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Abstract—The increasing demand for high-quality graphics
requires a significant increase in computational power of modern
GPUs. The common approach to follow is augmenting the
number of compute units (i.e., shader cores). However, this
can result in underutilized resources if the workload is not
properly balanced. This is particularly challenging in Tile-Based
Rendering (TBR) GPUs, the predominant architecture in mobile
GPUs, running graphics applications due to limited per-tile
workload.

This work proposes parallel tile rendering to efficiently in-
crease the computational capabilities of TBR GPUs. This solves
the problem of not having enough work to utilize the addi-
tional compute units but causes memory-intensive applications
to underperform due to the increased memory pressure. To this
end, we introduce LIBRA, a parallel tile rendering architecture
that includes a novel locality-aware approach to schedule tiles
to Raster Units to evenly distribute memory requests during
the rendering of each frame. This alleviates memory congestion,
therefore, reducing memory access time. LIBRA leverages frame-
to-frame coherence to predict the memory pressure of each tile of
a frame without penalizing the hit ratio of the cache memories.
Evaluations over a wide range of commercial gaming applications
show that LIBRA reduces the average memory latency by 13.5%
and achieves an average speedup of 20.9%. It also provides an
11.4% improvement in throughput (frames per second) and a
total GPU energy reduction of 9.2%, while adding negligible
overhead.

Index Terms—GPU microarchitecture, Graphics, Scheduling,
Low-power architectures, Locality.

I. INTRODUCTION

Driven by the increasing demand for high-fidelity animated
graphics applications, dedicated or integrated GPUs are now
found in a variety of devices, including laptops, smartphones,
tablets, smartwatches and AR/VR devices. Users’ demand
for increased realism is insatiable, and graphics applications
use more realistic and sophisticated geometry, lightning and
shadowing models in higher-resolution screens along with
increased refresh rates year over year. To satisfy all these in-
creasing demands, modern GPUs require more computational
power.

In graphics systems, GPUs contain two different parts: a
Geometry Pipeline that transforms the scene’s geometry, and
a Raster Pipeline that computes the final color for each screen
pixel from the transformed geometry. To provide an insight
of where the cycles go when rendering a 3D scene, Figure 1
shows the breakdown of the execution time in a typical GPU
for the set of commercial graphics applications that we have
evaluated (see details in Section IV). We can observe that, on
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Fig. 1: Distribution of the execution time in the GPU per
frame. On average, 88% is spent on the raster process.

average, nearly 88% of the time is spent in the raster process
which is the focus of this work.

Since rasterization dominates the execution time, the most
straightforward approach to increase the computing capabili-
ties of modern GPUs and boost their performance is to increase
the number of computing units (also known as shader cores).
However, the lower levels of the memory hierarchy are shared
among these cores and may become a bottleneck, especially
in modern gaming applications employing finer geometry (i.e.,
with more triangles per object) and more detailed and richer
textures, leading to a more intensive memory utilization.

To reduce memory pressure, Tile-Based Rendering (TBR)
architectures are commonly used for mobile GPUs [63]. They
efficiently exploit memory locality by processing small areas
of the screen, called tiles, one by one to avoid many DRAM
accesses by using tile-sized on-chip buffers in charge of storing
the intermediate results. Conventional TBR GPUs are limited
to processing one tile at a time for simplicity, and all the
integrated shader cores are devoted to work on the current tile
[4]. Thus, the addition of more shader cores for augmenting the
overall GPU computing power can sometimes be ineffective
since the limited amount of work in some tiles may result in
underutilized resources.

In this paper, we explore a less conventional approach to
increase the computing resources in a more effective way. The
main idea is to process multiple tiles in parallel. Nevertheless,
this is not trivial because this also implies increasing system
memory pressure, as more cores are sending requests in
parallel, which may lead to a memory bottleneck.

Graphics applications are highly parallel since the compu-
tations for each pixel have no dependencies, resulting in the
application being composed of a huge number of threads.
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(a) Rendered frame (b) Heatmap of memory accesses

Fig. 2: Example of a rendered frame and the heatmap of the
per-tile DRAM accesses for the game Subway Surfers [72].

The shader cores are designed to exploit this feature by
being highly multithreaded to increase throughput and hide
memory latency. Each shader core has an associated private
L1 cache, which is backed by a shared L2 cache and main
memory (see Section II-C). Rendering multiple tiles in parallel
implies having independent cores that share the access to
the memory hierarchy, which may generate congestion in the
memory subsystem. This may result in longer latency accesses
that cannot be hidden by multithreading which would hurt
performance.

In TBR architectures, tiles can be processed in any order.
Tiles within a frame are not homogeneous since some regions
of a frame have a higher amount of work than others. For
instance, it is very common that some areas of the scene
contain only background (e.g., the sky) whereas other contain
many overlapping objects with a high level of details. Thus,
some tiles will perform many more accesses to the LLC and
DRAM than others. To better illustrate this effect, Figure 2
shows the heatmap of DRAM accesses generated per each tile
for the well-known mobile game Subway Surfers [72]. As it
can be observed, we can identify hot tiles (performing many
memory accesses) that correspond to frame regions where the
main character is located, the status bars (aka HUD), and the
areas where the fences and coins are located. On the other
hand, we can observe cold tiles (performing less memory
accesses) in other areas of the scene with less details (e.g.,
the railways, the station roof, and the station stores). This
imbalance in the access pattern leads to an opportunity and
motivates us to explore novel tile scheduling algorithms based
on these observations to ameliorate memory pressure.

This work proposes LIBRA, a Locality-aware Intelligent
Balance Rendering Architecture that performs parallel tile

rendering in such a way that it processes hot and cold tiles
concurrently to avoid saturating the memory system. It is well
known that the response time of memory increases asymp-
totically as the utilization factor of the memory bandwidth
approaches 100% so, in general, it is better to have a more
balanced utilization rather than periods with low utilization
followed by others with a very high utilization. On the
other hand, processing far away tiles commonly result in a
detrimental effect on the locality that can be exploited by the
L1 and L2 caches, therefore, LIBRA incorporates a locality-
aware mechanism to avoid increasing L1 and L2 cache misses.

To achieve this, we need to have a way to predict the
memory pressure that a given tile will generate. Our technique
exploits what is known as frame coherence. To create the
illusion of movement in animated graphics applications, a high
frame rate is required. This results in frames quite similar
to their previous one, which is known as frame-to-frame
coherence [28]. We take advantage of this feature to predict
the memory pressure in a given frame based on the collected
statistics from the previous one.

To summarize, in this paper we propose to boost GPU
performance by first providing an unconventional method for
increasing compute resources. To the best of our knowledge,
this is the first work exploring parallel tile rendering on GPUs.
Our work makes the following key contributions:

• We propose LIBRA, a novel approach to increase the
computing capabilities of a GPU by processing multiple
tiles in parallel.

• We propose a novel tile scheduler scheme that tries to
keep the memory utilization uniformly distributed across
the execution time by combining tiles with high and low
memory demands, while at the same time not increasing
the miss ratio in the private L1 cache and the shared L2
cache.

• We show that LIBRA provides important benefits in terms
of performance (20.9% improvement), 11.4% increase in
frame rate (frames per second, FPS), and 9.2% decrease
in total GPU energy consumption.

The rest of the paper is organized as follows. Section II
provides some background on GPUs. Section III presents
LIBRA. Section IV describes the evaluation methodology.
Section V presents our experimental results and analysis.
Section VI reviews some related work. Finally, Section VII
summarizes the main conclusions of this work.

II. BACKGROUND

TBR architectures were originally proposed to smooth par-
allel rendering since tiles do not overlap in the scene [26],
[53]. Nowadays, mobile GPUs normally implement a Tile-
Based Rendering (TBR) architecture in order to reduce main
memory accesses. This rendering approach is very popular in
low-power graphics and memory-bandwidth-limited systems.
TBR is characterized by dividing the screen space into a grid
of smaller rectangular regions of adjacent pixels, called tiles.
Tiles are small enough to perform many operations on tile-
sized on-chip buffers. Since off-chip main memory is usually
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Fig. 3: The Graphics Pipeline of a TBR GPU.

the primary source of power consumption in GPUs [14], [16],
[25], these small on-chip buffers significantly reduce these
power-hungry accesses to off-chip main memory and reduce
memory traffic. For instance, Antochi et al. [5] show that TBR
considerably reduces the total amount of external data traffic
compared to traditional architectures that are not tile-based,
also known as Immediate-Mode Rendering (IMR) GPUs.

A. Graphics Pipeline

Figure 3 depicts the main stages of the Graphics Pipeline
and the memory hierarchy organization of a TBR architecture.
The rendering process typically has two major pipelines:
Geometry and Raster. The Geometry Pipeline performs all the
geometry-related operations over the triangles that compose
the objects in the scene and generates all the corresponding
primitives that fall into the visible frustum. Then, the Raster
Pipeline discretizes each primitive into pixel-sized fragments
which are then shaded and blended to produce their final
output color for the final screen image.

In TBR architectures, the Raster Pipeline renders tiles rather
than the full frame to keep an important number of memory
accesses on chip by increasing locality. To make possible this
tiling process, all the geometry is sorted into sub-regions to
be later processed by the rasterization stages. Different sorting
taxonomies exist, but TBR is classified in the literature as sort-
middle [2], [53]. These architectures rely on an intermediate
phase where the tiling process is carried out, called Tiling
Engine. Thus, TBR architectures have three main pipelines,
as shown in Figure 3.

The Geometry Pipeline is triggered by draw calls, which
are commands that demand for the rendering of a batch
of objects. The Vertex Fetcher fetches the objects’ vertices
from memory. Then, the Vertex Processors transform these
vertices by executing a user-defined vertex shader program.
Once processed, these vertices are taken in program order and
assembled to generate different polygons (usually triangles).
Afterward, for each primitive, it is determined whether the
primitive lies within the frustum view, according to the cam-
era’s point of view. This Culling process discards the triangles
that are detected to be entirely outside of this viewing volume.
However, in case a triangle is partially visible, a Clipping
operation is applied, in which the primitive is split into smaller
triangles and only those that entirely fall inside this visible

region are kept. The resulting primitives are the input data to
the Tiling Engine.

The Polygon List Builder is in charge of binning the
primitives into tiles, i.e., to produce a list in program order
for each tile with all the primitives that totally (or partially)
fall inside it. These per-tile primitive lists are stored in a main
memory region called Parameter Buffer. Once all the geometry
has been processed and binned into tiles, the Tile Fetcher starts
working in a tile-by-tile fashion, fetching the primitives that
belong to the current working tile which are served as inputs
to the Raster Pipeline.

The Raster Pipeline renders tiles sequentially one after an-
other. The Rasterizer determines the pixels that are overlapped
by each primitive in the current tile and discretizes each
primitive into a set of fragments. In addition, the Rasterizer
interpolates the values of the primitive’s attributes. Fragments
are assembled into groups of 2x2 adjacent fragments to form
quads which are sent to the Early Z-Test stage. This stage aims
to eliminate fragments that are known to be occluded by a
previously processed one. This is accomplished by employing
a tile-sized on-chip buffer called Z-Buffer that stores the depth
value of the closest fragment processed for each tile’s pixel
position so far. The presumably visible quads proceed to the
Fragment Stage, where the shader cores compute the color for
each fragment by executing a user-defined fragment shader
program that provides the corresponding lightning model and
textures. Finally, output colors are processed by the Blending
Unit to properly combine them with the ones already in the
same position in the Color Buffer, and allows to achieve
transparency effects. In some situations, the shader cores may
need to modify the depth values of the fragments, in which
case the Early Z-Test is disabled and the visibility test is
performed after shading (Late Z-Test stage).

Finally, once all the primitives in the current tile have been
completely rendered, the content of the Color Buffer is flushed
to the Frame Buffer, a region in main memory used to hold
the data that will be displayed in the screen. Therefore, the
Color Buffer is entirely written into main memory once for
each tile. After all the tiles of a frame have been processed,
the frame is ready to be displayed. Recall that both the Z-
Buffer and Color Buffer are tile-sized, which means that they
can be held in on-chip memory, thus, significantly reducing
accesses to off-chip DRAM memory.
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B. Tile Scheduling

As mentioned previously, the Tile Fetcher is in charge of
fetching the primitives corresponding to each tile on a frame –
one tile at a time – that are stored in the Parameter Buffer. The
tile’s primitives are pushed onto a FIFO queue for the Raster
Pipeline to consume. The next tile to process is selected in
an order specified by the Tiling Engine. Note, however, that
tiles can be processed in any order as they are independent.
In any case, primitives within each of these tiles need to be
processed in program order to guarantee correctness.

The most common tile traversal orders in computer graphics
are scanline and Morton order [56]. Scanline follows a row-
major order, while Morton order follows a Z-shaped pattern.
Although Morton order is more complex, it is considered more
cache-friendly as it helps improve spatial locality. For this
reason, we assume the Morton order (or Z-order) as the one
used in the baseline GPU of this work.

C. Memory Organization

Figure 3 also depicts the memory hierarchy of a TBR
GPU. There are multiple L1 caches to store geometry (Vertex
cache and Tile cache) and textures (Texture caches), which are
connected to a shared on-chip LLC. This L2 cache is, in turn,
connected to the off-chip main memory. There are also local
on-chip memories that store the Z-Buffer and Color Buffer for
the tile being processed. Note that the Color Buffer directly
transfers its content to main memory when all the current tile’s
primitives have been rendered. However, the content of the Z-
Buffer does not need to be written to main memory.

III. LIBRA: LOCALITY-AWARE INTELLIGENT BALANCE
RENDERING ARCHITECTURE

In this paper we propose LIBRA, a parallel tile rendering
architecture that employs a novel temperature-based tile sched-
uler to make a more effective utilization of the computing
resources and improve GPU performance. This is achieved by
processing in parallel hot and cold tiles to properly balance
the memory accesses and avoid saturating the memory system
along the rendering of a frame. In essence, LIBRA ameliorates
the congestion in memory due to the increased parallelism
by keeping the memory utilization uniformly distributed by
combining tiles with high and low memory demands, while
not hurting the spatial locality in the L1 and L2 caches.

As mentioned above, to increase the performance and
reduce the energy consumption of the GPU, LIBRA relies
on rendering multiple tiles in parallel for a given number
of shader cores. However, this sole approach substantially
increases the pressure over DRAM, so one of the main goals of
our proposal is to reduce DRAM contention. This is achieved
by smartly choosing the order in which tiles are processed, in
such a way that we smooth the DRAM memory bandwidth
required throughout the rendering of each frame. This tile
order executes tiles with high memory demands (hot tiles)
concurrently with other that exhibit low memory demands
(cold tiles), but at the same time it is important that the chosen
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Fig. 4: Speedup when doubling the number of cores in a Raster
Unit from 4 to 8.

tile order does not penalize the locality in the L1 and L2
caches, otherwise, this would result in further DRAM requests.

A. Parallel Tile Rendering

A conventional manner to increase the computing power is
to simply add more shader cores, since the Fragment stage is
the main bottleneck of the Raster Pipeline. Remember that,
to guarantee the semantics set by the programmer, there are
barriers between stages, so a tile cannot proceed to a given
stage until the preceding tile has completed that stage. Because
of that, adding more cores to accelerate the Fragment stage
may be ineffective for tiles that do not have enough work to
keep all cores busy for most of the time.

To provide a better insight about this issue, Figure 4 shows
the speedup when increasing the number of shader cores in
the Raster Unit from 4 to 8. It can be observed that doubling
the number of cores does not work well for many of the
applications in our benchmark suite. For the sake of visibility,
the plot only shows the benchmarks whose speedup is lower
than 1.50. It must be noted that a considerable number of
benchmarks suffer this condition, 16 out of 32, which are the
ones reported in Figure 4. Also note that some benchmarks
(such as BlB and CCS) exhibit speedups even smaller than
1.10, despite doubling the number of computing cores, quite
far from the ideal 2x speedup.

To tackle this poor scalability observed in the more memory-
intensive applications, LIBRA seeks to increase the overall
GPU performance by exploiting a less conventional approach
based on rendering multiple tiles in parallel, to avoid having
idle cores. In other words, at the same time we increase the
number of cores, we also increase the amount of work (i.e.,
number of tiles) to be processed concurrently. For illustration
purposes, in the rest of the paper we assume that LIBRA will
render two tiles in parallel, i.e., it will feature two Raster Units.

Figure 5 depicts the main blocks of the proposed parallel tile
rendering (PTR) architecture. Note that one input FIFO queue
is required for each Raster Unit to allow them to progress at
their own pace. These FIFO queues store a primitive in each
entry, taking into account that all the primitives of a given
tile must be rendered in the same Raster Unit to maintain the
program order among overlapping primitives.

Since the Tile Fetcher of the proposed PTR architecture
has several FIFO output queues, a scheduler is needed to
select which Raster Unit will process each tile. The most
straightforward schedule mechanism is to use an interleaved
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tile assignment, following the original tile order assumed for
our baseline GPU (Z-order). I.e., the Tile Fetcher fetches tiles
in the predefined order which are dispatched to a Raster Unit in
an alternating manner. This basic scheduling of tiles provides
a good workload balancing across the two Raster Units.

Parallel tile rendering has the potential to be more effective
than single tile rendering for the same total number of cores.
However, due to the increase in memory pressure in the
shared L2 and main memory, memory becomes the main
bottleneck for some applications, and the performance gain
is not even close to the expected 2x for several graphics
workloads. Figure 6.a shows the fraction of the execution time
that is spent on memory accesses for all applications in our
benchmark suite. This graph has been obtained by simulating
the application with an ideal memory system (whose accesses
always hit in the L1 caches) and simulating it again with a
realistic memory configuration. The difference in execution
time between the two configurations is due to the memory
activity, which is depicted in red in this graph. On the other
hand, Figure 6.b shows the speedup of a system with two
Raster Units over a system with just one, as a function of the
percentage of execution time that is spent on memory. We can
see that these two metrics are strongly correlated. The more
memory-intensiveness the less speedup, which confirms that
memory is the main bottleneck to fully exploit parallel tile
rendering. For the rest of this paper, we consider a benchmark
as memory-intensive when at least 25% of its execution time
is spent on memory accesses.

Tiles are highly heterogeneous in the sense that some have
a few simple primitives to render whereas others contain
very complex geometry. This translates into very different
requirements in terms of computation and memory accesses.
Another observation is that tiles with similar characteristics
tend to appear spatially clustered (as illustrated in Figure 2).
E.g., if there is a screen region where multiple objects overlap,
all the neighboring tiles where these objects fall upon will have
a similar amount of primitives, fragments, texture accesses,
etc. Therefore, if we want to avoid rendering simultaneously
two tiles with high memory requirements, it may be good to
avoid rendering adjacent tiles at the same time. However, it is
true that nearby tiles tend to share more textures than far apart
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Fig. 6: Execution time breakdown and correlation between the
speedup and memory tasks. It can be observed that various
benchmarks have a significant memory activity that correlates
with the poor speedup obtained.

ones, so rendering distant tiles concurrently may hurt locality.
In conclusion, deciding which tiles are rendered in each

Raster Unit and in which order has a very important impact
on the memory utilization, and thus it is a key component of
LIBRA, which is described in detail next.

B. Temperature-aware Tile Scheduler

The second main component of LIBRA is a novel tile
scheduler that minimizes DRAM pressure while maintaining
data locality, and balancing the workload of the Raster Units.
Note that in TBR GPU architectures there are four sources
of DRAM memory accesses. They correspond to geometry
accesses (i.e., to fetch the geometric description of the scene),
accesses to the Parameter Buffer (a data structure that enables
the tiling of the frame), texture accesses (images mapped onto
object surfaces to add high-frequency details), and accesses
to the Frame Buffer (which holds the final colors of the
entire frame). Since LIBRA aims to reduce the memory
pressure during the Raster Pipeline, geometry-related accesses
are ignored.

As discussed previously, tiles within a frame are diverse
due to varying characteristics of the scene across different
regions. To quantitatively illustrate this, Figure 7 shows the
number of DRAM requests generated in intervals of 5000
cycles during the execution of a frame of the popular game
Candy Crush (CCS). It can be observed that there are certain
intervals which are much more memory-intensive than others.
To achieve a more homogeneous memory activity across the
whole execution, LIBRA tries to overlap the rendering of
tiles with the highest memory demands with those with the
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Fig. 7: Number of main memory requests during the execution
of a frame of Candy Crush in intervals of 5000 cycles.

lowest demands. This way, it avoids intervals with an excessive
number of simultaneous DRAM requests. To that end, LIBRA
devotes one Raster Unit for processing the hot tiles, and
the other one to process the cold tiles. The main goal is
to avoid processing two high-demanding tiles simultaneously,
since the response time of memory increases exponentially as
the utilization factor of it augments. It is important to note
that tiles are completely independent and can be processed in
any order, unlike primitives that must be processed in program
order in each tile for correctness (since they may overlap). This
fact is exploited by LIBRA’s novel tile scheduler.

Let us describe next how LIBRA is able to determine hot
and cold tiles in a given frame. First, recall that animated
applications exhibit a high degree of frame-to-frame coherence
to enhance user experience, i.e., consecutive frames are nor-
mally very similar. Figure 8 shows the cumulative difference
in DRAM accesses of the same tile for several consecutive
frames averaged over our entire benchmark suite. It can be
seen that more than 80% of the tiles have a difference lower
than 20%, which confirms the high degree of frame-to-frame
coherence between two consecutive frames.

LIBRA exploits this coherence to predict the next frame’s
behavior. In particular, it counts the number of DRAM ac-
cesses and instructions in each tile of a frame and use this
information to predict the hot and cold tiles in the next frame.
We define the temperature of a tile (a proxy for memory
intensity) as the ratio of DRAM accesses over the number
of instructions, and arrange the tiles from highest to lowest
temperature (i.e., DRAM request frequency). This requires a
small table sized to the number of tiles in a frame, which
depends on the screen resolution but typically are just a few
thousands (see implementation details in Subsection III-E).
Once the tiles have been ranked based on their temperature,
the Tile Fetcher dispatches them to the different Raster Units
(RUs). E.g., if two RUs are used, one RU will be dedicated
to processing the hot tiles (whose IDs are obtained from the
top of the ranked table) whereas the other RU will process the
cold tiles (using IDs from the bottom of the table).

C. Supertiles

Texture data locality is key for GPU efficiency, assuming
there are no bottlenecks in other stages of the pipeline.
However, scheduling tiles solely based on their memory access
temperature may lead to processing the frame by performing
jumps through distant tiles, which results in losing the natural
locality that exists when processing nearby tiles. To address
this divergence, we propose to assemble tiles in squared groups
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Fig. 8: Cumulative per-tile DRAM accesses difference for
consecutive frames.

of tiles, which we refer to as supertiles. For example, a 4x4
supertile covers a rectangular region of 16 adjacent tiles. The
Tile Fetcher assigns a particular supertile to a Raster Unit, so
its corresponding tiles will be scheduled to that Raster Unit one
after another. This way, LIBRA is capable of retaining texture
locality inside a Raster Unit (thanks to using supertiles) while
also managing to reduce replication in the rest of Raster Units
(since different Raster Units will process distant frame areas).
In addition, reducing block replication in the L1 texture caches
potentially increases their locality, as the aggregated effective
cache capacity is increased. To better illustrate the utilization
of supertiles, Figure 9 shows the popular game Hill Climb
Racing (HCR) [24] when the Raster Unit is scheduled at tile
and supertile level. We can identify that adjacent tiles tend to
reuse textures (e.g., the texture of the ground or the coins) and
that hot regions tend to cover several adjacent tiles.

Supertiles can be of any size, providing enormous potential
for exploring different alternatives. In this work, we limit the
options to supertile sizes that are powers of two: 2x2, 4x4,
8x8, and 16x16. Larger values would cover almost the entire
screen and would be ineffective in preventing main memory
access peaks. The supertile size is dynamically chosen at run
time for each application depending on its characteristics, as
described in next subsection.

D. Adaptive per-Frame Scheduling

Each graphics application exhibits its own characteristics,
traversing different application phases as the execution pro-
gresses. Moreover, even the same application commonly shows
different computing demands on different frames. Conse-
quently, an adaptive mechanism is needed to determine the
most adequate tile scheduling approach.

Our proposed scheduler leverages frame coherence to imple-
ment this adaptability based on the last frame’s characteristics.
This dynamic scheduler must be able to react to scene changes
from one frame to the next. Based on this, it will determine
the order in which tiles will be processed in the current frame,
either a temperature-aware order or the conventional Z-order;
and second, it must determine the supertile size to be used in
the current frame (if temperature-aware order is chosen).

Determining the tile traversing order. LIBRA can schedule
tiles using two different ordering schemes: following the
conventional Z-order, or following the proposed temperature-
aware order. The decision to select one ordering or the other
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(a) Rendered frame (b) Tile-level scheduling heatmap (c) 4x4 supertile-level scheduling heatmap

Fig. 9: Hill Climb Racing [24] frame and its heatmap of memory accesses when considering either a tile-level or a supertile-level
scheduling. Nearby tiles tend to employ similar textures, and hotspots cover a cluster of neighboring tiles.

is based on two metrics: performance (i.e., the number of
cycles spent on the Raster Pipeline) and the locality achieved
by the L1 caches in the previous frame. For the latter, we
use the texture caches’ hit ratio as a proxy since texture
accesses constitute the main source of DRAM requests. If the
hit ratio is sufficiently high, it is unlikely to have congestion
in main memory, and the temperature-aware order is disabled.
Our experimental evaluation showed that a threshold of 80%
provides good results. That is, if the hit ratio of the texture
caches in the previous frame exceeded this threshold, the Z-
order will be used to rasterize the current frame.

Performance is the other metric used to determine the tile
ordering scheme to follow. To do that, LIBRA compares the
cycles spent on the Raster Pipeline for a given frame with
those of the previous frame. According to frame-to-frame
coherence, consecutive frames should account for a similar
number of cycles. Note, however, that decisions regarding the
tile ordering are only taken when a significant performance
variation is detected. For that, we define another threshold
value to detect a significant performance variation. Based on
our experimental evaluation, this threshold has been set to 3%.
Therefore, a performance variation higher than this threshold
switches the tile ordering scheme (from temperature-aware to
Z-order, or vice versa).

Finally, we experimentally found out that following Z-order
when the hit ratio is high, or the temperature-aware order

Start frame

Z-order 
enabled?

Choose 
supertile size

No

Yes

Texture Cache hit 
ratio > 80%?

Locality 
degraded?

Yes

Yes

Z-order

Temperature 
order

Performance or 
locality degraded?

Yes

No

No
No

NoYes

Texture Cache hit 
ratio > 80%?

Fig. 10: Dynamic algorithm to determine the tile order.

otherwise, does not always achieve the optimal performance.
For some benchmarks, a temperature-aware order is more
beneficial than Z-order, even if the hit ratio threshold is
exceeded. This scenario is detected when both the hit ratio
and performance degrade with respect to the previous frame,
in which case, the alternative ordering scheme is chosen for
the following frames.

To provide an overall picture of this adaptive scheme,
Figure 10 shows a block diagram of the algorithm used to
determine the tile traversing order for the current frame.

Determining the supertile size. As explained in Section III-C,
our approach works at a supertile granularity to avoid hurting
the locality of textures. The size of these supertiles is dynam-
ically determined on a per-frame basis as well. The resizing
policy begins with a predetermined supertile size, which is
gradually increased in subsequent frames while performance
keeps improving. Otherwise, the supertile size is decreased (in
successive frames) until performance is degraded, after which
the adaptive policy switches back to increase the supertile
size. This way, supertiles are dynamically resized according
to the application characteristics for each frame. To avoid
unnecessary size changes, a threshold value is used to decide
when supertiles must be resized. According to our empirical
analysis, a performance variation of more than 0.25% provides
the best results. As mentioned before, we have considered
supertile sizes of 2x2, 4x4, 8x8 and 16x16 tiles. Note, however,
that tiles within a supertile are always traversed in Z-order.

Once the supertile size is set, if the selected tile ordering
scheme for the current frame is our temperature-based one,
supertiles must be ranked from hottest to coldest based on
their average number of DRAM accesses per instruction, as
described in Subsection III-B. To do that, the per-tile memory
accesses and instruction count metrics of the previous frame
are first aggregated at the chosen supertile granularity. Further
implementation details can be found in Subsection III-E,
but note that the ranking operation is completely done in
parallel with the Geometry stages (as we will show) and no
timing overhead is introduced by LIBRA. Once the Geometry
Pipeline has finished, the Tile Fetcher is ready to dispatch
supertiles to the different Raster Units (RU), alternatively
assigning a hot supertile (from the top of the ranking) to one
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RU, and a cold supertile (from the bottom of the ranking) to
the other RU, to ensure that memory accesses and memory
bandwidth are properly balanced.

Summarizing, LIBRA introduces an adaptive tile scheduling
approach that distributes main memory accesses more evenly
across the raterization of each frame. By implementing an
adaptive locality-aware scheduler, our approach can effec-
tively manage and prevent a high memory bandwidth demand
that could potentially overload the memory system. This is
achieved with a negligible overhead, as described next.

E. Hardware Implementation

LIBRA is designed to require minimal hardware overhead.
In terms of storage, it only needs a small on-chip buffer to
store the number of instructions and the number of DRAM
accesses performed per supertile.

Each entry of the buffer holds two additional values to store
the accesses per instruction and the supertile ID, used for the
ranking operation. Overall, 16 bits are used for the number
of memory accesses, 24 bits for the instruction count, 15 bits
for the calculated accesses per instruction, and 9 bits for the
supertile ID, making a total of 64 bits per entry. Since in our
experimental evaluation we employed a FHD screen, a total
of 510 2x2 supertiles cover the entire frame. Thus, the buffer
only needs at most 510 entries (less for larger supertiles) which
corresponds to a storage cost of about 4KB, and represents less
than 0.2% of the L2 area.

The dynamic algorithm also incurs minimal storage over-
head. It just needs four counters to store the number of cycles
and the texture caches hit ratio of the last two frames, while
the logic is implemented with a small FSM.

Finally, when the temperature-based tile order is chosen,
supertiles must be ranked based on their average number of
DRAM accesses per instruction. Next, we provide a timing
overhead estimate assuming an ordering cost of O(n log n).
The logic sequentially compares pairs of values which are
swapped when needed. For each of the O(n log n) compar-
isons (i.e., 4587 for n = 510), two reads are needed followed
by two potential writes. Assuming a very conservative ap-
proach where the two reads to the on-chip buffer take one
cycle, the comparison another cycle, and the potential writes
another cycle, it leads to an upper bound of 3×4587 = 13761
cycles to complete the ranking operation. To put this number
in context, we have measured that a frame requires 270000
cycles on average just for the Geometry stages and for the
evaluated benchmarks. Therefore, the latency of the ranking
operation needed by the temperature-based tile order can be
totally hidden, as it is done in parallel with the Geometry
Pipeline. Similarly, the energy overhead introduced by LIBRA
is negligible since only a single comparator and a fixed-point
divisor are required.

IV. EVALUATION METHODOLOGY

A. Simulation Infrastructure

To evaluate our proposal we have employed TEAPOT
[10], a cycle-accurate GPU simulation framework that allows

TABLE I: GPU simulation parameters.

Global Parameters
Tech Specs 800 MHz, 1V, 22nm
Screen Resolution 1920x1080 (Full HD)
Tile Size 32x32 pixels

Main Memory (LPDDR4)
Tech Specs 1.2 GHz, 1.2V
Latency 50-100 cycles
Size 8 GB

Caches
Vertex Cache 64-bytes/line, 4KB, 2-way, 1 cycle
Tile Cache 64-bytes/line, 32KB, 4-way, 2 cycles
Texture Cache (per core) 64-bytes/line, 32KB, 4-way, 2 cycles
L2 Cache (shared) 64-bytes/line, 2MB, 8-way, 18 cycles

Baseline LIBRA
Raster Units 1 2
Cores per Raster Unit 8 4

running unmodified Android applications and assesses the
performance and energy consumption of the modeled GPU and
the memory system. In order to do that, TEAPOT relies on
well-known tools such as McPAT [48] for the GPU energy es-
timation, and DRAMsim3 [47] to model the timing and energy
consumption of DRAM and memory controllers. Table I shows
the parameters employed in our simulations, which model
an architecture closely resembling a modern ARM Valhall
mobile GPU [6], [7]. The baseline architecture comprises a
single Raster Unit with eight cores, while LIBRA distributes
the eight cores across two Raster Units, each containing four
cores. Each shader core has a private Texture cache.

B. Benchmarks

In order to provide confident results for the evaluation of
LIBRA, we have selected a wide range of commercial Android
graphics applications as benchmarks. The choice criteria for
these games is based on variety, to cover a wide diversity of
benchmarks, and also on their popularity, determined by the
number of downloads in the Google Play Store.

Table II shows the set of benchmarks used to evaluate our
proposal. We evaluated sequences of 25 frames, but results
remain consistent with larger frame sets. We cover games
in 2D (e.g. CCS), 2.5D (e.g. CoC), and 3D (e.g. SuS). In
addition, there is a lot of variation when it comes to the average
memory footprint per frame in different games. The average
footprint for all the benchmarks is more than 4MB, but some
of them, such as HoW and RoM, have much higher memory
requirements. Conversely, games like CrS and Jet have a more
modest memory footprint.

V. EXPERIMENTAL RESULTS

In this section we first evaluate the effects of LIBRA in
terms of performance, memory latency and energy with respect
to a conventional GPU that has the same number of shader
cores but in a single Raster Unit (i.e., does not perform parallel
tile rendering). We also provide a detailed analysis of where
the benefits of LIBRA come from.

As mentioned previously, we have classified applications
into two categories, memory-intensive and compute-intensive
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TABLE II: Evaluated benchmarks.
Benchmark Alias Genre Type Downloads Footprint Benchmark Alias Genre Type Downloads Footprint

(millions) (MB) (millions) (MB)
Air Attack AAt Action 2.5D 10 2.1 Gravity Tetris GrT Puzzle 3D 5 0.8
Among Us AmU Action 2.5D 500 3.4 Gravity: Don’t Let Go Gra Arcade 3D 1 5.2
Angry Birds AnB Puzzle 2D 100 1.1 Hill Climb Racing HCR Racing 2D 1000 2.8
Archery Master 3D Arc Sports 3D 100 2.3 Hot Wheels: Race Off HoW Racing 2.5D 50 8.3
Beach Buggy Racing BBR Racing 3D 10 7.5 Jetpack Joyride Jet Arcade 2D 100 0.7
Block Blast! BlB Puzzle 2D 100 3.6 3D Maze / Labyrinth Maz Adventure 3D 10 3.6
Candy Crush Saga CCS Casual 2D 1000 2.6 Plants vs. Zombies PVZ Strategy 2D 500 2.7
Captain America: Sentinel of Liberty CAm Action 2.5D 5 1.5 Real Steel World Robot Boxing RSt Action 3D 50 4.9
City Racing 3D CRa Racing 3D 50 3.5 Rise of Kingdoms: Lost Crusade RoK Strategy 2.5D 50 7.1
Clash of Clans CoC Strategy 2.5D 500 2.4 Royal Match RoM Puzzle 2.5D 100 27.5
Counter Strike CoS Action 3D 50 0.7 Sniper 3D: Gun Shooting Games S3D Action 3D 500 6.0
Crazy Snowboard CrS Sports 3D 15 0.9 Sonic Dash SoD Arcade 3D 100 4.8
Derby Destruction Simulator DDS Racing 3D 10 3.2 Subway Surfers SuS Arcade 3D 1000 2.9
Forest 2 Fo2 Adventure 3D 1 4.7 Tetris Tet Puzzle 2D 10 9.4
Geometry Dash Lite GDL Rhythm 2D 100 1.2 Tigerball TiB Casual 3D 10 6.5
Golf Battle GoB Sports 3D 50 4.9 Vegas Crime Simulator VCS Action 3D 10 4.3
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Fig. 11: Speedup of LIBRA w.r.t. the baseline GPU for the
memory-intensive applications.

ones. The former are those applications with important mem-
ory activity (at least 25% of the execution time spent on
memory accesses); the rest are classified as compute-intensive.
We initially focus on memory-intensive applications since
LIBRA is specially designed to optimize memory-intensive
applications. At the end of this section we discuss the impact
of LIBRA on compute-intensive applications.

A. LIBRA Results

1) Performance. Figure 11 shows the speedup achieved by
LIBRA with respect to the baseline GPU. Overall, we obtain
an average speedup of 20.9% for the evaluated benchmarks.
To better understand the contribution of each one of the
two components of LIBRA, the blue segments represent the
speedup achieved solely by using two Raster Units in a
parallel tile rendering setup (PTR), while the orange segments
correspond to the additional speedup achieved by the novel
memory-bandwidth- and locality-aware scheduler. It can be
seen that PTR alone obtains an average speedup of 13.2%,
whereas the adaptive scheduler contributes with a significant
extra 7.7% improvement.

Employing a PTR architecture on its own can significantly
improve performance for many applications over doubling the
number of cores in a single Raster Unit. For instance, AAt
improves its performance by 35.9%. However, by adding the
proposed adaptive tile scheduler, LIBRA is capable of boosting
performance even more for all the applications, achieving up
to an extra 31% for CCS and 20.2% for GrT (leading to a total
speedup of 44.5% and 39.9%, respectively). Note that this is a
significant improvement since performance is critical in real-
time rendering, which leads to an average 11.4% increase in
frame rate (FPS) with negligible overhead.

On the other hand, it can be observed that some benchmarks
(such as Gra or RoK) do not obtain that much benefit in perfor-
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Fig. 12: Decrease in texture latency w.r.t. the baseline.
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Fig. 13: Increase in overall GPU texture cache hit ratio w.r.t.
the baseline.

mance from the adaptive scheduler. This is highly correlated
with the poor shader core utilization when processing each
tile. Therefore, for some applications it is difficult to hide long
latencies due to their low workload and high miss ratio.
2) Texture Latency. As mentioned earlier, the Fragment Stage
is usually the bottleneck in the Graphics Pipeline due to the
complexity of the shader programs and their memory demands
when accessing textures. Long-latency operations like cache
misses render a warp blocked in the shader cores. Therefore,
reducing texture access latencies is crucial for not slowing
down performance.

To provide a better insight of the contribution of LIBRA’s
adaptive scheduler, in this case we present separate bars
to differentiate results from PTR alone and from LIBRA
(PTR with the scheduler). Figure 12 shows the decrease in
texture access latency compared to the baseline. The blue
bars denote the latency decrease obtained by employing just
a PTR architecture, whereas the orange bars show the latency
decrease achieved by LIBRA. It can be observed an average
decrease of 13.5%. However, PTR alone increases latency for
some benchmarks since it is not able to properly face mem-
ory congestion periods. On the other hand, LIBRA achieves
significant reductions compared to both baseline and PTR
alone. This shows the effectiveness of the proposed adaptive
scheduler which can provide latency reductions of up to 40%.
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Fig. 14: Normalized main memory accesses w.r.t. PTR alone.

3) Texture Locality. Figure 13 shows the hit ratio increase for
the overall texture caches. As before, we present the results
in separate bars differentiating PTR alone from LIBRA. It
can be seen an average hit ratio increase of 10.6% compared
to the baseline, with some benchmarks achieving up to 40%.
Regarding block replication within the Texture caches, we
have observed average reductions of 32.5% compared to PTR
alone, but we have seen that there is no correlation between an
increase in the texture cache hit ratio and a reduction in texture
block replication. Note also that an increase in the hit ratio
does not necessarily translate to an increase in performance
since there could be a bottleneck in other stages of the pipeline.
We have also observed some decrease in the hit ratio for the
Tile cache, but the Tile Fetcher is not a bottleneck and still
can sustain the throughput to feed all the Raster Units in the
Raster Pipeline.

4) Main Memory Accesses. Figure 14 plots the main memory
accesses generated by the Raster Pipeline for a GPU integrat-
ing LIBRA normalized with respect to a GPU with PTR alone
in order to evaluate the benefits of LIBRA’s scheduler. As
expected, there is no significant reduction in the number of
DRAM accesses as it is not the design goal for the adaptive
scheduler. Still, some applications show a noticeable reduction
in their main memory accesses (up to 20% for CCS).

Note, however, that the benefit from LIBRA’s scheduler
does not come from locality improvement but from properly
balancing main memory requests over time. For instance, take
GrT as an example. We can observe that the adaptive scheduler
provides significant benefits (almost 20%) while main memory
accesses remain constant. This shows the effectiveness of
LIBRA in evenly distributing the memory load.

5) Total GPU Energy. Figure 15 shows the total GPU energy
decrease with respect to the baseline GPU. Overall, an average
energy decrease of 9.2% is achieved by LIBRA. Again, the
blue part represents the decrease achieved by PTR alone,
which averages 5.5%. On the other hand, the orange part
corresponds to the additional energy savings achieved by the
adaptive scheduler. We can observe that the LIBRA’s scheduler
contributes an additional 3.7% in energy savings. For several
benchmarks we observe impressive energy reductions, e.g.,
AAt and CCS achieve up to 19.5% and 20.5%, respectively.
Overall, we can observe that the adaptive scheduler achieves
significant savings for many applications. Notice that energy
efficiency is crucial for mobile GPUs, and this is achieved
with a negligible hardware cost.
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Fig. 15: Decrease in GPU total energy w.r.t. the baseline.

B. Performance Provided by Supertiles

This subsection evaluates the effect of only using supertiles
while deactivating the temperature-based order, in order to
observe how applications behave under this scenario.

Figure 16 shows the speedup with respect to the baseline
GPU with two Raster Units (i.e., a conventional PTR archi-
tecture) considering static supertile sizes of 2x2, 4x4, 8x8,
16x16 in all the frames, plus the speedup achieved by LIBRA
that implements a dynamic supertile resizing mechanism. It
can be observed that LIBRA outperforms the static supertiles
for most of the cases. In fact, for some applications (such as
AmU, BlB, CCs, and GrT) the difference is significant. On
average, static supertiles of 2x2, 4x4, 8x8, and 16x16 yield
speedups of 0.6%, 2.1%, 2.8% and 3.2%, respectively, while
LIBRA achieves about 7%. We have measured that half of
the benefit from LIBRA’s scheduler comes from employing
a dynamic supertile resizing scheme whereas the remainder
comes from the tile traversal ordering. We can also observe
some benchmarks (e.g., BBR, Gra, RoK) for which a fixed
supertile size outperforms LIBRA. For these applications
locality matters more than memory congestion.

Summarizing, supertiles allows us to recover the lost locality
from the temperature-based scheduling. The combined effect
of both mechanisms efficiently balances memory requests
along frame execution.

C. Compute-intensive Applications

As mentioned earlier, results reported in the previous section
correspond to benchmarks classified as memory intensive (i.e.,
with at least 25% of their execution time spent on memory
accesses) since LIBRA’s scheduler can only obtain benefits
on applications with some degree of memory activity. For
completeness, we analyze here the impact of LIBRA on
compute-intensive benchmarks, with low memory activity, to
show that our scheduler does not harm their performance.
Figure 17 shows the breakdown of the obtained performance.
As before, the blue parts indicate the speedup provided by PTR
alone, whereas the orange parts show the speedup introduced
by the adaptive scheduler.

Overall, it can be observed an average increase in perfor-
mance of 11.6% for these applications. Most of it (9.9%) cor-
responds to the benefit achieved by just using a conventional
PTR architecture, whereas the remaining 1.7% comes from the
proposed tile scheduler. This low performance improvement
coming from LIBRA’s scheduler is expected, as these appli-
cations do not put as much pressure on the memory hierar-
chy. However, some compute-intensive benchmarks still show
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Fig. 16: Speedup obtained by static supertiles and LIBRA w.r.t. PTR alone.
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compute-intensive applications.
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Fig. 18: Speedup of LIBRA w.r.t. a baseline GPU with a single
Raster Unit comprising an equal number of cores.

considerable performance improvements from our adaptive
scheduler (e.g., GDL achieves gains higher than 5%) which
shows that our scheduler is capable of smoothing periods of
memory congestion even if they are not the common case in
these compute-intensive applications.

D. Increasing the Number of Raster Units

In the subsections above we evaluated LIBRA with two
Raster Units (i.e., rendering two tiles in parallel). However,
LIBRA can be expanded to render more tiles in parallel by
including more Raster Units. In this subsection we evaluate
the scalability of LIBRA by increasing the number of Raster
Units with four cores each compared to a baseline with a
single Raster Unit with an equal number of cores in total.
For instance, the evaluation with three Raster Units compares
a single Raster Unit of twelve cores over LIBRA with three
Raster Units of four cores each (i.e., twelve cores in total).

LIBRA allocates one Raster Unit to process hot tiles, while
the rest are dedicated to the cold ones. This means that
only one Raster Unit handles the hottest tiles at any given
time, preventing multiple Raster Units from adding excessive
memory pressure.

Figure 18 shows the speedup achieved by LIBRA when
increasing the number of Raster Units with respect to a

0 0.250.50.75 1 2 3 4 5 10 15 20 25
Supertile size threshold

19

20

21

22

Sp
ee

du
p 

(%
)

19

20

21

22

(a) Threshold for supertile size.

1 2 3 4 5 10 15 20 25
Tile ordering threshold

20.0

20.5

21.0

21.5

Sp
ee

du
p 

(%
)

20.0

20.5

21.0

21.5

(b) Threshold for tile ordering.

Fig. 19: Speedup of LIBRA w.r.t. the baseline GPU when
varying the thresholds employed by the LIBRA’s scheduler.

baseline GPU configured with the same number of cores. We
can observe that LIBRA is quite effective while increasing
the number of Raster Units. In particular, it achieves average
speedups of 31.3% and 28.8% with three and four Raster
Units, respectively, which are higher than the speedups ob-
tained with two Raster Units (20.9%).

E. Sensitivity Analysis

Supertile size threshold. Figure 19.a shows the average
speedup obtained by LIBRA with two Raster Units compared
to the baseline GPU when varying the threshold that decides
when the supertile must be resized. It can be observed that,
in general, increasing this threshold decreases performance
since LIBRA takes more time to react to changes in the scene.
We chose 0.25% because it is small enough to react fast to
changes and it yields slightly better results than 0% across all
the benchmark suite (including the compute-intensive appli-
cations). Increasing the threshold further is detrimental, and
beyond a value of 15% the results do not practically change
because such a large threshold behaves as having a fixed
supertile size since the size remains almost always the same.

Tile traversal order threshold. Figure 19.b shows the average
speedup obtained by LIBRA with two Raster Units compared
to the baseline GPU when varying the threshold used to decide
when to switch the tile ordering scheme. We can observe

1068



that a threshold of 3% provides the best performance results.
Note, however, that other values provide similar results. Values
beyond 4% show practically the same speedup since the
ordering scheme hardly ever changes and it ends up employing
the temperature-based scheme all the time.

VI. RELATED WORK

Parallel Rendering. Some works employ PC clusters where
an API allocates the workload among machines based on
different configurations [1], [19], [20], [29], [30]. To accelerate
image composition, [21], [22], [26], [49], [54] implemented
application-specific hardware. Note that none of them are
GPUs. PFR [9] splits the GPU into two clusters where two
consecutive frames are rendered in parallel to exploit inter-
frame texture locality. Other works [18], [32], [40], [50],
[52], [55], [60], [64], [78]–[80] distribute the workload among
different GPUs. To the best of our knowledge, our work is the
first one exploring GPU design with multiple Raster Units in
a Raster Pipeline.
Tile Scheduling. In the literature there can be found a few
works that propose different tile traversal orderings but none
of them are for multiple Raster Units belonging to the same
Raster Engine. Kerbl et al. [38] explore different tile schedul-
ing traversals among many Raster Units distributed in multiple
Graphics Processing Clusters (GPCs). This differs from our
work since a GPC is employed in high-end desktop GPUs
where each GPC includes a single Raster Unit, and they focus
on load balancing threads. DTexL [35] employs a Hilbert tile
traversal order to facilitate quad scheduling for texture memory
locality. Another work [36] traverses tiles within a frame in
the reverse order of the previous frame to enhance L2 texture
caching. In [58] it is explored mapping tiles for left and right
eyes to the same shader core for VR applications.
Memory Sensitivity. The inability of a program to overlap
memory accesses with other useful work underutilizes GPU
resources. For GPGPU workloads there are works that address
new techniques to reduce this memory sensitivity. In [11]
it is proposed a memory controller design that enhances
DRAM performance by increasing row-buffer locality through
batching requests to the same DRAM row. Other works target
warp specialization schemes that overlap memory access and
compute [12], [13], [17], [74], [75], prefetching [41]–[43],
[51], [57], [68], and improving warp and thread block schedul-
ing [33], [34], [39], [44]–[46], [59], [62], [66], [67], [69],
[73]. In [65] it is designed a locality-aware memory hierarchy.
Kayiran et al. [37] reduce memory subsystem saturation by
throttling the number of CTAs that are active on a shader
core. As far as we know, no previous studies have investigated
the memory sensitivity of graphics applications. Specifically,
our work is the first to explore new policies on mobile GPUs
for balancing the memory bandwidth and alleviating DRAM
pressure that is not focused on reducing memory accesses.
Locality. Works in [27], [70] apply a similar concept to our
supertiles but with entirely different purposes. They create big-
ger tiles to optimize the accesses generated by the Parameter
Buffer. On the other hand, even though one of our main goals

is to preserve locality, we can find in the literature some works
that focus on improving it, particularly for texture accesses,
which are typically the most DRAM bandwidth-consuming.
Corbalan et al. [15] propose a NUCA organization for the
L1 Texture Caches to increase their effective capacity. Xie et
al. [77] explore the use of PIM architectures to reduce the
DRAM traffic from texture accesses. Other works prefetch
texture memory in the L1 Texture Caches [8], [31] or apply
texture compression [3], [23], [61], [71], [76].

VII. CONCLUSION

Contemporary GPUs require more visually appealing graph-
ics to provide a satisfying user experience through advanced
model and screen enhancements. The simplest approach to
improve performance is to increase the computing units,
but as we have shown in the paper, this method may not
always be effective. Therefore, we have explored parallel tile
rendering to optimize the use of GPU resources. To the best
of our knowledge, this is the first work evaluating parallel
tile rendering in mobile GPUs. Unfortunately, applications
may experience congestion as pressure increases in the shared
memory subsystem.

In this paper, we have introduced LIBRA, which enables
parallel tile rendering by employing a novel locality-aware
scheduler to keep memory utilization uniformly distributed
throughout the execution time. It predicts the memory pressure
of a given tile in a frame by exploiting frame-to-frame coher-
ence while not penalizing the memory hierarchy miss ratio.
As the scenario is different for each application and varies
during runtime, with minor changes in the GPU, we have
introduced a mechanism that gathers tile statistics. Besides,
it employs a novel tile scheduler that allocates tiles among
different Raster Units based on this profiled data. It makes use
of a dynamic scheme that takes into account the tile and frame
characteristics to minimize the possible memory congestion.

Experimental results show that LIBRA provides 20.9%
increase in performance, averaged over a wide range of real-
world graphics applications. In addition, we obtain a 9.2%
reduction in GPU energy with negligible overhead.
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[71] J. Ström and T. Akenine-Möller, “ipackman: high-quality, low-
complexity texture compression for mobile phones,” in Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, ser. HWWS ’05. New York, NY, USA: Association for
Computing Machinery, 2005, p. 63–70.

[72] SYBO Games, “Subway Surfers,” https://subwaysurfers.com/, accessed
April 2024.

[73] D. Tripathy, A. Abdolrashidi, L. N. Bhuyan, L. Zhou, and D. Wong,
“Paver: Locality graph-based thread block scheduling for gpus,” ACM
Trans. Archit. Code Optim., vol. 18, no. 3, jun 2021.

[74] K. Wang and C. Lin, “Decoupled affine computation for simt gpus,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 295–306.

[75] H. Wei, E. Liu, Y. Zhao, and H. Yu, “Efficient non-fused winograd on
gpus,” in Advances in Computer Graphics: 37th Computer Graphics
International Conference, CGI 2020, Geneva, Switzerland, October 20–
23, 2020, Proceedings 37. Springer, 2020, pp. 411–418.

[76] Y. Xiao, C.-S. Leung, P.-M. Lam, and T.-Y. Ho, “Self-organizing map-
based color palette for high-dynamic range texture compression,” Neural
Computing and Applications, vol. 21, pp. 639–647, 2012.

[77] C. Xie, S. L. Song, J. Wang, W. Zhang, and X. Fu, “Processing-in-
memory enabled graphics processors for 3d rendering,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2017, pp. 637–648.

[78] C. Xie, F. Xin, M. Chen, and S. L. Song, “Oo-vr: Numa friendly
object-oriented vr rendering framework for future numa-based multi-gpu
systems,” in 2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA), 2019, pp. 53–65.

[79] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining hw/sw mechanisms to improve numa performance of multi-

1071

. 



gpu systems,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2018, pp. 339–351.

[80] H. Zhang, J. Ma, Z. Qiu, J. Yao, M. A. A. Sibahee, Z. A. Abduljabbar,
and V. O. Nyangaresi, “Multi-gpu parallel pipeline rendering with split-
ting frame,” in Computer Graphics International Conference. Springer,
2023, pp. 223–235.

1072

 


