
J. Parallel Distrib. Comput. 73 (2013) 42–51
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Enhancing data parallelism for Ant Colony Optimization on GPUs
José M. Cecilia a,∗, José M. García a, Andy Nisbet b, Martyn Amos b, Manuel Ujaldón c

a Computer Architecture Department, University of Murcia, 30100 Murcia, Spain
b Novel Computation Group, Division of Computing and IS, Manchester Metropolitan University, Manchester M1 5GD, UK
c Computer Architecture Department, University of Malaga, 29071 Málaga, Spain

a r t i c l e i n f o

Article history:
Received 12 April 2011
Received in revised form
2 January 2012
Accepted 9 January 2012
Available online 20 January 2012

Keywords:
Metaheuristics
GPU programming
Ant Colony Optimization
TSP
Performance analysis

a b s t r a c t

Graphics Processing Units (GPUs) have evolved into highly parallel and fully programmable architecture
over the past five years, and the advent of CUDA has facilitated their application to many real-world
applications. In this paper, we deal with a GPU implementation of Ant Colony Optimization (ACO),
a population-based optimization method which comprises two major stages: tour construction and
pheromone update. Because of its inherently parallel nature, ACO is well-suited to GPU implementation,
but it also poses significant challenges due to irregular memory access patterns. Our contribution within
this context is threefold: (1) a data parallelism scheme for tour construction tailored to GPUs, (2) novel GPU
programming strategies for the pheromone update stage, and (3) a new mechanism called I-Roulette to
replicate the classic roulette wheel while improving GPU parallelism. Our implementation leads to factor
gains exceeding 20x for any of the two stages of the ACO algorithm as applied to the TSP when compared
to its sequential counterpart version running on a similar single-threaded high-end CPU. Moreover, an
extensive discussion focused on different implementation paths on GPUs shows the way to deal with
parallel graph connected components. This, in turn, suggests a broader area of inquiry, where algorithm
designers may learn to adapt similar optimization methods to GPU architecture.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Ant Colony Optimization (ACO) [12] is a population-based
search method inspired by the behavior of real ants. It may be
applied to awide range of problems [8,2],manyofwhich are graph-
theoretic in nature. It was first applied to the Traveling Salesman
Problem (TSP) [19] by Dorigo et al. [10,11].

In essence, simulated ants construct solutions to the TSP in
the form of tours. The artificial ants are simple agents which
construct tours in a parallel, probabilistic fashion. They are guided
in this task by simulated pheromone trails and heuristic information.
Pheromone trails are a fundamental component of the algorithm,
since they facilitate indirect communication between agents via
their environment, a process known as stigmergy [9]. For additional
details about these processes, we refer the reader to [12].

ACO algorithms are population-based, that is, a collection of
agents ‘‘collaborates’’ to find an optimal (or at least satisfactory)
solution. Such approaches are suited to parallel processing, but
their success strongly depends on the nature of the particular prob-

∗ Corresponding author.
E-mail addresses: chema@ditec.um.e (J.M. Cecilia), jmgarcia@ditec.um.ess

(J.M. García), a.nisbet@mmu.ac.uk (A. Nisbet), m.amos@mmu.ac.u (M. Amos),
ujaldon@uma.es (M. Ujaldón).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.01.002
lem and the underlying hardware available. Several parallelization
strategies have been proposed for the ACOalgorithmon shared and
distributed memory architecture [28,18,21].

The Graphics Processing Unit (GPU) is a topic of significant
interest in high performance computing. For applications with
abundant parallelism, GPUs deliver higher peak computational
throughput than latency-oriented CPUs, thus offering a tremen-
dous potential performance uplift on massively parallel prob-
lems [14]. Of particular relevance to us are attempts to parallelize
the ACO algorithm on GPUs. Until now, these approaches have fo-
cused on accelerating the tour construction, step performed by each
ant by taking a task-based parallelism approach, with pheromone
deposition on the CPU [13,3,20].

In this paper,wepresent the first fully developedACOalgorithm
for the Traveling Salesman Problem (TSP) on GPUs, where both
stages are parallelized: tour construction and pheromone update.
A data parallelism approach, which is better suited to the GPU
parallelism model, is used to enhance performance on the first
stage, and several GPU design patterns are evaluated for the
parallelization of the second stage. Our major contributions
include the following:

1. To the best of our knowledge, this is the first data-parallelism
scheme on GPUs for the ACO tour construction stage. Our
design proposes two different types of virtual ants: Queen

http://dx.doi.org/10.1016/j.jpdc.2012.01.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2012.01.002&domain=pdf
mailto:chema@ditec.um.e
mailto:jmgarcia@ditec.um.ess
mailto:a.nisbet@mmu.ac.uk
mailto:m.amos@mmu.ac.u
mailto:ujaldon@uma.es
http://dx.doi.org/10.1016/j.jpdc.2012.01.002


J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51 43
ants (associated with CUDA thread-blocks), and worker ants
(associated with CUDA threads).

2. We introduce an I-Roulette method (Independent Roulette) to
replicate the classic roulette wheel selection while improving
GPU parallelism.

3. We discuss the implementation of the pheromone update
stage on GPUs, using either atomic operations or other GPU
alternatives.

4. We offer an in-depth analysis of both stages of the ACO
algorithm for different instances of the TSP problem. Several
GPU parameters are tuned to reach a speed-up factor of up to
21× for the tour construction stage, and a 20× speed-up factor
for the pheromone update stage.

5. The solution accuracy obtained by our GPU algorithms is
compared to that of the sequential code given in [12] and
extended using TSPLIB.

The rest of the paper is organized as follows. We briefly
introduce Ant Colony Optimization for the TSP and Compute
Unified Device Architecture (CUDA) from NVIDIA in Section 2. In
Section 3 we present GPU designs for the main stages of the ACO
algorithm. Our experimental methodology is outlined in Section 4
before we describe the performance evaluation of our algorithm
in Section 5. Other parallelization strategies for the ACO algorithm
are described in Section 6, before we summarize our findings and
conclude with suggestions for future work.

2. Background

2.1. Ant Colony Optimization for the traveling salesman problem

The Traveling Salesman Problem (TSP) [19] involves finding
the shortest (or ‘‘cheapest’’) round-trip route that visits each of
a number of ‘‘cities’’ exactly once. The symmetric TSP on n cities
may be represented as a complete weighted graph, G, of n nodes,
with each weighted edge, ei,j, representing the inter-city distance
di,j = dj,i between cities i and j. The TSP is a well-known NP-hard
optimization problem, and is used as a standard benchmark for
many heuristic algorithms [17].

The TSP was the first problem solved by Ant Colony Optimiza-
tion (ACO) [11,7]. This method uses a number of simulated ‘‘ants’’
(or agents), which perform distributed search on a graph. Each ant
moves on the graph until it completes a tour, and then offers this
tour as its suggested solution. In order to achieve this latter step,
each ant drops ‘‘pheromone’’ on the edges that it visits during its
tour. The quantity of pheromone dropped, if any, is determined
by the quality of the ant’s solution relative to those obtained by
the other ants. The ants probabilistically choose the next city to
visit, based on heuristic information obtained from inter-city dis-
tances and the net pheromone trail. Although such heuristic in-
formation drives the ants toward an optimal solution, a process of
pheromone ‘‘evaporation’’ is also applied in order to prevent the
process stalling in a local minimum.

The Ant System (AS) is an early variant of ACO, first proposed by
Dorigo [7]. The AS algorithm is divided into two main stages: tour
construction and pheromone update. Tour construction is based on
m ants building tours in parallel. Initially, ants are randomly placed.
At each construction step, each ant applies a probabilistic action
choice rule, called the random proportional rule, which decides the
city to visit next. The probability for ant k, placed at city i, of visiting
city j is given by the Eq. (1)

pki,j =


τi,j

α 
ηi,j

β
l∈Nk

i


τi,l

α 
ηi,l

β
, if j ∈ Nk

i , (1)
where ηi,j = 1/di,j is a heuristic value determined a priori, α and
β are two parameters determining the relative influences of the
pheromone trail and the heuristic information respectively, and
Nk

i is the feasible neighborhood of ant k when at city i. This latter
set represents the set of cities that ant k has not yet visited; the
probability of choosing a city outside Nk

i is zero (this prevents
an ant returning to a city, which is not allowed in the TSP). By
this probabilistic rule, the probability of choosing a particular
edge (i, j) increases with the value of the associated pheromone
trail τi,j and of the heuristic information value ηi,j. The numerator
of the Eq. (1) is the same for every ant in a single run, which
encourages efficiency by storing this information in an additional
matrix, called choice_info (see [12]). The random proportional rule
ends with a selection procedure, which is done analogously to
the roulettewheel selection procedure of evolutionary computation
(see [12,15]). Each value choice_info[current_city][j] of a city j that
ant k has not yet visited is associated with a slice on a circular
roulette wheel, with the size of the slice being proportional to the
weight of the associated choice. The wheel is then ‘‘spun’’, and
the city to which a fixed marker points is chosen as the next city
for ant k. Additionally, each ant k maintains a memory, Mk, called
the tabu list, which contains a chronological ordering of the cities
already visited. This memory is used to determine the feasible
neighborhood, and also allows an ant to (1) compute the length
of the tour T k it generated, and (2) retrace the path to deposit
pheromone.

After all ants have constructed their tours, the pheromone trails
are updated. This is achieved by first lowering the pheromone
value on all edges by a constant factor (analogous to evaporation),
and then adding pheromone to edges that ants have crossed in
their tours. Pheromone evaporation is implemented by

τi,j ← (1− ρ)τi,j, ∀(i, j) ∈ L, (2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate. After
evaporation, all ants deposit pheromone on their visited edges:

τi,j ← τi,j +

m
k=1

1τ k
i,j, ∀(i, j) ∈ L, (3)

where 1τij is the amount of pheromone ant k deposits. This is
defined as follows:

1τ k
i,j =


1/Ck if e(i, j)k belongs to T k

0 otherwise (4)

where Ck, the length of the tour T k built by the k-th ant, is
computed as the sum of the lengths of the edges belonging to T k.
According to Eq. (4), the better an ant’s tour, the more pheromone
the edges belonging to this tour receive. In general, edges that are
used bymany ants (andwhich are part of short tours), receivemore
pheromone, and are therefore more likely to be chosen by ants in
future iterations of the algorithm.

2.2. The CUDA programming model

All Nvidia GPU platforms from the G80 architecture may
be programmed using the Compute Unified Device Architecture
(CUDA) programming model, which makes GPUs operate as
a highly parallel computing device. Each GPU device is a
scalable processor array consisting of a set of SIMT (Single
Instruction Multiple Threads) Streaming Multiprocessors (SM),
each containing several streamprocessors (SPs). Differentmemory
spaces are available in each GPU on the system. The globalmemory
(also called device or video memory) is the only space accessible
to all multiprocessors. It is the largest (and slowest) memory
space, and is private to each GPU on the system. Additionally,



44 J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51
each multiprocessor has its own private memory space, called
sharedmemory. The sharedmemory is smaller than globalmemory,
with lower access latency. Finally, there exist other addressing
spaces that are dedicated to specific purposes, such as texture and
constant memory [23].

The CUDA programming model is based on a hierarchy of ab-
straction layers The thread is the basic execution unit that is
mapped to a single SP. A thread-block is a batch of threads which
can cooperate, (as they are assigned to the same multiprocessor)
and therefore share all the resources included in that multiproces-
sor, such as the register file and shared memory. A grid is com-
posed of several thread-blocks which are equally distributed and
scheduled across all multiprocessors in a non-deterministic man-
ner. Finally, threads included within a thread-block are divided
into batches of 32 threads called warps. The warp is the sched-
uled unit, so the threads of the same thread-block are executed
in a given multiprocessor warp-by-warp in a SIMD fashion (same
instruction over multiple data). The programmer arranges paral-
lelism by declaring the number of thread-blocks, the number of
threads per thread-block and their distribution, subject to the pro-
gram constraints (i.e., data and control dependences).

3. Code design and tuning techniques

In this section, we present several different GPU designs for
the Ant System (AS), as applied to the TSP. Algorithm 1 shows
Single Program Multiple Data (SPMD) pseudocode for the AS.
Firstly, all AS structures for the TSP problem (distance matrix,
number of cities, . . . ) are initialized. Next, the tour construction
and pheromone update stages are performed until the convergence
criterion is reached. For tour construction, we begin by analyzing
CPU alternatives and traditional implementations based on task
parallelism on GPUs, which motivates our approach of increasing
data parallelism instead. For pheromone update, we describe
several GPU techniques that are useful for increasing the data
bandwidth in this application.

Algorithm 1 The sequential AS version for the TSP:
1: InitializeData()
2: while ¬Convergence() do
3: TourConstruction()
4: PheromoneUpdate()
5: end while

3.1. Previous tour construction proposals

3.1.1. CPU baseline
The tour construction stage is divided into two stages:

Initialization and ASDecisionRule. In the former, all data structures
(tabu list, initial random city, . . . ) are initialized by each ant.
Algorithm 2 shows the latter stage, which is further divided into
two sub-stages. First, each ant calculates the heuristic information
to visit city j from city i according to Eq. (1) (lines 1–11). As
previously explained, it is computationally expensive to repeatedly
calculate these values for each computational step of each ant,
k, and this can be avoided by using an additional data structure,
choice_info, in which those heuristic values are stored using an
adjacency matrix [12]. We note that each entry in this structure
may be calculated independently (see Eq. (1)).

After the heuristic information has been calculated, the
probabilistic choice of next city for each ant is calculated using
roulette wheel selection [12,15] (see Algorithm 2, lines 12–18).
Algorithm2ASDecisionRule for the tour construction stage.m is the
number of ants, and n is the number of cities in the TSP instance
1: sum_prob← 0.0;
2: current_city← ant[k].tour[step− 1];
3: for j = 1 to n do
4: if ant[k].visited[j] then
5: selection_prob[j] ← 0.0;
6: else
7: current_probability← choice_info[current_city][j];
8: selection_prob[j] ← current_probability;
9: sum_probs← sum_probs+ current_probability;
10: end if
11: end for

{Roulette Wheel Selection Process}
12: r ← random(1..sum_probs);
13: j← 1;
14: p← selection_prob[j];
15: while p < r do
16: j← j+ 1;
17: p← p+ selection_prob[j];
18: end while
19: ant[k].tour[step] ← j;
20: ant[k].visited[j] ← true;

Fig. 1. Task parallelism on the tour construction kernel.

3.1.2. Task parallelism approach on GPUs
The ‘‘traditional’’ task parallelism approach to tour construction

is based on the observation that ants run in parallel looking for the
best tour they can find. Therefore, any inherent parallelism exists
at the level of individual ants. To implement this idea of parallelism
using CUDA, each ant is identified as a CUDA thread, and threads
are equally distributed among CUDA thread blocks. Each thread
deals with the task assigned to each ant; i.e., maintenance of an
ant’s memory (list of all visited cities, and so on) and movement
(see the core of this computation in Algorithm 2). Fig. 1 briefly
summarizes the process sequentially developed by each ant.

To improve the application bandwidth, some data structures
may be placed in on-chip shared memory. Of these, visited and
selection_prob list are good candidates to be placed on shared
memory as they are accessed many times during the computation,
in an irregular access pattern. However, shared memory is a
scarce resource in CUDA capable GPUs [23], and thus the size
of these structures is naturally limited. Moreover, in the CUDA
programming model, shared memory is allocated at CUDA thread
block level.

3.2. Our the tour construction approach based on data parallelism

The task parallelism approach is challenging for GPUs for
several reasons. Firstly, it requires a relatively low number of
threads on the GPU (the suggested number of ants for solving
the TSP problem matches the number of cities [12]). Secondly,
this version presents an unpredictable memory access pattern,
due to its execution being guided by a stochastic process. Finally,
the checking of the list of cities visited contains many warp
divergences (threadswithin awarp taking different paths), leading
to serialization [23].



J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51 45
Fig. 2. Data parallelism approach on the tour construction kernel.

3.2.1. The choice_info matrix calculation on GPU
In order to increase parallelism in CUDA, the choice_info

computation is performed apart from the tour construction kernel,
being included in a different CUDA kernel which is executed right
before the tour construction. We set a CUDA thread for each entry
of the choice_info structure, and these are equally grouped into
CUDA thread blocks. However, the performance for this kernel
may be drastically affected by the use of a costly math function
like powf() (see Eq. (1)). Fortunately, there are analogous CUDA
functions whichmap directly to the hardware level (like __powf()),
although this comes at the expense of some loss of accuracy [1].

3.2.2. The data parallelism approach
Fig. 2 shows an alternative design, which increases data-

parallelism in the tour construction kernel, and also avoids warp
divergences. In this design, we propose the use of two different
types of virtual ants to use an unmistakable metaphor. Queen ants
represent the simulated ants, and Worker ants collaborate with
each queen to accelerate the decision about the next city to visit.
Thus, each queen has her own group of workers to explore paths
more quickly.

A thread-block is associated with each queen ant, and each
thread within a block represents a city (or cities) a worker ant may
visit. All w worker ants cooperate to obtain a solution, increasing
data-parallelism a factor of w.

A thread loads the heuristic value associated with each
associated city, and checkswhether or not the city has been visited.
To avoid conditional statements (and, thus, warp divergences), the
tabu list (i.e., the list of cities thatmay not be visited) is represented
in sharedmemory as one integer value per city. A city’s value in this
list is 0 if it has been visited, and 1 otherwise. Finally, these values
are multiplied and stored in a shared memory array, which is then
prepared for the selectionprocess via the simulated roulettewheel.
We note that the shared memory requirements for this method
are drastically reduced compared to those of the previous version.
Now, the tabu list and the probabilistic list are only stored once
per thread-block (i.e., Queen ant) instead of once per thread (i.e.,
Worker ant).

The number of threads per thread-block is an internal CUDA
constraint (which evolves with the Compute Capabilities version
installed on a given software version and hardware generation).
Therefore, cities should ideally be distributed among threads in
order to allow for a flexible implementation. A tiling technique is
proposed to deal with this issue. Cities are divided into blocks (i.e.,
tiles). For each tile, a city is selected stochastically, from the set of
unvisited cities on that tile. When this process is over, we have a
set of ‘‘partial best’’ cities. Finally, the city with the best absolute
heuristic value is selected from this partial best set.

The tabu list may be placed in the register file (since it
represents information private to each thread). However, the tabu
Fig. 3. An alternative method for increasing the parallelism on the selection
process.

list cannot be represented by a single integer register per thread in
the tiling version, because, in that case, a thread represents more
than one city. The 32-bit registers may be used on a bitwise basis
for managing the list. The first city represented by each thread, i.e.,
on the first tile, is managed by bit 0 on the register that represents
the tabu list, the second city is managed by bit 1, and so on.

3.2.3. I-Roulette: an alternative selection method
The roulette wheel is a fully sequential stochastic selection

process, and, as such, is hard to parallelize. To implement this
in CUDA, a particular thread is identified to proceed sequentially
with the selection, doing this exactly n − 1 times, with n being
the number of cities. Moreover, the kernel has to generate costly
pseudorandom numbers on the GPU, which we implement using
Nvidia’s CURAND library [6].

Fig. 3 shows an alternative method for removing the sequential
parts of the previous kernel design. We call this method I-
Roulette (Independent Roulette). I-Roulette proceeds by generating
a random number per city in the interval [0, 1], which feeds into
the stochastic simulation. Thus, three values are multiplied and
stored in the sharedmemory array per city; i.e., the heuristic value
associated with a city, a value showing whether the city has been
visited or not, and the random number associated with a city.
Finally, a reduction is performed to stochastically select the city
to go (see Algorithm 3).

Algorithm 3 I-Roulette method. It assumes that this code is
executedby asmany threads as cities.We launch a randomnumber
for each thread.
1: r ← random(seed);
2: p← selection_prob[j];
3: v = ant[k].visited[j]; {Tabu list is (0 = visited); (1 = non-

visited)}
4: array[threadId] = r ∗ p ∗ v;
5: threadId_best = Reduction(array);

3.3. The pheromone update stage

The final stage in the ACO algorithm is pheromone update,
which comprises two main tasks: pheromone evaporation and
pheromone deposit. The first step is quite straightforward to
implement in CUDA, as a single thread can independently calculate
the Eq. (2) for each entry of the pheromone matrix, thus lowering
the pheromone value on all edges by a constant factor.



46 J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51
Fig. 4. Pheromone deposit with atomic instructions.

Fig. 5. Scatter to gather transformation for the pheromone deposit.

Table 1
Hardware features for the Intel Xeon CPU and the Nvidia Tesla C2050 GPU we have
used for running our experiments.

CPU GPU

Manufacturer Intel Nvidia
Model Xeon E5620 Tesla C2050
Codename/architecture Westmere Fermi
Clock frequency 2.4 GHz 1.15 GHz
L1 Cache size 32 KB+ 32 KB 16 KB (+ 48 KB SM)
L2 Cache size 256 KB 768 KB.
L3 Cache size 12 MB Does not have
DRAMmemory 16 GB. DDR3 3 GB. GDDR5

Ants then deposit different quantities of pheromone on the
edges that they have crossed in their tours. As stated previously,
the quantity of pheromone deposited by each ant depends on
the quality of the tour found by that ant (see Eqs. (3) and (4)).
Fig. 4 shows the design of the pheromone kernel; this allocates a
thread per city in an ant’s tour. Each ant generates its own private
tour in parallel, and they may visit the same edge as another
ant. This fact forces us to use atomic instructions for accessing
the pheromone matrix, leading to performance degradation. An
alternative approach is shown in Fig. 5, where we use a scatter to
gather transformations [27].
The configuration launch routine for the pheromone update
kernel now creates as many threads as there are cells in the
pheromone matrix (c = n2), and equally distributes these threads
among thread blocks. Thus, each thread represents a single entry in
the pheromone matrix, and it is responsible for checking whether
the cell that it represents has been visited by any ant. Each thread
accesses device memory to check that information, which results
in 2 ∗ n2 memory loads per thread, for a total of l = 2 ∗ n4 (n2

threads) accesses to device memory.
At this point, we have a tradeoff between the pressure on

device memory to avoid a design based on atomic operations, and
the number of atomic operations involved (relation loads:atomic
from now on). For the Scatter to gather based design, the relation
loads:atomic is l : c. Therefore, this approach allows us to perform
the computation whilst removing atomic operations, though this
comes at the expense of drastically increasing the pressure on
device memory. A tiling technique is thus proposed for increasing
the application bandwidth. Now, all threads cooperate to load data
from global memory to shared memory, but they still access edges
in the ant’s tour. Each thread accesses global memory 2n2/θ, θ
being the tile size. Any remaining accesses are performedon shared
memory, and the total number of global memory accesses is γ =
2n4/θ . The relation loads:atomics is lower, γ : c , but it keeps on a
similar order of magnitude.

An ant’s tour length (i.e., n+1)may be larger than themaximum
number of threads that each block can support [23]. Our algorithm
prevents this situation by setting our empirically demonstrated
optimum thread block layout, and then dividing the tour into tiles
of this length. This raises another issue when n+ 1 is not divisible
by θ . We solve this by applying padding to the ant tour array in
order to avoid warp divergence (see Fig. 5).

Unnecessary loads to device memory can be avoided by taking
advantage of the symmetric version of the TSP, so the number of
threads can be divided by two, thus halving the number of device
memory accesses. This so-called Reduction version reduces the
overall number of accesses to either shared or device memory and
also applies tiling. The number of accesses per thread remains the
same, for a total number of device memory access of ρ = n4/θ .

4. Experimental methodology

During our experimental study, we have used the following
platforms:

• On the CPU side: An Intel Xeon E5620 Westmere processor
running at 2.40GHz and endowedwith four cores and16Gbytes
of DDR3 memory.
• On the GPU side: A Nvidia Tesla C2050 Fermi graphics card

endowed with 448 streaming processors and 3 GB of GDDR5
video memory.

For further features about these two platforms, see Table 1.
Moreover, we use gcc 4.3.4 with the −O3 flag to compile our CPU
implementations, and CUDA compilation tools release 3.2 on the
GPU side.

4.1. Benchmarking

We test our algorithms using a standard set of benchmark in-
stances from thewell-known TSPLIB library [25,29]. All benchmark
instances are defined on a complete graph, and all distances are de-
fined as integers. Table 2 shows all benchmark instances used,with
information on the number of cities and the length of their optimal
tour. ACO parameters such as the number of antsm, α, β, ρ, and so
on are set according to the values recommended in [12] in order to
focus on the parallelization side of the algorithm. Key parameters
for the purpose of this study are the number of ants, which is set
m = n (n being the number of cities), α = 1, β = 2, and ρ = 0.5.



J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51 47
Table 2
Summary of major features in our benchmark instances taken from the TSPLIB library. ‘‘Cities’’ is the number of cities in the graph, and ‘‘Length’’ is the best tour length, that
is, the minimum solution found based on 2D euclidean distance.

Name d198 a280 lin318 pcb442 rat783 pr1002 pcb1173 d1291 pr2392

Cities 198 280 318 442 783 1002 1173 1291 2392
Length 15780 2579 42029 50778 8806 259045 56892 50801 378032
Fig. 6. Giga FLoating Point Operations per Second (GFLOPS) on the Tesla C2050GPU
system for the choice_info kernel when using CUDA instructions powf and __powf.

5. Performance evaluation

This section analyzes the two major stages of the ACO
algorithm: tour construction and pheromone update. We compare
our implementations to sequential code, written in ANSI C,
provided by Stüzle in [12]. Performance figures are given for single-
precision numbers and a single iteration run averaged over 100
iterations. We focus on the computational features of the Ant
System and how it can be efficiently implemented on GPUs, but to
guarantee the correctness of our algorithms, a quality comparison
between the results obtained by the sequential and GPU codes is
also provided.

5.1. Evaluation of the tour construction stage

First, we evaluate the tour construction stage on Tesla C2050
from different perspectives: The performance impact of using
costly arithmetic instruction in the choice_info kernel, comparison
versus a single-threaded CPU counterpart version, improvement
through a data parallelism approach, speed-up factor obtained
when using different on-chip GPU memories, and performance
benefits of changing the selection process. We now address each
of these issues separately.

5.1.1. Choice_info kernel evaluation
We first evaluate the choice_info kernel, before assessing the

impact of several modifications to tour construction. Fig. 6 shows
performance figures, which are affected by using costly math
functions like powf(). To reduce this overhead we chose an
analogous CUDA function, __powf(), which is mapped directly to
the hardware level [1]. This is faster, because it does not check for
special cases, which are irrelevant to our computational case. This
way, loss of accuracy is negligible, but the observed performance
gain is remarkable.

After PTX inspection, this kernel accesses global memory four
times, for a measured streaming bandwidth of up to 90 GB/s using
__powf(), up to 23 GB/s using powf() on the Tesla C2050, and 67
GFLOPS and 17 GFLOPS respectively (counting __powf() and powf()
as a single floating point operation) (see Fig. 6).Weuse a 256 thread
block, one per each entry of the choice_info data structure, in order
to obtain the best performance. These particular values minimize
non-coalesced memory accesses and yield high occupancy values.
5.1.2. Tuning our data parallelism approach
For a data parallelism approach, the number of worker ants

(threads) per queen ant (blocks) is a degree of freedom studied
in Table 3. The 128 thread-block configuration maximizes perfor-
mance in all benchmark instances, with some of configurations un-
able to run (denoted n.a.) because either the number ofworker ants
exceeds that of the cities, or the number of cities divided by the
number of worker ants is greater than 32 (the maximum number
of cities that each worker ant can manage). The tabu list for each
queen ant is divided among their worker ants, and placed on a bit-
wise basis in a single register.

5.1.3. I-Roulette versus roulette wheel
Fig. 7 shows the improvement attained by increasing the

parallelism on the GPU through our selection method, I-Roulette.
This method reaches up to 2.36× gain compared to the classic
roulette wheel even though it generates many costly random
numbers. Roulettewheel compromises GPUparallelism, thus there
is a tradeoff between throughput and latency, the former option
being favored by a significant margin.

5.1.4. GPU versus CPU
Fig. 7 presents execution times on a single-threaded high-end

CPU and Tesla C2050 GPU for the set of simulations included
within our benchmarking exercise. For a fair comparison, we use
hardware platforms of similar cost (between1500 and2000 euros).
We see that the GPU obtains better performance than its single-
threaded CPU counterpart, reaching up to a 21× speed-up factor.

Fig. 7 also shows the benefit of having many parallel light-
weight threads through a data-parallelism approach, instead of
having heavy-weight threads due to the task parallelism approach
on GPUs. The task-parallelism can present several operations,
including branch statements, that may offer a non-homogeneous
computational pattern which is not the ideal framework for GPUs.

For the task parallelism versions, we use 16 CUDA threads
with 16 ants running in parallel per thread-block in order to
maximize performance. This particular value produces a low GPU
resource usage per SM, and it is not well suited for developing
high-throughput applications on GPUs. The heavy-weight threads
of this design need resources in order to execute their tasks inde-
pendently, thus avoiding large serialization phases. In CUDA, this
is obtained by distributing those threads among SMs, which is pos-
sible by increasing the number of thread-blocks during execution.
The task parallelism approach is only rewarded with a maximum
of 4.25× gain versus 21.71× reached by the data parallelism alter-
native, with also worst scalability numbers, although several opti-
mization techniques have beenproposed to improve this approach.

5.2. Evaluation of the pheromone update kernel

This section discusses performance issues for the pheromone
update kernel on Tesla C2050 GPU, and compares them to the CPU-
based alternatives.



48 J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51
Table 3
Execution times (ms.) on Tesla C2050. We vary the number of worker ants and benchmark instances (n.a. means ‘‘not available’’ due to register constraints).

Worker ants d198 a280 lin318 pcb442 rat783 pr1002 pr2392

16 10.39 30.06 38.59 101.09 n.a. n.a. n.a.
32 6.85 18.68 23.89 62.77 357.24 749.04 n.a.
64 5.06 12.78 15.51 41.17 235.86 474.79 6083.96

128 4.32 11.94 15.18 38.73 207.08 391.59 5092.27
256 n.a. 15.94 20.89 41.85 245.33 412.20 5680.81
512 n.a. n.a. n.a. n.a. 296.90 498.55 6680.39

1024 n.a. n.a. n.a. n.a. n.a. n.a. 10037.10
Fig. 7. Speed-up factor on different hardware platforms (CPU vs. GPU), and enabling different GPU approaches for the tour construction kernel (RW stands for roulette
wheel, I-R for Independent Roulette).
Table 4
Execution times (ms.) on Tesla C2050 for pheromone update implementations.

Code version TSPLIB codes (problem size)
d198 a280 lin318 pcb442 rat783 pr1002 pcb1173 d1291 pr2392

1. At. ins.+ tiling 0.18 0.41 0.49 0.54 2.42 3.52 4.68 5.85 18.57
2. Atomic Ins. 0.26 0.45 0.60 0.9 2.49 4.45 5.33 6.01 19.04
3. Ins. and Th. reduction 25.47 93.93 144.63 516.60 4669.58 12256.4 22651.30 33682.00 390301.32
4. Tiled Sc. to gather 66.29 211.81 368.91 1321.37 12331.21 32343.64 58740.78 86445.23 1018150.27
5. Scatter to gather 66.37 260.82 424.11 1534.21 14649.93 39299.14 73384.86 107926.87 1313744.4
Overall slowdown 368× 636× 865× 2 841× 6 053× 11 164× 15 680× 18 448× 70 745×
5.2.1. Evaluation of different GPU algorithmic strategies
The baseline code is our optimal kernel version, which uses

atomic instructions and shared memory. This kernel presents
the already described tradeoff between the number of accesses
to global memory for avoiding costly atomic operations, and
the number of those operations (loads:atomic ratio). The ‘‘scatter
to gather’’ computation pattern (version 5) presents a major
imbalance between these two parameters, which is reflected in an
exponential performance degradation as the problem size grows,
as expected (see lower row in Table 4). Tiling (version 4) improves
the application bandwidth in the scatter to gather approach.
Reduction (version 3) actually reduces the overall number of
accesses to either shared or devicememory by halving the number
of threads with respect to versions 4 and 5 (and also uses tiling
to alleviate device memory use). Even though the number of loads
per thread remains the same, the overall number of loads in the
application is reduced.

5.2.2. GPU versus CPU
Fig. 8 shows the execution times (in a log scale) for the

best version of the pheromone update kernel compared to the
sequential code. The pattern of computation for this kernel is
based on data-parallelism, showing a linear speed-up along with
the problem size, reaching up to 20× speed-up factor for Tesla
C2050.
Fig. 8. Execution times (ms.) on an Intel Xeon E5620 CPU and a Nvidia Tesla C2050
GPU for the pheromone update stage. We vary the TSPLIB benchmark instance to
increase the number of cities (I-R for Independent Roulette).

5.3. Solution quality

Fig. 9 depicts a quality comparison for the solutions we have
presented so far. They are normalized with respect to the optimal
solution for each case presented in Table 2. We show the result
of running all algorithms a fixed number of 1000 iterations and
averaged over 5 independent runs, with a 95% confidence interval.
Our main conclusion here is that the quality of the tour obtained



J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51 49
Fig. 9. Solution accuracy (averaged over 1000 iterations). A confidence interval of 95% is shown on top of the bars (RW stands for Roulette Wheel, I-R for Independent
Roulette).
from GPU codes is similar to that obtained by the sequential code,
and sometimes even improves on it.

6. Related work

6.1. Parallel implementations

Stüzle [28] describes the simplest case of ACO parallelization,
where independent instances of the ACO algorithm are run on
different processors. Parallel runs do not incur a communication
overhead, and the final solution is chosen from all independent
executions. Michel and Middendorf [22] present an improved so-
lution based on ant colonies exchanging pheromone information.
In more recent work, Chen et al. [5] divide the ant population into
equally-sized sub-colonies, each assigned to a different processor
where an optimal local solution is pursued, and information is pe-
riodically exchanged among processors. Lin et al. [21] decompose
the problem into subcomponents, with each subgraph assigned to
a different processing unit. To explore a graph and find a complete
solution, an ant moves from one processing unit to another, and
messages are sent to update pheromone levels. This scheme im-
proves performance by reducing local complexity and memory
requirements.

6.2. GPU implementations

6.2.1. Cg
In terms of GPU-specific designs for the ACO algorithm, Jiening

et al. [16] propose an implementation of the Max–Min Ant System
(one of the ACO variants) for the TSP, using C + + and Cg [4].
Attention is focused on the tour construction stage, and the authors
compute the shortest path in the CPU. Catala et al. [3] propose two
ACO implementations on GPUs, applying them to the Orienteering
Problem, using vertex and shader processors.

6.2.2. CUDA
You [31] discusses a CUDA implementation of the Ant System

for the TSP. The tour construction stage is identified as a CUDA
kernel, being launched by as many threads as ants exists in the
simulation. The tabu list for each ant is stored in shared memory,
and the pheromone and distances matrices are stored in texture
memory. The pheromone update stage is calculated on the CPU.
Li et al. [20] propose a method based on a fine-grained model
for GPU-acceleration, which maps a parallel ACO algorithm to
GPU through CUDA. Ants are assigned to processors, which are
connected by a population structure [28].

More recently, the TSP has gained some momentum on GPUs
and researchers have proposed alternatives methods than ACO,
like the construction of the Minimum Spanning Tree (MSP) [26]
and the memetic algorithm for VLSI floorplanning [24] with
remarkable speedup. Fu et al. [13] design the MAX–MIN Ant
System for the TSP with MATLAB and the Jacket toolbox for
accelerating some parts of the algorithm on GPUs. They highlight
the low performance obtained by the traditional roulette wheel
as a selection process on GPUs, and propose an alternative
selection process called ‘‘All-In-Roulette’’, which generates anm∗n
pseudorandom number matrix, with m being the number of ants
and n the number of cities. In his Ph.D. thesis, Weiss applies the
ACO algorithm to a data-mining problem [30] and analyzes several
ACO designs, highlighting the low GPU performance on previous
designs based on task-parallelism.

Although these proposals offer a valid starting point when
considering GPU-based parallelization of ACO, they fail to offer any
systematic analysis of how close to optimal those solutions are,
and they also fail to consider an important component of the ACO
algorithm: the pheromone update.

7. Conclusions and future work

Ant Colony Optimization (ACO) belongs to the family of
population-based metaheuristics that has been successfully ap-
plied to many NP-complete problems. We have demonstrated that
task parallelism used by previous implementation efforts does
not fit well on GPU architecture, and, to overcome this issue, an
alternative approach based in CUDA and data parallelism is pro-
vided. This approach enhances the GPU performance by increas-
ing parallelism and avoiding warp divergence, and, combinedwith
an alternative selection procedure that fits better to GPUs, leads to
performance gains of more than 20× compared to sequential CPU
code executed on a multicore machine.

For the pheromone update stage, we are the first to present
a complete GPU implementation, including a set of strategies



50 J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51
oriented to avoid atomic instructions. We identify potential
tradeoffs and investigate several alternatives to sustain gains over
20× in this stage as well. An extensive validation process is also
carried out to guarantee the quality of the solution provided by the
GPU, and accuracy issues concerning floating-point precision are
also investigated.

ACO on GPUs is still at a relatively early stage, and we acknowl-
edge that we have tested a relatively simple variant of the algo-
rithm. But, with many other types of ACO algorithm still to be
explored, this field seems to offer a promising and potentially fruit-
ful area of research.

On the hardware side, it is expected to get even higher accel-
erations on GPUs whenever the problem size keeps growing and
larger device memory space is available. Moreover, wemay antici-
pate that the benefits of our approach would also increase when
using future GPU generations endowed with thousands of cores
and eventually grouped into GPU clusters to lift performance into
unprecedented gains where parallelism is called to play a decisive
role.

Acknowledgments

This work was partially supported by a travel grant from the EU
FP7 NoE HiPEAC IST-217068, the European Network of Excellence
on High Performance and Embedded Architecture and Compila-
tion, by the Spanish MICINN and the European Commission FEDER
funds under projects Consolider Ingenio-2010 CSD2006-00046
and TIN2009-14475-C04, and also by the Fundación Séneca (Agen-
cia Regional de Ciencia y Tecnología, Región de Murcia) under
projects 00001/CS/2007 and 15290/PI/2010.We also thankNVIDIA
for hardware donation under Professor Partnership 2008–2010
and the CUDA Teaching Center Award 2011–2012.

References

[1] NVIDIA, NVIDIA CUDA C best practices guide 3.2, 2010.
[2] C. Blum, Ant Colony Optimization: introduction and recent trends, Physics of

Life Reviews 2 (4) (2005) 353–373.
[3] A. Catala, J. Jaen, J. Modioli, Strategies for accelerating Ant ColonyOptimization

algorithms on graphical processing units, in: IEEE Congress on Evolutionary
Computation, 2007, pp. 492–500.

[4] NVIDIA, The Cg Language. Home Page, 2008.
[5] L. Chen, H.-Y. Sun, S. Wang, Parallel implementation of Ant Colony Optimiza-

tion on MPP, in: Machine Learning and Cybernetics, 2008 International Con-
ference on, vol. 2, 2008, pp. 981–986.

[6] NVIDIA, NVIDIA CUDA CURAND Library, 2010.
[7] M. Dorigo, Optimization, learning and natural algorithms, Ph.D. Thesis,

Politecnico di Milano, Italy, 1992.
[8] M. Dorigo, M. Birattari, T. Stutzle, Ant Colony Optimization, IEEE Computa-

tional Intelligence Magazine 1 (4) (2006) 28–39.
[9] M. Dorigo, E. Bonabeau, G. Theraulaz, Ant algorithms and stigmergy, Future

Generation Computer Systems 16 (2000) 851–871.
[10] M. Dorigo, A. Colorni, V.Maniezzo, Positive feedback as a search strategy, Tech.

Rep. 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy,
1991.

[11] M. Dorigo, V.Maniezzo, A. Colorni, The ant system: optimization by a colony of
cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part
B 26 (1996) 29–41.

[12] M. Dorigo, T. Stützle, Ant Colony Optimization, Bradford Company, Scituate,
MA, USA, 2004.

[13] J. Fu, L. Lei, G. Zhou, A parallel Ant Colony Optimization algorithm
with GPU-acceleration based on all-in-roulette selection, in: 2010 Third
International Workshop on Advanced Computational Intelligence, IWACI,
2010, pp. 260–264.

[14] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, V. Volkov, Parallel computing experiences with CUDA,
IEEE Micro 28 (2008) 13–27.

[15] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, first ed., Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1989.

[16] W. Jiening, D. Jiankang, Z. Chunfeng, Implementation of Ant Colony Algorithm
based on GPU, in: CGIV’09: Proceedings of the 2009 Sixth International
Conference on Computer Graphics, Imaging and Visualization, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 50–53.

[17] David S. Johnson, Lyle A. Mcgeoch, The Traveling Salesman Problem: A Case
Study in Local Optimization, John Wiley and Sons, Ltd., 1997, 215–310.
[18] X. JunYong, H. Xiang, L. CaiYun, C. Zhong, A novel parallel Ant Colony
Optimization algorithm with dynamic transition probability, International
Forum on Computer Science—Technology and Applications 2 (2009) 191–194.

[19] E. Lawler, J. Lenstra, A. Kan, D. Shmoys, The Traveling SalesmanProblem,Wiley,
New York, 1987.

[20] J. Li, X. Hu, Z. Pang, K. Qian, A parallel Ant Colony Optimization algorithm
based on fine-grained model with GPU-acceleration, International Journal of
Innovative Computing, Information and Control 5 (2009) 3707–3716.

[21] Y. Lin, H. Cai, J. Xiao, J. Zhang, Pseudo parallel Ant Colony Optimization for
continuous functions, International Conference on Natural Computation 4
(2007) 494–500.

[22] R. Michel, M. Middendorf, An Island model based ant system with
lookahead for the shortest supersequence problem, in: Proceedings of the 5th
International Conference on Parallel Problem Solving from Nature, PPSN. V,
Springer-Verlag, London, UK, 1998, pp. 692–701.

[23] NVIDIA, NVIDIA CUDA C programming guide 3.1.1, 2010.
[24] S. Potti, S. Pothiraj, GPGPU Implementation of Parallel Memetic Algorithm for

VLSI Floorplanning Problem, Springer, 2011, 432–441.
[25] G. Reinelt, TSPLIB—a traveling salesman problem library, ORSA Journal on

Computing 3 (4) (1991) 376–384.
[26] S. Rostrup, S. Srivastava, K. Singhal, Fast and memory efficient minimum

spanning tree on the GPU, in: Proceedings of the 2nd Intl. Workshop on GPUs
and Scientific Applications, GPUScA, 2011. Held in Conjunction with PACT
2011, Galveston Island, Texas, USA, 2001, pp. 3–13.

[27] T. Scavo, Scatter-to-gather transformation for scalability, August 2010.
[28] T. Stützle, Parallelization strategies for Ant Colony Optimization, in: PPSN. V:

Proceedings of the 5th International Conference on Parallel Problem Solving
from Nature, Springer-Verlag, London, UK, 1998, pp. 722–731.

[29] TSPLIB Webpage, February 2011. http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/.

[30] R.M. Weiss, GPU-accelerated data mining with swarm intelligence, Ph.D.
Thesis, Department of Computer Science, Macalester College, 2010.

[31] Y.-S. You, Parallel ant system for traveling salesman problem on GPUs, in:
GECCO 2009—GPUs for Genetic and Evolutionary Computation, 2009, pp. 1–2.

José M. Cecilia received his B.S. degree in Computer Sci-
ence from the Univ. of Murcia (Spain, 2005), his M.S. de-
gree in Computer Science from the University of Cranfield
(United Kingdom, 2007), and his Ph.D. degree in Computer
Science from the University of Murcia (Spain, 2011).

Dr. Cecilia was predoctoral researcher at Manchester
Metropolitan University (United Kingdom, 2010), sup-
ported by a collaboration grant from the European Net-
work of Excellence on High Performance and Embedded
Architecture and Compilation (HiPEAC). He has published
several papers in international peer-reviewed journals and

conferences. His research interest includes heterogeneous architecture as well as
bio-inspired algorithms for evaluating the newest frontiers of computing.

José M. García received an M.S. degree in Electrical Engi-
neering and a Ph.D. degree in Computer Engineering from
the Technical University of Valencia (Valencia, Spain). He
is a professor of Computer Architecture at the Department
of Computer Engineering, and also the Head of the Re-
searchGroup on Parallel Computer Architecture. Prof. Gar-
cía is currently serving as the Dean of the School of Com-
puter Science at the University of Murcia (Spain). He has
developed several courses on Computer Structure, Periph-
eral Devices, Computer Architecture, Parallel Computer
Architecture and Multicomputer Design. He specializes in

Computer Architecture, Parallel Processing and Interconnection Networks. His cur-
rent research interests lie in the design of power-efficient heterogeneous systems,
and the development of data-intensive applications for those systems (especially
bioinspired evolutionary algorithms, and bioinformatics apps for new drug discov-
ery). He has publishedmore than 130 refereed papers in different journals and con-
ferences in these fields. Prof. García is a member of the HiPEAC, the European Net-
work of Excellence on High Performance and Embedded Architecture and Compila-
tion. He is also a member of several international associations such as the IEEE and
ACM.

Andy Nisbet completed his B.Sc. degree in Physics with
Electronic Engineering and his Ph.D. in Electrical and
Electronic Engineering from the Manchester University,
UK in 1988 and 1993 respectively. From 1993–1999, he
was a postdoctoral researcher in the Centre for Novel
Computing at the Manchester University, and was a
lecturer in Computer Science at the Trinity College Dublin,
Ireland from 1999–2004 until he joined the Manchester
Metropolitan University, UK as a senior lecturer.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


J.M. Cecilia et al. / J. Parallel Distrib. Comput. 73 (2013) 42–51 51
Martyn Amos received his B.Sc. degree in Computer
Science from Coventry University (UK, 1993) and his Ph.D.
in DNA computation from the University of Warwick (UK,
1997). He was then awarded a Leverhulme Fellowship,
before holding permanent academic positions at the
Universities of Liverpool and Exeter. He moved to
Manchester in 2006, where he is now a Reader in Novel
Computation. His research interests include synthetic
biology, nature-inspired algorithms, and agent-based
simulation. He is the principal investigator for the EU-
funded BACTOCOM and COBRA projects, and also works

extensively on public engagement with science and engineering.
Manuel Ujaldón received his B.S. degree in Computer
Science from the Univ. of Granada (Spain, 1991) and his
M.S. and Ph.D. degrees in Computer Science from the Univ.
of Malaga (Spain, 1993 and 1996). During 1994 and 1995
he was a Research Assistant in the Computer Architecture
Dept. at the Univ. ofMalaga, where he became an Assistant
Professor in 1996 and an Associate Professor in 1999.

Dr. Ujaldón was a predoctoral and postdoctoral
researcher at the Computer Science Dept. of the University
of Maryland (USA, 1994, 1996–97), visiting researcher at
Biomedical Informatics Dept. of the Ohio State University

(USA, 2003–08), and Conjoint Senior Lecturer at the School of Electrical Engineering
and Computer Science of the University of Newcastle (Australia, 2012–14). He has
published 8 books on computer architecture and more than 70 refereed papers,
which have been referenced more than 500 times according to Google Scholar.

His research interest includesmany-core architectures and CUDAprogramming
for running biomedical and image processing applications on GPUs.


	Enhancing data parallelism for Ant Colony Optimization on GPUs
	Introduction
	Background
	Ant Colony Optimization for the traveling salesman problem
	The CUDA programming model

	Code design and tuning techniques
	Previous tour construction proposals
	CPU baseline
	Task parallelism approach on GPUs

	Our the tour construction approach based on data parallelism
	The choice_info matrix calculation on GPU
	The data parallelism approach
	I-Roulette: an alternative selection method

	The pheromone update stage

	Experimental methodology
	Benchmarking

	Performance evaluation
	Evaluation of the tour construction stage
	Choice_info kernel evaluation
	Tuning our data parallelism approach
	I-Roulette versus roulette wheel
	GPU versus CPU

	Evaluation of the pheromone update kernel
	Evaluation of different GPU algorithmic strategies
	GPU versus CPU

	Solution quality

	Related work
	Parallel implementations
	GPU implementations
	Cg
	CUDA


	Conclusions and future work
	Acknowledgments
	References


