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Abstract. Several techniques aiming to improve power-efficiency (measured as 
EDP) in out-of-order cores trade energy with performance. Prime examples are 
the techniques to resize the instruction queue (IQ). While most of them produce 
good results, they fail to take into account that changing the timing of memory 
accesses can have significant consequences on the memory-level parallelism 
(MLP) of the application and thus incur disproportional performance degrada-
tion. We propose a novel mechanism that deals with this realization by collect-
ing fine-grain information about the maximum IQ resizing that does not affect 
the MLP of the program. This information is used to override the resizing en-
forced by feedback mechanisms when this resizing might reduce MLP. We 
compare our technique to a previously proposed non-MLP-aware management 
technique and our results show a significant increase in EDP savings for most 
benchmarks of the SPEC2000 suite. 

1   Introduction 

Power efficiency in high-performance cores received considerable attention in recent 
years. A significant body of work targets energy reduction in processor structures, 
striving at the same time to preserve the processor’s performance to the extend possi-
ble. In this work, we revisit a class of microarchitectural techniques that resize the 
Instruction Queue (IQ) to reduce its energy consumption. The IQ is one of the most 
energy-hungry structures because of its size, operation (fully-associative matches), 
and access frequency. 

Three proposals by Buyuktosunoglu et al. [1], Folegnani and González [2], and 
Kucuk et al. [3] exemplify this approach: the main idea is to reduce the energy by 
resizing the IQ downwards to adjust to the needs of the program using at the same 
time a feedback loop to limit the damage to performance. The IQ can be physically 
partitioned into segments that can be completely turned off [1][3] or logically  
partitioned [2]. While physical partitioning and segment deactivation can be more 
effective in energy savings, the more sophisticated resizing policy of Folegnani and 
González minimizes performance degradation. We consider the combination of the 
physical partitioning of [1] and [3] and the “ILP-contribution” policy of [2] as the 
basis for our comparisons. 
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Studying these approaches in more detail we discovered that, in some cases, small 
changes in the IQ size bring about significant degradation in performance. New 
found understanding of the relation of the size of the instruction queue to perform-
ance, by the work of Chou et al. [7], Karkhanis and Smith [6], Eyerman and  
Eeckhout [4], Qureshi et al. [8], points to the main culprit for this: Memory-Level 
Parallelism (MLP) [5]. In the presence of misses and MLP the single most important 
factor that affects performance in relation to the IQ size is whether MLP is  
preserved or harmed. 

While this new understanding seems, in retrospect, obvious and easy to integrate in 
previous proposals, in fact it requires a new approach in managing the IQ. Specifi-
cally, while prior feedback-loop proposals based their decisions on a coarse sampling 
period measured in thousands of cycles or instructions, an MLP-aware technique 
requires a much more fine-grain approach where decisions must be taken at instruc-
tion intervals whose size is comparable to the size of the IQ. The reason for this is that 
MLP itself exists if misses appear within the instruction window of the processor and 
must be handled at that resolution. More accurately, MLP exists if the distance be-
tween misses is less than the size of the reorder buffer (ROB) [6]. In our case, we use 
a combined IQ and ROB in the form of a Register Update Unit [9], thus the ROB size 
defaults to the size of the IQ. In the rest of the paper we discuss MLP with respect to 
the size of the IQ. 

Contributions of this paper: 
• We expose MLP (when it exists) as the main factor that affects performance in 

IQ resizing techniques. 
• We propose a methodology to integrate MLP-awareness in IQ resizing tech-

niques by measuring and predicting MLP in fine-grain segments of the dy-
namic instruction stream. 

• We propose an example practical implementation of this approach and show 
that it consistently outperforms in total EDP (for the whole processor) an op-
timized non-MLP-aware technique as well as improving EDP across the board 
compared to base case of an unmanaged IQ. 

Structure of this paper–– Section 2 presents related work, while Section 3 motivates 
the need for IQ resizing using MLP. In Section 4 we present our proposal for MLP-
awareness in the IQ resizing and in Section 5 we delve into some details. Section 6 
offers our evaluation and Section 7 concludes the paper. 

2   Related Work 

IQ Resizing Techniques–– The instruction window (including possibly a separate 
reorder buffer, an instruction queue and the load/store queue) has been prime target 
for energy optimizations. The reason is twofold: first they are greedy consumers of 
the processor power budget; second, typically these structures are sized to support 
peak execution in a wide out-of-order processor. Although there are many proposals 
for IQ resizing, we list here the three main proposals that are relevant to our work. 
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The proposals by Buyuktosunoglu et al [1] and Kucuk et al [3], resize the IQ  
by physically partitioning it in segments and disabling and enabling each segment1  
as needed. Both techniques use a feedback loop to control the size of the IQ. The 
Buyuktosunoglu et al. technique [1] is based on the number of active entries (i.e., 
ready-to-issue entries) per segment to decide whether or not a segment deserves to 
remain active, while Kucuk et al. [3] argue that the occupancy of the IQ (in valid 
instructions) rather than active entries is a better indication of its required size. In both 
techniques the IPC is measured periodically; a sudden drop in IPC signals the need 
for IQ upsizing. However in both approaches there is no other mechanism to revert 
back to the full IQ size. 

The Folegnani and González approach [2] is distinguished by being a logical resiz-
ing of the IQ (limiting the range of the entries that can be allocated) not a physical 
partitioning as the other two. In addition, the feedback mechanism is based on how 
much the youngest instructions in the IQ contribute to the actual ILP. If they do not 
contribute much, this means that the size of the IQ can be reduced further. However, 
there is no way to adapt the IQ to larger sizes except periodically revering back to full 
size. Nevertheless, the Folegnani and González resizing policy is very good at adjust-
ing the IQ size so as to not harm the ILP in the program. 

Modeling of MLP–– Karkhanis and Smith presented a first-order model of a super-
scalar core [6] that deepened our understanding of MLP. This work exposed the im-
portance of MLP in shaping the performance of out-of-order execution. Karkhanis 
and Smith show that in absence of any upsetting events such as branch mispredictions 
and L2 misses the number of instructions that will issue (on average) is a property of 
the program and is expressed by the so-called IW characteristic of the program. 

The presence, however, of upsetting events, such as L2 misses, decreases the IPC 
from the ideal point of the IW characteristic depending on the apparent cost of the L2 
miss. This is because, a L2 miss drains the pipeline, and eventually stalls it when the 
instruction that misses blocks the retirement of other instructions [6]. MLP, in this 
case, spreads the cost of accessing main memory over all the instructions that miss in 
parallel, making their apparent cost appear much less. 

Existing IQ resizing mechanisms focus mainly on the variations of the ILP (effec-
tively moving along the IW characteristic) ignoring what happens during misses. Our 
work, focuses instead on the latter. 

MLP-Aware techniques–– Qureshi et al. exploited MLP to optimize cache replace-
ment [8]. MLP in their case is associated with data (cache lines) and the MLP predic-
tion is done in the cache. Data that do not exhibit MLP are given preference in staying 
in the cache over data that exhibit MLP. Eyerman and Eeckhout exploit MLP to opti-
mize fetch policies for Simultaneous Multi-Threaded (SMT) processors [4]. In their 
case, MLP is associated with instructions that miss in the cache. Our MLP prediction 
mechanism is similar to the one proposed by Eyerman and Eeckhout, but because we 
use it not to regulate the fetch stage, but to manage the entire IQ, we associate MLP 
information to larger segments of code. 

                                                           
1 Sequentially from the end of the IQ in [1] or independently of position in [3].  
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Fig. 1. Comparison of the distribution of distances between parallel L2 misses and performance 
degradation due to IQ resizing for gcc and art 

3   MLP and IQ Resizing 

In this section, we motivate the basic premise of this paper, i.e., that IQ resizing tech-
niques must be aware of the MLP in the program to avoid excessive performance 
degradation. Figure 1 shows the distribution of the distances between parallel misses 
in two SPEC2000 programs: art and gcc. We assume here an IQ of 128 entries. The 
distance is measured in the number of intervening instructions between instructions 
that miss in parallel. Figure 1 also plots for each distance the increase in execution 
time if the IQ size is decreased below that distance. 

Each time we resize the IQ, we eliminate the MLP with distance greater than the 
size of the IQ. In art, MLP is distributed over a range of distances, so its execution 
time is proportionally affected with the decrease of the IQ because we immediately 
eliminate some MLP. The more MLP is eliminated the harder performance is hit. In 
contrast, most MLP in gcc is clustered around distance 32. Below this point, we ex-
perience a dramatic increase in execution time (100%). For the intermediate IQ sizes, 
(between the maximum size and 32), execution time increases slowly due to loss of 
ILP. These examples demonstrate how sensitive performance is with respect to MLP 
and indicate that an efficient IQ management scheme must focus primarily on MLP 
rather than ILP. 

Another important characteristic of MLP that necessitates a fine-grain approach to 
IQ management is that the distance among parallel misses changes very frequently. 
Figure 2 shows a window of 20K instructions from the execution of twolf. At each 
point the maximum observed distance among parallel misses is shown. Ideally, at 
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each point in time, the IQ size should fit all such distances while at the same time be 
as small as possible. A blanket IQ size for the whole window, based on some estima-
tion of the average distance between parallel misses, is simply not good enough since 
it would eliminate all MLP of distance larger than the average. 

4   Managing the IQ with MLP 

Our approach is to quantify MLP opportunities and relate this information back to the 
instruction stream via a prediction structure. Upon seeing the same instructions again, 
MLP information stored in the predictor guides our decisions for IQ resizing. 

4.1   Quantifying MLP: MLP-Distance 

Our first concern is to quantify MLP opportunities in a way that is useful to IQ resiz-
ing. Two memory instructions are able to overlap their L2 misses, if there are no de-
pendencies between them and the number of instructions dispatched between them is 
less than the size of the IQ. This number of instructions, called MLP-distance in [4], 
is also the basic metric for our management scheme. 

A straightforward way to measure the MLP-distance among instructions is to 
check the LSQ every time a miss is serviced and find the youngest instruction which 
is still waiting for its data from the L2. This technique does not “fit” in our case, since 
it can only identify overlapping misses for the current size of the IQ. To overcome 
this problem we need to check for misses that could potentially overlap over a number 
of instructions, as many as the maximum number of instructions that can fit in the 
unmanaged IQ. Always keeping information for as many instructions as the maxi-
mum IQ size, partially defeats the purpose of resizing the IQ. Thus, instead of keeping 
information for each individual instruction, we keep aggregate information for in-
struction segments, groups of sequentially dispatched instructions (which coincide 
with the segments that make up a physically partitioned IQ). 

This MLP information is kept in a small cyclic buffer —which we call MLP dis-
tance buffer or MDB— with as many entries as the maximum number of IQ segments 
(Fig.3). MDB is not affected by IQ resizing. A new entry is allocated for each seg-
ment, but in contrast to the real IQ entries, MDB entries are evicted only when it fills. 
This means that MDB “retires” a segment only when newly dispatched instructions 
are farther away than the size of the non-managed IQ, and thus could not possibly 
execute in parallel with the retiring segment. Our approach to measure MLP distance, 
is similar to [4] but based on segments for increased power efficiency. Each time an 
instruction causes an L2 miss, the corresponding MDB segment is marked as also 
having caused a miss. Upon eviction of an entry, the MDB is searched for the other 
entries which have caused L2 misses. If there are such entries, this means that there 
could be possible MLP among them. We update each entry’s MLP-distance field with 
the distance —measured in segments— from the youngest entry with a miss, if this 
distance is longer than the previously recorded value. MDB is infrequently accessed 
and it is only processed whenever segments which caused L2 misses are retired 

The MLP-distance is not an entirely accurate estimation of actual MLP. To reside at 
the same time in the IQ is not the only requirement for two instructions to overlap their  
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Fig. 3. MLP Distance Buffer (MDB) 

misses i.e. possible dependencies between the instructions may cause their misses to be 
isolated. In any case, the “actual” MLP-distance will be less than or equal to the value 
produced by our approach. This in turn means we might miss some opportunities for 
downward IQ resizing but we will not incur performance degradation due to loss of 
MLP. Our experiments showed that for most benchmarks falsely assuming parallel 
misses causes few overestimations of the MLP-distance. Considering the simplicity of 
our mechanism, these results indicate a satisfactory level of performance. 

Measuring the MLP-distance allows us to control the IQ size for the relevant part 
of the code so as to not hurt MLP. We need, however, to relate this information back 
to the instruction stream so the next time we see the same part of the code we can 
react and correctly set the size of the IQ. 

4.2   Associating MLP-Distance with Code 

For the purpose of managing the IQ in a MLP-aware fashion, we dynamically divide 
program execution into fragments and associate MLP-distance information with these 
fragments. Execution fragments should be comparable in size to the size of the IQ. 
Much shorter fragments would be sub-optimal since the information they carry will 
be used to manage the whole IQ, which contains multiple such fragments. This could 
lead to very frequent and —many times— conflicting resizing decisions. Longer 
fragments, such as program phases, also fail to provide us with the fine-grain informa-
tion we need to quickly react to fast-changing MLP-distances in the instruction 
stream. 

To achieve the desired balance in the size of the fragments we use the notion of su-
perpaths. A superpath is nothing more than an aggregation of sequentially executed 
basic blocks and loosely corresponds to a trace (in a trace cache) [13] or a hotspot 
[12]. The MLP-distance of a superpath is assigned by the MDB: when all of the MDB 
entries belonging to a superpath are “retired,” the longest MLP-distance stored in 
these entries is selected to update the MLP-distance of the superpath. Note that the 
instructions which establish this MLP-distance do not have to belong to the same 
superpath. An MLP-distance that straddles a number of superpaths affects all of them 
(if it is the maximum observed MLP-distance in each of them).  

The next time the same superpath is observed in dispatch, its stored information is 
retrieved to manage the IQ. A more detailed discussion about superpaths and how we 
actually implemented the aforementioned mechanisms can be found in Section 5. 
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4.3   Resizing Policy 

When we start tracking a superpath in dispatch, we check whether we have stored 
information about its behavior, including its MLP-distance information. If there is 
such information then we have an indication about the minimum IQ size which will 
not affect the MLP of this superpath. In many cases, however, there is no MLP-
distance information available or the MLP-distance does not restrict IQ downsizing. 
The question is how much can we downsize the IQ is such cases? As explained in 
Section 3, an efficient IQ resizing scheme has to find the IQ size that minimizes en-
ergy consumption without hurting performance. This means that besides not hurting 
MLP we must also protect ILP. 

This gap can be filled by any of the existing IQ resizing techniques. For example, 
the ILP-feedback approach of [2] can provide a target IQ size that does not hurt ILP 
while the MLP-aware approach judges whether this size hurts MLP and if so it over-
rides the decision. For the rest of this paper the ILP-feedback information will be pro-
vided by the decision making mechanism in Folegnani and González [2]. This mecha-
nism examines the participation of the youngest segment of the IQ to the IPC within a 
specific number of cycles. If the contribution of the youngest part is not important, 
namely the number of instructions that issue from this segment is below a threshold, 
the IQ size is decreased. In our case, we deactivate the youngest segment when it 
empties. 

The main idea in the Folegnani and González work is that if a segment contributes 
very little to ILP, deactivating it would not harm performance. However, this holds 
only for ILP —not for MLP. In other words, even if the contribution of a segment in 
issued instructions is very small, it can still have a significant impact on performance, 
if any of its issued instructions is involved in MLP. It is exactly for such cases where 
MLP-awareness makes all the difference. Further, in the Folegnani and González 
work, once the IQ is downsized, there is no way to detect whether the situation 
changes —all we can see is the contribution to ILP of the active portion of the IQ. 
Thus, periodically, the IQ is brought back to its full size, and the downsizing process 
starts again. In our case, the existence of MLP automatically upsizes the IQ, to a size 
that does not harm MLP. 

5   Practical Implementation 

5.1   IQ Segmentation 

To allow dynamic variation of the IQ size, we divide the IQ in a number of independ-
ent parts referred as segments. For example, we use an 128-entry IQ partitioned into 
eight, sixteen-entry segments. Bitline segmentation is used to implement the resizing 
of the structure [10]. The structure of the IQ follows the one in [2]. The IQ is a circu-
lar FIFO queue, with every new instruction inserted at the tail; retiring instructions are 
removed from the head. The difference in our case, is that individual segments can be 
deactivated. A segment is deactivated if instructions from the youngest segment con-
tribute less than threshold instructions in a quantum of time (1000 cycles) and a seg-
ment is reactivated every 5 quanta. This inevitably leads to constraints that have to be 
met during the resizing process, similarly to those faced by Ponomarev et al. [11]: 
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downsizing of the IQ is only permitted if there are no instructions left to commit in 
the segment being removed and upsizing is constrained to activate segments that 
come after all the instructions currently residing in the IQ. 

5.2   Superpaths 

Our basic IQ management unit, the superpath, is characterized by its size and its first 
instruction. Sequential basic blocks are organized into superpaths at the dispatch stage 
and they contain at least as many instructions as the IQ size. Superpath creation ends 
when we encounter a basic block which is at the head of a previously created super-
path, in order to reduce both the number and the overlap of superpaths. For each 
newly created superpath we allocate an entry in a small hardware cache which keeps 
information about the superpath, as well as information about its MLP-distance. After 
performing an exploration of the design space, we chose a 4-way, 16-set configura-
tion (indexed by the lower-order bits of the start address of the superpath). 

We store 28 bits per superpath entry: 20 bits of the starting address (lowest-order 
bits above the indexing bits), the MLP-distance prediction (4 bits, again quantized in 
multiples of 16) and its confidence counter (3 bits) and a valid bit. For our 4x16 
cache, our storage requirements add up to 1792 bits. According to CACTI [14] this 
structure contributes 9.5 mW to the total power consumption of the processor, which 
is a reasonable power overhead compared to the power consumption of the IQ (8.9W 
for the configuration described in Section 6). 

5.3   MLP-Distance Prediction 

When all instructions of superpath commit, the stored superpath information is up-
dated with the MLP-distance information of this particular execution. Different exe-
cutions of a superpath are generally not identical in terms of MLP, so what we want to 
associate with the superpath is a dominant value for its MLP-distance. To manage 
this, in addition to keeping an MLP-distance prediction for each superpath entry, we 
employ a 3-bit saturating confidence counter which indicates our confidence that the 
stored MLP-distance is also the dominant value. The confidence counter is incre-
mented for each MLP-distance update which agrees with the current prediction and 
decremented for each update which disagrees. When it reaches zero we replace it. 

6   Evaluation 

6.1   Experimental Setup 

For our experiments we use a detailed cycle accurate simulator that supports a dy-
namic superscalar processor model and WATTCH power models [15]. The configura-
tion of the simulated processor is described in Table 1. We use a subset of the 
SPEC2000 benchmarks, containing benchmarks with more than one long-latency load 
per 1K instructions for the smallest cache size we utilize. Benchmarks with even less 
misses present no interest for our work, since without misses our mechanism falls 
back to the baseline ILP-feedback technique. All benchmarks are run with their refer-
ence input. We simulate 300M instructions after skipping 1B instructions for all 
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benchmarks except for vpr, twolf, mcf where we skip 2B instructions and ammp 
where we skip 3B instructions. 

6.2   Results Overview 

The experiments were performed for four different cache sizes. Three metrics are 
used in our evaluation: total processor energy, execution time and the energy × delay 
product. We first present the effects of MLP-awareness on the baseline ILP-oriented 
mechanism and then a direct comparison of the two mechanisms, the ILP-aware and 
the combination of the ILP-feedback and ILP/MLP techniques. All results (except 
otherwise noted) are normalized to the base case of an unmanaged IQ. 

Table 1. Configuration of simulated system 

Parameter Configuration
Fetch/Issue/Commit width 4 instructions per cycle
BTB 1024 entries,4-way set-associative
Branch Predictor Combining, bimodal + 2 Level, 2 cycle penalty
Instruction Queue 
(combined with ROB)

128 entries

Load/Store Queue 64 entries
L1 I-cache 16 KB, 4-way, 64 bytes block size
L1 D-cache 8 KB, 4-way, 32 bytes block size
Unified L2 cache 256 KB/512 KB/1MB/2MB,  8-way, 64 bytes block size
TLB 4096 entry (I), 4096 entry(D)
Memory 8 bytes wide, 120 cycles latency
Functional Units 4 int ALUs, 2 int multipliers, 4 FP ALUs, 2 FP multiplier

 

6.2.1   Effects of MLP-Awareness 
Figure 4 depicts the EDP geometric mean of all benchmarks for two different thresh-
olds: an aggressive threshold of 768 instructions and a conservative threshold of 256 
instructions. Note how difficult it is to improve the geometric mean of the whole-
processor EDP with IQ resizing. This depends a great deal on the portion of the total 
power budget taken up by the IQ. In our case, this is a rather conservative 13.7%, so 
in the ideal case —significant energy savings and no performance degradation— we 
expect to approach this percentage in EDP savings. Indeed, this is what we achieve 
with our proposal. 

As shown in the graph, the ILP-feedback technique works marginally with a con-
servative threshold while its combination with the MLP-aware mechanism improves 
the situation only slightly. However, with much more aggressive resizing, the  
ILP-feedback technique seriously harms performance and despite the larger energy 
savings, yields a worse EDP across all cache configurations. In this case, the incorpo-
ration of the MLP-aware mechanism can readily improve the results and turn loss into 
significant benefit, approaching 10% EDP improvement. 
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As long as the ILP-feedback technique does not hurt the MLP, it yields benefits. 
When that changes, the performance loss is unacceptable. This hazard is avoided 
when the MLP mechanism is used because it works as a safety net. With the help of 
MLP mechanism, resizing can be pushed to the limit. 

6.2.2   Direct Comparison of ILP- and ILP/MLP-Aware Techniques 
In this section, we compare the behavior of the two approaches, each evaluated for a 
configuration which minimizes its average EDP. An additional consideration was to 
find configurations that do not harm EDP over the base case for any benchmark. This, 
however, is not possible for the ILP-feedback technique, lest we are content with mar-
ginal EDP improvements. Thus, for the ILP-feedback we remove this restriction and 
we simply select the threshold that minimizes average EDP, which is 256-
instructions. The ILP-feedback with the MLP mechanism can be pushed much harder 
as it is evident from Fig.4 with the 768-instruction threshold. However, EDP worsens 
over the base case for two programs (applu and art), even though the average EDP is 
minimized. The threshold that gives the second best average EDP —giving up less 
than 2% over the previous best case— for the combined ILP/MLP mechanism is the 
512-instruction threshold which satisfies our requirement for EDP improvement 
across all benchmarks. 

Figures 5, 6, 7 illustrate the normalized EDP, execution time increase and energy 
savings respectively for the “best” thresholds for each mechanism. The end result is 
that the very aggressive resizing of the ILP/MLP technique harms performance com-
parably to the conservative ILP-feedback technique but at the same time manages to  
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Fig. 5. Normalized Energy-Delay Product for ‘best’ configurations: ILPFeedback (256 thresh-
old) and ILP-Feedback with MLP (512 threshold) 
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Fig. 6. Execution Time Increase for ILP-Feedback and ILP-Feedback with MLP (each for its 
best configuration) 
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Fig. 7. Normalized Energy Savings for ILP-Feedback and ILP-Feedback with MLP (each for 
its best configuration) 

 

reduce the IQ size more and produce significantly higher energy savings. This results 
in an EDP for the ILP/MLP technique that is consistently better than the EDP of the 
ILP-feedback technique, almost doubling the benefit on average (6.1-7.2% compared 
to 1.4-3.4% of the ILP-feedback technique). The added benefits of MLP-aware man-
agement diminish slightly with cache size, since with fewer misses we have less op-
portunities for MLP. Finally, note that the performance degradation of the ILP/MLP 
technique is kept at reasonable levels, while even for the conservative ILP-feedback it 
can vary considerably more (e.g., mcf execution time increases 67%-69%). 

7   Conclusions 

In this paper, we revisit techniques for resizing the instruction queue aiming to im-
prove the power-efficiency of high-performance out-of-order cores. Prior approaches 
resized the IQ paying attention primarily to ILP. In many cases this results in consid-
erable loss of performance while the energy gains from the IQ are bounded with re-
spect to the energy of the whole processor. The result is that EDP improves in some 
cases but worsens in others making such techniques inconsistent. 

The culprit for this is MLP —Memory-Level Parallelism. Resizing the IQ can re-
duce the amount of MLP in programs with serious consequences on performance. 
With this realization, we set out to provide a technique that can be applied on top of 
previous IQ resizing techniques. Our technique, detects possible MLP at runtime and 
uses prediction to guide IQ resizing decisions. Because we need to manage the whole 
IQ, our basic unit of management is a sequence of basic blocks, called superpath, 
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comparable in the number of instructions to the maximum IQ size. MLP information 
is associated with superpaths and is used to override resizing decisions that might 
harm the MLP of the superpath. In absence of misses and MLP, resizing of the IQ is 
performed using already existing techniques. 

Our results show that we can manage the IQ, considerably better than in prior ap-
proaches yielding consistently better EDP over the base case. At the same time, we 
can push the resizing of the IQ much more aggressively (to achieve better energy 
savings) knowing that our safety-net mechanism protects the MLP of the program and 
will not inordinately harm performance. 
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