
MEGsim: A Novel Methodology for Efficient
Simulation of Graphics Workloads in GPUs

Jorge Ortiz
Universidad de Murcia

Murcia, Spain

jorge.ortize@um.es

D. Corbalán-Navarro
Universidad de Murcia

Murcia, Spain

david.corbalan2@um.es

Juan L. Aragón
Universidad de Murcia

Murcia, Spain

jlaragon@um.es

Antonio González
Universitat Politècnica de Catalunya

Barcelona, Spain

antonio@ac.upc.edu

Abstract—An important drawback of cycle-accurate microar-
chitectural simulators is that they are several orders of magnitude
slower than the system they model. This becomes an important
issue when simulations have to be repeated multiple times
sweeping over the desired design space. In the specific context of
graphics workloads, performing cycle-accurate simulations are
even more demanding due to the high number of triangles that
have to be shaded, lighted and textured to compose a single
frame. As a result, simulating a few minutes of a video game
sequence is extremely time-consuming.

In this paper, we make the observation that collecting informa-
tion about the vertices and primitives that are processed, along
with the times that shader programs are invoked, allows us to
characterize the activity performed on a given frame. Based on
that, we propose a novel methodology for the efficient simulation
of graphics workloads called MEGsim, an approach that is
capable of accurately characterizing entire video sequences by
using a small subset of selected frames which substantially drops
the simulation time. For a set of popular Android games, we
show that MEGsim achieves an average simulation speedup of
126×, achieving remarkably accurate results for the estimated
final statistics, e.g., with average relative errors of just 0.84%
for the total number of cycles, 0.99% for the number of DRAM
accesses, 1.2% for the number of L2 cache accesses, and 0.86%
for the number of L1 (tile cache) accesses.

Index Terms—Simulation, GPUs, Graphics pipeline, Statistical
simulation, Sampling, Clustering

I. INTRODUCTION

Simulation tools and frameworks play an important role in

computer architecture research. The main goal of simulation

is to model and characterize new research ideas, estimate their

performance improvements, measure their power consump-

tion and evaluate, debug and more precisely understand the

behavior of existing systems. A key factor of architectural

simulations is the excessively long simulation time. In par-

ticular, cycle-accurate simulations require a huge amount of

time. In the case of graphics processors and the simulation

of graphics workloads, which involve complex scenes made

up of hundreds of thousands of triangles (primitives) to be

rendered, the simulation of a 500-frame video sequence (8

seconds of gaming at a conventional frame rate of 60 frames

per second) of a representative Android game can take up to

one day in a state-of-the-art simulator [1]. This becomes an

important concern, especially when hundreds of simulations

have to be carried out to explore a desired design space.

One common approach to address the long simulation

times in architecture-level simulations of conventional CPUs

is relying on sampling techniques to identify repetitive parts of

the workload and then use a single sample of each repeating

part to model the complete behavior of the application. Sim-

Point [2] is a well-known approach aimed at general-purpose

processors that automatically finds a small set of simulation

points that represent the complete execution of a general-

purpose program. SimPoint builds on the idea that the behavior

of a program at a given time is directly related to the code

executed during that interval. In order to get this behavior

information, SimPoint relies on the use of basic blocks by

dividing the execution of a program in intervals, of e.g. 100

millions of instructions, and collecting the number of times

each basic block is executed within each execution interval.

In the case of GPUs, which present a totally different archi-

tecture, techniques like SimPoint cannot be directly applied for

several reasons. First, not all the stages of the graphics pipeline

are programmable. Therefore, just by looking at the program

code would be impossible to characterize the execution of

some important phases like the Tiling Engine. Moreover, as a

video game sequence is composed of a number of frames that

have to be rendered, the use of frames is a more appropriate

division when it comes to analyzing the execution of a graphics

workload, instead of using fixed intervals of instructions.

Based on the above considerations, we propose a method-

ology to efficiently simulate graphics workloads in GPUs

called MEGsim, a novel approach inspired by the underlying

idea of SimPoint that is capable of automatically determining

similarities between frames. MEGsim makes use of differ-

ent parameters to characterize the execution of a graphics

workload which are representative of the activity carried out

along the different stages of the graphics pipeline (depicted in

Figure 1).

To accomplish this, the information about the execution of

program shaders is used. A shader is a user-defined program

designed to run on a particular stage of the graphics processor.

There are two types of shaders: vertex shaders and fragment
shaders. The former can manipulate the attributes of vertices

and determine the activity happening in the Geometry stages

of the graphics pipeline. On the other hand, fragment shaders

apply a shading and a lighting model to produce the final

color of a pixel on the screen, so they determine the activity

69

2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-6654-5954-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISPASS55109.2022.00007

Fig. 1: Overview of the graphics pipeline of a mobile GPU implementing a Tile-Based Rendering architecture. For MEGsim,

one parameter is selected from the different stages to characterize the execution of a graphics workload.

of the Raster stages in the graphics pipeline. We argue that the

number of times that the different program shaders have been

executed allows to characterize the behavior of each frame. In

contrast with SimPoint, that relies on the use of basic blocks,

the main difference between a shader and a basic block is

that a shader can contain branches (i.e., more than one control

flow). In fact, program shaders can be considered as supersets

of basic blocks. In the case of GPUs, control flow analysis

is not critical because threads are grouped into warps that

proceed in a lock-step manner, and normally, both paths of

conditional branches are executed, each one for a different

subset of threads.

We also argue that information about program shaders alone

is not enough for an accurate characterization of a frame,

since it would lack information about another critical part of

the graphics pipeline: the Tiling Engine. Therefore, MEGsim

uses an additional parameter to characterize the activity of the

Tiling Engine stages. In particular, the number of primitives in

a frame has been determined to be a good proxy to characterize

the activity done by the Tiling Engine on each frame.

A correlation study was carried out to ensure that all these

parameters have an impact on the simulation metrics and our

experimental results showed that the selected characterizing

parameters have a high correlation coefficient with several key

performance metrics such as the total number of cycles. Once

the parameters to characterize a frame are identified, another

key factor of the proposed simulation methodology is the

weight given to each one of these parameters. We argue that

these weights should be proportional to the activity performed

on the different stages of the graphics pipeline for an average

graphics workload.

The selected characterizing parameters are then combined

to create a vector of characteristics that can be used to

compare how similar two frames are. This information is

used to group similar frames together by using a clustering

algorithm. Our approach relies on the k-means method, which

uses an iterative refinement technique that tries to minimize the

variance. MEGsim also makes use of the Bayesian Information

Criterion (BIC) [3] to measure the goodness of a fitting.

Different studies have been carried out to evaluate the

accuracy and speedup achieved by MEGsim. Our experimental

results show that, thanks to the use of the proposed MEGsim

methodology, it is possible to reduce the amount of frames

to simulate by a factor of 63× in the worst case, whereas in

some applications the number of frames to be simulated is

reduced by a factor as high as 165×. On average, MEGsim

is capable of reducing the simulation time by two orders of

magnitude (a factor of 126×) with a negligible impact on the

accuracy of the simulation results. In particular, the average

relative error of several key performance metrics is extremely

low: 0.84% for the execution time (i.e., number of cycles),

0.99% for the number of main memory accesses, 1.2% for the

number of L2 cache accesses and 0.86% for the number of Tile

cache accesses. This shows the high accuracy and robustness

of the proposed simulation methodology, given the extremely

high accuracy in a variety of key performance metrics. As

a comparison point, we have evaluated the accuracy and

performance of simple random sub-sampling, showing that it

requires 58.5× more frames to reach the same accuracy as

MEGsim.

To summarize, the main contributions of this paper are:

1) The observation that it is possible to characterize the

frames in a scene by using the input information of the

different stages of the graphics pipeline.

2) A detailed proposal of MEGsim, a novel methodology

that is able to exploit the aforementioned observation to

perform efficient simulations of graphics workloads in

GPU architectures.

3) An experimental evaluation of MEGsim that shows an

average reduction of 126× in the number of frames to

simulate with a relative error lower than 1% for different

simulation output statistics.

The rest of the paper is organized as follows. Section

II provides some background on mobile GPUs and simu-

lation techniques, and presents some related work. Section

III describes the proposed MEGsim simulation methodology

whereas Section IV explains the evaluation approach we have

followed. Section V reports the experimental results of our

simulation methodology. Finally, Section VI summarizes the

main conclusions of this work.

II. BACKGROUND AND RELATED WORK

A. The Graphics Pipeline of GPUs

As depicted in Figure 1, the graphics pipeline in a typical

GPU consists of two parts: the Geometry Pipeline, which

is a front-end that transforms all the vertices of the scene

from object-space coordinates to screen-space coordinates,

generating all the corresponding primitives (typically triangles)

that compose the whole scene; and the Raster Pipeline, a back-

end that discretizes each one of the primitives into pixel-sized

units called fragments, which are then applied a shading and a

lighting model, texturized, and blended with other transparent

fragments falling in the same screen position, to generate their

final output color which is written into a frame buffer.

70

There are two main rendering modes: Immediate-Mode

Rendering (IMR) and Tile-Based Rendering (TBR) [4]. In

IMR, each primitive generated in the Geometry Pipeline is

immediately sent to the Raster Pipeline for further pixel

processing. Graphical objects that overlap with others generate

a lot of fragments that are not visible in the final frame. Part

of them are culled during a visibility checking stage like the

Z-Test, which is based on depth checking. However, many

other fragments cannot be culled incurring a large amount

of useless work, an effect known as overdraw [5], [6]. In

IMR, the problem is even worse because the colors of those

eventually occluded fragments are not only computed but also

written into main memory multiple times, thus increasing the

main memory traffic and wasting energy. In contrast, TBR

architectures completely avoid this useless memory traffic by

splitting the screen into equally-sized small square regions

called tiles, and processing them one at a time. Since each

tile is small enough so that all its pixels may be stored in

local on-chip memory, each pixel color is not transferred to

main memory until the whole tile is rendered, and hence, each

pixel is written only once.

Overall, Tile-Based Rendering (TBR) reduces off-chip

memory accesses and is more energy efficient [7], [8], making

TBR architectures more suitable for mobile GPUs. To be

more precise, Figure 1 depicts the graphics pipeline of a

TBR architecture. A brief description of the different stages

in the pipeline follows. The first stage corresponds to the

Vertex Fetcher which loads the vertices that compose the

scene from main memory. Vertices are then sent to the Vertex

Processors which apply a vertex shader to transform them

from model-space coordinates to screen-space coordinates.

The transformed vertices are sent to the Primitive Assembly

stage where they are appropriately grouped into primitives

(triangles) which are then clipped and culled before being

passed over to the Tiling Engine.

In the Tiling Engine, the Polygon List Builder identifies the

screen tiles overlapped by each primitive to generate, for each

tile, a list of overlapped primitives. For each tile, its primitives

are passed over to the Raster Pipeline. In the Rasterizer stage,

primitives are discretized into fragments by interpolating the

attributes of their vertices. Fragments are checked for visibility

in the Early Z-Test stage [9] using depth information and those

fragments which are determined to be visible are processed in

the Fragment Processors by executing a fragment shader that

applies a shading and a lighting model to produce their final

color. Finally, output colors are processed in the Blending Unit

to properly overlap with transparent, non-occluded fragments.

B. Overview of Simulation Techniques

Computer architecture simulators play an important role in

advancing computer architecture research. A work in 2006

already highlighted the growth in the percentage of papers

that were simulation-related [10]. Simulation techniques can

be classified according to different criteria such as the detail

of simulation, the scope of the target system, or the input to

the simulator.

Regarding the simulation level of detail, two main classes

can be distinguished: functional and timing simulators. A

functional simulator implements the architecture of a pro-

cessor at a high level and focuses on achieving the correct

functionality and behavior of the processor that it models. On

the other hand, timing simulators (also known as performance

simulators) simulate the microarchitecture of a processor and

produce detailed statistics about the performance of the target

system. Finally, both timing and functional simulators can be

integrated altogether to achieve a more comprehensive, flexible

and accurate simulation model.

Depending on the scope of the target system to be simulated,

simulators can be also classified into two types: full-system

and application-level simulators. A full-system simulator is

able to boot an OS and run application benchmarks on it, sim-

ulating all needed I/O devices, memory, network connections,

etc. Alternatively, application-level simulators run only user-

level applications instead of simulating the full stack, resulting

in lighter and faster simulation times.

Simulators can be also categorized into two types depending

on the input used to feed the simulator. Trace-driven simu-

lators use trace files as input, i.e., pre-recorded streams of

instructions (or any other information) generated during the

actual execution of a benchmark. Differently, execution-driven

simulators use binaries or executable files of benchmarks

compiled for the simulated target machines.

Approximation techniques have also been used over the

years to accelerate the simulation of individual compo-

nents [11], [12]. E.g., by using simple core models (also

known as 1-IPC core models) such as those implemented in

Sniper [13] and CMP$im [14] if the interest is placed on

evaluating the cache hierarchy or the memory system. Interval

simulation has also been proposed to accelerate simulation

times [15] by modeling particular miss events (cache misses,

branch mispredictions) along with an analytical model to esti-

mate the duration for every interval of instructions [16]–[18].

Sampling is another well-established technique to simulate a

small but representative portion of a program’s execution [2],

[19], [20]. The next Section further elaborates on sampling-

based approaches that can be found in the literature.

C. Related Work on Sampling-based Simulation

Sampling-based simulation measures only chosen sections

(called sampling units) from a benchmark’s full execution

stream. The selection of sampling points can be done in two

different ways [21]. On the one hand, statistical sampling

can be applied to obtain periodic samples, as it is the case

of SMARTS [19] and SimFlex [20] simulators. Alternatively,

targeted sampling can also be used to obtain sampling points

after analyzing the program’s behavior. SimPoint [2] is a good

example of the latter. It is a widely-known technique that

calculates phases for a program/input pair, and then chooses

a single representative from each phase. It relies on the use

of basic blocks such that an interval of a program execution

is characterized by the number of basic blocks that have been

executed. A cluster of intervals constitutes a program phase

71

which can be characterized by a single interval designed to

be representative of that phase. Sampling has proven to be a

successful approach to summarize the behavior of a program,

thus, allowing to effectively reduce the amount of information

that has to be simulated.

In [22] it was analyzed the accuracy and speedup of different

techniques that fall into these categories: reduced input sets,

truncated execution and sampling. This work showed that

SimPoint and SMARTS were the two sampling techniques that

had the best trade-off between speed and accuracy. However,

providing the Architectural State Starting Image (ASSI) is

an important challenge associated with sampling-based sim-

ulation techniques. Some simulators make use of checkpoints
[23] to avoid the use of functional warming, one of the main

performance bottlenecks of sampling-based simulation. Other

approaches rely on fast forwarding, by means of using a quick

functional simulator to construct the ASSI [21].

Argollo et al. developed COTSon [24], an infrastructure

for full-system simulation aimed at simulating a cluster with

their associated devices connected through a standard com-

munication network. More recently, Pati et al. developed Se-

qPoint [25], an approach that accurately characterizes the be-

havior of sequence-based neural networks by identifying some

representative iterations. Flolid et al. proposed SimTrace [26],

a methodology for representing a program’s large scale over

time phase behavior. Baddouh et al. proposed a methodology

that is targeted for GPGPU to reduce the amount of work

simulated in scaled GPU workloads [27]. They successfully

applied a mechanism called Principal Kernel Analysis that not

only reduces the number of executed kernels but also decreases

the number of thread blocks executed in each kernel.

Different from the aforementioned simulation approaches,

our proposed MEGsim is the very first sampling-based

methodology for the efficient simulation of graphics workloads

in GPUs.

III. MEGSIM: A NOVEL SAMPLING-BASED SIMULATION

METHODOLOGY FOR GRAPHICS WORKLOADS

A. Overview

This paper proposes a novel Methodology for Efficient

GPU simulation (MEGsim), a fast and automatic approach

that accurately determines statistically representative frames

in a whole video sequence rendered by the execution of a

graphics workload. MEGsim makes use of several parameters

to characterize the activity carried out along the different

stages of the graphics pipeline, which are combined to create

a matrix of characteristics for each frame of the sequence.

This information is used to group similar frames together by

using a clustering algorithm. Finally, the best clustering that

characterizes the full execution of the graphics workload is

determined.

B. Input Parameters

In order to characterize the activity of the graphic pipeline,

some information about the execution of program shaders is

used. As described in Section II-A, a shader is a program

designed to run on some stages of the graphics pipeline, having

two types of shaders depending on where they are used. Vertex

shaders manipulate the input geometry of a scene, therefore,

they determine the activity that takes place along the Geometry

Pipeline, whereas fragment shaders calculate the output color

of each fragment inside a primitive, therefore, they determine

the activity happening along the Raster Pipeline (refer to

Figure 1).

In a first step, information about all shaders that are used

in a given graphics workload is collected by performing a

fast functional simulation. This includes the total number of

instructions executed by each shader. In addition to that, the

number of times that each shader is executed in every frame

is also collected and stored into two vectors: VSCV (Vertex
Shader Count Vector) and FSCV (Fragment Shader Count
Vector). Each element in the combined vector corresponds to

the count of how many times a shader has been executed in

a specific frame, multiplied by the number of instructions in

that shader. It is important to note that texture accesses are

weighted according to the number of memory accesses they

generate, depending on the texture filtering type they utilize.

I.e., texture accesses using linear filtering are weighted with

a value of 2 (as they perform 2 memory accesses); bilinear-

filtering texture accesses use a weight of 4; whereas trilinear-

filtering texture accesses use a weight of 8.

However, if only information about program shaders were

used, there would be no proper characterization about another

critical part of the graphics pipeline: the Tiling Engine. To

account for the activity of the Tiling stages, the number of

primitives within a frame is utilized. As depicted in Figure 2,

this information (PRIM) is collected and appended to the

other two vectors (VSCV and FSCV) to form a single vector

of characteristics for a given frame. Therefore, assuming a

graphics workload of N frames and a vector of characteristics

of length D, the input dataset for MEGsim is a N×D matrix.

...VSC1 PFSC1 ... FSCq

VSCV

VSCp

FSCV PRIM

Vertex Shader
Count

Fragment Shader
Count

Primitives
Count

D

Fig. 2: Vector of characteristics for a particular frame where

p corresponds to the number of vertex shaders and q to the

number of fragment shaders.

An important advantage of choosing these parameters to

characterize graphics workloads is that they are totally in-

dependent of the underlying GPU architecture and they can

be easily obtained by performing a functional simulation.

These kinds of simulators have much lower execution times

compared to cycle-accurate simulators. This way, obtaining the

input parameters needed by MEGsim is a very fast process and

does not impose a critical burden.

72

A correlation study has been carried out to ensure that all

these input parameters have an impact on one of the key

simulation metrics: the total number of cycles. In the case of

primitives, the correlation could be calculated by using only

the Pearson’s correlation coefficient, as they are defined as

one-dimensional column vectors (PRIM1..N). The Pearson’s

correlation coefficient is calculated as follows:

ρ =
cov(X,Y)

σxσy
(1)

However, the information about shaders execution is repre-

sented using multi-dimensional vectors. Therefore, a different

method has to be used: the coefficient of multiple correlation.

This coefficient is a measure of how well a given variable can

be predicted using a linear function of a set of other variables

and can be calculated with the following formula:

R2 = cT ∗Rxx
−1 ∗ c (2)

where c is the vector of correlations rxny between the

predictor variables xn (shader count vectors) and the target

variable y (the number of total cycles); and Rxx
−1

is the

inverse of the following matrix:

Rxx =

⎛
⎜⎜⎜⎜⎝

rx1x1 rx1x2 . . . rx1xN

rx2x1

. . .
...

...
. . .

rxNx1 . . . rxNxN

⎞
⎟⎟⎟⎟⎠

(3)

where rxixj
represents the correlation coefficient between

the shader counts for frames i and j.

Figure 3 shows the results obtained in this correlation study.

It can be observed that the characterizing input parameters,

especially the shader count, have a high correlation with

the total number of cycles of the simulation. However, the

number of primitives (PRIM) has a more limited impact on

such metric. Therefore, the three components of the per-

frame vector of characteristics (VSCV, FSCV, PRIM) must

be weighted differently as they represent a different amount

of activity along the graphics pipeline.

C. Input Parameters Normalization

To determine the weight for each component of the vector of

characteristics, we have measured the dissipated power in each

of the three main phases of the graphics pipeline (Geometry

Pipeline, Tiling Engine and Raster Pipeline) as a proxy of

the activity performed on each pipeline’s phase. Figure 4

shows the results obtained for the evaluated benchmarks. As

expected, the Raster stages (those in charge of rendering

and calculating the final color of each individual fragment)

are the ones with the highest power dissipation, with an

average power fraction of 74.5%. The Geometry stages are

responsible for 10.8% of the power dissipation on average,

whereas the Tiling stages are responsible for 14.7% of the

power dissipation. Therefore, these values are used as weights

(0.108, 0.745, 0.147) for the three components of the vector

asp bbr1 bbr2 hcr hwh jjo pvz spd Avg.
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

VSCV
PRIM
FSCV

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 3: Correlation coefficient between the input parameters

and the total number of cycles for the evaluated benchmarks

(described in Table II).

asp bbr1bbr2 hcr hwh jjo pvz spd Avg.
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Raster Stages
Tiling Stages
Geometry Stages

Pe
rc

en
ta

ge
 (%

)

Fig. 4: Fraction of dissipated power in the three main phases

of the graphics pipeline (Geometry, Tiling and Raster).

of characteristics (VSCV, FSCV, PRIM), respectively. To do

that, a per-column normalization is performed by adding all

the values within each group of characteristics which are then

weighted accordingly.

D. Similarity Between Frames

After collecting the vector of characteristics for the different

frames, it is possible to start finding similarity patterns in the

video sequence. To determine how similar two frames are,

we calculate the Euclidean distance between their vectors of

characteristics. Two similar frames will have an Euclidean

distance close to 0.

Given a sequence of N frames, a Similarity Matrix can

be created in order to find how frames relate to each other. A

Similarity Matrix is an upper triangular N×N matrix, similar

to the one used in SimPoint, where the cell (x, y) represents

the Euclidean distance between the vector of characteristics

of frame x and that of frame y. The Similarity Matrix can

be graphically plotted as shown in Figure 5 where the darker

the points, the more similar the two corresponding frames are

73

Similarity Matrix (game ‘bbr’)

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800
High degree
of similarity

Low degree
of similarity

Frames

Fr
am

es

Fig. 5: Similarity Matrix for the benchmark Beach Buggy

Racing (bbr) with 900 frames analyzed. The darker a point

is, the more similar the two corresponding frames are.

(i.e., the Euclidean distance is closer to 0). Note that points

along the diagonal axis are always 0 (plotted in black) as they

represent the similarity between a frame and itself.

As it can be seen in Figure 5, there are different regions

or patterns in the benchmark Beach Buggy Racing (bbr).

For example, starting from point (200, 200) and tracing a

horizontal line, we can see a dark region until we reach

the point (400, 200). This means that all the frames between

200 and 400 are very similar. Conversely, starting from point

(400, 300) and tracing another horizontal line, we can see a

light region until we reach the point (600, 300). This means

that frame 300 is very different from frames 400 to 600.

E. Clustering

Looking at the example of the bbr benchmark represented

in Figure 5, it can be seen that there exist different regions of

similar frames. The idea of clustering is to group frames that

exhibit similar behavior.

Clustering algorithms are used to partition N observations

into k clusters. MEGsim uses the method k-means to clus-

ter frames. K-means uses an iterative refinement technique

that tries to minimize the within-cluster sum of squares

(WCSS), i.e., the cluster variance. Given a set of observations

(x1, x2, ..., xn), where each observation is a d-dimensional

vector of characteristics, k-means aims to partition the n
observations into k (<= n) sets (S1, S2, ..., Sk), so as to

minimize their WCSS. Formally, the objective is to find:

argmin
S

k∑
i=1

∑
x∈Si

‖x− μi‖2 = argmin
S

k∑
i=1

|Si|VarSi (4)

where μi is the mean (a.k.a. centroid) of the points in set Si.

In our case, we would obtain: 1) a vector of length k
with all the clusters’ centroids; and 2) a vector of length

Similarity Matrix (game ‘bbr’)

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800
High degree
of similarity

Low degree
of similarity

Frames

Fr
am

es

Fig. 6: Clusters obtained for the bbr benchmark by k-means.

The 4 identified clusters are drawn along the matrix diagonal.

N containing all the labels for the different frames (i.e., the

assignation of the frames to the corresponding cluster). Next,

the distances between the centroids and all of the frames

within each cluster are calculated. The selected frame for a

cluster is the one with the lowest distance and it will constitute

the cluster’s representative, i.e., only this frame needs to be

simulated and the obtained output statistics will be scaled

according to the total number of frames that are included in

that cluster. Figure 6 shows the clustering result for the bbr
benchmark, where 4 clusters have been identified, represented

with different colors along the diagonal.

F. Scoring and Selecting Clusters

There are many techniques to determine if a set of clusters

is a good fit for the data. MEGsim makes use of the Bayesian

Information Criterion (BIC) [3]. BIC is a penalized likelihood

that offers a measure of the goodness of a fit. By adding

new parameters to a model, e.g., by increasing the number

of clusters, the likelihood of having a better fit increases.

However, it is often desirable to obtain a fit that also minimizes

the number of selected clusters to represent the whole dataset.

To address this issue and achieve a good trade-off, BIC

introduces a penalty term that grows as the number of clusters

increases. We calculate the BIC score using the formulation

given in [28], [29] as:

BIC(φ) = l̂φ(D)− pφ
2

· logR (5)

where l̂φ(D) is the likelihood (defined below) and pφ is the

number of parameters to estimate (defined as K ∗ (d + 1)).
The likelihood is calculated as:

l̂(D) =

K∑
n=1

Rn logRn −R logR− RM

2
log

(
2πσ2

)− M

2
(R−K)

(6)

74

where R is the number of points in the data, Ri is the

number of points included in the ith cluster, K is the number

of clusters, d is the dimension of the vector of characteristics,

and σ2 is the average variance of the Euclidean distance from

each point to its cluster’s centroid.

To determine the number of clusters, MEGsim starts with

a single cluster (comprising all the frames) and iteratively in-

creases this value. For every cluster, the BIC score is calculated

and the algorithm stops when a BIC score lower than the

previous one is obtained. Finally, the algorithm chooses the

clustering that achieves a BIC score that is at least 85% of

the spread between the largest and the smallest BIC score.

We have denoted this threshold value as T . This threshold

is empirically chosen and represents a trade-off between the

achieved accuracy and the number of clusters. A higher value

of T will result in a higher BIC score, leading to more accurate

results at the expense of increasing the number of clusters. On

the other hand, smaller values of T will lead to fewer clusters

but it will also reduce the achieved accuracy.

IV. EVALUATION METHODOLOGY

A. GPU Simulation Framework

To evaluate our proposal we employ TEAPOT [1] a cycle-

accurate GPU simulation framework that allows to run un-

modified Android applications and evaluate the performance

and energy consumption of the GPU and the memory system.

Table I shows the parameters employed in our simulations,

which model an architecture resembling an Arm Mali-450

GPU [30]. We have chosen this particular mobile GPU as

a proof-of-concept to evaluate MEGsim since the Mali 400

MP series is one of the most deployed Mali GPUs and still

represents a good fraction of the mobile GPU market. Note,

however, that our methodology relies on parameters that are

application dependent and related to the scene’s geometry and

the program shaders, which makes MEGsim independent of

the underlying GPU architecture. As such, it can be easily

extended to support newer GPUs by incorporating information

about additional pipeline phases (e.g., a Hidden Surface Re-

moval phase as implemented by TBDR –deferred rendering–

GPUs [5]) or recent GPUs that incorporate mesh shaders.

TEAPOT is comprised of three main components: an

OpenGL trace generator, a GPU functional simulator, and a

GPU cycle-accurate simulator. The workloads are executed

in the Android Emulator deployed in the Android Studio

[31]. While the application is running, the OpenGL trace

generator intercepts and stores all the OpenGL commands that

the Android Emulator sends to the GPU driver. The generated

OpenGL commands trace is then used to feed an instrumented

version of Softpipe. Softpipe is a software renderer included in

Gallium3D, a well-known architecture for building 3D graph-

ics drivers. Our instrumented Softpipe executes the OpenGL

commands and creates a GPU trace including information of

the different stages of the graphics pipeline (memory accesses,

shader instructions, vertices, fragments, etc). The GPU trace

is used by the cycle-accurate simulator, which gathers activity

factors of all the components included in the modeled TBR

TABLE I: GPU simulation parameters.

Baseline GPU parameters
Frequency 600 MHz
Voltage 1.0 V
Technology node 22 nm
Screen Resolution 1440x720
Tile Size 32x32 pixels

Main memory
Frequency 400 MHz
Voltage 1.5 V
Technology node 32 nm
Latency 50-100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Line Size 64 bytes
Size 1 GiB, 8 banks

Queues
Vertex (Input & Output) 16 entries, 136 bytes/entry
Triangle & Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry
Color 64 entries, 24 bytes/entry

Caches
All of 64 bytes/line, 2-way associativity

Vertex Cache 4 KiB, 1 bank, 1 cycle
Texture Caches (x4) 8 KiB, 1 bank, 2 cycles
Tile Cache 32 KiB, 1 bank, 2 cycles
L2 Cache 256 KiB, 8 banks, 18 cycles
Color Buffer 1 KiB, 1 bank, 1 cycle
Depth Buffer 1 KiB, 1 bank, 1 cycle

Non-programmable stages
Primitive assembly 1 vertex/cycle
Rasterizer 1 attribute/cycle
Early Z-Test 8 in-flight quad-fragments

Programmable stages
Vertex Processor 4 vertex processors
Fragment Processor 4 fragment processors

architecture and reports timing as well as power consumption.

Regarding the power model, McPAT [32] provides energy

estimations for the processors and the caches included in

the GPU. The main memory and the memory controller are

simulated with DRAMsim2 [33].

B. Benchmarks

Table II shows the set of benchmarks utilized to evaluate the

proposed MEGsim methodology, which consists of eight com-

mercial Android graphics applications. Our set of benchmarks

includes both 2D and 3D games, applications that stress the

GPU further than other commonly used applications in battery-

operated devices. Among the 3D games, we include workloads

with simple 3D models (such as hwh) and workloads with

more sophisticated 3D models and scenes (such as asp, bbr1
or bbr2). The workloads included in our set of benchmarks are

representative of the current landscape of smartphone games as

it includes popular Android games with millions of downloads

according to Google Play [34], some of them surpassing

500 million downloads. The evaluated video sequences, with

several thousands of frames, have been carefully selected in

order to get a representative, common and realistic use-case

scenario for each game.

75

TABLE II: Evaluated benchmark set.

Benchmark Alias Description Type Downloads
(Mill.) Frames Vertex

shaders
Fragment
shaders

Cycles
(Mill.) IPC

Asphalt 9: Legends asp Racing 3D 50–100 4000 42 45 107811 4.34
Beach Buggy Racing bbr1 Racing 3D 100–500 2500 73 62 39839 4.91
Beach Buggy Racing bbr2 Racing 3D 100–500 4000 66 59 58317 4.95
Hill Climb Racing hcr Platforms 2D 500–1000 2000 5 5 10111 6.51
Hot Wheels hwh Racing 3D 50–100 4000 30 30 86791 4.71
Jetpack Joyride jjo Side-scrolling endless runner 2D 100–500 5000 4 5 41219 5.61
Plants vs Zombies pvz Tower defense 2D 100–500 5000 4 5 39534 4.66
Spider-Man Unlimited spd Side-scrolling endless runner 3D 1–5 5000 16 26 75938 6.10

TABLE III: Reduction factor in the number of frames.

Benchmark Actual
frames

MEGsim
frames

Reduction
factor

asp 4000 23 174×
bbr1 2500 40 63×
bbr2 4000 47 85×
hcr 2000 27 74×
hwh 4000 30 133×
jjo 5000 28 179×
pvz 5000 30 167×
spd 5000 37 135×
Average 3938 33 126×

V. EXPERIMENTAL RESULTS

This section presents the main results obtained by MEGsim.

Different studies have been carried out to evaluate both the

achieved accuracy and simulation time improvement of the

proposed methodology.

A. Simulation Time Improvement

As mentioned before, the selected scenes of each bench-

mark contain thousands of frames (see Table II) which have

been simulated using the cycle-accurate simulator TEAPOT.

As expected, completing these simulations took a significant

amount of time, in fact, more than one week. However, the use

of MEGsim allows to effectively reduce the number of frames

to be simulated with a negligible effect on the simulation

accuracy.

Table III reports the achieved reduction factor in the number

of simulated frames. As it can be seen, the evaluated graphics

workloads can be properly characterized just by simulating an

average of 33 frames out of 3938 frames, obtaining an average

reduction factor of 126× in the number of frames. This means

that less than 0.8% of the actual frames have to be simulated

which translates into an impressive reduction of more than two

orders of magnitude in the simulation time.

B. Simulation Accuracy

As for the simulation accuracy, our experimental results

show that it is possible to characterize the full simulation of a

video sequence comprised of a high number of frames with a

very small subset of selected representatives with a negligible

error. To measure the accuracy of MEGsim, both the entire

sequence and the subset of representative frames have been

simulated using TEAPOT. For the sake of space, we focus

our accuracy analysis on four key performance metrics: 1)

the total number of cycles, which offers a measure directly

proportional to the execution time; 2) the number of accesses

to main memory; 3) the number of accesses to the L2 cache;

and 4) the number of accesses to the Tile cache, which has

an important influence on the overall energy consumption.

The accuracy was calculated by comparing the aforementioned

output metrics when simulating the whole video sequence

against the values obtained when simulating the subset of

representative frames, and calculating the relative error which

is plotted in Figure 7.

As it can be observed, the higher complexity of 3D games

slightly reduces the accuracy of the analyzed metrics. Similarly

as with the reduction factor in the number of frames, the

relative error for the set of 3D games is slightly higher than

the one obtained for 2D games. Regarding the total number

of execution cycles, the average relative error is a mere 0.84%

(with a maximum error of 2.6% in only one of the games),

being this one the metric with the highest accuracy. Regarding

the number of main memory accesses, the average relative

error is a mere 0.99% whereas the number of L2 cache

accesses results in an average relative error of 1.2%. Finally,

the average relative error for the number of accesses to the

Tile cache is 0.86%, and not exceeding a 2.1% error for any

of the evaluated games.

These results demonstrate that it is possible to accu-

rately characterize the activity carried out along the graphics

pipeline. Our novel simulation methodology is able to select

a small number of frames that accurately represent the whole

scene, leading to an impressive reduction of the simulation

time with an almost negligible error.

C. Comparison with Random Sub-sampling

To provide a better understanding of how well MEGsim

behaves, a naive technique based on random sub-sampling has

been implemented to compare with MEGsim. This technique

randomly selects the representative frames for the whole se-

quence. However, the main drawback of random sub-sampling

is that, a priori, there is no way of determining how many

representatives should be selected to properly characterize

the whole sequence. Therefore, for a graphics workload of

N frames, this technique starts selecting one random frame

(representative) and iteratively increases the number of repre-

76

as
p

bb
r1

bb
r2 hc

r
hw

h jjo pv
z

sp
d
Ave

r.
0

0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

R
el

at
iv

e
er

ro
r (

%
)

as
p

bb
r1

bb
r2 hc

r
hw

h jjo pv
z

sp
d
Ave

r.
0

0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

R
el

at
iv

e
er

ro
r (

%
)

as
p

bb
r1

bb
r2 hc

r
hw

h jjo pv
z

sp
d
Ave

r.
0

0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

R
el

at
iv

e
er

ro
r (

%
)

as
p

bb
r1

bb
r2 hc

r
hw

h jjo pv
z

sp
d
Ave

r.
0

0,5
1

1,5
2

2,5
3

3,5
4

4,5
5

R
el

at
iv

e
er

ro
r (

%
)

(a) Execution cycles (b) Main memory accesses

(c) L2 Cache accesses (d) Tile cache accesses

Fig. 7: Relative error obtained in the different performance metrics that have been analyzed.

sentatives (k) such that each of these randomly selected frames

represents a fixed range of k
N frames. This is one difference

between random sub-sampling and MEGsim since the clusters

generated by MEGsim contain a variable number of frames.
Another important difference between the two approaches

is that MEGsim automatically stops when a clustering that is

considered good enough is found, thanks to using the BIC

score. However, random sub-sampling cannot use the BIC

score since there are no clusters involved. As it is not possible

to know the number of representatives to choose from, for

random sub-sampling we iteratively increase the number of

representatives until the relative error for the estimated metric

(e.g., cycles) is as good as the one obtained by MEGsim.
To properly evaluate the accuracy of this random method-

ology, the tests have been repeated 1000 times. A similar

approach has been followed with MEGsim but repeating the

tests 100 times and varying the initialization values of k-means
to obtain different results. We have measured the maximum

relative error for the total number of cycles obtained by both

techniques in an interval of confidence of 95% (i.e., the

maximum relative error has been calculated after removing the

5% of the results with the worst estimation in both techniques).
As reported in Table IV, to obtain the same accuracy as

MEGsim, random sub-sampling needs to select, on average,

58.5× more frames than MEGsim. In particular, random sub-

sampling needs to simulate an average of 1686.3 frames to

estimate the total number of cycles with the same accuracy

as MEGsim, which only needs to simulate an average of 32.8

frames. Finally, we can highlight the extraordinary results that

TABLE IV: Number of frames to be simulated for MEGsim

and random sub-sampling to achieve the same accuracy.

Benchmark
Max.

relative
error

MEGsim
frames

Random sub-
sampling frames

Reduction
factor

asp 1.49 23 1262 54.9×
bbr1 2.53 40 349 8.7×
bbr2 1.91 47 418 8.9×
hcr 0.11 27 1960 72.6×
hwh 1.11 30 1243 41.4×
jjo 0.3 28 3193 114.0×
pvz 0.09 30 4852 161.7×
spd 3.86 37 213 5.8×
Average 1.43 32.8 1686.3 58.5×

MEGsim achieves in terms of accuracy, with a maximum

relative error for the number of cycles lower than 1.5% with

a confidence of 95%.

VI. CONCLUSIONS

This paper introduces a novel methodology to efficiently

simulate graphics workloads in GPUs, called MEGsim, that

automatically determines representative frames in a video

sequence. MEGsim is able to accurately characterize a long

sequence of frames by using a tiny subset of them, so the cost

in time and storage (for the trace files) to carry out simulations

is drastically reduced.

Our experimental results show that MEGsim achieves an

average reduction of 126× in the number of frames to be

77

simulated, allowing to reduce the simulation time from several

days to a few hours for a typical benchmark. In terms of

accuracy, MEGsim performs extraordinarily well, not only for

simple 2D games but also for complex 3D games, obtaining an

average relative error of 0.84% in the measured execution time

(number of cycles), 0.99% in the number of memory accesses,

1.2% in the number of L2 cache accesses and 0.86% in the

number of Tile cache accesses. Furthermore, we have shown

that MEGsim outperforms other techniques like random sub-

sampling, which requires to simulate 58.5× more frames to

achieve the same accuracy as MEGsim.

Overall, these results confirm that based on a judicious

selection of parameters it is possible to accurately characterize

the activity carried out along the graphics pipeline to more

efficiently perform costly cycle-accurate simulations in GPU

architectures.

ACKNOWLEDGMENTS

This work has been supported by the CoCoUnit ERC

Advanced Grant of the EU’s Horizon 2020 program (grant No

833057), the Spanish State Research Agency (MCIN/AEI) un-

der grant PID2020-113172RB-I00, and the ICREA Academia

program.

REFERENCES

[1] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “TEAPOT: A toolset for
evaluating performance, power and image quality on mobile graphics
systems,” in Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing (ICS), New York, NY,
USA, 2013, pp. 37–46.

[2] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), New York, NY, USA,
2002, pp. 45–57.

[3] R. E. Kass and L. Wasserman, “A reference bayesian test for nested
hypotheses and its relationship to the schwarz criterion,” Journal of the
American Statistical Association, vol. 90, no. 431, pp. 928–934, 1995.

[4] T. Akenine-Moller and J. Strom, “Graphics processing units for hand-
helds,” Proceedings of the IEEE, vol. 96, no. 5, pp. 779–789, 2008.

[5] Imagination Technologies Limited, “PowerVR Hardware.
architecture overview for developers,” http://cdn.imgtec.com/sdk-
documentation/PowerVR+Hardware.Architecture+Overview+for+
Developers.pdf, accessed March 2022.

[6] D. Corbalán-Navarro, J. L. Aragón, M. Anglada, E. De Lucas, J.-M.
Parcerisa, and A. González, “Omega-test: A predictive early-z culling
to improve the graphics pipeline energy-efficiency,” IEEE Transactions
on Visualization and Computer Graphics, pp. 1–14, 2021.

[7] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and
W. Sung, “Power modeling for gpu architectures using mcpat,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 19, no. 3, p. 26, 2014.

[8] J. Pool, “Energy-precision tradeoffs in the graphics pipeline,” Ph.D.
dissertation, The University of North Carolina at Chapel Hill, 2012.

[9] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-time rendering.
AK Peters/CRC Press, 2019.

[10] J. Y. Joshua, L. Eeckhout, D. J. Lilja, B. Calder, L. K. John, and J. E.
Smith, “The future of simulation: A field of dreams,” Computer, vol. 39,
no. 11, pp. 22–29, 2006.

[11] L. Braun, S. Nikas, C. Song, V. Heuveline, and H. Fröning, “A simple
model for portable and fast prediction of execution time and power
consumption of gpu kernels,” ACM Trans. Archit. Code Optim., vol. 18,
no. 1, dec 2021.

[12] D. Moolchandani, A. Kumar, and S. R. Sarangi, “Performance and power
prediction for concurrent execution on gpus,” ACM Trans. Archit. Code
Optim., pp. 1–25, feb 2022.

[13] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[14] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmp$im: A PIN-based
on-the-fly multi-core cache simulator,” in Proceedings of the Fourth
Annual Workshop on Modeling, Benchmarking and Simulation (MoBS),
co-located with ISCA, 2008, pp. 28–36.

[15] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation:
Raising the level of abstraction in architectural simulation,” in HPCA-
16 2010 The Sixteenth International Symposium on High-Performance
Computer Architecture (HPCA), 2010, pp. 1–12.

[16] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance
counter architecture for computing accurate CPI components,” ACM
SIGPLAN Notices, vol. 41, no. 11, pp. 175–184, 2006.

[17] S. Eyerman, L. Eeckhout, and J. E. Smith, “Studying compiler-
microarchitecture interactions through interval analysis,” in 16th Interna-
tional Conference on Parallel Architecture and Compilation Techniques
(PACT), 2007, pp. 406–406.

[18] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanis-
tic performance model for superscalar out-of-order processors,” ACM
Transactions on Computer Systems, vol. 27, no. 2, pp. 1–37, 2009.

[19] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proceedings of the 30th Annual International Symposium on
Computer Architecture (ISCA), New York, NY, USA, 2003, pp. 84–97.

[20] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen,
J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk, “Simflex: A fast,
accurate, flexible full-system simulation framework for performance
evaluation of server architecture,” ACM SIGMETRICS Performance
Evaluation Review, vol. 31, no. 4, pp. 31–34, 2004.

[21] A. Akram and L. Sawalha, “A survey of computer architecture simula-
tion techniques and tools,” IEEE Access, vol. 7, 2019.

[22] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins,
“Characterizing and comparing prevailing simulation techniques,” in
11th International Symposium on High-Performance Computer Archi-
tecture (HPCA), 2005, pp. 266–277.

[23] T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe, “Simulation
sampling with live-points,” in 2006 IEEE International Symposium on
Performance Analysis of Systems and Software, 2006, pp. 2–12.

[24] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“Cotson: infrastructure for full system simulation,” ACM SIGOPS Op-
erating Systems Review, vol. 43, no. 1, pp. 52–61, 2009.

[25] S. Pati, S. Aga, M. D. Sinclair, and N. Jayasena, “Seqpoint: Identifying
representative iterations of sequence-based neural networks,” in 2020
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2020, pp. 69–80.

[26] S. Flolid, E. Shriver, Z. Susskind, B. Thorell, and L. K. John, “Simtrace:
Capturing over time program phase behavior,” in 2020 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), 2020, pp. 226–228.

[27] C. Avalos Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G. Rogers,
“Principal kernel analysis: A tractable methodology to simulate scaled
gpu workloads,” in 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021, pp. 724–737.

[28] D. Pelleg, “Extending k-means with efficient estimation of the number
of clusters in icml,” in Proceedings of the 17th International Conference
on Machine Learning, 2000, pp. 277–281.

[29] A. Foglia. (2012) Notes on bayesian information criterion
calculation for x-means clustering. [Online]. Available:
https://github.com/bobhancock/goxmeans/blob/master/doc/BIC notes.pdf

[30] Arm MALI-450 GPU. [Online]. Available:
https://developer.arm.com/products/graphics-and-multimedia/mali-
gpus/mali-450-gpu/

[31] “Android Studio,” https://developer.android.com/studio, March 2022.
[32] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2009, pp. 469–480.

[33] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” IEEE computer architecture letters,
vol. 10, no. 1, pp. 16–19, 2011.

[34] Google play. [Online]. Available: https://play.google.com

78

