
A Novel Mapping Policy for Distributed Shared Caches

Alberto Ros, Manuel E. Acacio, José M. Garćıa Marcelo Cintra
Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores School of Informatics

Universidad de Murcia University of Edinburgh

{a.ros,meacacio,jmgarcia}@ditec.um.es mc@inf.ed.ac.uk

Abstract

In many-core architectures, memory blocks are
commonly assigned to the banks of a dis-
tributed shared cache by following a physi-
cal mapping. This mapping assigns blocks
to cache banks in a round-robin fashion with-
out considering the distance between the cores
that access a block and its corresponding cache
bank. This fact increases both cache ac-
cess latency and on-chip network traffic. On
the other hand, first-touch mapping policies,
which take into account distance, can lead to
an unbalanced utilization of cache banks, thus
increasing the number cache misses. In this
work, we propose a mapping policy that ad-
dresses the trade-off between cache access la-
tency and cache misses without requiring any
extra hardware structure. We show that our
proposal obtains average improvements of 11%
for parallel applications and 14% for multi-
programmed workloads in terms of execution
time, and significant reductions in network
traffic over a traditional physical mapping.

1 Introduction

Chip multiprocessors (CMP) are already a
commercial reality (i.e., the 2-core IBM
Power6 [10] and the 8-core Sun T2 [14])
and CMP architectures that integrate tens of
processor cores (usually known as many-core
CMPs) are expected for the near future [2].
Particularly, tiled CMP architectures, which
are designed as arrays of identical or close-to-
identical building blocks (tiles), are a scalable
alternative to current small-scale CMP designs

and will help in keeping complexity manage-
able. Each tile is mainly comprised by a core,
one or several levels of caches, and a net-
work interface that connects all tiles through
a point-to-point network.

In tiled CMPs, the distributed last-level on-
chip cache (the L2 cache in this work) can be
logically shared among all cores or separated
into private banks. The shared L2 cache orga-
nization, also called distributed shared cache
or non-uniform cache architecture (NUCA)
[9], achieves a better use of the L2 cache when
compared to a private organization. This is
because it only stores one copy of each block
and it distributes the copies across the differ-
ent banks. The main downside of this orga-
nization is the long L2 access latency, since it
depends on the bank wherein the block is al-
located, i.e., the home bank or tile. This issue
is addressed in this work.

In a shared organization, the most straight-
forward way of distributing blocks among the
different tiles is by using a physical mapping
policy in which a set of bits in the block ad-
dress defines the home bank for every block.
Some recent proposals [8] and commercial
CMPs [10, 14] choose the less significant bits1

for selecting the home bank (Block diagram in
Figure 1(a)). In this way, blocks are assigned
to banks in a round-robin fashion with block-
size granularity. This physical mapping uni-
formly spreads blocks among cache banks, re-
sulting in optimal utilization of the cache stor-
age. However, it does not take into account

1In this paper, when we refer to the less significant
bits of an address we are not considering the block
offset.



Home

Bank

L2 Set

B.O.P.O.

L1 Set

B.O.

L1 Set

B.O.P.O.

L1 Set

L2 Set Home

Bank

L2 Set

Bank

Home

P.O.

L2 Set

L2 bank

Page

Block Virtual to Physical

Virtual to Physical

Virtual to Physical

(a) Different granularities of interleaving
(P.O.=Page offset, B.O.=Block offset).

Block Page L2 bank
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

A
v
e

ra
g

e
 h

o
m

e
 d

is
ta

n
c
e

Round Robin
First Touch

(b) Impact on average home distance for
the SPLASH-2 benchmark suite and 16
cores.

Figure 1: Granularity of L2 cache interleaving and

its impact on average home distance.

the distance between the requesting core and
the home bank on a L1 cache miss. Moreover,
the average distance between two tiles signif-
icantly increases with the size of the CMP,
which can become a performance problem for
many-core CMPs.

An alternative mapping policy is first-touch
[7], which has been widely used in NUMA
architectures to achieve more locality in the
memory accesses. First-touch minimizes the
distance between the requesting cores and the
home banks, thus reducing the cache access
latency. However, an efficient implementation
of this policy requires the OS to handle it, and
therefore, the granularity of mapping must be
at least the size of a page (e.g., Page or L2
bank diagram in Figure 1(a)). The OS maps a
page to a particular cache bank the first time
the page is referenced, i.e, a memory miss. At
that moment, the OS assigns a physical ad-
dress to the virtual address of the page, thus
changing some bit in the address of the page
(Virtual to Physical field in figure 1(a)). Then,

the OS can control the cache mapping by as-
signing to this page a physical address that
maps to the desired bank. A first-touch policy
is easily implemented by assigning an address
that physically maps to the tile wherein the
core that is accessing the page resides.

Although whit a round-robin mapping pol-
icy the granularity of the interleaving does
not significantly affect the average distance to
the home bank, with a first-touch mapping
policy, finer granularity offers shorter average
distance between the missing L1 cache and
the home L2 bank, as shown in Figure 1(b).
Therefore, it is preferable to use a grain size as
fine as possible. Since block granularity is not
suitable for OS-managed mapping, the finest
granularity possible is achieved by taking the
less significant bits of the Virtual to Physical
field, i.e., a page-grained interleaving.

The main drawback of a first-touch policy
is that applications with a working set not
balanced among cores do not make optimal
use of the total L2 capacity. This happens
more frequently in systems used for through-
put computing [4], where different applications
with different memory requirements run on the
same system. The use of these architectures as
commercial servers emphasize the need of effi-
cient mapping policies.

In this work, we propose the distance-aware
round-robin (DARR) mapping policy, an OS-
managed policy which does not require extra
hardware. This policy tries to map the pages
to the local bank of the first requesting core,
like a first-touch policy, but also introduces an
upper bound on the deviation of the distri-
bution of memory pages among cache banks,
which lessens the number of off-chip accesses.

Our proposal obtains average improvements
of 11% for parallel applications and 14% for
multi-programmed workloads over a round-
robin policy. In terms of network traffic, our
proposal obtains average reductions of 39%
for parallel applications and 65% for multi-
programmed workloads. When compared to
a first-touch policy average improvements of
5% for parallel applications and 6% for multi-
programmed workloads are obtained, slightly
increasing on-chip network traffic.



P0 P1

P2 P3

2x2 tiled CMP

1 0

0 0

1.P0 → 0x00

1 1

0 0

2.P1 → 0x01

1 1

0 0

3.P1 → 0x00

2 1

0 0

4.P0 → 0x02

2 1

1 0

5.P0 → 0x03

1 0

0 0

6.P3 → 0x04

2 0

0 0

7.P0 → 0x05

Figure 2: Behavior of the distance-aware round-robin mapping policy.

The rest of the paper is organized as follows.
Section 2 describes the proposed mapping pol-
icy. Section 3 introduces the methodology em-
ployed. Section 4 shows the performance re-
sults. Section 5 presents the related work and,
finally, Section 6 concludes the paper.

2 DARR Mapping Policy

In this work, we propose distance-aware
round-robin mapping, a simple OS-managed
mapping policy for many-core CMPs that as-
signs memory pages to NUCA cache banks.
This policy minimizes the total number of off-
chip accesses as happens with a round-robin
mapping, and reduces the access latency to a
NUCA cache (the L2 cache level) as a first-
touch policy does. Moreover, this policy ad-
dresses this trade-off without requiring any ex-
tra hardware support.

In the proposed mechanism, the OS starts
assigning physical addresses to the requested
pages according to a first-touch policy, i.e, the
physical address chosen by the OS maps to the
tile of the core that is requesting the page. The
OS stores a counter for each cache bank which
is increased whenever a new physical page is
assigned to this bank. In this way, banks with
more physical pages assigned to them will have
higher value for the counter.

To minimize the amount of off-chip accesses
we define an upper bound on the deviation of
the distribution of pages among cache banks.
This upper bound can be controlled by the
OS through a threshold value. In case that
the counter of the bank where a page should
map following a first-touch policy has reached
the threshold value, the page is assigned to an-
other bank. The algorithm starts checking the
counters of the banks at one hop from the ini-
tial placement. The bank with smaller value is
chosen. Otherwise, if all banks at one hop have
reached the threshold value, then the banks at

a distance of two hops are checked. This al-
gorithm iterates until a bank whose value is
under the threshold is found. The policy en-
sures that at least one of the banks has always
a value smaller than the threshold value by de-
creasing by one unit all counters when all of
them have values different than zero.

Figure 2 shows, from left to right, the behav-
ior of this mapping policy for a 2×2 tiled CMP
with a threshold value of two. First, processor
P0 accesses a block within page 0x00 which
faults in memory (1). Therefore, a physical
address that maps to the bank 0 is chosen for
the address translation of the page, and the
value for the bank 0 is increased. Then, pro-
cessor P1 perform the same operation for page
0x01 (2). When processor P1 accesses page
0x00 no action is required for our policy be-
cause there is a hit in the page table (3). The
next access of processor P0 is for a new page,
which is also stored in bank 0, which reaches
the threshold value (4). Then, if processor P0

accesses a new page again, this page must be
allocated in another bank (5). The closer bank
with a smaller value is bank 2. Finally, when
processor P3 accesses a new page, the page is
assigned to its local bank and all counters are
decreased (6), allowing bank 0 to map a new
page again (7).

The threshold defines the behavior of our
policy. A threshold value of zero denotes a
round-robin policy in which a uniform distri-
bution of pages is guaranteed, while an un-
limited threshold implies a first-touch policy.
Therefore, with a small threshold value, our
policy reduces the number of off-chip accesses.
Otherwise, if the threshold value is high, our
policy reduces the average latency of the ac-
cesses to the NUCA cache. Although, the OS
could choose different thresholds depending on
the workload, we have found that values be-
tween 64 and 256 work well for the workloads
considered in this work.



Table 1: System parameters.
Memory Parameters: GEMS (4GHz)

Cache block size 64 bytes

Split L1 I & D caches 64KB, 4-way
L1 cache hit time 3 cycles
Shared unified L2 cache 512KB/tile, 16-way
L2 cache hit time 6 cycles

Memory access time 300 cycles
Page size 4KB

Network Parameters: SICOSYS (2GHz)

Topology 2-dimensional mesh
Switching technique Wormhole
Routing technique Deterministic X-Y

Data and control message size 4 flits and 1 flit
Routing / Switch time 1 cycle / 1 cycle
Link latency (one hop) 2 cycles
Link bandwidth 1 flit/cycle

3 Simulation Environment

We evaluate our proposal using the Simics full-
system multiprocessor simulator [11] extended
with GEMS [12] and SiCoSys [13]. GEMS pro-
vides a detailed cache coherent memory sys-
tem timing model and SiCoSys simulates a de-
tailed interconnection network that allows one
to take into account most of the VLSI imple-
mentation details with high precision.

Besides the policy already provided by
GEMS, a physical mapping with block-grained
interleaving that we call Block-RoundRobin,
we have implemented the other three OS-
managed policies evaluated in this work. The
first one, named as Page-RoundRobin, is
an OS-managed policy that assigns physical
pages in a round-robin fashion to guarantee
the uniform distribution of pages. Therefore,
this policy does not take into consideration
the distance to the home bank. The second
one, named as Page-FirstTouch, maps mem-
ory pages to the local cache bank of the first
processor that requested the page. Although
this policy is distance-aware, it is not con-
cerned about the load on some cache banks.
Finally, we also implement the policy proposed
in this work. We simulate our proposal with
threshold values ranging from 20 to 210. We
call our policy Page-DARR-T, where T is the
threshold value.

The simulated system is a tiled CMP in
which each tile contains an in-order proces-
sor core. Table 1 shows the values for the
main parameters of the system evaluated in
this work. Memory blocks stored in the pri-

vate L1 caches are kept coherent by means of a
directory-based cache coherence protocol that
uses MESI states.

3.1 Benchmarking

We have evaluated our proposal with paral-
lel and multi-programmed workloads. Multi-
programmed workloads consist of several pro-
gram instances running at the same time in
the system. We classify workloads as either
homogeneous or heterogeneous. Homogeneous
workloads uniformly distribute memory pages
among cache banks when a first-touch policy is
employed. In contrast, in heterogeneous work-
loads a few banks allocate more pages than the
others considering a first-touch policy.

For evaluating the parallel applications we
have chosen two homogeneous and two het-
erogeneous scientific benchmarks. FFT (256K
complex doubles), with a small working set,
and Ocean (258x258 ocean), with a larger
working set, represent the homogeneous work-
loads. Unstructured (Mesh.2K, 5 time steps),
with small working set, and Radix (1M keys,
1024 radix), with a larger working set, con-
stitute the heterogeneous workloads. FFT,
Ocean and Radix belong to the SPLASH-2
benchmark suite [15] while Unstructured is
a computational fluid dynamics application.
Since, in general, the working set of the sci-
entific benchmarks is small we have shrunk
the simulation parameters to 32KB 2-way L1
caches, 128KB 4-way L2 caches and 16 cores.

Since multi-programmed workloads have
bigger working sets, we can fairly simulate a
32-core CMP with the cache sizes shown in
Table 1. We have simulated two homogeneous
and two heterogeneous workloads. Ocean4
and Radix4 consist of four instances of the
Ocean and Radix applications, respectively,
with eight threads each one, representing ho-
mogeneous workloads. Mix4 and Mix8 run
Ocean, Raytrace (teapot), Water-NSQ (512
molecules, 4 time steps) and Unstructured. In
Mix4 each application has eight threads. In
Mix8 two instances of each application are run
with four threads each. These two workloads
represent the heterogeneous and more com-
mon multi-programmed workloads.



FFT Ocean Radix Unstructured Avg. 16 Ocean4 Radix4 Mix4 Mix8 Avg. 32
0.0

1.0

2.0

3.0

4.0

A
v
e

ra
g

e
 d

is
ta

n
c
e

 t
o

 h
o

m
e

Block-RoundRobin
Page-RoundRobin
Page-FirstTouch

Page-DARR-1
Page-DARR-4
Page-DARR-16

Page-DARR-64
Page-DARR-256
Page-DARR-1024

16 cores 32 cores

Figure 3: Average distance between requestor and home tile for the workloads evaluated in this work.

FFT Ocean Radix Unstructured Avg. 16 Ocean4 Radix4 Mix4 Mix8 Avg. 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

liz
e

d
 n

u
m

b
e

r 
o

f 
o

ff
-c

h
ip

 a
c
c
e

s
s
e

s

Block-RoundRobin
Page-RoundRobin
Page-FirstTouch

Page-DARR-1
Page-DARR-4
Page-DARR-16

Page-DARR-64
Page-DARR-256
Page-DARR-1024

16 cores 32 cores

Figure 4: Normalized number of off-chip accesses for the workloads evaluated in this work.

4 Evaluation Results

4.1 Average distance to the home banks

Figure 3 plots the average distance in terms of
network hops between the tile where the miss
takes place and the tile where the home L2
bank is placed. As discussed, a round-robin
policy does not care about this distance and,
therefore, the average distance for these poli-
cies matches up with the average number of
hops in a two-dimensional mesh (2.5 for a 4×4
mesh and 3.875 in a 4 × 8 mesh). On the
other hand, the first-touch policy is the one
that requires less hops to solve a miss (1.58
for parallel applications and 0.82 for multi-
programmed workloads). As can be observed,
the results obtained by our policy always lie
between those of the round-robin and first-
touch schemes.

Some parallel applications, like Radix and
Unstructured do not obtain representative re-
ductions in the average distance, even when
a first-touch policy is considered. This is be-
cause the blocks that frequently cause a cache
miss are widely shared. On the other hand, we
can observe that the multi-programmed work-
loads always achieve important reductions in

the average distance. Even when all the ap-
plications running in the system are instances
of Radix, which does not offer reductions in
the parallel case, as happens in Radix4. This
is because data is only shared in the region of
the chip running each instance.

Finally, it is important to note that a thresh-
old value of one for our policy reduces the aver-
age distance compared to round-robin (by 25%
for parallel and 32% for multi-programmed
workloads), and also guarantees a uniform dis-
tribution of pages. The higher threshold value
is employed, the more reductions in the aver-
age number of hops are achieved.

4.2 Number of off-chip accesses

The main issue of the first-touch policy is that
it incurs in more off-chip accesses specially for
workloads that have unbalanced working sets.
Figure 4 shows the number of off-chip accesses
for the implemented policies normalized with
respect to first-touch. We can observe that for
homogeneous workloads the difference in the
number of off-chip accesses is minimal. On the
other hand, the first-touch policy severely in-
creases the number of off-chip accesses for het-



FFT Ocean Radix Unstructured Avg. 16 Ocean4 Radix4 Mix4 Mix8 Avg. 32
0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Block-RoundRobin
Page-RoundRobin
Page-FirstTouch

Page-DARR-1
Page-DARR-4
Page-DARR-16

Page-DARR-64
Page-DARR-256
Page-DARR-1024

16 cores 32 cores

Figure 5: Normalized execution time for the workloads evaluated in this work.

FFT Ocean Radix Unstructured Avg. 16 Ocean4 Radix4 Mix4 Mix8 Avg. 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

liz
e

d
 n

e
tw

o
rk

 t
ra

ff
ic

Block-RoundRobin
Page-RoundRobin
Page-FirstTouch

Page-DARR-1
Page-DARR-4
Page-DARR-16

Page-DARR-64
Page-DARR-256
Page-DARR-1024

16 cores 32 cores

Figure 6: Normalized network traffic for the workloads evaluated in this work.

erogeneous workloads. This increment hap-
pens mainly in Unstructured (≈ ×3), Mix4
(≈ ×5) and Mix8 (≈ ×3). Note that servers
usually run a heterogeneous set of applica-
tions, like Mix4 and Mix8.

Regarding the threshold value of our policy,
we can observe that with a value smaller than
256 the number of off-chip accesses is kept very
close to the round-robin policy.

4.3 Execution time

As we can observe in Figure 5, the first-touch
policy achieves important improvements com-
pared to a round-robin policy when the work-
ing set accessed by the different cores is homo-
geneous, as happens in FFT, Ocean, Ocean4
and Radix4. In contrast, when the distribu-
tion of pages accessed by each core is het-
erogeneous, as occurs in Radix, Unstructured,
Mix4 and Mix8, first-touch incurs in more off-
chip accesses, thus degrading performance. In
contrast, our proposal achieves the best of
a round-robin policy and a first-touch pol-
icy with a threshold value between 64 and
256. In this way, we obtain improvements of
11% on average for parallel applications and of
14% on average for multi-programmed work-

loads compared to a round-robin policy with
page-sized granularity. When compared to
a first-touch policy we obtain improvements
of 5% for parallel applications and 6% for
multi-programmed workloads, but addition-
ally avoiding the performance degradation in-
curred by the first-touch policy in some cases.

4.4 Network traffic

Figure 6 compares the network traffic gener-
ated by the policies considered in this work.
In particular, each bar plots the number of
bytes transmitted through the interconnec-
tion network normalized with respect to Block-
RoundRobin. We can see that round-robin
policies lead to the highest traffic levels be-
cause the distance to the home bank is not
taken into consideration.

On the other hand, network traffic can be
tremendously reduced when a first-touch pol-
icy is implemented. In parallel applications,
network traffic is reduced by 40% on average.
For multi-programmed workloads the savings
are greater (72% on average), since most of
the blocks are only accessed by cores placed in
a small region of the chip. Our policy always
obtains reductions in network traffic compared



to round-robin, even when the threshold value
is just one. When the threshold value in-
creases less network traffic is generated. We
can see that with a threshold of 256 the net-
work traffic generated by our proposal is re-
duced by 39% for parallel applications and
65% for multi-programmed workloads. Ob-
viously, the first-touch policy introduces less
traffic than our proposal (3% on average for
parallel applications and 31% on average for
multi-programmed workloads), at the cost of
increasing the number of off-chip accesses.

5 Related Work

Kim et al.[9] presented non-uniform cache ar-
chitecture (NUCA) caches. They studied both
a static mapping of blocks to caches and a dy-
namic mapping based on spread sets. In such
dynamic mapping, a block can only be allo-
cated in a particular bank set, but this bank
set can be comprised of several cache banks
that act as ways of the bank set. In this way,
a memory block can migrate from a bank far
from the processor to another bank closer if
the block is expected to be accessed frequently.
Chishti et al. [6] achieved more flexibility than
the original dynamic NUCA approach by de-
coupling tag and data arrays, and by adding
some pointers from tags to data, and vice
versa. Again, memory blocks can reside in dif-
ferent banks within the same bank set. Beck-
mann and Wood [3] proposed a new distribu-
tion of the components in the die, where the
processing cores are placed around the perime-
ter of a NUCA L2 cache. Migration is also per-
formed among cache banks belonging to the
same bank set. The block search is performed
in two phases, both requiring broadcasting the
requests. Unfortunately, these proposals have
two main drawbacks. First, there are data
placement restrictions because data can only
be allocated in a particular bank set and, sec-
ond, data access requires checking multiple
cache banks, which increases network traffic
and power consumption.

Differently from all the previous approaches,
and closer to ours, Cho and Jin [7] proposed
using a page-size granularity (instead of block-

size). In this way, the OS can manage the
mapping policy, e.g, a first-touch mapping pol-
icy can be implemented. In order to deal with
the unbalanced utilization of the cache banks,
they propose using bloom filters that collect
cache access statistics. If a cache bank is pres-
sured, the neighbouring banks can be used to
allocate new pages. For this proposal it is
difficult to find an accurate metric to decide
whether a cache is pressured or not. In con-
trast, in our proposal pages are distributed in
an easy way and without requiring any ex-
tra hardware. Recently, Awasthi et al. [1]
and Chaudhuri [5] proposed several mecha-
nisms for page migration that reduce the over-
head of migration at the cost of requiring extra
hardware structures. Unfortunately, since mi-
gration of pages entails an inherent cost (e.g.,
flushing caches or TLBs), this mechanism can-
not be performed frequently. Although migra-
tion can be used along with our proposal, this
work focuses on the initial mapping of pages
to cache banks.

6 Conclusions

In CMP architectures, memory blocks are
commonly assigned to the banks of a NUCA
cache by following a physical mapping policy,
thus neglecting the distance between the re-
questing cores and the home NUCA bank for
the requested blocks. This issue impacts both
cache access latency and the amount of on-
chip network traffic generated, and can be-
come a performance problem for large-scale
CMPs. On the other hand, first-touch map-
ping policies, which take into account distance,
can lead to an unbalanced utilization of cache
banks, and consequently, to an increased num-
ber of expensive off-chip accesses.

In this work, we propose the distance-aware
round-robin mapping policy, an OS-managed
policy which addresses the trade-off between
cache access latency and number of off-chip
accesses. Our policy tries to map the pages
accessed by a core to its closest bank, like
in a first-touch policy. However, we also in-
troduce an upper bound on the deviation of
the distribution of memory pages among cache



banks, which lessens the number of off-chip ac-
cesses. This upper bound can be controlled by
a threshold for which we have observed that
our proposal achieves a good compromise be-
tween a round-robin and a first-touch policy
with a value between 64 and 256.

Our proposal obtains average improvements
of 11% for parallel applications and of 14%
for multi-programmed workloads compared to
a round-robin policy. In terms of network
traffic, our proposal obtains average improve-
ments of 39% for parallel applications and 65%
for multi-programmed workloads. When com-
pared to a first-touch policy we obtain av-
erage improvements of 5% for parallel appli-
cations and 6% for multi-programmed work-
loads, slightly increasing on-chip network traf-
fic. Finally, one of the main assets of our pro-
posal is its simplicity, because it does not re-
quire any extra hardware structure.

Acknowledgments

This work has been supported by Euro-
pean Comission funds under HiPEAC Net-
work of Excellence and under grant “Con-
solider Ingenio-2010 CSD2006-00046”. Al-
berto Ros is supported by a research grant
from Spanish MEC under the FPU national
plan (AP2004-3735).

References

[1] M. Awasthi, K. Sudan, R. Balasubramonian,

and J. Carter. Dynamic hardware-assisted

software-controlled page placement to man-
age capacity allocation and sharing within

large caches. In 15th HPCA, pages 250–261,

Feb. 2009.

[2] M. Azimi, N. Cherukuri, and D. N.
Jayasimha, et al. Integration challenges and

tradeoffs for tera-scale architectures. In-
tel Technology Journal, 11(3):173–184, Aug.
2007.

[3] B. M. Beckmann and D. A. Wood. Man-
aging wire delay in large chip-multiprocessor

caches. In 37th MICRO, pages 319–330, Dec.
2004.

[4] S. Chaudhry, P. Caprioli, S. Yip, and
M. Tremblay. High-performance throughput

computing. IEEE Micro, 25(3):32–45, May
2005.

[5] M. Chaudhuri. PageNUCA: Selected policies

for page-grain locality management in large

shared chip-multiprocessor caches. In 15th
HPCA, pages 227–238, Feb. 2009.

[6] Z. Chishti, M. D. Powell, and T. N.

Vijaykumar. Distance associativity for high-

performance energy-efficient non-uniform
cache architectures. In 36th MICRO, pages

55–66, Dec. 2003.

[7] S. Cho and L. Jin. Managing distributed,

shared L2 caches through OS-level page allo-
cation. In 39th MICRO, pages 455–465, Dec.

2006.

[8] J. Huh, C. Kim, H. Shafi, L. Zhang,

D. Burger, and S. W. Keckler. A NUCA sub-

strate for flexible CMP cache sharing. In 19th
ICS, pages 31–40, June 2005.

[9] C. Kim, D. Burger, and S. W. Keckler.

An adaptive, non-uniform cache structure for

wire-delay dominated on-chip caches. In 10th
ASPLOS, pages 211–222, Oct. 2002.

[10] H. Q. Le, W. J. Starke, and J. S. Fields, et al.

IBM POWER6 microarchitecture. IBM Jour-

nal of Research and Development, 51(6):639–
662, Nov. 2007.

[11] P. S. Magnusson, M. Christensson, and J. Es-

kilson, et al. Simics: A full system simulation

platform. IEEE Computer, 35(2):50–58, Feb.
2002.

[12] M. M. Martin, D. J. Sorin, and B. M. Beck-

mann, et al. Multifacet’s general execution-

driven multiprocessor simulator (GEMS)
toolset. Computer Architecture News,

33(4):92–99, Sept. 2005.

[13] V. Puente, J. A. Gregorio, and R. Bei-

vide. SICOSYS: An integrated framework
for studying interconnection network in mul-

tiprocessor systems. In 10th Euromicro-PDP,

pages 15–22, Jan. 2002.

[14] M. Shah, J. Barreh, and J. Brooks, et al.

UltraSPARC T2: A highly-threaded, power-
efficient, SPARC SoC. In IEEE Asian Solid-

State Circuits Conference, pages 22–25, Nov.
2007.

[15] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh,
and A. Gupta. The SPLASH-2 programs:

Characterization and methodological consid-
erations. In 22nd ISCA, pages 24–36, June
1995.


