Comportamiento asintótico de las Cadenas de Markov

J. M. Almira

Universidad de Murcia

<u>J. M. Almira</u> (Defensa) Defensa 2007 1/10

Sea (X_n) una CM finita con espacio de estados $S = \{s_1, \dots, s_k\}$.

Definición

Decimos que el estado s_i se comunica con el estado s_j (y lo denotamos por $s_i \to s_j$) si existe un valor $n \in \mathbb{N}$ tal que

$$P[X_{m+n} = s_j | X_m = s_i] > 0.$$

Definición

Decimos que el estado s_i se comunica con el estado s_j (y lo denotamos por $s_i \rightarrow s_j$) si existe un valor $n \in \mathbb{N}$ tal que

$$P[X_{m+n}=s_j|X_m=s_i]>0.$$

Nota: Evidentemente,

$$P[X_{m+n} = s_j | X_m = s_i] = (P^n)_{i,j}$$

(Independientemente de *m*).

Recuérdese que $(A)_{ij}$ representa la entrada a_{ij} de la matriz A

Definición

Decimos que el estado s_i se comunica con el estado s_j (y lo denotamos por $s_i \rightarrow s_j$) si existe un valor $n \in \mathbb{N}$ tal que

$$P[X_{m+n}=s_j|X_m=s_i]>0.$$

Definición (Cadena de Markov irreducible)

Decimos que los estados s_i, s_j se intercomunican si $s_i \to s_j$ y $s_j \to s_i$. (En tal caso usamos la notación $s_i \leftrightarrow s_j$). La cadena de Markov (X_n) es irreducible si $s_i \leftrightarrow s_j$ para todo par de estados $s_i, s_j \in S$. Si la CM no es irreducible, decimos que es reducible.

2/10

Definición

Decimos que el estado s_i se comunica con el estado s_j (y lo denotamos por $s_i \to s_j$) si existe un valor $n \in \mathbb{N}$ tal que

$$P[X_{m+n} = s_j | X_m = s_i] > 0.$$

Definición (Cadena de Markov irreducible)

Decimos que los estados s_i, s_j se intercomunican si $s_i \to s_j$ y $s_j \to s_i$. (En tal caso usamos la notación $s_i \leftrightarrow s_j$). La cadena de Markov (X_n) es irreducible si $s_i \leftrightarrow s_j$ para todo par de estados $s_i, s_j \in S$. Si la CM no es irreducible, decimos que es reducible.

Teorema (Caracterización de cadenas de Markov irreducibles)

La cadena de Markov (X_n) es irreducible si y solo si para todo par de estados $s_i, s_j \in S$ existe un número natural n tal que $(P^n)_{i,j} > 0$.

Definición (Grafo de transición de una CM)

Dada (X_n) CM con espacio de estados $S = \{s_1, \dots, s_k\}$ y matriz de transición $P = (p_{ij})$, llamamos grafo de transición asociado a la CM al grafo dirigido G = (V, E), donde

$$\left\{ \begin{array}{rcl} V & = & S \\ (s_i, s_j) \in E & \Leftrightarrow & p_{ij} > 0 \end{array} \right.$$

Teorema

La cadena de Markov (X_n) es irreducible si y solo si su grafo de transición es conexo.

Ejemplo

Se puede comprobar fácilmente que la CM con matriz de transición

$$P = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/3 & 2/3 & 0 & 0 \\ 0 & 0 & 1/8 & 7/8 \\ 0 & 0 & 4/5 & 1/5 \end{bmatrix}$$

es reducible.

Aperiodicidad

Definición

Recordemos que el mcd (máximo común divisor) de un conjunto de números enteros, que denotamos por mcd $\{a_1, a_2, \cdots\}$, es el mayor número natural d tal que d $|a_i|$ para todo i.

Definición (Periodo de un estado de la CM)

Sea (X_n) CM con matriz de transición P y sea $s_i \in S$ uno de sus estados. Llamamos periodo del estado s_i al número

$$d(s_i) = mcd\{n : (P^n)_{i,i} > 0\}$$

 $Si\ d(s_i) = 1\ decimos\ que\ el\ estado\ s_i\ es\ aperiódico.$

Definición (Cadena de Markov aperiódica)

La CM (X_n) se dice aperiódica si todos sus estados son aperiódicos. En otro caso (si contiene estados periódicos) decimos que la CM es periódica.

Aperiodicidad

Dadas las matrices de transición P_1 , P_2 , P_3 , decidir -de manera justificada- si las Cadenas de Markov asociadas son periódicas o aperiódicas:

$$P_{1} = \begin{bmatrix} 1/2 & 1/2 \\ 1/3 & 2/3 \end{bmatrix}; P_{2} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/3 & 2/3 & 0 & 0 \\ 0 & 0 & 1/8 & 7/8 \\ 0 & 0 & 4/5 & 1/5 \end{bmatrix}$$

$$P_3 = \left[\begin{array}{cccc} 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \end{array} \right]$$

Aperiodicidad

Teorema

Sea (X_n) una CM con espacio de estados $S = \{s_1, \dots, s_k\}$ y matriz de transición P. Las siguientes afirmaciones son equivalentes:

- (X_n) es irreducible y aperiódica.
- Existe $N < \infty$ tal que

 $(P^n)_{i,j} > 0$ para todo $i,j \in \{1, \dots, k\}$ y todo $n \ge N$.

Distribuciones estacionarias

Definición

Sea (X_n) una CM finita con espacio de estados

$$S=\{s_1,\cdots,s_k\}$$

y matriz de transición P.

Sea $\mu = (\mu_1, \dots, \mu_k)$ una distribución de probabilidad:

$$0 \le \mu_i \le 1$$
 para todo i , $\sum_{i=1}^k \mu_i = 1$

Decimos que μ es una distribución estacionaria (o de equilibrio) para la cadena de Markov (X_n) si

$$\mu P = \mu$$

Distribuciones estacionarias

Teorema (Fundamental de las Cadenas de Markov)

- (a) Toda cadena de Markov admite al menos una distribución estacionaria.
- (b) Si la cadena de Markov es irreducible y aperiódica, entonces la distribución estacionaria μ es única y, además, satisface:

$$lim_{n\to\infty}d_{TV}(\mu^{(n)},\mu)=0,$$

para toda distribución de probabilidad inicial $\mu^{(0)}$.

Nota: Dadas $\mu=(\mu_1,\cdots,\mu_k)$, $\eta=(\eta_1,\cdots,\eta_k)$ dos distribuciones de probabilidad, se define su distancia (en variación total) como:

$$d_{TV}(\mu, \eta) = \frac{1}{2} \sum_{i=1}^{k} |\mu_i - \eta_i|$$

Distribuciones estacionarias

Obsérvese que d_{TV} es una buena forma de medir distancias entre probabilidades porque, si μ, η son distribuciones de probabilidad , entonces

- $\mu = \eta$ si y solo si $d_{TV}(\mu, \eta) = 0$,
- $0 \le d_{TV}(\mu, \eta) \le 1$,
- $d_{TV}(\mu, \eta) = 1$ si y solo si ambas distribuciones tienen soportes disjuntos.

0

$$d_{TV}(\mu, \eta) = \max_{A \subseteq S} |P_{\mu}(A) - P_{\eta}(A)|$$

Vamos a dar una demostración basada en un Teorema de Punto Fijo

- Obsérvese que si definimos T(x) = xP, entonces las distribuciones estacionarias de la CM son puntos fijos de T.
- Concretamente, necesitamos que $T(\mu) = \mu$ con las condiciones adicionales: $\mu \ge 0$ (es decir, todas sus componentes son ≥ 0) y $\sum_{i=1}^k \mu_i = 1$. Ahora bien, esto significa que

$$\mu \in K = \{x \in \mathbb{R}^k : \sum_{i=1}^k x_i = 1 , 0 \le x_i \text{ para todo i} \}$$

Obsérvese que K es un subconjunto (no vacío) de \mathbb{R}^k convexo y compacto.

Definición

Sea $K \subseteq \mathbb{R}^k$ convexo. Decimos que $f: K \to K$ es una aplicación afín si

$$f(tx + (1 - t)y) = tf(x) + (1 - t)f(y)$$

siempre que $x, y \in K$ y $0 \le t \le 1$.

Teorema (del punto fijo de Markov-Kakutani)

Sea $K \subseteq \mathbb{R}^k$ convexo, compacto y no vacío. Supongamos que $f: K \to K$ es una aplicación continua y afín. Entonces f tiene al menos un punto fijo en K.

Es evidente que T(x) = xP es lineal (y, por tanto, afín, cuando se restringe a cualquier convexo) y continua. Pero debemos probar que $T(K) \subseteq K$. Sea $x = (x_1, \dots, x_k) \in K$. Entonces:

- Como $x, P \ge 0$, concluimos que también $xP \ge 0$.
- La componente *i*-ésima de T(x) = xP viene dada por:

$$(xP)_i = \sum_{j=1}^k x_j p_{ji}$$

Por tanto,

$$\sum_{i=1}^{k} (xP)_i = \sum_{i=1}^{k} \left(\sum_{j=1}^{k} x_j p_{ji} \right) = \sum_{j=1}^{k} x_j \left(\sum_{i=1}^{k} p_{ji} \right) = \sum_{j=1}^{k} x_j = 1$$

Demostración del Teorema del punto fijo de Markov-Kakutani:

- Sea $x \in K$. Consideremos los promedios $x_N = \frac{1}{N} \sum_{i=0}^{N-1} f^i(x)$.
- Como K convexo y $x, f(x), f(f(x)) = f^2(x), \dots, f^N(x) \in K$, está claro que $x_N \in K$ para todo N.
- Como K compacto, existe una subsucesión convergente, $\{x_{n_k}\} \to x^* \in K$.

• Veamos que $f(x^*) = x^*$

$$||x_{n_k} - f(x_{n_k})|| = ||\frac{1}{n_k} \sum_{i=0}^{n_k - 1} f^i(x) - f\left(\frac{1}{n_k} \sum_{i=0}^{n_k - 1} f^i(x)\right)||$$

$$= \frac{1}{n_k} ||\sum_{i=0}^{n_k - 1} f^i(x) - \sum_{i=0}^{n_k - 1} f^{i+1}(x)|| \text{ (por ser } f \text{ afin)}$$

$$= \frac{1}{n_k} ||x - f^{n_k}(x)||$$

$$\leq \frac{1}{n_k} 2 \sup_{z \in K} ||z|| \to 0 \text{ para } k \to \infty.$$

Se sigue que $||x^* - f(x^*)|| = \lim_{k \to \infty} ||x_{n_k} - f(x_{n_k})|| = 0$ Esto finaliza la prueba.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 ♀ ○○

Ya hemos probado:

Teorema (Fundamental de las Cadenas de Markov-Parte (a))

Toda cadena de Markov admite al menos una distribución estacionaria μ.

Vamos a probar:

Teorema (Fundamental de las Cadenas de Markov-Parte (b))

Si la cadena de Markov es irreducible y aperiódica, entonces solo admite una distribución estacionaria μ y, además, se satisface que:

$$\lim_{n\to\infty} d_{TV}(\mu^{(n)},\mu) = 0,$$

para toda distribución de probabilidad inicial $\mu^{(0)}$.

Recordemos: Si (X_n) es un cadena de Markov con $X_0 \sim \mu^{(0)}$ y matriz de transición P, se pueden definir funciones ϕ, ψ de modo que:

$$\begin{cases} X_0 = \phi_{\mu^{(0)}}(U_0) \\ X_k = \psi(X_{k-1}, U_k), \ k = 1, 2, \cdots \end{cases}$$

donde (U_n) es una sucesión de v.a. independientes, $U_n \sim \text{Unif}[0,1], n \in \mathbb{N}$.

Vamos a estudiar $\mu^{(n)}$ cuando (X_n) es irreducible y aperiódica:

- Denotemos por η una distribución estacionaria de la Cadena de Markov (cuya existencia acabamos de probar).
- Podemos asumir que (X_n) se ha obtenido mediante las fórmulas:

$$\begin{cases} X_0 = \phi_{\mu^{(0)}}(U_0) \\ X_k = \psi(X_{k-1}, U_k), \ k = 1, 2, \cdots \end{cases}$$

- Consideremos ahora una nueva Cadena de Markov (X'_n) que construimos tomando como distribución de probabilidad inicial la distribución estacionaria η .
- Usamos una nueva sucesión (U'_n) de v.a. índependientes, idéntic. distrib. con distribución U([0,1]):

$$\left\{ \begin{array}{l} X_0' = \phi_\eta(U_0') \\ X_k' = \psi(X_{k-1}', U_k') \end{array} \right.$$

$$\left\{ \begin{array}{l} X_0 = \phi_{\mu^{(0)}}(U_0) \\ X_k = \psi(X_{k-1}, U_k) \end{array} \right. \left. \left\{ \begin{array}{l} X_0' = \phi_{\eta}(U_0') \\ X_k' = \psi(X_{k-1}', U_k') \end{array} \right. \right.$$

- Como η es estacionaria, $X'_n \sim \eta$ para todo n.
- Las cadenas de Markov (X_n) y (X'_n) son independientes por serlo (U_n) y (U'_n) entre ellas.

Consideremos la v.a.

$$T=\min\{n:X_n=X_n'\}.$$

 $(T = +\infty \text{ si las cadenas nunca se encuentran}).$

Lema

Se tiene que:

$$P[T < \infty] = 1$$

O, lo que es lo mismo,

$$lim_{n\to\infty}P(T>n)=0$$

Demostración del Lema: Como (X_n) irreducible y aperiódica, sabemos que existe M > 0 tal que

$$(P^M)_{i,j} > 0$$
 para todo $i,j \in \{1,\cdots,k\}$.

Sea
$$0 < \alpha = \min_{i,j} (P^M)_{i,j}$$
.

$$P(T \le M) \ge P(X_M = X_M') \ge P(X_M = s_1, X_M' = s_1)$$

$$= P(X_M = s_1)P(X_M' = s_1) \text{ por la independencia de } X_M \text{ y } X_M'$$

$$= \left(\sum_{i=1}^k P(X_M = s_1, X_0 = s_i)\right) \left(\sum_{i=1}^k P(X_M' = s_1, X_0' = s_i)\right)$$

$$= \left(\sum_{i=1}^k P(X_M = s_1 | X_0 = s_i)P(X_0 = s_i)\right) \times$$

$$\times \left(\sum_{i=1}^k P(X_M' = s_1 | X_0' = s_i)P(X_0' = s_i)\right)$$

$$\ge \left(\alpha \sum_{i=1}^k P(X_0 = s_i)\right) \left(\alpha \sum_{i=1}^k P(X_0' = s_i)\right) = \alpha^2$$

2007

Acabamos de probar que: $P(T \le M) \ge \alpha^2$. Por tanto:

$$P(T > M) \le 1 - \alpha^2$$

También hemos probado que $P(X_M = X_M') \ge \alpha^2$. Pero entonces es claro que

$$P(X_{2M} = X'_{2M}|T > M) \ge \alpha^2$$

Y, por tanto,

$$P(X_{2M} \neq X'_{2M}|T > M) \le 1 - \alpha^2$$

Y, por tanto,

$$P(X_{2M} \neq X'_{2M} | T > M) \le 1 - \alpha^2$$

Se sigue que

$$P(T > 2M) = P(T > 2M|T > M)P(T > M)$$

$$\leq P(T > 2M|T > M)(1 - \alpha^{2})$$

$$\leq P(X_{2M} \neq X'_{2M}|T > M)(1 - \alpha^{2})$$

$$\leq (1 - \alpha^{2})^{2}$$

Repitiendo el argumento, concluimos que

$$P(T > rM) \le (1 - \alpha^2)^r \to 0$$
 cuando $r \to \infty$

$$P(T < \infty) = 1 - P(T = \infty) = 1 - 0 = 1.$$

Consideremos ahora la Cadena de Markov: (X''_n) definida por:

$$X_0'' = X_0$$

$$X''_{n+1} = \begin{cases} \psi(X''_n, U_{n+1}) & \text{si } X''_n \neq X'_n \\ \psi(X''_n, U'_{n+1}) & \text{si } X''_n = X'_n \end{cases}$$

• (X_n'') es una Cadena de Markov con matriz de transición P y distribución inicial de probabilidad $\mu^{(0)}$. Por tanto,

$$X_n'' \sim \mu^{(n)}$$
.

Sea $i \in \{1, 2, \dots, k\}$. Entonces

$$\mu_i^{(n)} - \eta_i = P(X_n'' = s_i) - P(X_n' = s_i)$$

$$\leq P(X_n'' = s_i, X_n' \neq s_i)$$

$$\leq P(X_n'' \neq X_n')$$

$$= P(T > n) \to 0 \text{ cuando } n \to \infty.$$

Analogamente (cambiando los roles de X''_n y X'_n),

$$\eta_i - \mu_i^{(n)} \le P(T > n) \to 0$$
 cuando $n \to \infty$.

Se sigue que

$$\lim_{n\to\infty} d_{TV}(\mu^{(n)},\eta) = 0$$

Ley de los grandes números

Una CM se dice ergódica si es irreducible, aperiódica y los tiempos de espera para volver a cada uno de sus estados son todos finitos. En particular, si la CM es finita, será ergódica sii es irreducibe y aperiódica.

Teorema (Ley de los grandes números para CM)

Sea (X_n) una CM ergódica y sea μ su (única) distribución estacionaria. Sea X una v.a. tal que $X \sim \mu$. Sea $f : \mathbb{R} \to \mathbb{R}$ una función acotada. Entonces, con probabilidad 1, se tiene que

$$\lim_{n\to\infty}\frac{1}{n}(f(X_1)+\cdots f(X_n))=E(f(X)).$$

Nota: Como solo consideramos aquí CM finitas, arriba podemos asumir que X toma valores en $\{1, \dots, k\}$ y por tanto

$$E(f(X)) = \sum_{j=1}^{k} f(j)\mu_j$$

donde $\mu = (\mu_1, \cdots, \mu_k)$.

Distribuciones reversibles, Cadenas de Markov reversibles

Definición

Sea (X_n) una CM finita con espacio de estados

$$S = \{s_1, \cdots, s_k\}$$

y matriz de transición P.

Sea $\mu = (\mu_1, \dots, \mu_k)$ una distribución de probabilidad:

$$0 \le \mu_i \le 1$$
 para todo i , $\sum_{i=1}^k \mu_i = 1$

Decimos que μ es una distribución reversible para la cadena de Markov (X_n) si

$$\mu_i P_{i,j} = \mu_j P_{ji}$$
 para todo i, j

Distribuciones reversibles, Cadenas de Markov reversibles

Definición

La CM se dice reversible si admite alguna distribución de probabilidad reversible.

Teorema (Cadenas de Markov reversibles)

Supongamos que μ es una distribución reversible para la CM (X_n) . Entonces μ es también una distribución de equilibrio para la CM.

Si (X_n) es una CM irreducible y aperiódica con distribución reversible μ , entonces μ es la única distribución estacionaria de (X_n) y la distribución de probabilidad de X_n converge a μ en la distancia d_{TV} :

$$\lim_{n\to\infty} d_{TV}(\mu_{X_n},\mu)=0.$$

Distribuciones reversibles, Cadenas de Markov reversibles

Demostración del Teorema: Basta comprobar que $\mu P = \mu$. De hecho,

$$(\mu P)_i = \sum_{j=1}^k \mu_j P_{ji} = \sum_{j=1}^k \mu_i P_{ij} = \mu_i \sum_{j=1}^k P_{ij} = \mu_i$$

9/10

• Queremos simular una v.a. X con espacio de estados $S = \{s_i\}_{i=1}^k$ y fdp η .

Definición (Algoritmo de Metrópolis del Método Monte Carlo)

- Construimos un grafo conexo G = (S, E).
 Dado s_i ∈ S, d_i = deg(s_i) es el número de nodos adyacentes a s_i.
 Es importante lograr imponer que d_i sea pequeño para lograr una simulación práctica de la cadena de Markov.
- La CM de Metrópolis asociada a G (y a η) es la que tiene matriz de transición:

$$P_{i,j} = \begin{cases} \frac{1}{d_i} min\{\frac{\eta_j d_i}{\eta_i d_j}, 1\} & \text{si } s_i \sim s_j \\ 0 & \text{si } s_i, s_j \text{ no son vecinos} \\ 1 - \sum_{t, s_t \sim s_i} \frac{1}{d_i} min\{\frac{\eta_t d_i}{\eta_i d_i}, 1\} & \text{si } i = j. \end{cases}$$

Teorema

La CM de Metrópolis (X_n) asociada a $G(y a \eta)$ es una CM aperiódica, irreducible y reversible cuya distribución estacionaria es η . Por tanto, la simulación de la misma sirve para obtener muestras de la fdp η , pues la distribución de X_n converge en d_{TV} a η .

En efecto: la conexidad de G garantiza que la cadena es irreducible y aperiodica. Veamos que es reversible y que η es una distribución reversible para la CM. En efecto: Si i=j no hay nada que estudiar. Si $i\neq j$ pero los vértices s_i, s_j no son adyacentes, tampoco es necesario estudiar nada. Veamos qué sucede si $i\neq j$ y $s_i\sim s_j$. Entonces

$$\eta_i P_{i,j} = \frac{\eta_i}{d_i} \min\{\frac{\eta_j d_i}{\eta_i d_j}, 1\} = \begin{cases} \frac{\eta_j}{d_j} & \text{si } \frac{\eta_j}{d_j} \leq \frac{\eta_i}{d_i} \\ \frac{\eta_i}{d_i} & \text{si } \frac{\eta_j}{d_j} > \frac{\eta_i}{d_i} \end{cases} = \min\{\frac{\eta_i}{d_i}, \frac{\eta_j}{d_j}\}$$

es una función simétrica en i, j, por lo que

$$\eta_i P_{i,j} = \eta_j P_{j,i},$$

que es lo que buscábamos.

Teorema

Consideremos una CM con espacio de estados S tal que, si $X_n = s_i$, X_{n+1} se obtiene del siguiente modo:

- Se elige un nuevo estado s_j al azar, con distribución de probabilidad uniforme entre los vecinos de s_i (i.e. con probabilidad $\frac{1}{d_i}$ para todo s_j vecino de s_i).
- Se toma

$$X_{n+1} = \begin{cases} s_j & con \ probabilidad \ min\{\frac{\eta_j d_i}{\eta_i d_j}, 1\} \\ s_i & con \ probabilidad \ 1 - min\{\frac{\eta_j d_i}{\eta_i d_j}, 1\} \end{cases}$$

Entonces (X_n) tiene matriz asociada la de la CM de Metrópolis. Además, η es la única distribución estacionaria para (X_n) y la distribución de X_n converge en d_{TV} a η .

En efecto. Supongamos que $i \neq j$. Entonces:

- Si s_j no es vecino de s_i , $P_{i,j} = P(X_{n+1} = s_j | X_n = s_i) = 0$ porque en el primer paso solo tomamos vecinos de s_i .
- Ahora bien, si $s_i \sim s_j$, entonces en el primer paso elegimos s_j con probabilidad $\frac{1}{d_i}$ y, a continuación, nos quedamos con $X_{n+1} = s_j$ con probabilidad min $\{\frac{\eta_j d_i}{\eta_i d_j}, 1\}$. Por tanto, en este caso,

$$P_{i,j} = \frac{1}{d_i} \min\{\frac{\eta_j d_i}{\eta_i d_j}, 1\}.$$

• Finalmente, una vez elegido $s_j \sim s_i$ (con probabilidad $1/d_i$), nos quedamos en s_i con probabilidad $1 - \min\{\frac{\eta_j d_i}{\eta_i d_j}, 1\}$, lo que arroja un valor $\frac{1}{d_i} - \frac{1}{d_i} \min\{\frac{\eta_j d_i}{\eta_i d_j}, 1\}$, pero esto puede pasar con cualquier $s_j \sim s_i$, lo que nos conduce a que

$$P_{i,i} = \sum_{j, s_j \sim s_i} \left(\frac{1}{d_i} - \frac{1}{d_i} \min\{ \frac{\eta_j d_i}{\eta_i d_j}, 1 \} \right)$$
$$= 1 - \sum_{j, s_i \sim s_i} \frac{1}{d_i} \min\{ \frac{\eta_j d_i}{\eta_i d_j}, 1 \}$$