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Abstract

In this paper we introduce two digital zoom methods based on sampling theory and we study
their mathematical foundation. The first one (‘sinc interpolation’) is commonly used by the
image processing community. The second one, as far as the authors know, is new. Both
approaches to the final formulas are also new, being formal, but intuitive at the same time.

1 Introduction

Image zooming is a direct application of image interpolation procedures. In fact, a zoom can be
easily seen as a homogeneous scaling of the image. Many image interpolation methods have been
proposed in the literature [8]. On the other hand, those methods are only justified intuitively,
and they do not have a mathematical foundation.

The main aim of this paper is to show how the construction of zooms of digital gray-level
images (a natural application) can be seen as a consequence of the well-known digital and
analog uniform sampling theorems in dimension two. These theorems are used widely in signal
processing and in interpolation (for some applications of these theorems in dimension one we
recommend to see [2], [3], [1]), and are the base of digital and analog signal processing.

In section 2 the basic background on digital and analog images is given, together with a
formal definition of image interpolation. The next two sections (3 and 4) contain the main
results of this work: in section 3, a zooming procedure (sinc interpolation) is derived from the
digital uniform sampling theorem, obtaining some formal properties. In section 4, the classical
analog sampling theorem of Shannon-Whittaker-Kotelnikov is used, in dimension two, to build
a new image zooming procedure. The last section contains some examples of the algorithm
performance, empirically comparing both approaches.

2 Preliminaries

2.1 Digital images

A digital image is an array of gray-level values. These values (sometimes called ‘samples’) are
a discrete representation of a continuous function (an analog image), after being applied the
process of sampling and quantization. In particular, it is usually assumed that there are only
256 gray levels, so that, given a real number h ∈ [0, 1] the gray level assigned to h is the k−th
gray level if h ∈

[
k

256 , k+1
256

)
for k = 0, 1, . . . , 254 and the 256-th gray level corresponds with
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h ∈
[

255
256 , 1

]
. Moreover, the gray level scale is such that 1 corresponds to the white color and 0

corresponds to the black one.
From a formal point of view, we can think of a digital image of size N × M as a matrix

I = (I(n, m))m =0,..., M−1
n = 0,..., N−1 of real or complex numbers, being the unique digital images we can

visualize those with all entries belonging to the real interval [0, 1]. This model allow us to identify
the set of digital images with the complex vector space

`2(ZN × ZM ) =
{

I : {0, . . . , N − 1} × {0, . . . ,M − 1} → C : I is a map
}

=
{

I : Z× Z → C : I is a map and ∀(k, l) ∈ Z× Z,

I(k + N, l) = I(k, l) = I(k, l + M)
}

,

which is naturally equipped with the following scalar product:

〈I, J〉 =
N−1∑
n=0

M−1∑
m=0

I(n, m) J(n, m),

where the bar denotes complex conjugation. From now on, and for simplicity, we will only
consider square images, so that N = M .

The standard basis of the space `2(ZN × ZN ) is given by

T = {Ti,j}0≤i, j<N ,

where
Ti,j(n, m) = 0 if (n, m) 6= (i, j) and Ti,j(i, j) = 1,

so that any digital image, when viewed as a two-dimensional signal in the so called “time
domain”, is given by the expression

I =
N−1∑
i=0

N−1∑
j=0

I(i, j)Ti,j .

Now, as it occurs for digital one-dimensional signals, there exists another special orthogonal
basis which is naturally interpreted in terms of “frequencies”. This basis is given by F =
{Expk,l}0≤k,l<N , where

Expk,l(n, m) = e
2πi(kn+lm)

N .

The usual notation for a digital image I when viewed in the “frequency domain”, is

I =
N−1∑
n=0

N−1∑
m=0

Î(n, m)Expn,m.

and the map F : `2(ZN × ZN ) → `2(ZN × ZN ) given by

F
(
(I(n, m))

0≤n,m<N

)
=

(
Î(n, m)

)
0≤n,m<N
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is the so called discrete Fourier transform (DFT). This map is realized by the formula

Î(k, l) =
〈I,Expk,l〉
‖Expk,l‖2

=
1

N2

N−1∑
n=0

N−1∑
m=0

I(n, m) e
−2πi(kn+lm)

N .

Moreover, the following inversion formula holds

I(k, l) =
N−1∑
n=0

N−1∑
m=0

Î(n, m) e
2πi(kn+lm)

N .

Now, using the periodicity of the elements of `2(ZN × ZN ), one can also introduce negative
frequencies and rewrite the inversion formula as follows

I(k, l) =
N/2∑

n=−N/2

N/2∑
m=−N/2

Î(n, m) e
2πi(kn+lm)

N .

Finally, we say that the image I is band-limited with band-size M < N/2, and we write this as
I ∈ BM (ZN × ZN ), if

I(k, l) =
M∑

n=−M

M∑
m=−M

Î(n, m) e
2πi(kn+lm)

N .

2.2 Analog images

Analog images are the elements of L2(R2). Moreover, we will say that f ∈ L2(R2) is band
limited with band size ≤ M if

∀|ξ|, |ν| > M, f̂(ξ, ν) = 0,

where
f̂(ξ, ν) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) exp(−2πi(xξ + yν))dxdy

denotes the Fourier transform of f . Obviously, these images are precisely those satisfying the
formula

f(x, y) =
∫ M

−M

∫ M

−M
f̂(ξ, ν) exp(2πi(xξ + yν))dξdν

2.3 Image interpolation

Image interpolation [8] is the process of determining the unknown values of an image at positions
lying between some known values, called samples. This task is often achieved by fitting a
continuous function through the discrete input samples.

Interpolation methods are required in various tasks in image processing and computer vision
such as image generation, compression, and zooming. In fact, the last one can be considered
as a special case of interpolation, where the zoomed image results from interpolation at certain
uniformly distributed samples which are taken to coincide with the original image. This will be
our approach in this paper.
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The most usual methods to obtain an analog image f(x, y) by using interpolation are ex-
pressed as the convolution of the image samples fs(k, l) with a continuous 2D filter H2D, which
is called interpolation kernel:

f(x, y) =
∞∑

k=−∞

∞∑
l=−∞

u(k, l)H2D(x− k, y − l)

Usually the interpolation kernel is selected to have the following properties [8]:

(a) Separability: H2D(x, y) = H1(x)H2(y).

(b) Symmetry for the separated kernels: Hi(−x) = Hi(x), for i ∈ {1, 2}.

(c) Image invariance: Hi(0) = 1, and Hi(x) = 0,∀|x| = 1, 2, . . . and i ∈ {1, 2}.

(d) Partition of the unity condition:

∞∑
k=−∞

Hi(d + k) = 1,∀d : 0 ≤ d < 1, and i ∈ {1, 2}.

Conditions (a) and (b) are needed to avoid computational complexity. With property (c), we
do not modify original image samples. Separated kernels that fulfill (c) are called interpolators,
and those which does not verify that, are named approximators. The condition (d) implies that
the brightness of the image is not altered when the image is interpolated, i.e. the energy (the
standard `2 norm) of the image remains unchanged after the interpolation.

3 Digital sampling and zoom

Let I(n, m) n, m ∈ {0 ≤ n, m ≤ N−1} be a digital image of size N×N . It is quite natural to ask
for a simple algorithm to zoom this image into another image J of size dN ×dN for d = 2, 3, . . .
(we would say that J is a (d × 100)% zoom of I). Clearly, there are several ways to zoom a
digital image and all of them imply a certain amount of arbitrariness, since the original image
I only gives information about the zoomed image at the points (kd, ld), k, l ∈ {0, . . . , N − 1},
where the identities J(kd, ld) = I(k, l) are assumed. Thus, we will have a (d× 100)% zoom of I
as soon as we define a process to reconstruct J at the other points of the array {0, . . . , dN −1}2.
More precisely, given E ⊆ `2(ZN × ZN ) and F ⊆ `2(ZdN × ZdN ) two spaces of digital images of
size N ×N and dN × dN respectively, we say that a map

Z : E → F

defines a d-zoom process if for all I ∈ E and all (k, l) ∈ {0, . . . , N − 1}2, we have that

Z(I)(kd, ld) = I(k, l).

All the standard algorithms used to zoom digital images lie into this notion. Of course,
this definition is too general because it allows too many zoom processes. For example, defining
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Z(I)(t, s) = 1 whenever (t, s) 6∈ {1, d, 2d, . . . d(N −1)}2 would be considered “a very poor zoom”
of I. Thus, it is usual to define zooms via some average process which takes into account the
topological or morphological properties of the image I. The most popular methods of zooming
are nearest neighbor interpolation and pixel replication (see [6] for details). These are fast meth-
ods and very easy to implement. On the other hand, they produce an undesirable checkerboard
effect when applied to get a high factor of magnification. Because of this, several other zooming
methods based on the use of bilinear interpolation or low degree spline interpolation have been
proposed (see [6] for instance).

We recall now the digital uniform sampling theorem (see [7], [1] for the proof in dimensions
two and one, respectively).

Theorem 1 (Digital uniform sampling theorem) Let I ∈ BM (ZN×ZN ) be a digital image
of size N × N and limited band size M . Let d be a divisor of N and let us assume that
d(2M+1) ≤ N . Then I is completely determined by its samples I(kd, ld), 0 ≤ k, l ≤ r := N/d−1.
In particular, the following synthesis formula holds

I(n, m) = d2
r∑

i=0

r∑
j=0

I(di, dj) sincM (n− di) sincM (m− dj) (1)

with n, m = 0, . . . , N−1, and where sincM (n) = sin(π(2M+1)n/N)
N sin(πn/N) for n 6= 0 and sincM (0) = 2M+1

N .

Taking into account that the only imposed restriction by our definition of a d-zoom process
Z is given by the knowledge of some sampling values of the zoomed image J = Z(I), it follows
that a natural question is to study wether Theorem 1 is applicable in order to recover all the
entries of J from the known samples. More precisely, we would like to know if J can be chosen
as a band-limited digital image, and for which band-size we can guarantee a unique J = Z(I)
verifying J(kd, ld) = I(k, l). This is solved by the following result:

Theorem 2 Let M < N
2 , d ∈ {2, 3, . . . } and let us assume that I ∈ BM (ZN ×ZN ). Then there

exists a unique band-limited digital image J ∈ BM (ZdN × ZdN ) satisfying J(kd, ld) = I(k, l),
k, l ∈ {0, . . . , N − 1}. In particular, there exists a unique d-zoom process (which will be called a
sampling d-zoom) ZS : BM (ZN × ZN ) → BM (ZdN × ZdN ).

Proof. Let I ∈ BM (ZN ×ZN ) be a band-limited digital image of size N and band-size M < N
2 .

We have

I(k, l) =
M∑

n=−M

M∑
m=−M

Î(n, m) e
2πi(kn+lm)

N

=
M∑

n=−M

M∑
m=−M

Î(n, m) e
2πi((kd)n+(ld)m)

dN

= ZS(I)(kd, ld),
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where

ZS(I)(t, s) :=
M∑

n=−M

M∑
m=−M

Î(n, m) e
2πi(tn+sm)

dN . (2)

Obviously, ZS is well defined. Moreover, we can use Theorem 1 to guarantee both the uniqueness
of ZS and the fact that

ZS(I)(n, m) = d2
N−1∑
i=0

N−1∑
j=0

I(i, j) sincM (n− di) sincM (m− dj), (3)

where n, m = 0, . . . , dN − 1, since d(2M + 1) ≤ dN . 2

For an arbitrary digital image I ∈ `2(ZN ×ZN ) we will have M = N/2, so that d(2M +1) >
dN violates one of the assumptions of Theorem 1. This is the reason because we have restricted
our attention to the space BM (ZN ×ZN ) in Theorem 2. Now, in practice this is just a formalism
because images from `2(ZN×ZN ) are very well approximable by images from B[N/2]−1(ZN×ZN ),
[N/2] being the integer part of N/2. Indeed, they are visually identical. Moreover, we can also
use formula (2) instead of (3) to construct ZS for arbitrary digital images I.

Remark 3 It is interesting to note that the map ZS : BM (ZN × ZN ) → BM (ZdN × ZdN ) is an
isometry. Thus, we have proved that there exists just one way to introduce a d-zoom between
these spaces, and this zoom is also an isometry. On the other hand, if one wants to improve the
quality of this zoom, it is natural to look for signals with a bigger band size than the original
one. This may be difficult since it is not clear how to introduce the new frequencies from the
information given by the old ones.

4 Analog sampling and zoom

The classical analog uniform sampling theorem, in dimension two, reads as follows (see [7], [9]):

Theorem 4 (2-Dimensional analog sampling theorem) Let f(x, y) be an analog image of
finite band size M < ∞. Then

f(x, y) = 4M2
∞∑

k=−∞

∞∑
l=−∞

f
( k

2M
,

l

2M

)
sinc(2Mx− k) sinc(2My − l)

In practice, this theorem implies that, for f(x, y) an analog image of finite band size M < ∞,
the partial sums

PN (x, y) = 4M2
N∑

k=−N

N∑
l=−N

f
( k

2M
,

l

2M

)
sinc(2Mx− k) sinc(2My − l) (4)

are good approximations of f(x, y) inside the square [−N
2M , N

2M ] × [−N
2M , N

2M ]. In fact, these ap-
proximation should be visually good except near the border of the square, where some waves
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will distort the original image.

Now, the analog d-zoom of f(x, y) is obviously given by the scaling g(x, y) = f(x
d , y

d), so that

g(x, y) =
∫ M

−M

∫ M

−M
f̂(ξ, τ)e2πi(x

d
ξ+ y

d
τ)dξdτ

= d2

∫ M/d

−M/d

∫ M/d

−M/d
f̂(d · u, d · v)e2πi(xu+yv) dudv.

It follows that g(x, y) is band limited with band size M/d, so that

g(x, y) =
4M2

d2

∞∑
k=−∞

∞∑
l=−∞

g
( kd

2M
,

ld

2M

)
sinc

(2M

d
x− k

)
sinc

(2M

d
y − l

)
(5)

and the partial sums
QN (x, y) = PN

(x

d
,
y

d

)
(6)

are good approximations of g(x, y) inside the square [−Nd
2M , Nd

2M ]× [−Nd
2M , Nd

2M ].

Let us now assume that I ∈ `2(Z2N+1×Z2N+1) is a digital image which has been constructed
by sampling the analog image f(x, y) of finite band size M < ∞ on the square [−N

2M , N
2M ] ×

[−N
2M , N

2M ] exactly at the Nyquist rate, so that

I(k, l) = f
(k −N

2M
,
l −N

2M

)
, k, l = 0, . . . , 2N. (7)

If we denote by J a digital d-zoom of I we have that

J(kd, ld) = I(k, l) = g
(d(k −N)

2M
,
d(l −N)

2M

)
, (8)

so that these samples are enough to recover g(x, y) approximately inside the square [−Nd
2M , Nd

2M ]×
[−Nd

2M , Nd
2M ]. In particular, using 7 and 6, the formula

J(n, m) = QN

(n− dN

2M
,
m− dN

2M

)
(9)

=
4M2

d2

N∑
k=−N

N∑
l=−N

I(k + N, l + N) sinc
(n

d
−N − k

)
sinc

(m

d
−N − l

)
defines a reasonable digital d-zoom of I.

The previous discussion is summarized on the following result:

Theorem 5 Let f(x, y) be an analog image of finite band size M < ∞ and let us set

I(k, l) = f
(k −N

2M
,
l −N

2M

)
, k, l = 0, . . . , 2N.
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Then,

J(n, m) =
4M2

d2

N∑
k=−N

N∑
l=−N

I(k + N, l + N) sinc
(n

d
−N − k

)
sinc

(m

d
−N − l

)
defines a digital d-zoom of I.

Thus, it seems natural to normalize the zoomed image to another whose entries belong to
the interval [0, 1]. Surprisingly, this defines a digital zoom ZA(I) which is independent of the
value of M and is given by the formula

ZA(I) =
J −min(J)U

max(J)
=

E −min(E)U
max(E)

, (10)

where E is defined by E = 1
M2 J , and U ∈ `2(Zd(2N+1)×Zd(2N+1)) is given by U(i, j) = 1 for all

i, j. It is important to note that E satisfies E = E(I) (i.e., M has no role for the computation
of the entries of E).

Particularly this is the digital zoom we wanted to introduce in this section.

Remark 6 It should be noticed that, in practice, the images are not finite band sized, in
general, so that a high band size M is needed to get a good approximation of them, according
our procedure. This fact implies that our assumption that we have a digital image which has
been constructed by sampling an analog image at the Nyquist rate is not a reasonable one, since
each pixel covers a square of size bigger than 1/2M . Moreover, for analog finite band sized
images, it is a main problem to know their exact band size M . These objections have motivated
the normalized version of the zoom, previously introduced.

Remark 7 In general, the zoomed image defined by (10) is not a band limited digital signal.
This could be used to improve the high frequency content of the sampling zoom given by (3).
Moreover, the pictures that one visualizes when drawing the frequency content of the zoomed
images are highly nonlinear and unpredictable. This should put some light on the difficulty of
the problem of improving the sampling d-zoom mentioned at the very end of the section above.

5 A few examples

We have implemented in Matlab 7.0 the algorithm for sampling d-zoom of arbitrary images by
using formula (3). The algorithm, for I ∈ `2(ZN × ZN ), takes a piece T of I and uses the
sampling d-zoom ZS to produce the image J = ZS(T ). Moreover, we have implemented another
algorithm which takes the entire image and, after zooming the whole picture with the d-zoom
ZS , extracts the desired fragment. Finally, we have also implemented the “analog” zoom ZA

given by formula (10). In this case we have tested too the zoom on the fragment of the image,
and on the entire image.

We show the two algorithms working over a fragment of two well known test images in
computer vision: “Lena” and “Living room” (size = 512×512). We have compared our approach
with the simpler one, pixel replication, using d = 8 for both cases, showing original images too.

8



(a) Original image with frag-
ment marked

(b) Fragment zoomed with
pixel replication

Figure 1: “Lena” image

(a) Using all the information
from the original image

(b) Using only information
from the fragment

Figure 2: “Lena” image, fragment zoomed with ZS for d = 8
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(a) Using all the information
from the original image

(b) Using only information
from the fragment

Figure 3: “Lena” image, fragment zoomed with ZA for d = 8

(a) Original image with frag-
ment marked

(b) Fragment zoomed with
pixel replication

Figure 4: “Living room” image

10



(a) Using all the information
from the original image

(b) Using only information
from the fragment

Figure 5: “Living room” image, fragment zoomed with ZS for d = 8

(a) Using all the information
from the original image

(b) Using only information
from the fragment

Figure 6: “Living room” image, fragment zoomed with ZA for d = 8
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Departamento de Matemáticas. E.P.S. Linares, Universidad de Jaén.
C/Alfonso X el Sabio, 28.
23700 Linares (Jaén) Spain.
email: jmalmira@ujaen.es

A. E. Romero
Departamento de Ciencias de la Computación e Inteligencia Artificial.
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