but with the advantage that MAPLE can transform the data
in between. Figure 1 shows how MAPLE can be invoked to fetch

irregular or IMAs and place the data into its FIFO queues for cores or
accelerators to consume from them and perform dense computation.

MAPLE’s scratchpad offers hardware queues implemented as
circular FIFOs. MAPLE performs hundreds of long-latency IMAs
in parallel, utilizing many slots in the FIFO queues, whose indices
are used to reorder memory responses. This provides memory level
parallelism (MLP) without the area overhead of IMA-dedicated
hardware on every core.

Our main innovation is the exploitation of the software opti-
mizations of decoupling and prefetching, while leveraging special-
ized memory-access hardware, without modifying the core,
ISA, or memory hierarchy, demonstrated with a real implemen-
tation. This work enables MLP in systems with area-efficient cores
(e.g. with small instruction windows or in-order execution), where
software-only approaches are ineffective. MAPLE provides hard-
ware assistance through an API and does not require modifications
of processor cores. Our API and hardware-software co-design are
compliant with Virtual Memory (VM) and SMP Linux, and support
scaling the number of MAPLE instances, as done in our chip tape-
out. Each MAPLE is individually protected through the core-level,
standard, virtual memory protection.

MAPLE’s API can be targeted by automated compiler passes
in which the original program is transformed through LLVM [30]
passes to offload IMAs to MAPLE. Alternatively, the API could be
targeted from the backend of a Domain-Specific Language (DSL),
e.g. GraphIt [67] or TACO [28], to overlap memory latency with
computation.

Unlike much of the prior work shown in Table 1, MAPLE can
be adopted in practice with little engineering effort. We demon-
strate this with its integration into an open-source manycore SoC
(OpenPiton+Ariane) [6] on its own tile. We measured MAPLE’s
effectiveness by evaluating prominent latency-bound workloads
on an FPGA prototype.

Our main technical contributions are:
• A HW-SW co-design that mitigates long-latency memory ac-
cesses through scalable specialized units that are integrated
into an SoC without core or memory hierarchy modifica-
tions.

• An API to program MAPLE units to timely supply data to
cores for various access patterns, which can be automatically
used by existing compiler passes.

• A full RTL implementation of MAPLE that supports virtual
memory and is programmed from SMP Linux. This imple-
mentation is formally verified and it is made open-source
with the publication of this paper.

We evaluate MAPLE and demonstrate that:
• Latency tolerance is possible without core changes; geomean
speedups of 1.82× and 1.72× over prior work in hardware
prefetching and decoupling, for latency-bound workloads
widely used for sparse algebra and graphs analytics.

• SW techniques alone are ineffective to mitigate IMAs with
slim cores; geomean speedup of 2.27× on FPGA emulation
using MAPLE over software decoupling.

• MAPLE is easy to integrate and area efficienct; over 6-stage
in-order RISC-V cores, MAPLE incurs just 1.1% area overhead
for each of the cores it can supply.

818

Tiny but Mighty: Designing and Realizing Scalable Latency Tolerance for Manycore SoCs ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 1: Classification of the hardware-assisted prior work on
IMA latency mitigation, based on the key features that make
the adoption of a hardware technique practical for SoCs.

Amenable for / Unmodif. Unmodif. Simple HW-SW
Proposed Technique Cores ISA Cores Co-design
HW DAE [21, 36, 49] ✗✗✗ ✗✗✗ ✓✓✓ ✓✓✓

DeSC/MTDCAE[22, 55] ✗✗✗ ✗✗✗ ✓✓✓ ✓✓✓

SW Pre-execution [35] ✗✗✗ ✗✗✗ ✗✗✗ ✓✓✓

Triggered inst.[43] ✗✗✗ ✗✗✗ ✓✓✓ ✓✓✓

Slipstream [52, 54] ✗✗✗ ✓✓✓ ✓✓✓ ✗✗✗

HW Prefetching[9] ✗✗✗ ✓✓✓ ✓✓✓ ✗✗✗

Graph Pref, IMP.[1, 62] ✗✗✗ ✓✓✓ ✓✓✓ ✗✗✗

Programmable Pref. [3] ✗✗✗ ✗✗✗ ✓✓✓ ✓✓✓

DSWP [45] ✗✗✗ ✗✗✗ ✗✗✗ ✓✓✓

Outrider [15] ✗✗✗ ✗✗✗ ✗✗✗ ✓✓✓

Clairvoyance [58] ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗

SWOOP [59] ✗✗✗ ✓✓✓ ✓✓✓ ✓✓✓

MAD [24] ✗✗✗ ✓✓✓ ✓✓✓ ✓✓✓

Pipette [41] ✗✗✗ ✗✗✗ ✗✗✗ ✓✓✓

Prodigy [56] ✗✗✗ ✓✓✓ ✓✓✓ ✓✓✓

MAPLE ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

2 BACKGROUND AND MOTIVATION
Over the last 30 years, many works have proposed techniques for
memory latency tolerance.With the increasing importance of graph
analytic and sparse neural network (SNN) applications, recent tech-
niques have focused on mitigating the latency of IMAs. These can
be coarsely divided into prefetching-based [1–3, 26, 62], streaming
multi-core / multi thread [41, 52, 57], and decouple access-execute
(DAE) [15, 22, 45, 49]. We accommodate these techniques in soft-
ware, with the transparent usage of our out-of-the-core specialized
hardware to increase performance.

This paper attempts to leverage the range of techniques pro-
posed in this field, both in hardware and software. It identifies four
key limitations to be overcome to democratize the access to
their benefits in modern heterogeneous systems: (1) Prior hard-
ware techniques modify the core microarchitecture, sometimes
even reducing its generality. Adopting such techniques also in-
creases the verification burden of already overloaded hardware
designers [20]. This is exacerbated in the context of SoC generator
frameworks [5, 8, 13, 60], where modifications to third-party cores’
RTL can be very challenging and limit their reusability. (2) Some
modern software techniques assume special capabilities from the
core, like OoO or SMT. This limits their usage, e.g. area-constrained
environments tend to use simple in-order cores. (3) Techniques
that rely on ISA extensions [23] or ISA-specific instructions have
limited applicability and portability problems, especially in the con-
text of heterogeneous-ISA architectures [7, 34]. (4) Hardware-only
techniques like Slipstream [52, 54] or hardware prefetching [1, 26]
often require costly structures for book-keeping, detection, and
prediction. Data movement is decisive to meet performance goals,
and often these patterns are known in software [10]. Leveraging

program knowledge, either extracted by a compiler pass or explic-
itly written (in the backend of a DSL) is key to delivering high
performance at a low area and complexity cost.

Table 1 classifies prior software and hardware approaches in
the extensive literature on latency tolerance of IMAs, based on the
four identified features for a technique to achieve ease of adoption,
software programmability, and performance in low-power, area-
efficient systems.

Decoupled Access/Execute (DAE): The DAE [49] paradigm was in-
troduced decades ago to overlap memory accesses and computation
without relying either on out-of-order execution or on prefetch-
ing unpredictable access patterns. DAE slices a program into two
parallel threads, the Access thread handles memory access and
address computation, and the Execute thread does computations.
Ideally, the Access runs ahead of the Execute by issuing memory
requests and enqueuing their data. In the meantime, the Execute
consumes the data from the communication queue to perform value
computations. If the access slice can run ahead of the execute slice
and produce all of the data required for computation, it can act
as a non-speculative perfect prefetcher. Among other decoupling
proposals [15, 36, 55], DeSC [22] builds upon DAE, introducing
compiler and hardware optimizations, so that loads with no further
dependencies on the Access side (whose values are used exclusively
by Execute) can be loaded in a side structure of the Access core
without stalling the pipeline. The biggest drawback of DAE, DeSC,
and all the prior-art in hardware decoupling is that it requires spe-
cific hardware changes for Access and Execute cores, limiting their
usage to those roles.

Our hardware mechanism is amenable to the decoupling pro-
gramming model. MAPLE provides a software API for decoupling
without modifying the core altogether.

In our case, any number of cores can be programmed to behave
as Access or Execute at runtime. MAPLE, as a memory access
engine, can handle many data loads in parallel by utilizing hardware
queues to track data for completed requests. This prevents stalls in
the Access thread if it is not capable of hiding latency (e.g. short
instruction window).

An important and substantial accomplishment of MAPLE
is its ability to support DeSC-style decoupling, but with off-
the-shelf cores. This increases the programmability of the system
to allow other latency-tolerance techniques while providing com-
parable performance (see Section 5).

Figure 2 showcases how our hardware-software co-design pro-
vides the API programmability of software decoupling while being
assisted by specialized hardware, to achieve MLP even with simple
cores. Since the Access thread is running on a core with a small
instruction window, shared-memory decoupling loses runahead
due to long-latency stalls of IMAs, and so the Execute thread stalls
waiting for the data to be produced. With MAPLE, the Access
thread only produces IMA pointers, which MAPLE will load asyn-
chronously to the core—in a highly parallel manner—and supply
data to the Execute in time. The performance gain of MAPLE for
decoupling is demonstrated in Section 5.1 against software and
hardware decoupling approaches.

Prefetching IMAs: This paradigm includes changes in hardware
and/or software. Recent hardware proposals [1, 26, 40, 62] have

819

ISCA ’22, June 18–22, 2022, New York, NY, USA Marcelo Orenes-Vera, et al.

LD B[i+X]

Time (cy)

Access thread runs X
loop iterations ahead
of the Execute thread,

since MAPLE loads the data

10050 1500

CONSUME (i)

data

LD B[i]
LD A[B[i]]

200

dataDRAM latency

PRODUCE

data(i)

 for (i=0; i<N; i++)
 produce(&A[B[i]])

 for (i=0; i<N; i++)
 data = consume()
 res[i] = data * 42

Access thread

Execute thread

 ITERATION i

ITERATION i

 ITERATION i+1

PRODUCE

pointer (i+x)

CONSUME (i)Lost of runahead due to
stalled Access thread

data

CONSUME (i)
for (i=0; i<N; i++)
 data = A[B[i]]
 res[i] = data * 42

Original program

Figure 2: Memory transactions timeline of a decoupled pro-
gram running on a thin core baseline. The original program
(in red) has been sliced into Access (green) and Execute (blue)
threads, using a software API for decoupling. The figure
shows two executions targeting our decoupling API: using
MAPLE’s implementation (above the timeline), and using a
shared-memory implementation (below).

the drawback of core-microarchitecture modifications, and the of-
ten large and per-core area overhead of the structures needed
to predict access. Software techniques are a tempting proposi-
tion since they keep the core untouched and can leverage com-
piler knowledge. However, software prefetching incurs overheads
due to code-bloating—up to 8.5× the instruction count in inner-
loops [2]. Prefetching might thrash the L1 too with large blocks or
untimely data. To overcome these limitations, we use MAPLE as a
programmable prefetcher too. State-of-the-art software prefetch-
ing techniques can use our API to issue prefetch commands to
MAPLE, which can also decide the granularity and where to place
the loaded data (into MAPLE queues or LLC). Moreover, MAPLE
has specialized logic for IMAs which occur in loops, avoiding the
extra instructions needed for address calculation of prefetches.This
mechanism provides the advantages of software techniques,
with the enhanced performance brought by specialized hard-
ware for memory accesses.

CoreModels: Prior art has already characterized that OoOwithout
specialized hardware for memory accesses is not effective for our
domain [37, 41, 56]. Because MAPLE units are effective for irregular,
long-latency data (through decoupling or prefetching), this allows
the use of simpler and more area-efficient cores. Since cores either
consume from MAPLE or load regular-pattern data from the cache,
these cores do not require expensive reordering units (in OoO) nor
core-coupled IMA prefetchers. This pairing of slim cores + MAPLE
saves per-core area, which allows for larger core counts and higher
parallelism. We have seen the trend of manycores made out of slim
cores recently in academia [6, 17, 65] and industry, e.g. Cerebras
Systems [33] and Esperanto [19].

3 THE HARDWARE-SOFTWARE APPROACH
Our co-design offers a software interface to leverage MAPLE hard-
ware specialization. Its communication mechanism is amenable for
software pipelining and its programming model is easily extensible
to incorporate domain-specific access patterns or more memory

operations, e.g. data structure reshaping or Read-Modify-Write
atomic operations. In the scope of this paper, we showcase how
our co-design accommodates both software prefetching and decou-
pling optimizations, with enhanced performance due to specialized
hardware assistance.

MAPLE can achieve speedups similar to that of latency tolerant
DAE architectures, without requiring modifications to cores to des-
ignate them as Access or Execute. Instead, the DAE programming
model is supported via the API. When using decoupling API op-
erations, MAPLE provides the data communication queue, where
data for memory requests from the Access thread are enqueued
in order to serve the Execute thread. This allows us to offer the
latency tolerance of DAE through hardware that is outside the core,
unlike many prior hardware DAE approaches, which significantly
modify the cores to support decoupling.

Additionally, MAPLE’s connection to the interconnection net-
work eases its scalable integration, where possibly hundreds of
units could be connected to the SoC, each one supporting several
queues. The concept of queues in the API is a software abstraction
detached from the hardware queues. Internally, the API implemen-
tation can map hardware queues across multiple MAPLE instances,
if needed. A thread can communicate with any MAPLE instance
from user mode by having the OS map MAPLE’s associated page
(address range) into virtual memory, through Memory-Mapped IO
(MMIO). This provides access protection and transparent allocation.

Sections 3.1- 3.3 provide examples of how the API can be used
for different memory optimizations. Section 3.4 explains the de-
tails of MAPLE’s implementation and how its hardware-software
mechanism is fully compliant with virtual memory and requires no
ISA-dependent instructions.

3.1 Using MAPLE for Decoupled Programs
The following list presents the API operations that emulate DAE
techniques. PRODUCE_PTR utilizes MAPLE to load data and thus
reduce the Access thread burden, especially on accesses with poor
cache locality.

• INIT(queues): Initializes the queues for a program.
• OPEN/CLOSE(id): Opens exclusive communication with a
queue, or closes such a connection.

• PRODUCE (id, data): Pushes data into a queue.
• CONSUME (id): Pops data from a queue.
• PRODUCE_PTR (id, pointer): pushes (stores) a pointer into
MAPLE, which will fetch its data from memory and write
the response into a queue in program order.

Besides these main operations, the API also contains functions to
collect performance counters and debugging.

Figure 2 shows an example of a decoupled code targetingMAPLE,
and the depiction of its runtime memory transactions. Figure 3 now
shows the hardware components of MAPLE that are involved in
this program and their interactions with the rest of the system.
MAPLE is connected to the Network-on-Chip (NoC) through proto-
col decoders and encoders, and thus it can receive/send operations
from/to the cores and make requests to DRAM and/or to the LLC.
MAPLE also manages hardware queues for data communication be-
tween threads, implemented as circular FIFOs, using its scratchpad.

820

Tiny but Mighty: Designing and Realizing Scalable Latency Tolerance for Manycore SoCs ISCA ’22, June 18–22, 2022, New York, NY, USA

Core 2Core 1

Main Memory
 (DRAM)

REQUEST
DECODER

SP

REQUEST
ENCODER

RESPONSE
DECODER

RESPONSE
ENCODER

MAPLE
engine

3
2

1 A

6

C
4

5

LD
ST

B
MMU

 NoC
Routers

Last-Level Cache
(LLC)

Figure 3: A high-level overview of MAPLE components in-
cluding the scratchpad (SP) storage that queues are sharing.
Numbers represent the steps of a pointer-produce operation
and the letters the steps of data-consume.

Figure 3 depicts the software-hardware timeline of a pointer-
produce (steps 1-6) and consume operation (steps A-C).

The Produce path works as follows: (1) It starts by doing a store
instruction where the stored data is the pointer to fetch. This store
is targeted to an address composed of MAPLE’s instance base ad-
dress, queue ID, and operation code; (2) The decoder identifies the
operation as a pointer-produce, and routes it to the produce pipeline
where it will reserve an entry in the corresponding queue; (3) The
pointer (virtual address) is first translated into a physical address
in MAPLE’s MMU, and the data associated with that address is
requested from DRAM, using as the transaction ID the index of the
allocated entry in the queue; (4) The initial store request is acknowl-
edged to the Access thread which considers the produce as finished
and retires the store instruction; (5) The memory request reaches
DRAM which responds to MAPLE; (6) The response is decoded and
stored in the corresponding queue entry.

Consumes occur later in time than the data production provided
that the Access thread has enough runahead.This should be the
norm when using MAPLE, since the Access is not stalled and the
hardware queues are big enough to hold the data fetched in advance.

The Consume path works as follows: (A) The execute thread gen-
erates a consume operation—implemented in the API as a load
request to MAPLE. Once the load reaches MAPLE, it is decoded and
routed to the consume pipeline; (B) If the queue specified on the
request parameters is not empty, it would pop the entry in the head
of the queue and return it as a response to the load instruction; (C)
The response reaches the core that is running the Execute thread
and the consume operation finishes.

Using MAPLE for decoupling brings software flexibility over the
original hardware DAE approach or state-of-the-art DeSC archi-
tecture. In our approach, Access or Execute are conceptual "roles"
taken by software threads rather than a hardwired core type, and
they can be determined at runtime. This enables dynamic reconfig-
urability for applications with different data supply and computa-
tion demands. Some might benefit from having multiple Execute
threads being supplied from the same Access thread, generating

 for (i = 0; i < N; i++){
 // D is distance in number of iterations
 LIMA (A, B, ptr[i+D], ptr[i+1+D]);
 for (j = ptr[i]; j < ptr[i+1]; j++){
 res[j] = C[j] * A[B[j]];
 }
 }

Figure 4: Code example using MAPLE for prefetches of tight
Loops of IMAs (LIMA). This avoids the code bloat problem of
software prefetching. MAPLE can issue prefetches that place
the data in the LLC (speculative, shown here) or into MAPLE
queues (non-speculative). The IMA is marked in red and the
cache-friendly access is marked in green.

an asymmetric decoupling relation. This is possible with MAPLE
(see Section 3.6), unlike with previous architectures for DAE, which
only scale in pairs of Access-Execute cores [22, 49, 55].

3.2 Using MAPLE for Prefetching
MAPLE’s API can also be used for software prefetching. Non-
speculative prefetching can leverage the aforementioned queue
management functions and PRODUCE_PTR to place all the prefetched
data into a queue within MAPLE. This is especially desirable in
the context of IMAs like A[B[i]]. Placing the data of irregular,
cache-averse accesses into MAPLE has a two-fold advantage over
placing it in the memory hierarchy: it prevents data from being
replaced if fetched too early with respect to its usage, and it avoids
thrashing the L1 cache with low-reuse data. Additionally, MAPLE
can prefetch into the shared LLC to support speculative prefetching
(PREFETCH(ptr)).

Software prefetching of IMAs within inner-loops incurs an in-
struction overhead to calculate the address of the target prefetch
and other book-keeping [2]. To remove that overhead, MAPLE
can prefetch Loops of Indirect Memory Accesses (LIMA). This is
targeted through API operations:

• LIMA (A,B,begin,end): It speculatively prefetches in hard-
ware A[B[i]] (or B[i] if A is 0) in the range between 𝑏𝑒𝑔𝑖𝑛
and 𝑒𝑛𝑑 , into the shared-cache.

• LIMA_PRODUCE (qid,A,B,begin,end): LIMA version for
non-speculative prefetching, where the data is produced
into MAPLE queues, to later be consumed.

• PREFETCH (pointer): It speculative prefetches a pointer
into the Last-level Cache (LLC).

Figure 4 shows a code example of injecting LIMA speculative
prefetching. A single software operation provides prefetches for a
whole loop of accesses (details in Section 3.4).

3.3 Targeting MAPLE Automatically
Although one could use our API directly, we nevertheless believe
programmers need not directly code data movement. Instead, com-
piler passes or domain-specific languages such as TACO [28] (sparse
algebra) or GraphIt [67] (graph analytics) could use the API, as they
have knowledge about data structures and coherence. Recent auto-
matic compiler techniques already target software prefetching [2]

821

ISCA ’22, June 18–22, 2022, New York, NY, USA Marcelo Orenes-Vera, et al.

 for (i=0; i<N; i++)
 res[i] = A[B[i]]*C[i]

A[B[i]]

*

Loop
start

C[i]

ST
res[i]

DDG

Access (Supply)
 DDG

Program slicing

PROD_PTR
&A[B[i]]

Loop
start

CONSUME

*

Loop
start

C[i]

ST
res[i]

Execute
(Compute)

DDG

LLVM backend to
target ISA

TARGET MACHINE

LLVM
pass

Figure 5: Simplified compiler flow for decoupling. First, the
program is sliced into Access and Execute, then a LLVM pass
converts the IMA (in red) into PRODUCE_PTR and CONSUME API
operations targeting MAPLE. Finally, both slices are com-
piled down to assembly.

and slice decoupled programs [22]. Therefore, they could be adapted
to target API operations instead of ISA-specific instructions.

Figure 5 shows our adaptation of the compilation flow ofDeSC [22].
This flow slices the program into Access and Execute threads; loads
are transformed into PRODUCE and CONSUME operations. After the
program slicing, some loads no longer have dependencies on the Ac-
cess code (only on the Execute), and so the Access can produce the
pointer for MAPLE to load, PRODUCE_PTR. We evaluate using this
LLVM-based [30] automatic compiler pass in Section 5.2, showing
that by simply utilizing established compiler techniques, MAPLE
can be leveraged to yield significant performance improvements.

Automatic compiler techniques for prefetching could potentially
target the LIMA operation, thus reducing the instruction overhead
of software prefetching IMAs in tight-inner loops, but this is out of
the scope of this paper.

3.4 MAPLE Hardware Implementation
Figure 6 presents the microarchitecture of MAPLE. There we can
observe the breakdown of the aforementioned engine of MAPLE
into three pipelines and a queue controller.

The Configuration pipeline is used to create logical queues and
bind them to software threads at runtime. These queues are im-
plemented as circular FIFOs using a local scratchpad. Depending
on the program’s needs, one can configure to have fewer, larger,
queues, or many but smaller. There is an upper limit on the number
of queues per MAPLE unit, which is set as an RTL parameter at
tape-out, along with the scratchpad size. This pipeline receives read
operations when the configuration requires a response (e.g. queue
binding), and write operations when the configuration needs to
specify a payload (e.g. for the LIMA unit). This pipeline is non-
blocking as it needs to be available for software configuration of
the MMU and debug operations.

The Consume pipeline is solely used for cores to read data from
the queues.

REQ.
DEC.

SC
R

ATC
H

PA
D

CONSUME
PIPE

BUFFER

config

CONFIG
PIPE

DATA
REPLY

READ
QUEUE

ACK
TO

CORE

RESERVE
FIFO
SLOT

PRODUCE
PIPE

BUFFER

REQ.
ENC.

Write
Queue
Entry

Get Next Entry Queue ID

Read Queue Head

RESP.
DEC

QUEUE
CNTRL

MMU
(PTW/TLB)

VA-PA
 Translation.

Page Fault

LIMA
LOGIC

Config Queue Size

 WDATA OR
ASYNC
LOAD

ACK TO
CORE

pointer

Fetch PT entry.

Memory

RESP. ENC

Figure 6: Microarchitecture of MAPLE: designed to maximize
MLP and area efficiency. The pipelines allow several con-
current operations, one per pipeline stage. The design has
separate pipelines to avoid deadlock situations (formally ver-
ified). The LIMA logic loads chunks of adjacent data (B[i])
and performs pointer indirection for each word by internally
feeding pointers (A[B[i]]) into the Produce path.

The Produce pipeline receives store instruction from the cores
where the payload contains either data or a pointer to fetch. Pro-
duces are processed in several stages: First, the transaction is buffered.
In the case of a pointer, the virtual address is translated in the MMU;
second, a slot in the queue is reserved; third, either the data is writ-
ten into the reserved slot (data-produce) or the memory request
is issued to DRAM (pointer-produce) using as transaction ID the
queue slot index. Memory responses come in any order. We ensure
data is written in program order with the transaction ID.

The reason to have separate pipelines is to avoid deadlocks.
When a specific queue is full, the produce operation is buffered (no
overflow) in the first stage until an entry is consumed. Meanwhile,
operations to other queues can proceed without stalls. Consumes
work similarly, a load into an empty queue is buffered (no polling)
until new data is available to be returned to the core. Each pipeline
has a final stage to respond to the issuing core. This design was
verified with industry-level formal tools (Section 3.9).

LIMA operations fetch A[B[i]] for a given range of i. Once the
base pointers for arrays A and B are configured (virtual addresses),
LIMA performs TLB translation and fetches array B in chunks of
64B that are stored in the scratchpad. As soon as the chunks start
arriving, LIMA iterates over them word by word utilizing an offset
into array A to calculate the final address. Finally, depending on
whether the prefetch is speculative or non-speculative, it inserts
into the Produce pipe the equivalence of a pointer-produce or a
prefetch operation. Because MAPLE is ISA-agnostic, the prefetch
operations are not using ISA prefetch instructions. Instead, it sends
a network request to the shared cache, similar to how a private
cache would do.

822

Tiny but Mighty: Designing and Realizing Scalable Latency Tolerance for Manycore SoCs ISCA ’22, June 18–22, 2022, New York, NY, USA

3.5 Virtual Memory Support
When a core requests a queue through the API, the OS maps a
free MAPLE instance into a page (MMIO). Thus, the core performs
address translation to load or store into the MAPLE address-space,
accessing that MAPLE context (control registers) in a protected
manner. Since this is a single page, the translation hits in the TLB
with no overhead. Because the data that is delivered to MAPLE can
be a pointer, i.e. a virtual address, it needs translation. MAPLE fully
supports virtual memory through its local MMU and TLB, to be able
to access any regularly allocated memory. MAPLE’s TLB is fully
associative and has 16 entries, the same as the cores’ TLB. Because
IMAs are irregular and often span different pages, TLB misses add
latency to IMAs. The total latency is mitigated by MAPLE with
runahead execution and memory parallelism.

Upon a TLB miss, MAPLE’s hardware Page Table Walker (PTW)
fetches the corresponding entry from the memory hierarchy. If
the PTW encounters a page fault (e.g. if the page is invalid), an
interrupt is raised, and the kernel invokes the MAPLE driver. This
driver reads the virtual address that caused the page fault (using
the Configuration pipeline) and maps it into the page table if valid
access. The device driver implements Linux’s callback function
for shootdowns, which are communicated to the MAPLE-MMU to
prevent stale entries.

3.6 Communicating with MAPLE units
Portable: General-purpose cores can communicate with MAPLE
from user mode through MMIO. This allows operations like Pro-
duce and Consume to, under the hood, use existing store and
load instructions, respectively. These are synchronous (not polling)
with MAPLE, i.e. memory instructions return once MAPLE ac-
knowledges them. The round-trip path is depicted and latency-
characterized in Figure 14.

Scalable: Since many MAPLE instances can co-exist in an SoC
(e.g. a tiled architecture), each one is accessed via a different physical
page. We leverage virtual memory translation to provide process-
exclusive access to MAPLE’s hardware resources and provide data
protection. This also allows a process to decide at runtime which
MAPLE unit to target. Aswe introduced before, previous approaches
[22, 23, 49] do not offer this software programmability of decoupling-
hardware resources, as these are tightly connected to specific cores.

Extensible:The fact that each unit’s control registers aremapped
to a page allows MAPLE to re-purpose the index of a word within
the page to distinguish operation codes based on bits 3 to 8. This
gives the API up to 128 operation codes, i.e. 64 for loads and 64 for
stores so that more operations can be included.

Core-Agnostic: The only capability MAPLE needs from a core is
having load and store instructions. Thus, it can communicate with
any off-the-shelf core and is not limited to non-speculative in-order
cores. Although not included in our chip tapeout, MAPLE could
handle speculative queue/dequeues from cores using transaction
IDs encoded in the lower address bits. A chip for different workloads,
where OoO cores are desired, could also integrate MAPLE units to
speed up irregular accesses.

Efficient:MAPLE has full access to the memory hierarchy, thus,
it can do cache-coherent loads from the LLC or non-coherent loads

LLC
slice

64KB

Ariane
Core

NoC
routers

NoC
routers

LLC
slice

64KB

MAPLE
L1.5 private

8KB Each
MAPLE

can supply
data up to
8 core tiles
concurrently

Core Tile
M x N

Core Tile 0

Core Tile N

MAPLE Tile 0

MAPLE Tile N

.

. .
 .

. .
 .

Core Tile M

Figure 7: Integration of MAPLE into an OpenPiton tile.
MAPLE only needs to be connected to the NoC through its
parameterizable encoders and decoders.

directly to main memory (determined by the decoded operation-
code). There are advantages and limitations inherent to the idea
of offloading memory operations into a specialized unit. MAPLE
behaves effectively as a Private Local Memory (PLM) so that the
data inside the scratchpad has no coherence guarantees after it is
fetched. The compiler technique or DSL using the API should make
sure that the arrays loaded by MAPLE have no further writes to
them. This condition holds for the irregularly accessed array of
most of the graph algorithms studied, since updates often occur
only after an epoch barrier. Leveraging conditions known at the
software level allows MAPLE to use highly parallel and efficient
hardware.

We envisionMAPLE to be an easy-to-adopt and scalable resource
to include in an SoC. MAPLE speeds up workloads that do not
leverage traditional cache locality and benefit from a programmable
unit accessible from the memory hierarchy.

3.7 MAPLE Integration via NoC
A key feature of MAPLE is that it can be adopted by a system
without modifying existing hardware. It can simply be accessed via
the on-chip interconnection network (NoC). This procedure has
been followed for the 2D P-Mesh protocol of OpenPiton [8], which
is an open-source, tile-based SoC framework. Figure 7 depicts this
integration of MAPLE on its own tile via the NoC routers. This
integration has been evaluated on FPGA (Section 4.2) and the results
are reported in Section 5.1.

Ease of adoption: The integration of MAPLE with OpenPiton
took around a hundred Verilog RTL lines of code (LoC), which
demonstrates that it is easy to adopt. This contrasts with the 5K LoC
of MAPLE itself. This demonstrates the advantage of integrating it
as a reusable IP block versus building it from scratch. Moreover, the
integration does not require details about the underlying system
aside from the communication protocol. It is agnostic to ISA and
CPU internals.

3.8 Reusing MAPLE in SoCs
Deep microarchitecture changes are hard to take into practice be-
cause of the verification burden. Hardware designers are spending
about half their time doing verification [20], and trends [47] indicate
that the number and diversity of IP blocks per SoC can exacerbate
this burden. Several frameworks have emerged to make SoC de-
velopment agile and multicore [5, 8, 13, 60], by connecting highly
parameterized IP blocks to form a complete SoC design. Reusing

823

ISCA ’22, June 18–22, 2022, New York, NY, USA Marcelo Orenes-Vera, et al.

IP alleviates the verification burden so that engineers can focus
on system-level requirements [4]. However, SoC generator frame-
works do not have a reusable hardware solution to the memory
latency bottleneck yet. Because MAPLE is agnostic to the ISA and
core model, it could even be included in SoC frameworks with
heterogeneous cores [4, 8] and hybrid ISAs [7, 34].

3.9 Formal Verification of MAPLE
MAPLE saves verification effort over the prior work in latency tol-
erance techniques. It is so because the verification burden is shifted
from the integration process to the decoupled unit. We invested
significant time to verify MAPLE’s correctness at the unit-level
to remain agnostic of the rest of the system and ease integration.
This makes MAPLE reusable without the verification burden of a
tightly-coupled integration.

The verification was conducted using industry-standard Sys-
temVerilog Assertions (SVA) [25] and JasperGold [12] and assisting
tools [42]. We followed a verification-first approach to save late-
stage debugging time and increase the confidence in creating a
verifiably correct design. We exhaustively tested the pipelines and
MMU interactions.

As a result of this lengthy process, we deliver a verified RTL
design for functional correctness and liveness. The quality metrics
provided by JasperGold give confidence in the goodness of the
assertions—they cover more than 99% of the MAPLE’s RTL.

After integrating MAPLE with the final system, we included the
SVA properties on the system-level simulation testbench. MAPLE
held correct, but our effort uncovered two bugs in the open-source
core interacting with MAPLE, which were communicated to the
maintainers. The formal testbench will also be included in the open-
sourcing of this project

4 EVALUATION METHODOLOGY
This section first describes four widely-used data-analytic bench-
marks that exhibit memory latency bottlenecks due to IMAs. Second,
it provides details of the SoC prototype emulated on FPGA. At the
end, it describes the methodology employed for the evaluation over
the prior techniques and sensitivity studies.

4.1 Applications for Data-analytics
Memory latency bottlenecks of Graph and Sparse Algebra appli-
cations have been characterized several times in the last couple
of years [22, 41, 56] with over 60-70% of the runtime dedicated to
memory stalls.

Sparse matrices often contain few non-zero elements and there-
fore are stored in compact representations. Two of the most popular
representations are Compressed Sparse Row (CSR) and Compressed
Sparse Column (CSC). They both efficiently represent a sparse ma-
trix using three one-dimensional arrays to store the number of
non-zero elements of a row (or column), indices of non-zero matrix
elements within that row (or column), and the non-zero matrix
elements. Meanwhile, dense matrices are simply stored as one-
dimensional arrays, similar to the data arrays in the CSR and CSC
formats. Because they are dense, the indices of the elements can be
determined by knowing the number of rows and columns and do
not require information about where non-zero elements are located.

Sparse Dense Hadamard Product (SDHP): Performs an el-
ementwise operation, e.g. multiplication, between a sparse and a
dense matrix. Because the operation is performed elementwise, the
dense matrix is sparsely sampled based on the locations of non-zero
elements in the sparse matrix. This results in irregular accesses
to the dense matrix, as they are not predictable and therefore not
amenable to the cache locality. By decoupling the kernel so that the
Access can fetch the irregular memory accesses before the Execute
core needs their data, this performance bottleneck can be alleviated.

Sparse Matrix-Matrix Multiplication (SPMM): Performs a
matrix multiplication between two sparse matrices A and B in a
layer-wise fashion [39] to train a sparse deep neural network. This
kernel is parallelized in the columns of B, while intermediate results
are stored in a dense, temporary matrix.

Sparse Matrix-Vector Multiplication (SPMV): Performs ma-
trix multiplication between a sparse matrix and a dense vector.
Similar to SDHP, the dense vector is sparsely sampled according to
the non-zero elements of the sparse matrix, providing an improve-
ment opportunity for decoupling.

Breadth First Search (BFS): Determines the distance (number
of hops) from a given root vertex in a graph to all other vertices.
The traversal starts at the root and in each iteration, examines all
vertices in a layer-wise fashion to find neighbors that have not been
visited and require an update. Accessing neighbor data requires
IMAs.

Datasets: We evaluate these kernels using real-world networks
and synthetic datasets. SDHP uses matrices from SuiteSparse [18]
and a Kronecker network [32], BFS operates onWikipedia, YouTube,
and LiveJournal graphs, while SPMM and SPMV use synthetic
matrices from riscv-tests [46].

4.2 FPGA Emulated SoC System
As described in Section 3.7, we have integratedMAPLE’s RTLwithin
the OpenPiton framework [6], to characterize its advantages in a
real system. OpenPiton is an open-source tile-basedmanycore archi-
tecture, which supports multiple ISAs. We use RISC-V Ariane [63]
cores to demonstrate how latency tolerance can be achieved even in
simple, non-speculative, in-order cores which are commonly used
in area- and power-constrained environments.

Table 2 presents the SoC details as well as the parameters used
for MAPLE and the FPGA used for the prototype.

This evaluation demonstrates that our RTL implementationworks
on a potential SoC, emulated on FPGA, running applications on
top of SMP Linux (version v5.6-rc4). We evaluate the applications
and datasets described above, running single and multithreaded
versions with OpenMP [16] parallelization. The FPGA evaluation
highlights the performance speedups obtained by doing prefetch-
ing and decoupling through MAPLE, over the baseline of do-all
parallelism.

The evaluation compares the same decoupled program with the
API, using (a) a shared-memory implementation of decoupling; and
(b) an implementation targeting MAPLE to characterize the benefits
of our hardware-software co-design. Then, the evaluation compares
the latest prefetching techniques over using LIMA to fetch loops of
IMAs. For a fair comparison, prefetches are inserted in the code at
the best location known to the programmer.

824

Tiny but Mighty: Designing and Realizing Scalable Latency Tolerance for Manycore SoCs ISCA ’22, June 18–22, 2022, New York, NY, USA

Table 2: SoC configuration for the full-system evaluation
booting Linux v5.6-rc4, including MAPLE (top); FPGA board
specification and prototype utilization (bottom).

SoC configuration OpenPiton + MAPLE

MAPLE Instances / Scratchpad Size 1 / 1KB
Core Count / Threads per core 2 / 1
Core Type RISCV64 Ariane 6-Stage In-O
L1D+L1I per core / Latency 8KB+16KB 4-way / 2-cycle
L2-size per tile (shared) / Latency 64KB 8-way / 30-cycle
FPGA board Virtex 7

Model XC7VX485T-2FFG1761C
Board Xilinx VC707
Core Frequency 60MHz
CLB LUTs Utilized 216831(69.9%)
DRAM Device / Size / Latency DDR3 / 1GB / 300-cycle

Table 3: Core and memory parameters of the simulated sys-
tem, to compare MAPLE over the prior work.

System Model Parameter Values

Core Count / Threads per core 2 / 1
Instruction Window / ROB Size 1 / 1, In-Order
L1D (per core) / Latency 8KB / 4-way / 2-cycle
L2-size (shared) / Latency 64KB / 8-way / 30-cycle
DRAM Size / Bandwidth / Latency 4GB / 68GB/s / 300-cycle

The related work has not provided RTL implementations. Since
implementing in RTL the related work that we wanted to com-
pare [9, 22] would take months, even for people with years of
industry experience, we compared against these in a simulator
and compared against software techniques on FPGA emulation.
The FPGA could only fit a MAPLE instance and two cores, so we
ran with scaling threads on the simulator as well (Figure 13). The
simulator-based evaluation of MAPLE over prior decoupling lever-
ages the automatic compiler program-slicing seen in Section 3.3.
However, this slicing was done manually for the FPGA runs, since
this was not yet incorporated into our FPGA flow.

4.3 Evaluation Against Prior Work
In addition to our real-system evaluations, which demonstrate a
significant improvement over the baseline, we evaluate MAPLE
over the latest latency-mitigation approaches, including DeSC de-
coupling [22] and DROPLET hardware prefetching [9], via system
simulation. To do this we leverage MosaicSim [38], a simulator for
heterogeneous architectures and hardware-software co-designs,
and model the communication queues used in MAPLE.

Table 3 shows the core model and memory hierarchy parameters
of the simulated system. We tried to match the simulator model
with the SoC configuration to prove the same premise, that MAPLE
can provide latency tolerance even for single-issue in-order cores.
This evaluation leverages DEC++ [51] compiler flow for automatic
code transformation of MAPLE-decoupling and DeSC.

4.4 Sensitivity Parameters to Characterize
MAPLE has many interesting parameters worth evaluating, like
the size of the queue connecting a pair of threads (determined at
runtime). For decoupling, this queue must be big enough to allow
the Access thread to run ahead and hide the memory latency so
that the Execute thread does not stall waiting for data. However,
the smaller the size, the more logical queues can share MAPLE
scratchpad memory. This size is closely related to the round-trip
latency between MAPLE and any given core (sets the throughput
to/from the queue) along with the DRAM latency, since it deter-
mines the runahead that is necessary. To evaluate the impact of
different queue sizes on the runahead between Access and Execute,
we study the performance counters provided by MAPLE through
debug operations when running on the FPGA.

It is important to characterize the round-trip latency between
cores and MAPLE, since it determines the cost of a data consume.
This latency depends on the memory hierarchy, the network, and
the placement of MAPLE unit(s). We first break down and char-
acterize this round-trip latency in the OpenPiton framework by
analyzing waveforms of an RTL simulation. Then, we study this
latency’s impact on performance by varying it as a parameter in
simulation.

5 RESULTS
This section first presents the performance results obtained from the
FPGA evaluation of our SoC prototype: It compares the speedups
obtained by decoupled programs (with and without using MAPLE)
over the parallel version of the original program; and the perfor-
mance of a program enhanced with prefetching over no prefetching.
The prefetching version is both evaluated using MAPLE’s API and
prefetching instructions. Second, there is a comparison against prior
hardware techniques, both for decoupling and hardware prefetch-
ing. Finally, it presents the conclusions from the sensitivity studies
and the area analysis of MAPLE’s RTL implementation.

5.1 FPGA Emulation of the SoC Prototype
Figure 8 compares the speedups achieved by decoupling Access
and Execute threads using MAPLE’s API and a shared-memory
implementation, over traditional doall parallelism on 2-threads.
The rightmost comparison shows the geomean speedup obtained
across all applications. Using MAPLE achieves 1.51× speedup over
doall and 2.27× over software-only decoupling. This demonstrates
that decoupling is not performant by itself in area-constrained
systems without MAPLE hardware support.

We also compare MAPLE against software prefetching with a
baseline of no prefetching for single-thread execution. We evaluate
MAPLE’s LIMA_PRODUCE operation, which places the prefetched
data into its hardware queues, from which the core consumes. Since
IMAs have poor cache locality, it is better to consume them from
MAPLE (as non-cacheable), and reserve the caches for regular data
accesses that exploit locality.

Figure 9 compares the speedups of prefetching IMAs in hardware
with MAPLE (using the LIMA operation), and conventional soft-
ware prefetching. The geomean speedup is 1.73× over no prefetch-
ing and up to 2.4× for SPMV. In addition, using MAPLE achieves a

825

ISCA ’22, June 18–22, 2022, New York, NY, USA Marcelo Orenes-Vera, et al.

0

1

2

3

SPMV SPMM SDHP BFS GEOMEAN

Sp
ee
du
p

Doall SW-Decoupling OpenLT-DecouplingMAPLE

Figure 8: Speedups obtained with decoupling (1 Access and 1
Execute thread), normalized to 2-thread doall parallelism. It
showcases that decoupling only in software is not effective
on the in-order baseline without hardware support.

0

1

2

3

SPMV SPMM SDHP BFS GEOMEAN

Sp
ee

du
p

No prefetching SW-Prefetching OpenLT-PrefetchingMAPLE

Figure 9: Speedups obtained for a single-thread doing non-
speculative prefetching with MAPLE (using the LIMA oper-
ation) and conventional software prefetching, normalized
to no prefetching. It shows that placing the IMA prefetches
into MAPLE queues is desirable over prefetching into the L1.

0

0.5

1

1.5

2

2.5

3

SPMV SPMM SDHP BFS GEOMEAN

Lo
ad

 in
str

. o
ve

rh
ea

d

No Prefetching SW-Prefetching OpenLT-PrefetchingMAPLE

Figure 10: Normalized load-instruction overhead due to
prefetching using the MAPLE’s LIMA operation and soft-
ware prefetching, normalized to no prefetching.

geomean speedup of 2.35× over software prefetching, showing the
advantage of not bringing highly irregular data into the L1 cache.

Moreover, prefetching using MAPLE reduces the instruction
overhead of software prefetching since IMAs in a whole tight inner-
loop can be offloaded into MAPLE with a single LIMA operation.

Figure 10 presents the normalized overhead of load instructions
due to prefetching relative to the baseline with no prefetching.
Software prefetching doubles the number of loads, whereas MAPLE
slightly reduces the total number of loads. The reduction occurs
because the sparse IMAs are gathered inside MAPLE queues, and
if the data type is a 32-bit word (as it happens in SPMV), the core
loads two words at a time.

This evaluation has also collected hardware performance coun-
ters to measure the average latency of load instructions.

0
10
20
30
40
50
60
70
80
90

100

SPMV SPMM SDHP BFS GEOMEAN

Av
g.

 L
oa

d
La

te
nc

y
(c

yc
le

s) No Prefetching SW-Prefetching OpenLT-PrefetchingMAPLE Prefetching

Figure 11: Average clock cycles of load instructions. It com-
pares software prefetching and LIMA operation. It shows
that MAPLE prefetches are timely.

Figure 11 shows that usingMAPLE’s LIMAoperation for prefetch-
ing significantly decreases the average load latency to nearly half
(1.85× geomean reduction), thus demonstrating its effectiveness to
hide memory latency of cache-averse accesses. It is significantly
more effective than doing software prefetching into the L1 cache,
which suffers from cache thrashing due to the low spatial and tem-
poral locality of IMAs. Moreover, consuming data from MAPLE
queues avoids the premature replacement of prefetched data in
caches. These advantages are shown clearly for SPMV. Although
it is not characterized here, LIMA operations can complement
regular prefetching instructions, where MAPLE is targeted
for IMAs while regular access patterns are prefetched na-
tively. Since the compiler can automatically detect which accesses
are irregular [50], it could insert adequate prefetches.

5.2 Comparison against Prior Work
Figure 12 compares the runtime performance of MAPLE decoupling,
DeSC [22] decoupling, and DROPLET [9] hardware prefetching,
as well as that of traditional doall parallelism, for 2 threads. The
speedup result for each application is the geomean of the speedups
obtained across the datasets evaluated.

DeSC slicing is more restrictive than MAPLE decoupling, since
DeSC’s Execute (Compute) core does not have visibility into the
memory hierarchy, and all data is passed to the Access (Supply) to
be stored. This results in a loss of runahead for BFS, and thus DeSC
performs poorly compared to MAPLE. Decoupling in general is not
effective for the selected SPMM implementation, since the IMAs are
Read-Modify-Writes and cannot be decoupled. Unlike DeSC, we do
not propose a DAE architecture, but MAPLE supports decoupling;
if the compiler pass for program slicing cannot find an IMA, it falls
back to doall parallelism. In contrast, SPMV and SDHP kernels—
well suited for decoupling—achieve high performance with DeSC.
We pay a threshold latency for cores to communicate with MAPLE,
which is slightly higher than the architecturally visible, tightly-
coupled, DeSC queues. MAPLE supports a flexible alternative
toDeSC for decoupling, which does not constrain the architecture.
Despite no coremodifications, MAPLE achieves at least 76% of DeSC
’s performance for decoupling-friendly applications, and it presents
overall better performance. It achieves a geomean speedup of 1.72×
over DeSC and 1.82× over DROPLET hardware prefetching, and
up to 3× (geomean 1.96×) over doall for BFS.

826

Tiny but Mighty: Designing and Realizing Scalable Latency Tolerance for Manycore SoCs ISCA ’22, June 18–22, 2022, New York, NY, USA

0

1

2

3

4

SPMV SPMM SHDP BFS GEOMEAN

Sp
ee
du
p

Doall Droplet DeSC OpenLTMAPLE

Figure 12: Speedup (y-axis) achieved with MAPLE, DeSC, and
DROPLET over the baseline. Decoupling with MAPLE and
DeSC use 1-Access and 1-Execute threads, while DROPLET
and the baseline perform 2-thread doall.

0

1

2

3

4

5

6

7

8

9

SPMV SHDP BFS GEOMEAN

Sp
ee
du
p

Doall-2 OpenLT-2 Doall-4 OpenLT-4 Doall-8 OpenLT-8MAPLE MAPLEMAPLE

Figure 13: Speedup (y-axis) achievedwith decoupling (threads
are sharing a singleMAPLEunit) over do-all parallelism,with
scaling threads: 2, 4, and 8.

LSU L1 MAPLE

ARIANE CORE TILE X TILE X+1

1 cycle 2 cycles

L1.5

4 cycles

4 cycles

TRI
iface

5 cycles1 cycles 2 cycles

NoC

3 cycles

3 cycles

Figure 14: Step by step breakdown of the round trip latency
of Core-to-MAPLE communication at the OpenPiton frame-
work. Latency could be lower if L1 requests would not pass
through the L1.5 cache. A lower communication latency
would incur greater performance benefits (studied in Fig-
ure 15).

5.3 Conclusions about the Sensitivity Studies
Figure 13 shows that our co-design scales well with an increas-
ing number of threads, maintaining the speedup achieved over
doall parallelism when scaling to 4 and 8 threads sharing the same
MAPLE unit for decoupling. More units can be employed for larger
thread counts in a tiled manner, conforming to a scalable system,
only limited ultimately by the chip IO.

0

1

2

3

4

SPMV SHDP BFS GEOMEAN

Sp
ee
du
p

Doall OpenLT-30 OpenLT-20 OpenLT-10MAPLE MAPLE MAPLE

Figure 15: Speedup (y-axis) achieved with different core-to-
MAPLE latency values, to study the impact of communication
latency on performance.

When fetching data into MAPLE queues (decoupling or non-
speculative prefetching), the long latency of IMAs is reduced to the
consume round trip between the core and MAPLE. Figure 14 shows
the characterization of that latency for the OpenPiton SoC. This
latency is similar to the L2 access, 25 cycles plus a cycle per hop,
and an order of magnitude smaller than DRAM.

In a manycore mesh scenario, MAPLE instances are often scat-
tered across the X and Y tile axes so that MAPLE are near cores.
As explained in Section 3.6, MAPLE instances are mapped into
virtual memory, and a process could leverage the OS to minimize
the distance between the running core and any available MAPLE
instance, to minimize round-trip latency.

Besides evaluating the particular latency of the OpenPiton net-
work, we characterize in Figure 15 how the performance changes
with smaller and larger communication latency values. The number
next to MAPLE represents the average round-trip latency between
cores and MAPLE, in cycles. This demonstrates that speedups are
greater with a lower NoC delay.

We studied the performance impact of different queue sizes
and observed that performance remains stable while the queues
can hold enough data to hide latency. Although it is not shown
here, a queue of 32 entries—4 bytes each—was sufficient to provide
runahead without losing performance, while 16 entries caused a
5-10% decrease. With 32 entries per queue, MAPLE can supply data
for up to 8 cores with just 1KB of storage (256 entries).

5.4 Area analysis of the RTL Implementation
In our design, MAPLE synthesis including 8 circular queues sharing
a 1KB scratchpad represents 1.1% of the area of the single-issue
in-order Ariane [63, 64] cores it can supply, which are already very
area-efficient. Thus, the overhead of MAPLE compared to more
beefy cores would be negligible. MAPLE need not be per-core, and
thus its area can be amortized over multiple cores that use it. In
contrast, tightly-integrated prefetchers can increase logic delay,
core area, and cycle latency

Some prefetcher designs claim a low storage overhead (<1KB),
but their designs also contain FSMs, muxes, and combinational logic
whose area is not accounted for in their bitcount-based (storage)
estimates. MAPLE is the only technique implemented in RTL and
taped out, to our knowledge. While area overheads for IMP [62],
Prodigy [56] and other related works only count storage, MAPLE
overhead is calculated from the 12nm synthesis of our chip tapeout.

827

ISCA ’22, June 18–22, 2022, New York, NY, USA Marcelo Orenes-Vera, et al.

6 ADDITIONAL RELATED WORK
Since Decoupled Access-Execute (DAE) was originally proposed by
Smith [48], several hardware implementations have been proposed,
where data communication occurs through architectural queues
[21, 36, 61]. In these papers, DAE aims to hide memory latency
as a simpler alternative to superscalar processors. Later work ana-
lyzes the problems that arise from work imbalance between Access
and Execute [27] and loss of decoupling (LoD) due to control de-
pendencies [11]. Other work has envisioned Access and Execute
cores having multiple physical threads [44, 55], or even having
both Access and Execute as physical threads in the same core [15].
DeSC [22] introduces compiler and hardware techniques to avoid
LoD and large instruction windows, and a special buffer in the
Access core to host early committed load instructions. Memory
Access Dataflow (MAD) [24] introduces an engine optimized for
dataflow computation that is integrated with cores or accelerators
to execute memory-intensive portions of programs.

A limitation of these approaches is they require special ISA in-
structions to configure and use the communication queues.We over-
come this problem by placing the queues within the MAPLE tiles—
addressable through MMIO—allowing them to be shared among
several cores in a manycore architecture. MAPLE is capable of pro-
viding fine-grain data supply with the same programming model
as a native decoupling architecture.

Hardware prefetching has long been proposed to avoid cache
misses in regular access patterns [26, 40], but traditionally does
not work for IMAs. Recent proposals [1, 3, 62] achieve better per-
formance in applications dominated by IMAs, e.g. graph analytics.
Notably, Prodigy [56] introduces novel compiler techniques to fur-
ther assist the hardware. However, these approaches still require
modification of the core microarchitecture, which is a considerable
engineering effort both in design and verification. Thus, software
techniques for latency tolerance are a tempting proposition in terms
of ease of adoption.

Other hardware techniques like Slipstream [52, 54] and Trig-
gered Instructions [43], strive to separate data access and usage.
Pipette [41] is a hardware-software co-design that aims to gen-
eralize decoupling to a stream of stages that a program can go
through. However, the deep microarchitecture modifications of
these techniques limit their adoption in practice.

Software latency tolerance often uses compiler knowledge to im-
prove performance. DSWP [45] does automatic software pipelining
without speculation by utilizing a hardware-aided inter-thread com-
munication mechanism; Clairvoyance [58] proposes compiler code
separation into Access-Execute phases, to leverage the wide ex-
ecution engines present in OoO cores. However, these software
techniques rely on expensive hardware structures (RoB and LSQ)
to maintain large instruction windows. As an alternative to this,
SWOOP [59] introduces compiler techniques, with the hardware as-
sistance for context remapping—a novel form of register renaming—
to enable dynamic separation of Access and Execute phases in the
code. However, SWOOP requires microarchitectural changes of the
core, while MAPLE works with off-the-shelf cores. Our design does
not need the core to support large instruction windows since it
can achieve memory-level-parallelism (MLP) in an area-efficient
manner through MAPLE.

Helper threads avoid large instruction windows by using a sec-
ondary thread of execution to improve the performance of the main
thread [35]. This thread is either programmer [14] or compiler
generated [66]. Software prefetching has been shown effective for
pointer indirection [2], aided by compiler techniques to automati-
cally insert prefetches in the code. Helper threads and prefetching
are sensitive to timeliness and can cause cache thrashing if not
properly controlled, along with other problems like code-bloating
already described in Section 2.

Many of the latency tolerance techniques mentioned here
can co-exist or combine with MAPLE. For example, we envision
leveraging existing compiler techniques to target its API [2, 29].
This paper combines the advantages of software techniques, i.e.
leveraging program knowledge, and hardware specialization while
remaining ISA-agnostic so it can be widely adopted and extended.

7 CONCLUSION
This paper has introduced a hardware-software co-design for la-
tency tolerance that offers the best of both worlds: its flexible soft-
ware interface enables MAPLE to be automatically targeted by
compiler techniques for both prefetching and decoupling, and its
specialized hardware does not need ISA extensions nor microarchi-
tectural changes to the cores, which is key in today’s open-source
hardware renaissance.

We have demonstrated MAPLE gains on FPGA emulation by
running sparse linear algebra and graph analytic kernels on SMP
Linux. MAPLE provides significant performance improvements,
2.35× and 2.27×, over software-only techniques, and 1.82× and
1.72× geomean, over hardware prefetching and decoupling respec-
tively. Moreover, MAPLE provides increased programmability and
reusability over hardware-only approaches. The key for perfor-
mance/area efficiency is to benefit both from compiler-extracted
program knowledge and hardware specialization, while the key for
usability is to provide a generic, extensible software interface and
easy-to-adopt hardware.

We envision MAPLE’s VM-capable hardware and programming
model to be reused and extended by both the hardware and the
software community. For example, to do pipelining, where each
program stage is executed in a different off-the-shelf core or accel-
erator. We are open sourcing MAPLE with the publication of this
paper.

ACKNOWLEDGMENTS
We thank Tyler Sorensen and Esin Tureci for helping to craft
MAPLE’s software API. We thank the rest of the DECADES team
for their helpful feedback. This material is based on research spon-
sored by the Air Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) under agreement
No. FA8650-18-2-7862 and the National Science Foundation (NSF)
under Grant No. CNS-1823222. 1 Prof. Aragón was also supported
by Fundación Séneca-Agencia de Ciencia y Tecnología, Región de
Murcia, Programa Jiménez de la Espada (21508/EE/21).
1The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of AFRL, DARPA, NSF, or the U.S. Government.

828

Tiny but Mighty: Designing and Realizing Scalable Latency Tolerance for Manycore SoCs ISCA ’22, June 18–22, 2022, New York, NY, USA

REFERENCES
[1] Sam Ainsworth and Timothy M. Jones. 2016. Graph Prefetching Using Data

Structure Knowledge. In Proceedings of the 2016 International Conference on Su-
percomputing (Istanbul, Turkey) (ICS ’16). Association for Computing Machinery,
NewYork, NY, USA, Article 39, 11 pages. https://doi.org/10.1145/2925426.2926254

[2] Sam Ainsworth and Timothy M Jones. 2017. Software prefetching for indirect
memory accesses. In 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 305–317.

[3] Sam Ainsworth and Timothy M Jones. 2018. An event-triggered programmable
prefetcher for irregular workloads. ACM SIGPLAN Notices 53, 2 (2018), 578–592.

[4] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A. Magyar,
H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright, J. Zhao, Y. S. Shao,
K. Asanović, and B. Nikolić. 2020. Chipyard: Integrated Design, Simulation, and
Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21.

[5] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The Rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[6] Jonathan Balkind, Katie Lim, Fei Gao, Jinzheng Tu, David Wentzlaff, Michael
Schaffner, Florian Zaruba, and Luca Benini. 2019. OpenPiton+Ariane: The First
Open-Source, SMP Linux-booting RISC-V System Scaling From One to Many
Cores. In Third Workshop on Computer Architecture Research with RISC-V, CARRV,
Vol. 19.

[7] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory Chirkov, Ang
Li, Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian Zaruba, Kunal Gulati,
Luca Benini, and David Wentzlaff. 2020. BYOC: A "Bring Your Own Core"
Framework for Heterogeneous-ISA Research. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 699–714. https://doi.org/10.1145/
3373376.3378479

[8] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
MatthewMatl, and DavidWentzlaff. 2016. OpenPiton: An Open Source Manycore
Research Framework. In ASPLOS. ACM, 217–232.

[9] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and Y. Xie. 2019. Analysis
and Optimization of the Memory Hierarchy for Graph Processing Workloads. In
2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 373–386.

[10] Nathan Beckmann. 2021. The Case for a Programmable Memory Hierarchy.
https://www.sigarch.org/the-case-for-a-programmable-memory-hierarchy/.

[11] Peter L Bird, Alasdair Rawsthorne, and Nigel P Topham. 1993. The effectiveness
of decoupling. In Proceedings of the 7th international conference on Supercomputing.
47–56.

[12] Cadence Design Systems. 2015. JasperGold Apps User’s Guide.
[13] Luca P. Carloni. 2016. The Case for Embedded Scalable Platforms. In Proceedings

of the 53rd Design Automation Conference (DAC). 17:1–17:6.
[14] Jamison D Collins, HongWang, Dean M Tullsen, Christopher Hughes, Yong-Fong

Lee, Dan Lavery, and John P Shen. 2001. Speculative precomputation: Long-
range prefetching of delinquent loads. In Proceedings 28th Annual International
Symposium on Computer Architecture. IEEE, 14–25.

[15] Neal Clayton Crago and Sanjay Jeram Patel. 2011. OUTRIDER: Efficient memory
latency tolerance with decoupled strands. In Proceedings of the 38th annual
international symposium on Computer architecture. 117–128.

[16] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard API
for Shared-Memory Programming. IEEE Computational Science and Engineering
5, 1 (Jan. 1998), 10 pages. https://doi.org/10.1109/99.660313

[17] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai, Austin Rovin-
ski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve Dai, Aporva Amarnath,
Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rajesh K. Gupta, Zhiru Zhang,
Ronald Dreslinski, Christopher Batten, and Michael Bedford Taylor. 2018. The
Celerity Open-Source 511-Core RISC-V Tiered Accelerator Fabric: Fast Architec-
tures and Design Methodologies for Fast Chips. IEEE Micro 38, 2 (2018), 30–41.
https://doi.org/10.1109/MM.2018.022071133

[18] Timothy A Davis. 2015. SuiteSparse: A suite of sparse matrix software. URL
http://faculty. cse. tamu. edu/davis/suitesparse. html (2015).

[19] Esperanto Technologies. 2021. Esperanto’s ET-Minion on-chip RISC-V cores.
https://www.esperanto.ai/technology/.

[20] Harry D. Foster. 2015. Trends in Functional Verification: A 2014 Industry Study.
In Proceedings of the 52nd Annual Design Automation Conference (San Francisco,
California) (DAC ’15). Association for Computing Machinery, New York, NY,
USA, Article 48, 6 pages. https://doi.org/10.1145/2744769.2744921

[21] James RGoodman, Jian-tuHsieh, Koujuch Liou, AndrewR Pleszkun, PB Schechter,
and Honesty C Young. 1985. PIPE: a VLSI decoupled architecture. ACM SIGARCH
Computer Architecture News 13, 3 (1985), 20–27.

[22] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2015. DeSC: Decoupled
Supply-compute Communication Management for Heterogeneous Architectures.

In MICRO. ACM.
[23] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2019. Efficient Data

Supply for Parallel Heterogeneous Architectures. ACM TACO 16, 2, Article 9
(2019), 23 pages. https://doi.org/10.1145/3310332

[24] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. 2015. Efficient
execution of memory access phases using dataflow specialization. In Proceedings
of the 42nd Annual International Symposium on Computer Architecture. 118–130.

[25] IEEE. 2013. Standard for SystemVerilog–Unified Hardware Design, Specification,
and Verification Language. (2013), 1–1315. https://doi.org/10.1109/IEEESTD.
2013.6469140

[26] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2011. Access map pattern matching for
high performance data cache prefetch. Journal of Instruction-Level Parallelism 13,
2011 (2011), 1–24.

[27] Lizy Kurian John, Vinod Reddy, Paul T Hulina, and Lee D Coraor. 1995. Program
balance and its impact on high performance RISC architectures. In Proceedings
of 1995 1st IEEE Symposium on High Performance Computer Architecture. IEEE,
370–379.

[28] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–29.

[29] Manjunath Kudlur and Scott Mahlke. 2008. Orchestrating the execution of stream
programs on multicore platforms. ACM SIGPLAN Notices 43, 6 (2008), 114–124.

[30] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO. IEEE Press.

[31] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When Prefetching Works,
When It Doesn’t, and Why. ACM Trans. Archit. Code Optim. 9, 1, Article 2 (March
2012), 29 pages. https://doi.org/10.1145/2133382.2133384

[32] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling Net-
works. Journal of Machine Learning Reseach (JMLR) 11 (March 2010), 985–1042.

[33] Sean Lie. 2021. Multi-Million Core, Multi-Wafer AI Cluster. In 2021 IEEE Hot
Chips 33 Symposium (HCS). IEEE Computer Society, 1–41.

[34] Katie Lim, Jonathan Balkind, and David Wentzlaff. 2019. JuxtaPiton: Enabling
Heterogeneous-ISA Research with RISC-V and SPARC FPGA Soft-Cores. In Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (Seaside, CA, USA) (FPGA ’19). Association for ComputingMachinery,
New York, NY, USA, 184. https://doi.org/10.1145/3289602.3293958

[35] Chi-Keung Luk. 2001. Tolerating memory latency through software-controlled
pre-execution in simultaneous multithreading processors. In Proceedings 28th
Annual International Symposium on Computer Architecture. IEEE, 40–51.

[36] William Mangione-Smith, Santosh G Abraham, and Edward S Davidson. 1990.
The effects of memory latency and fine-grain parallelism on astronautics ZS-1
performance. In Twenty-Third Annual Hawaii International Conference on System
Sciences, Vol. 1. IEEE, 288–296.

[37] Aninda Manocha, Tyler Sorensen, Esin Tureci, Opeoluwa Matthews, Juan L
Aragón, and Margaret Martonosi. 2021. GraphAttack: Optimizing Data Supply
for Graph Applications on In-Order Multicore Architectures. ACM Transactions
on Architecture and Code Optimization (TACO) 18, 4 (2021), 1–26.

[38] Opeoluwa Matthews, Aninda Manocha, Davide Giri, Marcelo Orenes-Vera, Esin
Tureci, Tyler Sorensen, Tae JunHam, Juan LAragón, Luca P Carloni, andMargaret
Martonosi. 2020. MosaicSim: A Lightweight, Modular Simulator for Heteroge-
neous Systems. In 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 136–148.

[39] Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad
Hammoud. 2019. Multithreaded Layer-wise Training of Sparse Deep Neural
Networks using Compressed Sparse Column. In 2019 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 1–6.

[40] K. J. Nesbit and J. E. Smith. 2004. Data Cache Prefetching Using a Global His-
tory Buffer. In 10th International Symposium on High Performance Computer
Architecture (HPCA’04). 96–96.

[41] Quan M Nguyen and Daniel Sanchez. 2020. Pipette: Improving Core Utilization
on Irregular Applications through Intra-Core Pipeline Parallelism. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
596–608.

[42] Marcelo Orenes-Vera, Aninda Manocha, David Wentzlaff, and Margaret
Martonosi. 2021. AutoSVA: Democratizing Formal Verification of RTL Mod-
ule Interactions. In Proceedings of the 58th Design Automation Conference (DAC).

[43] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V. Pavlov, A.
Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess, and J. Emer. 2013. Triggered
Instructions: A Control Paradigm for Spatially-Programmed Architectures. In
ISCA.

[44] J-M Parcerisa and Antonio Gonzalez. 1999. The synergy of multithreading and
access/execute decoupling. In Proceedings Fifth International Symposium on High-
Performance Computer Architecture. IEEE, 59–63.

[45] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. 2004.
Decoupled Software Pipelining with the Synchronization Array. In Proceedings
of the 13th International Conference on Parallel Architectures and Compilation
Techniques (PACT). http://dx.doi.org/10.1109/PACT.2004.14

829

https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1145/3373376.3378479
https://doi.org/10.1145/3373376.3378479
https://www.sigarch.org/the-case-for-a-programmable-memory-hierarchy/
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/MM.2018.022071133
https://www.esperanto.ai/technology/
https://doi.org/10.1145/2744769.2744921
https://doi.org/10.1145/3310332
https://doi.org/10.1109/IEEESTD.2013.6469140
https://doi.org/10.1109/IEEESTD.2013.6469140
https://doi.org/10.1145/2133382.2133384
https://doi.org/10.1145/3289602.3293958
http://dx.doi.org/10.1109/PACT.2004.14

ISCA ’22, June 18–22, 2022, New York, NY, USA Marcelo Orenes-Vera, et al.

[46] RISC-V Foundation. 2019. Riscv-tests. https://github.com/riscv/riscv-tests..
[47] Karl Rupp. 2018. 42 Years of Microprocessor Trend Data. https://www.karlrupp.

net/2018/02/42-years-of-microprocessor-trend-data/.
[48] James Smith. 1982. Decoupled Access/Execute Computer Architectures. In Pro-

ceedings of the 9th Annual Symposium on Computer Architecture (Austin, Texas,
USA) (ISCA). 8 pages. http://dl.acm.org/citation.cfm?id=800048.801719

[49] James E Smith. 1982. Decoupled access/execute computer architectures. In ACM
SIGARCH Computer Architecture News, Vol. 10. IEEE Press.

[50] Tyler Sorensen, Aninda Manocha, Esin Tureci, Marcelo Orenes-Vera, Juan L
Aragón, and Margaret Martonosi. 2020. A simulator and compiler framework for
agile hardware-software co-design evaluation and exploration. In 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE, 1–9.

[51] Tyler Sorensen, Aninda Manocha, Esin Tureci, Marcelo Orenes-Vera, Juan L.
Aragón, and Margaret Martonosi. 2020. A Simulator and Compiler Framework
for Agile Hardware-Software Co-design Evaluation and Exploration. In 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD). 1–9.

[52] V. Srinivasan, R. B. R. Chowdhury, and E. Rotenberg. 2020. Slipstream Processors
Revisited: Exploiting Branch Sets. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). 105–117.

[53] Xian-He Sun and Yong Chen. 2010. Reevaluating Amdahl’s law in the multicore
era. Journal of Parallel and distributed Computing 70, 2 (2010), 183–188.

[54] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg. 2000. Slipstream
processors: Improving both performance and fault tolerance. ACM SIGPLAN
Notices 35, 11 (2000), 257–268.

[55] Michael Sung, Ronny Krashinsky, and Krste Asanović. 2001. Multithreading
decoupled architectures for complexity-effective general purpose computing.
ACM SIGARCH Computer Architecture News 29, 5 (2001), 56–61.

[56] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk, Christos
Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen Sun, et al. 2021.
Prodigy: Improving the Memory Latency of Data-Indirect Irregular Workloads
Using Hardware-Software Co-Design. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 654–667.

[57] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat,
Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, et al.
2002. The raw microprocessor: A computational fabric for software circuits and

general-purpose programs. IEEE micro 22, 2 (2002), 25–35.
[58] Kim-Anh Tran, Trevor E Carlson, Konstantinos Koukos, Magnus Själander,

Vasileios Spiliopoulos, Stefanos Kaxiras, and Alexandra Jimborean. 2017. Clair-
voyance: look-ahead compile-time scheduling. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 171–184.

[59] Kim-Anh Tran, Alexandra Jimborean, Trevor E Carlson, Konstantinos Koukos,
Magnus Själander, and Stefanos Kaxiras. 2018. SWOOP: software-hardware
co-design for non-speculative, execute-ahead, in-order cores. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 328–343.

[60] P. N. Whatmough, M. Donato, G. G. Ko, S. K. Lee, D. Brooks, and G. Wei. 2020.
CHIPKIT: An Agile, Reusable Open-Source Framework for Rapid Test Chip
Development. IEEE Micro 40, 4 (2020), 32–40.

[61] Wm AWulf. 1992. Evaluation of the WM Architecture. In Proceedings of the 19th
annual international symposium on Computer architecture. 382–390.

[62] Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas Devadas.
2015. IMP: Indirect memory prefetcher. In Proceedings of the 48th International
Symposium on Microarchitecture. 178–190.

[63] Florian Zaruba and Luca Benini. 2018. Ariane: An Open-Source 64-bit RISC-V
Application Class Processor and latest Improvements. Technical talk at the
RISC-V Workshop https://www.youtube.com/watch?v=8HpvRNh0ux4.

[64] F. Zaruba and L. Benini. 2019. The Cost of Application-Class Processing: Energy
and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in
22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 27, 11 (Nov 2019), 2629–2640. https://doi.org/10.1109/TVLSI.2019.
2926114 https://github.com/openhwgroup/cva6.

[65] Florian Zaruba, Fabian Schuiki, and Luca Benini. 2020. Manticore: A 4096-Core
RISC-V Chiplet Architecture for Ultraefficient Floating-Point Computing. IEEE
Micro 41, 2 (2020), 36–42.

[66] Weifeng Zhang, Dean M Tullsen, and Brad Calder. 2007. Accelerating and adapt-
ing precomputation threads for efficient prefetching. In 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture. IEEE, 85–95.

[67] Yunming Zhang,Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. Proceedings
of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

830

https://github.com/riscv/riscv-tests.
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
http://dl.acm.org/citation.cfm?id=800048.801719
https://www.youtube.com/watch?v=8HpvRNh0ux4
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TVLSI.2019.2926114
https://github.com/openhwgroup/cva6

	Abstract
	1 Introduction
	2 Background and Motivation
	3 The Hardware-Software Approach
	3.1 Using MAPLE for Decoupled Programs
	3.2 Using MAPLE for Prefetching
	3.3 Targeting MAPLE Automatically
	3.4 MAPLE Hardware Implementation
	3.5 Virtual Memory Support
	3.6 Communicating with MAPLE units
	3.7 MAPLE Integration via NoC
	3.8 Reusing MAPLE in SoCs
	3.9 Formal Verification of MAPLE

	4 Evaluation Methodology
	4.1 Applications for Data-analytics
	4.2 FPGA Emulated SoC System
	4.3 Evaluation Against Prior Work
	4.4 Sensitivity Parameters to Characterize

	5 Results
	5.1 FPGA Emulation of the SoC Prototype
	5.2 Comparison against Prior Work
	5.3 Conclusions about the Sensitivity Studies
	5.4 Area analysis of the RTL Implementation

	6 Additional Related work
	7 Conclusion
	Acknowledgments
	References

