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Summary: To what kinds of events can a
McCulloch—Pitts nerve net respond by firing
a certain neuron? More generally, to what
kinds of events can any finite automaton
respond by assuming one of certaln states?
This memorandum is devoted to an elementary
expoeition of the problems and of results
obtained on 1t during investigations in
August 1951.

REPRESENTATION OF EVENTS

IN NERVE NETS AND FINITE AUTOMATA

3. C. Kleene

INTRODUCTION:

1. Stimulus and Response: An organism or robot receives

certain stimull (via 1ta,sensory receptor organs) and performs
.certain actions (via its effector organs). To say that certain
actlons are a response to certain stimull means, in the simplest
case, that the actlions are performed when those stimuli occur
and not when they do not occur.

Since both the stimull and the actions may be very com-
plicated, the relationship between the two is very complicated.
In &rder to simplify our analysis, we may leave out of
account the complexities of the response. To do this, we reason
that any kind of stimulation, or briefly, any event which affeéts
action, in the sense that according as the event ocecurs or does
not, under some set of other circumstances held fixed, a differ—

ent action ensues, must have a representation in the stéte of

the organism or machine, after the event has occurred and prior



RM-704
Page 2

to the ensulng eaction (which action may depend on the occur—
rence of many other events).

We theﬁ ask what kinds of events are capable of being
represented in the state of the organism or machine.

We shall see later (Section 5.5) that there is no loss of
generality in considering the representation, in the case of
‘nerve nets, to have the simple form of the firing (or sometimes
the non—-firing instead) at a certain time of a certain neuron.

Por explaining response as due to stimulus, it would then
remain to assemble the complicated molar'reaponse out of these
molecular representations of molar stimuli.

In this remaining problem, it could make a great difference
what events are selected for molecular reprgsentation,~as the
abstract from experience which 18 to form the basis of action.

However, we shall not enter into this here, except as it
reflects on the problem of representing events; nor shall we
entef into the analogies between the analysis Jjust described
and the psychological phenomena in which raw sense data lead

through percepts and concepts to overt behavior.

2. Nerve Nets and Behavior: McCulloch and Pitts (1943)

in their fundamental paper on the logical analysis of nervous
activity formulated certain assumptions which we shall recapi-

tulate below (Section 3).

These assumptions are an abstraction from the data which

neurophysiology provides. The abstraction gives a model, in



RM—-704
Page 3

terms of which it becomes an exact mathematical problem to see
what kinds of behavior.the model can explain, The question is
left open how closely the model describes the activity of actual
nerve nets; and some modifications in the assumptions lead to
similar models. Neurophysiology does not currently say which
of these models is most‘ne#ily correct—it 1is not plausible that
any one of them fits exactly. It 1s noteworthy, however, thatv
one of McCulloch and Pitts' results is that these several other
models are capable of producing only the same behavior as the
first one. .

Until neuro—physiolégy tells us more about the acetual
process, it 1s instructive to see what behavior the model
admits. Our results are to the effect that "it could be this
way, and quite possibly the real process 18 significantly simi-
lar to this." PFurthermore, such studies have applications in
robotology, when we wish to describe on paper (or build in the
metal, using_elements which behave like McCulloch-~Pitts neurons)
a robot to behave in a pre-assigned manner.

This study can be pursued on two levels, a strictly
practical one and a2 theoretical one. On the former, we are
concerned with constructing particular nerve nets to glve par-
ticular described behavior; in the latter, we develop general
methods for constructing nets to give behavior, and investigate
the limitations within which thls 1is possible.

This memorandum deals with studies on the second level, but

actually the two are not clearly separated. The general methods



RM-704
Page 4

may be practical or suggest methods which are, and the inves-
tigations of the limitations may contribute better understanding
of the problems which are faced on the practical level.

McCulloch and Piltts give such a theoretical investiga—
tion, consisting of a theory for nerve nets without "circles”
(Part II of their paper) and a theory for arbitrary nerve nets
(Part 11I). The present memorandum is partly an exposition of
the McCulloch—-Pitts results; but we found the part of thelr
paper which treats of arbitrary nets obscure; so we haVé‘brd-
ceeded lndependently here.

Under the McCulloch--Pitts assumption of the all-or-nothing
character of a neuron's firing (which is close to the biological
reality) and their assumption which quantizes time so that all
neurons have thelr moments of possible firing 1in phase, a nerve
net has the character of a digital automaton. Here we are using
"digital” in contrast to fanalog," in the sense familiar in |
connection with‘computihg machines. ‘

It seems quite clear that many physical processes of
control are partly analog in character. For example, the res—

-plratory cecycle of activity can be controlled consciously(by
nervous means, which are digital); but most of the time it is
regulated by a nervous response in the respiratory center of
the brain to the carbon-dioxide level in the blood (an analog
quantity).

Just as 1n mathematics continuous processes can be approxi-

mated by discrete ones, it 1s plausidble that any analog elements
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in bodily control could be approximated in theilr effect by
digital ones. Nevertheless, the analog or partly analog con—
trols may remain the simplest and most efficient.

One of the results of systematlc theoretical investiga-
tions of the potentialitles of digital control might be to
“demonstrate that other principles, e.g., analog mechanisms or
the introduction'of réndom inputs, may be necessary to produce,
or to producé economically, certain kindé of behavior.

Another tacit assumption of the present mathematical theory
1s that there are no errors in the functioning of neurons; i.e.,
a given neuron fires at a given moment, if and only i1f it should
under the McCulloch—Pitts rules. Of course, this is unrealistic,
elther for living neurons or for the equivalent unite of a
mechanicel automaton. It seems nétural, however, to bulld a
theory of what happens assuming no malfunctioning. In this
theory, we represent the occurrence of an event by the firing of
32 single neuron. Biologlcally, it is implauslble that impor-
tant information should ever be represented in an organism in
this way. But by duplications of nets (many processes being
carried out in parallel circults), one could expect then to
secure the same results with small probability of failure in
nets constructed of fallible neurons.

Returning to the formulation of the problem as given in
Sect. 1, we shall now iIn Part I snow that all events of a
certain class can be represented by the firing (or in some cases,

the non—firihg) of a certain neuron. The discussion of the
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converse is left mainly to Part II, where we generalize to

representability in any finite dlgital automaton.

PART 1 -— NERVE NETS:

3. McCulloch—Pitts Nerve Nets: Under the assumptions of

McCulloch and Pitts (1943), a nerve cell or neuron consists of

a soma, whence nerve filbers (35325) lead to one or more endbulba.
A nerve net 1s an arrangement of a finite number of neurons,

in which each endbulb of any neuron 18 adjacent to the soma of

not more than one neuron (the same or another); the separating

gap 1s a synapse. Each endbulb 1s either execltatory or inhibitory

(not both).
We call the neurons (zero or more) on which no endbulbs

impinge input neurons; the others, inner neurons. (McCulloch

and Pitts say "peripheral afferent neurons" for the former, but -
it 1s convenient to have a shorter phrase. "Efferent neurons”
might be used for the latter, but it is not clear to us that
tils 1s appropriate. (As the present paper is only a working
paper, we welcome suggestions as to improvements in the termi-
nology, )

At equally separated moments of time (which we take as the
integers on a time scale, the same for all neurons ;n a given

net), each neuron of the net is capable of firing or not firing

(being gquiet) in an all-or-nothing manner. For an input neuron,
the firing or non~flring at any time t 1s determlined by condi-
tions outslde the met. One can suppose each is Ilmpinged upon

by a sensory receptor organ, which under sultable conditlons in
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the environment causes the neuron to fire at time t. For an
inner neuren, the condition for firing at time t is that at least
a certaln number h (the threshold of that neuron) of the exci-—
tatory endbulbs, and none of the inhibitory endbulbs, synapsing
on it belong to neurons which fired at time t-—1. ’

For 1llustration, consider the following nerve net, with
input neurons J, K, L, M, and N and inner neuron P. Excltatory
endbulbs are shown as dots, and inhibitory as circles. The
threshold of P 18 3 as shown by the figure on the triangle repre-—

senting its soma. The formula written below the net expresses .

FIhW

P(E) =3(t-1) & K(t=1) & L(t-1) & NUETT & NOEDT

Fig. 1

.

in logical symbolism that neuron P fires at time % [}n the
symbols, "z(g)f], 1f and only if (in symbols, "=") all of
J, K, and L 2nd none of M and N fire at time t—~1.(" &" means
"and," and " " means "not!).

The method of nerve net construction illustrated in Fig. 1
appllies for any numbef 2> 1 of unnegated propositions (3 in |
Fig. 1) and any number > O of negated propositions (2 in Fig. 1)

combined conjunctively.
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Two other nets (Figs. 2 and 3) illustrate additional methods

which will be used in nerve net construetions in Sect. 5.

§17P '
p
P

V N

L N
- P(t) = N(t~1)-
BB = L1V M) V() olt) = N(t-2).
Fig. 2 Flg. 2

Here "\/" means "or" (in the non-exclusive sense).

4. The Input to a Nerve Net: Consider a nerve net with k

input neurons N”""NK . The input (or experience) over all

past time up to the present moment lnclusive can be represented

by a table or matrix with k columns corresponding to the input
neurons, and with rows corresponding to the moments counting
backward from the present moment t = p. The positions are filled
with O's and 1's, where O 18 to stand for qulescence, and 1 for
firing, of the neuron 1in question at the time in question.

For example, with k = 2 the matrix might be as follows:
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E Ni Ng
P 1 0
p-1 1 1
pe 0 l
p3 1l 1
Fig. %

The 1 in the first row and first column means that N; fired

at time p; the O in the first row and second column that Nz did
not fire ﬁt time p; the 1 in the second row and first column that
N; flred at time p-1; etec.

If this table 18 extended down infinitely, we have a repre—
sentation of the input, thought of as extending over all past
time., The discussion whether we should think of past time as
infinite will be left to the place where it becomes cruclal
(Sect. 6.1). PFor the purposes of Sect. 5 we need merely assume
that it extends back in each case as far as'the number of rows
of the matrix being considered there.

By an event we mean any property of the input. Thus, any
subclasgs of the clags of all the possible tables represents an
event, which occurs when the table describing the actual input
belongs to this subelass. In coin tossing or dice throwing,
examples of events are "heads" or "eleven" (as sum of the
numbers of spots on the uppermost faces of the two dlce). Here

examples are: (1) N, fired at time p. (2} Nz did not fire
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at time p, and N, fired at time p-l1. (3) One of N; and Ne
fired at time p. (4) N, and Nz both fired at time p. (5) Ne
fired at some time. (6) Nz fired at every time except p.
Of these, the (present and) past described by the table in
Fig. 4 constitutes an occurrence of events (1), (2), (3), and
(5), but not of (4), while we need to know the rest of the table

to see whether it constitutes an occurrence of (6).

5. Definite Events:

5.1. "Definite events' defined: We shall first restrict

ourselves to events whth refer to a fixed period of time, con-—
sisting of the X (> 1) moments p—Z+1,...,p ending with the
present. This means that in any table such as that of Fig. 4

we consider only the uppermost Z rows; e.g., with Z = 33

t N, N2
P 1 0 N (p) & N=TpJ

p-1 1 1 A Ni(p-1) & Na(p-1)
pe 0 1 ¢ W27 & Na(p2).

Fig. 5

The formula at the right expresses tne same as 1s expressed by
the table; l.e., 1t says that N, fires at time p ("N:(p)") and
("%&") Nz does not fire at time p ("Nz{gJ"), and N, fires at
time p-1 ("N, (p-1)"), etec.

We call an event rqferring to just these Z moments definite

of length (or duration) Y. With k input neurons, there are
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exactly k2 entries in a table describing the input for these
moments. Therefore, there are exactly EEZ possible such tables.
Therefore, there are exactly 2ak definite events of length Z
since any particular event (of length Y with k input neurons)
is obtalined by saying whlch of the 2EZ tables would constitute
(1f they represented the actual past) an occurrence of the evert.
‘ We call an event gositive, if it only occurs when at least
one input neuron fires dﬁring the period to which the evént
refers. There are 22 =1 definite positive events, since now

we exclude as an occurrence of tne event that past desceribed

by the table of all O's.

5.2 Definlte positive event;:v

=& 1
Theorem 1. To each of the 2% definite positive

eventé of length Z (with k input neurons), there is & nerve net

having an lnner neuron which fires at time p+2, if and only 1f

the event occurs during time p-¥+1 to p.

This theorem, except for the remark that the "lag" can be
held to 2, is given by MeCulloch and Pitts (1943).

Proof: To 1llustrate, say the event 1is one which occurs
if and only 1if the pattern of firings over the past 1s represented

elther by the table of FPig. 5 or by the following table:

t Ny Nz
B 1 0 ﬁx(a)gr_natgj

i 1 o0 by D
e 1 0 b N (p-2) % NaTR2T .



RM-704
Page 12

That 1s, just these two (out of the 223 = 64) tables are to
constitute an occurrence of the event. The event 1s described

by the following logical formula:

(%4 (p) % NaTET G Na (p-1) % e (p-1) 8 FiTE2TE Ma (p2)

V [ () Y BTN (p0) DY N (p-2) S FTET]
Figure 7 o

This formula 18 a "disjunction" having two "members" of "terms,"
each of which 18 a "conjunetion" having six "members" or
"factors." The two terms correspond to the tables of FPigs. §
and 6, respectively.

A nerve net which represents the event with lag 2 18 con-

structed as follows:

Figure 8
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Using the method illustrated in Pig. 3,
1 ’ 1
N.(p) = Ni.(p-1), Nz (p) = Na(p-1),
Ni(p) = Ny (p-2), Na(p)= Na(p-2).

Now using the device of Fig. 1,

Mi(p+1) = N.(p) % FeTET & Malp) & Be(p) & FYET§, Nalp)
= n.(p) & TR 4 ma(p-1) & nalp1) & FTTERT & Na(po);

i.e., My fires at time p+l if and only 1f the past 1ls described
by the table of Fig. 5 (or the first econjunction in Fig. 7).
Likewlse, the firing of Mg at p+1 corresponds to the table of
Fig. 6 (or the second conjunction in Fig. 7). Finally, by the
method of Fig. 2,

B(p+2)= Mi(p+1l) V Ma(p+1).

Combining this with what has already been remarked, P fires at

p+2 if and only 1f the event occurs during time p—2 to p.

The method of the 1llustration applies to every definite
positive event which occurs for some one Or more tables. By
the restriction that the event be positive, each table must have
at least one 1 in it, which assures the applicability of the
device of Fig. 1.

There remains the case of the event which never occurs.

This 1s represented, e.g., by the following net:

P never fires at time p+2

(or in symbols, e.g.,

P(p+2) = Ni1(p) & N.(p)).

Figure O
N: Ng
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5.3 &Simpler nerve nets: While this proves the theorem,

it 1s to be observed that often much simpler nets can be con—
structed than that given by the above method of proving the
theorem. “ | |

- Readers having technical acquaintance with symbolie logile
will recognize thét the construetion used in proving the theorem
corresponds to the princlpal disjunctive normal form of Hilbert—
Ackermann (1928) which describea the event. In the illustration,
the normal form is the formula of Fig. 7. Each of the tables
which deseribe an occurrence of the event i1s represented by a
conjunction or term in the normal form and is taken care of
separately 1n building the nerve net. Thils makes'the proof of
the theorem simple, but the net complicated.

Conslder for example the event whioh 1s described by saying
that the table must be of one of the two following forms, where

either a O or a2 1 can be supplled independently for each blank

] n

E N 1 NE _E N 1 Ng
B ~ 0 | R - -
2—-1 —_— — or 2-1 — 1
P2 —_— 1 P2 — _

[F=T2T § Na(p-2)] V/Bel(p-1).

Figure 10
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In terms of complete tables, this event would be expressed
by a cholice between 2u+25—23=40 tables, including that of Fig. 5
~ as one of them. The principal disjunetive normal form would be
a disjunctibn of 40 conjunctions. The simple formula shown in
Fig. 10 which represents it is a disjunctive normal form (not a
prineipal one). The event is represented in the sense of the

theorem by the followling net.
[

Figure 11

In this net we show only Ng as an input neuron, although
we defined our events in terms of two input neurons N, and Ng
.1n our 1llustrations. The net of Fig. 11 can conatitute a part
of a larger net having N; also as input neuron, entering in such
a way that 1t has no endbulbs on any of the neurons shown 1in
Fig. 11. The example illustrates that 1f we begin by defining

events relative to a set N,,..:,Nk of input neurons, we need

-—

actually use in our net constructions only those of N,,...,Nk
whose firing or non-firing affects whether the event occurs.
There 18 a corresponding treatment, with the same lag, for

conjunctive normal forms. We begin by consldering the following
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illustration, in which the normal form is a principal one with

k =3 and ¥ = 1.

B(p+2) = [Na(p)V Ne(p)VNs(p)] & [N: (p) VEREIVESTE)] & (IR
Vlja(Q)VI‘ja(pB .

Figure 12
To see that this works, observe that we use Fig. 2 in obtaining

M;, so that
My (p*1) = Ni1(p) V Na(p)V/Ns(p);

but Flg. 1 to obtain Mz and M,s, s0 that ‘
Ma(p+l) = NiTpT & Na(p) & Na(p), Me(p+l)= Nilp) %

Na(pJ & NsTpJ

Hence

M {pFIT=N1(p) VR (Blv Ns(B), Ma(prIJ=Ni(pJv Na(p)vNalp).

Also, we used Fig. 1 to obtain P, so that
E,(Et?)":—ﬂx(ﬂ*'l)gb Mz Tp+T) & Ma(p+I7.
Substituting our formulas for M;(p+l), Mz(p+I) and Ma(p+I)

in the latter gives the formula for P(p+2) in the figure.
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This method of treating a principal conjunctive normal form
depends on that disjunction which has no negated propositions’
being one of the factors; but 1t must always be for a positive.
event, since otherwise the falsity of all the elementary pro—
positions would make every term of the conjunction true.

If the principal disjunctive normal form has n terms, the
principal c¢onjunctive normal form has EEK —n factors, and vice
veresa (so the longer one form is, the shorter the other). We
see why this is so in our illustration thus (omitting ”(pj" after

each "N" for brevity).
(s vNevEs] & MivTavNe & [MivNevig
AT A i SN v [ 2R s
f@.z&ﬂﬁg Ila} v @,xﬁﬁaﬁﬁs} v @.tg“gzgﬂﬁa]\f@tgﬂa Q'Ea]v{_ﬁxgeﬂagﬁé]

Under the bar in the second expression we have the principal dis-—
Junctive normal form of the negation of the first expression, so
the last expression (which is the prinecipal disjunctive normal
form of the original expression) 18 obtained by combining dis—
Junctively those 5 of the 8 elementary conjunctions which do not
appear in the second expréssion.

When an event can be represented{by & conJunctive normal
form other than the principal one, & corresponding simplifica—
tion can be made in the net construction Just as In the case of
disJunctive normal forms.

By using a normal form of elther kind, we have held the

lag 8 in the representation to 2.
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Now it may happen that the most compact formula we havé
at hand to represent a given definite posltive event 1is not a
normal form. Then we can construct a nerve net of exactly
corregponding structure and complexity, if we accept a greater
lag 8. In fact, the lag will be exactly the "depth” (or number
of "layers") in the formula in terms of the operations 9~and V.
We shall see this in Sect. 5.4 (Theorem 2).
For some events, of course, a lag of 1 suffices (or even
a lag of O or -1 or -2, etc., if respectively the event speci-
fles nothing about the firings at time p or times p-1, p or
times p-2, 251, P, etc. Reduction of the lag below 2 is not

possible 1in general (with the assumed kind of neuron). A

counterexample 1s the event g;(g)&(y_.(p_) VvV Nal{p)}). To repre—
sent this with 1-5 1, the net would have to consist of the
represeﬁting neuron P with endbulbs belonging directly to N,,
Nz, and Ng. One readlly sees that no such net represents the
event 1n question. '

To hold the lag to 2 in all cases by use of a normal form,
we may be obliged to have & very large number of endbulbs
synapsing on a glven soma, or of axons emerging from a given
neuron. Blologically there are limitations. A relatively small
increase in the lag will cut these numbers down. For example,

6 excitatory endbulbs synapsing on it 1s replace-—

a soma with 10
able with an increase of only 2 in the lag by & net made up 80
that only 102 endbulbs synapse on each soma (but, of course, now

a large number of neurons are necesSary).
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5.4 Definite events in general:
okE )
Corollary. To each of the 2 definite non~posgitive

events of duration ¥ with k input neurons, there iz a nerve net -
having an inner neuron whichkdoes not fire at time p+2, 1f and
only if the event occurs in time p—}+1 to p.

Proof. Denote the event by E, and by E the complementary
event or negation of E, which occurs exactly if E does not
occur. The set of tables, one of which the past must fit if E
occurs, is the complement (in the set of all 251 k by X tebles)
of the set, one of which the past must fit if E occurs.

Now E 18 positive, so by the theorem (Sect. 5.2), there
are a net and neuron which represent E by firing that neuron
at p+2, and therefore represent E by not firing the neuron at
p+2.

Theorem 2. Consider any logical expression E in térms of
&l, V', T and propositions Ne(t) (1 < 1 < k, érz}l <£t<p)
describing a definlte event E—;f length Z with k input neurons.

Then there 18 a nerve net of corresponding structure whilch

represents E by firing or by not firing, according as E 1s

positive or non-positive, a certain neuron at time p+s, where

8 1s the depth of E in terms of Q. and \/ only.

Proof: It will be convenient to assume there are no double
negations 1in E, a8 can be arranged by use of the law of double
negation Ezg. (This does not change the depth.)

First we give the treatment for the least depth 1. For

#

convenience we take Y to be 1, writing "N,," "N2," etec., for

"Ni(p)," "Ne(g)." But for X > 1 we would merely need to use the
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method of Fig. 3 to introduce neurons whose firing at t = p

represents the firing of the various input neurons at the earlier

times.

By an elementary conjunection (elementary disJunction), we

mean a conjunction of one or more factors (terms) each of which
is an elementary proposition N,, ﬁ;, etc., or a negated elemen-—
tary proposition N,, Na, etc. (By allowing one factor or term,
a single proposition or negated proposition can be considered
as either a conjunction or a disjunction here.)

Now we have four basic mses to treat.

Case 1: An elementary conjunction containing at least one
unnegated factor, e.g., N, 9, Na % Ng %N, g'\}_'{s. The event is
then positive; so we want to represent 1t by the firing of a
neuron at time p+l. Use Flg. 1 to obtain this neuron.

Case 2: An elementary conjunction containing only negated
factors, e.g., N, A N 4 Ns. The event 1s non—positive. But
now 1ts negation N; 3. Ne % Ns 18 positive. The latter 1s equi—

valent to N3 V Na VNs. Use the method of Fig. 2 to represent
this by a neuron firing at p+l; this neuron then represents

the original event by non—firing at p+l, as we wished to have it
represented.

Case 3: An elementary disjunction containing at least one
negated term, e.g., N; v No V Ns V Ny \/31_5. The event 18 non—
positive. But its negation 'K-; \/—E; \/E\/ Ne \/ﬁ5 is positive,
and the latter 1s equivalent to Ni f Nz f Ns § Ne §.N.. Use

Fig. 1 to represent the latter by firing at p+l; then the origl—

nal event is represented by non-firing at prl.
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Case 4: An elementary disjunction containing only
unnegated terms, e.g., N,V NeVNs. The event 1s positive.
Use the method of Fig. 2 to represent it by firing at p+l.

The cases are mutually exclusive, except that a single
unnegated proposltion N can be considered as under either
Case 1 or Case 4, and a single negated proposition g’as under
either Case 2 or Case 3. But for one input only (whieh must
be unnegated for Fig. 1), Figs. 1 and 2 coincide; so the treat—
ment is actually the same. (Indeed, for N or N it is only to
have an inner neuron which represents them that any treatment
1s necessary; otherwise, we could consi&er them as representing
themselves at time p.) |

The treatment of a formula with depth > 1 requires only
1teration of the processes used in the four basle cases.

It will suffice to illustrate by a complicated example, in

which the depth 18 4:

{ﬁy_lvga)wszg.} v @59(%@@}2 (Ng vNg).

b
3
2
1

(For handy reference we took an example with all N's different,
buﬁ they could be identified in any combinations.) The under—
lines 1ndicate the parts of various depths. Also Ng, 34 and Eé
are parts of depth 1, which we could treat as "degenerate"

elementary disjunctlons, but there is no need to consider them

thus here.
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Pirst we apply Case 4 to obtaln a neuron M; which repre—
sents N,V Ng by firing at p+l, and one M3 which represents §8\/§9
likewise; and Case 3 to obtaln one Mz which represents NgV N,
by non—firing at p+l.

Next consider the two parts of depth 2:

(N3 VE2) &Ns 8K, Ny Qg VE,).

Replacing NiVNe (1.e., N;(p) VNo(p)) by its equivalent M,(p+l),
and §6V’E§ by its equivalent Ma(p+I] (since it is the non-
firing of Mgz at p+l which represents it), these become, respec—
tively, in terms of inputs from M; and Mp at p+l and of Ns, N4

and N5 at p:
M, (p+1) & Na(p) L NSTET, N-(57 9 B Tr 1T

(As the inputs are no longer all at the same time p, we show

the timea.) The left one we treat by Case 1 to obtain a neuron
L, which represents it by firing at p+2, and the right one by
Case 2 to obtain one Lz which represents it by non~firing at

p+a.

Next consider:
(VN &N QB v (B, £ (g VE,)]

Replacing the first term by its equivalent L:(p+2), and the

second by 1te equivalent La(p+2) (since }T_Sg(\(gsvg.,) is equi-
valent to EETEFEUW, we obtain

Li(p+2)V La(p+2).
This we treat by Case 4 to obtain a neuron Q which represents it

by firing at Efj'
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FPinelly, conslder the entire expression. Replacing the

two factors by their respective equivalents, we obtain
a(p+3) 8 MaTpr1T,

which we treat by Case 1 to obtain a neuron P which represents

it by firing at p+h.

Incidentally, we have discovered in the process that the
event 1s poslitive-—we did not need to take the trouble of set—
tling which it was at the beginning.

Both Theorem 1 and 1ts corollary are corollaries of the
present theorem, and the nerve net constructions in Sects. 5.2
and 5.3 for disjunctive and conjunctive normal forms are by
the present method; so we might have given Theorem 2 first.

Other loglcal operations which might be used in defining
events are definable in terms of 9, Vand ; e.g., (E-?Q)?.E\/g
("=" is read "implies" or "if ..., then ..."), and (F=G)=
((E=2g) & (G-F)). |

Summarizing, given any description, in words capable of
belng translated into logical symbolism, of a definite event,
we have the means for constructing & nerve net to represent it
of exactly corresponding complexity. So the theory of nerve net
construction for definlte events 1s as practical as one could
ask. The lag can always be held to 2 for a given event, but
sometimes & greater lag will correspond to a simpier description
of the event, and glve us a simpler net.

There may in speclal cases be simpler nets than those given

by the method of proof of Theorem 2. We see this by considering
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the condition for firing of any inner neuron of thereshold h
at time t, which 1s that some set of neurons having a number
2 h of endbulbs on 1it, and none of the neurons having inhibitory
endbulbs on it, fire at time t-1. The conditiﬁn for not firing
is dual to this. For example, the nets below represent with
lag only 1 the events described below them using expressions

of greater depth (the upper by firing, the lower by non—firing):

s z?%z\%,\z

(828 Be) v (81 BNs) V(HaQ\EaJQ«E\.QES (NavNa) & Ns LN
[FavFe) (K vFa) & (Rev Na)] v Ne Vg Nl Be)v Esv s
Figure 13 Figure 14

(Compare Fig. 14 with the treatment of (N;VNe)%h Ns{Ne 1in the
long example for Theorem 2}) We have not undertaken to study
how much net simplification might be gaihed by attempting to use
thls method systematically with the help of appropfiate logical

transformations.

5.5 Representation of events in general: We can now prowe

the remark we made 1n Sect. 1 that there is8 no loss of generality
in coneidering the representation of an event to conslst 60f the

firing or the non-—firing (as appropriate) of a single neuron.
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By saying that an event (oécurring over & time ending
with the moment p) is represented in a nerve net at a certain
time p+s (s 2,0), we mean that some property of the state of
the net at time p+8 is equivalent to the event having occurred
ending at time p; l.e., according as the event did or d4id not
oceur, the net will_or will not have that property.

But what happened at times < p can only affect the state
of the net at times p+s8 for g8 > O via the state of the net at
time p.

Say besldes the k Ilnput neurons there are m inner neurons.
The state of the net at time p conslsts of the condition
(firing or non~firing) of each of the m+k neurons. Thus, there
are exactly 25"'--}E possible states at time p. There are o T
properties of the state of the net at time p. Any event ending
at time p which can be represented at time p+s 1s thus equivalent
to one of these 2'm+K properties of the state at time p.

But for each of these, by applying the method of proof of
Theorem 1 or its corollary, or of Theorem 2, to all the m+k
neurons (instead of only the input ones) and to only the moment
p (instead of the interval p—f+l1 to p), we can add additional
neurons to get a neuron P which will fire or not fire (according
as the property of the m&!kneurons at time p 1s positive or not)
- at time p+2, 1f and only 1if the m+k neurons fulfill the property
at time p; and hence, 1f and only 1if the event in question
(feferring to input neurons and ending at time 2) occurred.

Incidentally, we have not made any assumption here whether

the event in question 1s definite or not. -
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In organizing a complex of stimuli into a complex of
responses (Sect. 1) as economically as possible, it 18 to be
expected that the representation of events will not always be

compressed into the form of the firing or non—firing of a single

neuron.

5.6 Nerve nets without circles: A circle (of length ¢)

in &8 nerve net 1s a set of distinct neurons Nx,...,Nc such that

has an endbulb on N, 4 (1=1,...,e-1) and N, has one on Ni.

Ny

Theorem 3: Glven any nerve net without circles and any

inner neuron N in that net, the firing (non—firing) of that

neuron at time p+l 18 equivalent to the occurrence of a definite

positive (non—positive) event ending at time p.

This theorem 1s stated for positive events by McCulloch
and Pitts (1943).

Proof. Whether N fires at p+l 1s completely determined by
the firing or non—firing at p of those neurons N:,...,N; having

endbulbs on N. Consider those of N;,...,N; whieh are inner
neurons, and repeat the argument. Since tgére are no c¢ircles,
any chain of neurons each impinged upon by an endbulb of the
preceding must terminate. Let Y+1= the length of any longest
such chain; a longest must exist since there are finltely many
such chaing, and ¥ > 1 since N is inner. Then the process ter—
minates after Y steps. Thus, the firing or non-firing of N at
ptl 1s completely determined by the firing or non—firing of

certain input neurons at times p—Y+1 to p; i.e., it 1s equiva-

lent to a definite event of duration Z. The event must be
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positive, as firing can only be propagated but not originated
under the law for an inner neuron's firing (Sect. 3).

Then of course N's non—firing at time p+l is equivalent to
the complementary event, which 1s non-positive.

(Any definite event is expressible by a logical formula,
e.g., by a principal ‘disjunctive normal form as in Sect. 5.2.
So a priori there 1s a formula. By utilizing the condition
for firing at each synapse, which we formulated in words in
the last paragraph of Seet. 5.4 and could have in symbols, one
can, of course, build up a formula in Y stages, as McCulloch—
Pitts indicate.)

Corollary: For a net without circles, any event ending

at _time p which can be represented by the firing (non—firing)

of a given inner neuron N at 8 certain time p+s (3_2 2) is

definite and positive (definite and non-positive).

Proof: For by the theorem, the condition for the firing
of N at time p+s 18 the occurrence of a definite positive event
ending at time p+s-l. But since by hopothesis, N's firing
represents an event ending at time p, the input over time
p+l,...,p+s—-1 cannot affect whether the aforesaid definite posi—‘
tive event occurs ending at time p+s—l. So in fact that definite
positive event can be taken to refer only to a time ending at p.

This corollary constitutes the converse of Theorem 1 and
cofollary (or Theorem 2). Likewise, any event ending at p
represented by a state, or a property of the state, at a time

p+s of a net (520) without circles, 1s definite.
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6. Indefinite Events-—Preliminaries:

6.1 Some examples: Consider the following nerve net

(with a circle of length 1 consisting of M).

N
Figure 15
If at some time t ¢ p the neuron N fires; then the firing
of M at time p+1 (and at every subsequent time) will follow.

In symbols,
(E‘“).‘Z < Eli(p.)———)ﬂ(ml)
("(Et) < E"‘is read "there exists a t < p"). But we do not

have equlvalence ("==") instead of merely implication (™"}, &
past time is taken as infinite, since the firing of M at time
p+l can also be explained by firing of M at every past moment,

wlithout N having ever f{ired.
Similarly, the net

N

Figure 16
will only fire at time p+1 if N has fired at all past times;
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in symbols
(8 ¢ Ey_(g) & M(p+1)

(read “(E)E.S 2" as "for all t < p"); but not conversely, for
M may fail to fire at time p+l when (-9-)_t_ < Rlﬁ_(g) 18 true, by
falling to fire over all. past time.

| (_g_p_)& < 23(2) and (3)2 < Eﬂ(g) are simple examp}es of
events not referring to a definite period of past time; and we
see that, under the assumption that past time 1s infinite, the
.nets shown do not represent them, by firing at time p+l, in the
sense of equivalence (the first is represented in the sense of
"necessity"” only, the second "sufficiency" only).

If we attempt to represent the former by non—firing, we

have a net

N

Figure 17

for which (_$_1':)t < Eﬁ(g)————-—)_ﬂ!yI‘}, but not conversely.

The difficulties encountered in these three examples are
not escapable by using other nets to represent the events, or
in other examples of indefinite events, but constitute the
general rule for indefinite events. We shall show in Appendix 1
(Theorem 7, to be read after Part II) that, under the assumption
of an infinite past, an event can be represented (in the sense

of equivalence) by the firing or by the non-firing of a certain
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inner neuron at time p+s (for.any fixed s > 1), only if the
event 1s definite. For ahy net and inner neuron and 8, and
any indefinite event, it must either be possible to have a
past for which the event does not occur and the neuron fires,
or one for which the event does ocecur and the neuron does
not fire, or both.
Of course, any living organism or actually constructed
robot has only a finite past. The mentioned result shows that
now we must take this into account; otherwise, we might have

been tempted to use the filction of an infinite past to simplify .

the theory.

6.2 Initiation: Accordingly, let us assume that the past

for our nerve nets goes back from p (the present) a certain
finite time only, the first moment of whilch shall be 1 on our
time scale. (We find it more convenient notationally to call
the first moment t = 1 than t = O, but if we think of each

positive integer t as referring to the final instant of a unit

interval, this does make time start from O.)
In seeking to represent events, we shall now assume the
right not only to construct the nerve nets as we please, but
also to fix the state (firing or non—firing) of each inner neuron
at time 1. That is, we study representation of events in nerve
nets started with a given internal state at the initial moment 1.
The range of the time variables in our logical formulas
shall now be the integers from 1 forward, and this shall be the
only part of the ﬁast we talk about except when we make it plain

we Intend otherwise.



RM-704
Page 31

Now the nerve net of Flg. 15, started at t = 1 with M
quiet, represents by the firing of M at p+l ihe event

(Et), < Erri(_tz_); and the net of Fig. 16, started with M firing,

represents likewise (3)2 < Eg(g). That of Fig. 17 started
with M firing represents (EE)ES 2;(2) by the non—firing of M
at p+l. Thus, the two nets of Fig. 15 and 17 are able to
remember if N has fired since their beginning by changing M from
the state it had initially; while the net of Fig. 16 is able to
recognize that N has never falled to fire by preserving M in
the state it had originally, as Householder and Landahl (1945)
have commented (p. 109). |

To represent (E)E.S 2&(3) either by the firing or the

non-firing of a neuron in a net with only N as input neuron,
at least one inner neurcn must be fired initially. For were
all inner neurons quiet at time t = 2, then in case'§133
(i.e., if the input neuron N does not fire at time t = 1), all
neurons would be quiet at t = 2. So the state of the inner
neurons at t = 2 would then be indistinguishable from that at
t = 1. Hence, the net at any time p+l1 > 3 would have the same
state whether the past is

t 1 2 3 4 ...

N(¢)o 1 1 1 ...,

which makes (}:_)t < N(t) false, or

7

t 1 2 3 4 ...
N(t)1 1 1 1 ...,

which makes (E)t (t) true.

<P
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The case in which all inner neurons are initially quiet
i1s natural neurologically; the other case leaves 1t unexplalned
how the firing of certain inner neurons 1s to be produced at
t = 1. Of course, a natural explanation would be avallable
by setting the tlime origin back, if the initial state in ques-
tion 18 one which could be brought about’by a sultable pattern
of firings of the lnput neurons over a finite preceding time
at the beglinning of which all the inner neurons are quiet. But
this is not so; e.g., in the case of the simple net for

(8)y ¢ N(E)  (Pig. 16).

Although (E)t < Eﬁ(g) cannot be expressed (for N as sole

input neuron) without having an initially fired inner neuron,
(E)E < E&(\_l,) & (g)g < B_K(gf 2 (1:_)2 <tg E_Ij_(_gﬂ with two input
neurons K and N can be, by the followlng net, in which P fires

at p+2 1if and only 1if the event occurs.

Figure 18

The neurons K, L,; and Lz act as a starting circuilt, which can
only be used once, for the generality circuit N, M and P.

The device with a modification 1s general. Suppose we have

given a net in which an event is represented by the firing of a
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certain inner neuron at time p+s 1f certaln inner neurons are
initially fired.

First, let us add a starting circuit K, L, and Lz from a
new input neuron K, with axons from 1ts neuron L, leading to all
the same neurons and with the same kinds of respective endbulbs
as the axons from each of the inner neurons which were initlally
fired in the given net.

Furthermore, each input neuron N of the original net we
now make an inner neuron N' with a threshold of 2, and we
insert new neurons N and R, the former taking over the role of
the originel N as input neuron, and the latter an inner neuron -
as shown. The heavy line stands for the axons which lead from

the original N.

from K
original new

Figgre 19

This accomplishes the double purpose of lagging the input from
N by 1 and of blocking it for moments prior to the first moment

e

at which K 1is fired.
Now with all inner neurons initially quiet, no neuron

except N can fire until the first moment u at which K fires.
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Then at moment u+l the neuron L; takes over the role of the
original initially fired inner neurons, while N carries the
input of N at u. At every subsequent moment u+v+l (v > 1),
all of the original neurons (ecounting N' as the original N)
will behave as they formerly would have at time Xfl,‘if the
present input OVer U,...,uty had been the input over time
l,...,v+l.

So the output neuron will fire at p+s+l, if and only 1if
the event now occurs relative to t = u instead of to t = 1;
i.e., we have a representation of the event redefined to refer
not to the whole past but to the past beginning with t = u,
and with an increase of 1 in the lag in the representation.

Now if it is assumed that there are condlitions in the
environment which would continually stimulate K to fire, or
that at least such a condition exlists at t = 1, then our net
will represent the event relative agaln to the whole past
(since now u = 1). Thus, we are provided with a "natural” way
of getting a representation of any event, referring to the input
neurons besides K, which could be represented "unnaturally" by
the firing of a neuron in a net started with some initially
fired input neurons.

Here "natural” means only that we do not need to go out—
8ide the McCulloch—Pitts laws of neural behavior to fire some
inner neurons at t = 1; but the starting circult K, L,, Lz, and
the blocking circuit X, R, E' are not thought of as'plausible
mechanlisms blologically. However, our first aim 1is to see what

is at 2l1 possible, and one can then seek other and perhaps more
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natural ways for acecomplishing the same.

This argument that by assuming an initially stimulated
input neuron K we can avold having to have any initially fired

" inner neurons applies only to representation of events by
firing a neuron, 1f for representation by non—firing at p+s+l
one wishes that the output neuron fire at times 1,...,8+1.
The question involved will be analyzed in Sect. 6.3.

The same construction but omitting the K and Lz of the
starting circult and the delayingrblocking neurons R and N',‘
and firing L; initially, shows that it 1s always posalble, if
we are to use inltially stimulated inner neurons, to hold the
number of them to 1, without any increase in the lag. This
again is for the case of representation by firing. For repre-
éentation by non~firing, the situation 1s slightly more compli-
cated, and we shall not go into 1it.

As stated, we ordinarily consider nets only for a speci-
fled initlal state of the inner neurons. However, McCulloch
and Pitts consider the problem of "solving™ nets with their
initial condition unspecified. To "solve” for a given inner
neuron P, say at time p+l, means then to find for what inputs
over time 1,...,p, and what initlal states of the inner neurons,
P will fire at t = p+l. Now in the following net, the necessary
and sufficient condition that P fire at p+l is that N fire at
all times < p and both M, and Mz fire at time t = 1.

B(pr)) =

- |
B |

(£)o  N(t) S Mi(1) LMa(2).
M@ ’W Lyl fme

Figure gg
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This seems to be counterexample to the formula next after

(9) on p. 126 of McCulloch—Pitts (1943), the proof of which we
dld not follow; fpr if we understand the formula correctly, it
implies that the condition for firing should only require the
existence of one (sultably chosen) neuron known to fire initially.
| In this example we cannot conclude that P fires at p+l on the
basis of any information which tells us only that one of the
neurone fires at t « 1. (Our 1 seems to be their 0.) This
apparent counterexample has discouraged us from further attempts

to decipher Part 111 of the McCulloch-Pitts 1943,

6.3 Definite events reconsidered: Now that we have

introduced the assumption that the past for a nerve net 1s
finite, we must reexamine the treatment of deflnlte events which
wag glven in Sect. 5. . |
What happens now when p < Z; i.e., when the period of time

to which the event 18 supposed to refer extends back to before
the moment t =« 1? v

Generally, one may suppose that the durations Y of defi-
nite events which are significant for an organism will be small
in relatlon to the age p of the orgénism at which the event 1s
significant.

This, however, does not enable us to dismiss the problem.
For to make the theory of nerve net control accurate, we should,
for each definite event considered, either (a) show that an
"hallucination" that the event has occurred arising during the

first Y-l+s moments of life could not have any serious effect
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on behavior, or (b) provide against the oeccurrence of such an
hallueination in the first Y-l+s moments.

When we use definite events to build indefinite ones,
e.g., the event consisting of a certain definite event having
occurred ending at some time g < p (briefly, the memory of the
definite event having occurred), such an hallueination could
\ conceivably have a long—term effect, even if 1t has no immediate
effect on behavior.

The solution by (a) is, of course, outside the present
investigation, and belongs rather to the full problem of orga—
hizing stimulil into responses (Sect. 1).

For organisms, the picture of the nervous system coming
into activity in toto at a fixed moment t = 1 1s implausible.
But this means only that organisms (at least those which sur—
vive) do solve the problem for their process of coming into
activivy.

For machines, 1t is famillar that starting difficulties
may have to be taken into account by the englneer.

To take a fictitious illustration,’conSider the case of
the "rat satellite robots" for the Tuvian Navy. A rat satellite
robot 1s intended to go about a s8hip, and whenever after three
hours (= Y-1 moments) 1t has not smelled a rat, and at the next
moment (the Y—th) land is in sight, the robot abandons ship.

The robots were ordered from RAND and were bullt by the
Robotry Section from blueprints prepared by the lLogicians Groub
on the basls of the theory in Sect. 5 above, with two input
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neurons, N; which is fired by the smell of a rét, and Ng,which
1s fired by the sight of land. The inner neuron P, which fires
at time p+2 if the event "no rat smelled for Z}lvmoments, land
seen at the Y-th moment” has occurred during the time p-2+1 to p,
was connected to an effector mechanism for abandoning ship at
time P+3-

Suitable ceremonles were scheduled for the occasion of
thelr installation in the harbor of the Tuvian Naval Base.

When the occasion arrived, they were placed on board the
ships, and theilr batteries were connected up supplylng power
for operating the nerve nets and effector mechanisms. But three
moments later, just as the Tuvian Grand Admiral was congratula-
ting the RAND delegate, all the robots went overboard!

Proceeding to details, 1t 1s, of course, a matter of
definition how we shall interpret "events of duration Z" when
p < Y. But whatever definition is adopted, we must keep the
facts about nerve net behavior straight.

We shall (as best suits our present purpose, which 18 to
lay a firm basis for the theory in Sect. 7) say that an event E
of duration X can only have occured ending at p when p > X.

Then, of course, the logical formulas we have used to
represent the events in Sect. 5 are not complete. 1If E, is the
formula which described a definite event of length Z there,
the formula E which describes 1t fully now is E; 22 > X The
negation E of this is E,vp < Z , While the formula for the
"complementary" event of duration Y is rather ngg > Z. Thus,

some care 1s now necessary in connection with the operation of
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negation. The theory in Sect. 5 1s applicable to theApart of
the formula which does not give the time reference; 1.e., the
relationships studied there apply to the E, and E,.

Now consider.a nerve net as constructed for Theorem 1 in
Sect. 5.2 to represent an event occupying the time interval
p~Y+1 to p of length ¥ by firing a certain inner neuron (the
"output neuron"”) at time p+2.

Using this net under the restriction now that the life of
the net starts with a certain moment t = 1, and under the sti-
pulation that at that moment all inner neurons are quiet, it 1s
clear that the output neuron will fire at any time p+2 for
p > X correctly; 1.e., if and only if the event occurrrd in the
time p—Y+1 to p.

But the net might also fire at a time < Y+2; namely, this
could happen 1if and only 1f the evént 1e such that our present
initlal condition of the inner neurons (all quiet) 1s one which
could also take place in Sect. 5.2 at some moment m where p—x+2
< m £ p+tl for some occurrence of the event in p-Y+1 to p.

So assume (in the context of Sect. 5.2) that we have an
occurrence of the event in the course of which all inner neurons
are quiet at t = m.

The state of the inner neurons at time m would then have to
be the same (i.e., all quiet) if the table desoribing the
past 1z altered to show only O!'s for all input neurons at ail
times t < m. For from a past consisting entirely of non—firings

prior to m, no firing of any inner neuron can be produced at

time m.
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Since the state of the inner neurons is unchanged at
MMQ,mdmemmwfwgsgpueamummmm,me
output neuron still fires at t = p+2. So by Theorem 1, the
event still does occur in time Erg}l to p; i.e., we now have an
instance of the event occurring in which no input neurons were
fired in p—¥+1 to m—1; in particular (since m > p-Y+2), the
event can occur with input O on all 1ts input neurons at 1ts
first moment p-Y+1. '

Conversely, 1f this 1s the case, the 6utput neuron will fire
now at time X+1, if in times 1,...,7—1 the inputs are what they
could be in Sect. 5.2 for the moments p—f+2 to p of an occurrence
of the event with only O's for p-Y+l.

Call a definite event of length Y prepositive if the event

can oceur only when some input neuron fires in its first moment
p-2+1l; i.e., the selections from among the Q'k possible k x Y
tables which describe occurrences of the event all have at least
one 1 in their bottom row. The prepositive events are a subclass
of the positive events.

Now we have shown that a necessary and sufficient condi-
tion that no "hallucination"” be possible (in the sense of the
output neuron's firing at a time t when the event has not occurred
ending at time t-2) 18 that the event be prepositive.

We gave the reasoning for the case in which the event is
.to be represented by firing of a neuron at time p+2 (corres—
ponding to Theorem 1), but it applies equally well to the other
cases in Sect. 5; l.e., to representation by firing at p+s for

any given 8 > 1, or to representation by non-firing at p+s
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{then hallucinations are always possible, since the event is
necessarlly noq—positive by Theorem 3 or its corollary), or
to representations by a property of the state at a certain
time p+s (8 > 0). (In giving the sufficiency proof, we write
the inequallity on m n6W’Erz}2 < m < p+s, and change the input
for t < max(m-1,p).)

Most but not all events we may wish to consider will be
prepositive.

The analysis is valld for any net which operates correctly
when p > ¥, whether constructed as in Sect. 5 or not, and
started now with all lnner neurons quiet.

If a positive event of length Z is not prepositive, we can
bulld a net which represents 1t by firing a neuron P at time
p2 (or p+s for some s > 1), if this net 1s started at t = 1
with one of its inner neurons fired (but all others quiet), as

follows. We simply take an inner neuron L as in Figure 21,

initlally fired (as the "+" indicates).

+

Figure 21
We then treat this as though it were an additional input neuron,

required to fire at t = p—JY+1, in applying the method of net

construction of Sect.'s. (Of course, then more than one axon

may be required from L to other neurons.)
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This device also makes it possible to represent non—
positive events of length Y by firing of a neuron at time p+2
(or p+s for some s > 1); in Sect. 5 they would have to be
represented by non-firing.

Another device for fixing a net, constructed as in Sect. 5
to represent a positive but not prepositive event (then‘z 2_2),
8o that no hallucination can be produced, is to let the inhibltory
" endbulb of L, in the following net impinge upon the output neuron

of P of the net of Sect. 5. The number of the L's 1s Y+g-2.

+ L ::;x’\\\\\\g
1 I I

Figure 22
(Drawn for Y+s = 5.)

We can also uée this to fix nets constructed as 1in Sect. 5 -
to represent a non—positivé evebt by non-—firlng at p+s, 1f we
change the endbuldb of L, which is to impinge on P to a set of
excitatory endbulbs equal in number to the threshold of P, and
also fire P itself at time 1. (If Y+s = 2, no L's are added.)

The devices of Figs. 21 and 22 seem artificial, and not
likely to be found in organisms. We point them out to save the
need for making an exception of non—prepositive events in the
theory. If mechanical realizations of McCulloch—Pitts neurons

are used 1n controlling robots, such devices might be useful.



RM-704
Page 43 -

The upshot of the analysls 1s that only by reference to
artificlally produced firing in lnner neurons at t = 1 could
an organisem recognize complete absence of stimulation of a
given duration, not preceded by stimulation; it would not know
whether the stimulstion had been absent, or whether i1t had 1tself
meanwhlle come 1n€o existence.

If instead of the initlally fired inner neuron of Fig. 21
we use an input neuron subject to continual environmental stimu—
lation, then all events can be taken to be prepositive by
referring them to the class of input neurons as enlarged to
include K.

This is plausible bilologically, if we also grant that
the mathematical model 1s probably too exact in that 1t glves
too much emphasis to a asingle neuron at a single moment of
time (.0005 sec.). It is unlikely that any such 1npuf at a
single moment would by 1itself result in any significant overt
actlion or memory.

Having chosen to investigate a precise model, it 1is not
to be expected that all aspects of this model will be equally
pertinent to the reality from which the model 1s abstracted.

6.4 Why consider indefinite events? Since the lifetime

of an organism or machine is always finite, having an end as
well as a beginning, why 18 it not sufficient to consider only
definite events?

The number of moments (identifying a moment with a synaptic

delay of .0005 sec.) in a human lifetime of 100 years is of the
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order of 3 x 1012,

To construet a nerve net, treating events as definite,
that would aceount for behavior at 60 years of age Influenced
by stimuli at 10 years, we would need chains of neurons of
length 1.5 x 1012. If the event were at all complicated, we
would need large numbers of such chains. Moreover, we would
need further mechanism to provide for this same behavior occur—
ring at 61 years or 59 years due to stimull at 10 years, or
indeed for each value of d where d ranges from the smallest
elapsed time after 10 years at which the behavior can be
influenced up to the greatest, and 1s measured in units of
.0005 sec. We do not necessarily need a whole new set for
each value of d, since many neurons can be made to serve in
common for various values of d, e.g., the delay chains for
various values of d greater than a given one d, could have their
first d; neurons in common. But at least each intermediate
value of E would, up to the greatest in question, require some
structural additions, new axons 1f not new neurons.

All this would have to be duplicated for every sort of
event whiech occurring at one time could influence behavior at
all later times in life.

The total number of neurons is only of the order of 1018.

To use definite events as a mathematical basis for explain-—
ing human behavior in all its flexibllity over a lifetime of
3 x 10'2 moments thus appears altogether unrealistic.

To emphasize what is meant, take the case of Solomon

Grundy. On the afternoon of Monday he burns his hand on the
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stove. Then one nerve net tells him not to touch the stove
on Tuesday, a different one (at least 1n‘part) on Wednesday,
and 80 on.

If he outlives the life expectancy for which his delay
chains are designed, he must thereafter suffer an advancing
amnesia; for each day added beyond his expectancy at the end of
1ife he completely forgets one day at the beginning.

Humans and animals do not function in this way, though
simple mechanisms for_learning and subsequent forgetting in
robots could be devised on this basis. R

Indeed, calculations on the amount of information recorded
in the memory (cf. MeCulloch 1949) make it difficult to explain
memory entirely in terms of McCulloch-~Pitts neurons on any
basis, a fortiori, certainly not in such an uneconomical way as
by setting up only nets for definite events. So it 18 neces—
sary (if perhaps in the end it will not be sufficient) to go
beyond the present stage of our analysis.

It thus appears that the appropriate mathematical abstrac—
tion for us now is to treat the problem of explaining behavior
as though organisms and machines weré immortal, having an
infinite future though a finite past. We want to provide for
behavior that could be used ad infinitum, if merely the nerve
net and effector mechanisms were immortal.

By trying to provide for behavior over an infinlty of
time by a finite mechanism, we have a model for the real prob-

lem of providing for complex behavior over a long finite
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lifetime by a relatively small mechanlsm.

The questions of reducibllity of other mechanisms to
McCulloch—Pitts nerve nets (not always without increasing the
size of the mechanisms) is significant on this basis, but
trivial on the basis of explaining behavior over a fixed fimite

time only.

7. Regular Events:

7.1 "Regular events" defined: We shall presently des-

cribe a class of events which we will call "regular events."
(We would welcome any suggestions as to a more descriptive tem.’j
We assume for the purpose that the events refer to the
inputs up through time p on a set of k input neurons Ng,...,Nk
the same for all events considered; but the definition -
applies equally well for any k > 1 or even for k= 0.
The events can refer to the value of p. Our obJjective
is to show that all and only regular events can be represented
by nerve nets or finite automata. We have already seen in
Sect. 6.3 why reference to the time is called feor; but it may
be 1lluminating to consider some examples from the point of
view of solving given nets.
Consider first the net of Fig. 22 taken by itself (the
inhibitory endbulb from L, 1is superfluous now). The condition
for L;'s firing (under the assumption that it 1s fired initilally),

i.e., the event represented by L;'s firing, 1s given by formula

Li(p)=p < 3.

*McCulloch and Pitts use a term "prehensible,” introduced
rather differently; but since we did not understand thel:
definition, we are hesitant to adopt the term.
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(a

Li(p)=p = 1 mod 3.
Figure 23

In defining "regular events " we shall bulld on the notion
of a definite event of length Z, as originally Introduced in
Sect. 5.1 and completed by adding 9\2.2 Z to the definition 1in
Sect. 6.3.

But now we extend the class of definite events by providing
that the description of such an event may also c¢ontain the
specification that the first moment is 1; 1.e., that E?Z&l =1,
i.e., that p = Z. Events with this specification we call initlal.

94
So now there ape 22— *1 gefinite events of length Y with k

K
input neurons, namely the 227 as before (non-initial) and

k
the 2=‘Z initial ones.

Now each event we shall bulld up, starting from (and
including) the 2251 +1 definite events for each Z, will ve inter—
pretable in the follow:ng way. The statement that the event has
occurred (ending at time p) is equivalent to the statement that
one of a2 non—empty finite or infinite class of definite events
has occurred (ending at time p). (More precisely, the class may

be infinite 1f the value of p is unknown, but for a fixed value
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of p there are, of course, only finitely many events whiech could

have occurred.)

Our class of regular events will be defined inductively,

starting with the definite events, and ﬁsing three operations
EVF, EF, E*F; 1.e., it shall be the least class containing
the definite events, and closed under these operations.

Given any events E and F already built up from definite
events by zero or more applications of the operations, by the
event EVF we shall mean the event which occurs 1f E occurs or
F occurs. In other words, the class of definite events which
can constitute an occurrence of EVF 1is the sum of the respec—
‘tive classes for E and F.

Clearly the operation is assoclative; i.e., (EVF)VGE
E V(F VG); so the parentheses can be omitted. The reason for
writing equivalence here with four bars will appear in Seet. 7.3.

For example, if E and F are definite events of durations Z
and m, respectively, then EVF 1s an event which.occurs exactly
when an event (of length X) belonging to E occurs, or one (of
length g) belonging to F occurs, or both. One might be tempted
to regard this as a definite event of duration mex(YX,m); but
this would be wrong, since supposing Z > m it could occur when
p < X = max(Y,m), namely by F occurring. Also, this would not
éive what we want when either of the next two operations is
applied.

Given any events E and F already built up by the operations,
by EF we shall mean the event which consists in E having Just

occurred preceded immediately by F having occurred. Thus, EF
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vﬁas occurred ending at time 2, exactly when‘ono of the
cléss of events which can constitute an occurrence of E (say this
one is of length X) has occurred in time p—Z+l1 to p, and one
of those which can constitute an occurrence of F (say this one
18 of length m) has occurred in the period p—f-m+l to p-Y.
(Note: We have chosen our notation EF so that we proceed back
into the past in reading from left to right.) This ‘operation
is also assocliative.
For example, i1f E, F, and G are definite events of lengths
X, m, and n, respectively, any occurrence of (EVF)G will be a
definite event of one of the lengths Y+n or m+n. (Say Z > m.
By refraining above from interpreting EVF as of duration },
now when (EVF)G occurs by F occurring ending at time p, the
preceding occurrence of G must end at time p-m, not p—%.)
If E 1s an initial definite event, and F is any event of
our class, then EF 1s an event which never occurs; since for E
to occur, its first moment must be t = 1; 80 under the interpre—
tation in Sect. 6.3, EF, 1s impossible for any one of the
definite events F,, Fz,j.. whose occurrence can constitute an
occurrence of F. Thus, in this case EF is represented by the
firing of P in the net of Fig. 0.
If E and F are events already constructed, then by E*F
we shall mean the event which consists of zero or more consecu—

tive occurrences of E preceded by one of F. That is, E*F can

occur whenever
n times

€. . . oF

occurs for some n > O.
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The reasén we do not define E* separately as a unary operation
(expressing that E has occurred consecutively zero or more times)
instead:;of E*F as a blnary operation, is that then for n = O
an oécurrence of E*KWOuld be of duration O; but (at least for
convenience) we are requiring the lengths of our definite events
to be always > 1.

To say that E has happened one or more times we can write
E*E.

For example, if E, F, and G are definite events of lengths
X, m, and n, respectively, an occurrence of (EVF)*G must be

of a definite event of one of the lengths af + bm + n
(f_i_s 220) .

We reflect now that we have two systems of notation for
events: (A) logical notations for definite events as used in
Sect. 5 (with the addition of p > X in Sect. 6.3 and p = X
above) and for some other events in Sects. 6.1 ff.; (B) our
newly introduced notations for regular events starting with
single capital letters as representing definite events.

There will be ambiguity if we use (A) as the starting
point for (B) instead of capital letters, unless we are careful
to show the durations Z"""zﬂ of each of the definite events

E;,...,EB used as the units for the construction of the regular

events. -
The question of translatability between the systems of

notation (A) and (B) in either direction has not yet been

examined thoroughly.
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However, we have verified that the notations (B) can be
translated into notations (A) with, of course, a sufficient
amount of mathematlical apparatus added to the logical notations.
The details are technical and are given in Appendix 2.

But it may be instructive now to give a few simple examples
of translation in the other direction, i1.e., from (A) to (B).
The conventions regarding parentheses are those of algebra |
with EVF, EF, and E*F analogous to e+f, ef, and e®f.

Also, the associative law (E*F)G = E*(FG) permits omitting
parentheses, a8 well as the two assoclative laws already mentioned.

The event of duratlon Z which happens for all inputs over

the interval B—Z}l to p we call the ldentical event of length Z;

for ¥ = 1 we write it as I, then in general IZ (ZE1...1Ito})
factors).

Let the result of adding p = 1 to the specificatlons for
a deflinite event E, to make 1t inlitial, be written Ed.

For any event E of length 1 the negation E 18 also definite
of length 1.

For the present 1llustrations, let the event of length 1
that N fires at time p (in symbols, N(p) be written simply N;
that K fires simply K; and that both K and N fire be written L.

Now the events described as follows in the left column are

expressed by the corresponding notations in the right column.

(See next page)
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(—E)E < IZlj_(_t_) I*N
- (o]
(t)E < 211(3) N#*N
(Bw), ¢ pEWEW®), (¢ ML) NoK
ey o = 0
(B, ¢ (KW (2), ( KETH(E), (¢ ¢ (L]  NHLOVNILRSR
N(t) for at least two values of t < p I*NI*N
N(t) for exactly one value of t < p F#ifv R=nNR+R°,
: - call this M
N(t) for an odd number of values of £ < p (W*NN#N) *M
23 1
p=1 1°
p=1mod 3 (13)#1°
p<3 - 1°vi11°vi21°

7.2 An algebraic transformation: We list several equiva-—

lences:

(1) (EVF)VG =EV(FVG).

(2) (EF)G = E(Fa). ~ Associative laws
(3) (E*F)G = E*(FG). |

(4) (EVF)G = EGVFG.

(5) E(FVG) == EF VEG. Distributive laws
(6) E*(FyG) == E*F \ E*G.

(7) E*F = F VE*(EF).

(8) E*F = FVE(E*F).



RM--704
Page 53

Under the definition Jjust given, each regular event 1s
obtained by’building it up from certain definite events as
the units by zero or more applications of the three operations.
Of course, these constructions are by no means unigque.

Lemma 1. For any s > 2: Every regular event can be

expressed as a finite disjunction of one or more regular events,

each of which 1s elther definite of length < 8 or 1s an event

constructed out of units each of length > 8. (Also true tri—

vially for s = 1.)

Of course, we can always understand there 1s at most one
of the latter, since any disjunction of them is again one.

We write out the proof for the case g = 2.

The lemma 18 true when the given event 1s deflnlte; then
there 1s Just one term in the disjunction, which 1is of the
first or the second kind according as its length 1s 1 or more.

Likewise, 1f E and F each have the property described in
the lemma, so does EvF.

Now say E and F are as described, and consider EF. By
use of the distributive laws (4) and (5), EF 1s equivalent to
a disjunction of terms, each of which has one of the following
forms

EIFI, E(')F(’), E(.)Fl, EIF(Z),
where in each case ' indicates a definite term of length 1, and
(2) indicates a term composed out of units each of length > 2.

Now a term E!'F! can be construed as a definite event of
length 2; 80 1t 18 of the second kind for the theorem upon con—

sidering 1t as one of the units.
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atso E(2)r(2) 15 or the second kina.

Now consider E(a)F‘. Using (2), (3), and (4), the P! can
be moved progressively inward until finally F! occurs only in
parts of the form HF' where H 1s definite and of length > 2.
Then each such part can be taken as a unit, which will be of
length X’ 3.

For the last form E‘F(z), we proceed similarly using (2)
(from right to left), (5) and (8) (in combination with (5) and
(2)).

Now say E and F are as described in the theorem, and
consider E*¥F. By use of (6) we can then get E*F equivalent to
a disjunction of terms of the two forms E*F! and E’F(ﬁ). For
illustration (noting the remark Jﬁsf following the theorem),

say, e.g., E 1s El\/EAV/E(a). So we have now two possibilities,

(e} v E vE(®))ap1, (et vEdvE(®)yspla),

Conslder the former. This 1s an event of which an occurrence
must consist of one occurrence of F! followed by n> 0 occurrences
of various of the events E}, Ei and E('). Let G,,...,G9 be all
products of two of E}!, Ei, and E(z); i.e., G, is Eir}, G2 18

E{E4, etc. Then an occurrence of the event is the same as an
occurrence of one of F!, E{F!, EiFlor E(a)F‘, followed by zero

or more occurrences of any of G;,...,Gg. ?hus, in symbols (and
using (6) next and then (7))1

(£1 V 3 VE(2))up:

(Gl\/...\/Gg)*(F"\/ EiF! vV EAP! V E(’)F‘)

i

(G, v...\/cg)up‘ v (G, \/...\/Gg)*(E}F‘ vV E4F' vV E(’)F‘)
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=rt vt V... vag)*(a, Voo \/G9)F' V{Bi V..o \/09)*

(EiF‘va‘VE(ﬂ)F‘).

Now each of Gi,...,Gy can be handled as was one of E'F!, E(a)F(’)’
E(a)F‘, E‘F(‘) in the case for EF above; then G;V’...\/Gg is
composed out of units of length > 2. Then by the method for
E(’)F‘ in the case for EF above, (G;\/...\/Gg)F‘ and E(a)F‘ are
likewise, while E{F! and EJF' are definite of length 2. So the
entire expression obtained last is of the desired form. Like
arguments apply-to (Ei\/Eé‘VE(‘))*F('). Finally; ahy dis junc—

tion of expressions of the desired form 1s of the desired form.

7.3 Identity and equivalence: In dealing with regular

events, speclal care 1s necessary to distinguish between senses
of "equivalence." As we introduced them, any regular event

is identified with a class of’definite events; and two regular
have thus far been treated as equivalent only if these classes
of definite events for the two are the same.

An event is a partition of all the possible inputs 6ver

the whole past for the nerve net into two classes, those inputs
for which the event occurs, and those for which it does not

occur.

What we have called a "non—initial definite event of
length X" 18 a partition of all the paste for the net into two
classes, such that all pasts of length < X, 1.e., for which
p < Z, are in the second class (those for which the event does
not occur), while those pasts of length > Y are in the first

or the second c¢lass according as the input over the last Z
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moments has or has not a certain property; i.e., the classi-
fication is independent of the input prior to p—2+l.

But could two non-initial definite events which are dis-
tinct 1n the value of X or the property over p—}Y+l to p be the
same as events?

They could in one éase, namely when the property over
p-X+1 to p is impossible of occurring; this 1s the case which
was treated by Flg. 9 in Sect. 5.2. These definite events df '
length Y for various values of Z > 1 are all the same as events.
We may call this event, which never occurs, the improper (or

impossible) event.

Qutside of this exception, an event can be a definite
event 1n only one way. For suppose we have an example of an
input over time 1 to p for which the event occurs. Then we
may seek the least ¥ < p such that the event also ocours when
the value of p i1s changed to X and the input over time 1 to [
(= p) 1s what it was formerly over time p—X+1 to p. This X must
be the length of the event; and the property of the input over
the last Z moments which defined the event is obtained by eon—
sidering what inputs over this time give occurrences of the event.
Similar remarks apply to "initial definite events of
length Y." Here all pasts for which p ¥ Y are in the second
class. The initial definite events of length Y which never
occur are all the same as events.
Combining the cases of non—-initial and initial defi-
nite events, an event can be a definite event in only

one way (i1.e., either non-initial or initial, but not
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both, with only one length Z, and with only one property of
the input over p—Y+1 to'g), except for the improper event which
can be construed a8 either non-initlial or initial and with
eny Y. So actually there are only Eek 1_1 distinct definite
events of length Y with k input neurons; in Sect. 7.1 we counted
the improper event twice, once as a non—initlal and once as
an initlal event. For k = 0, there are thus just 3 events of
length Y , the possible non-—initial one IZ, the possible initial
one IZFJI°, and the impossible one T.

Now consider a regular event of the form EVF, where E
and F are definite of length X. Quite evidently the E and F
are not uniquely determined from the event. For example, there
might be two k x Y tables exactly for which E occurs, a third
for whieh F occurs. By recomblning, taking E; as occurring when
the first table applies, and F; when the second or the third
applies, we get the event as E;VF;y with different components,
or Indeed, the event can be considered as oné event of length Z.

Now, in fact, our transformations of events in Sect. 7.2
were such as to preserve the class of definite events under—
lying a given regular event, except that sometimes, e.g;,
EMF! was reconstrued as a definite event of length 2. To make
1t exact what transformations shall be allowed, we can reconsider
a regular event ag given by saying which of various tables of
length Y for various ¥, with or without specification that |
p = X (rather than merely p > X) would describe an occurrence

of 1t. For if 1t 1s given by saying which of various definite
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events would describe an occurrence of it, then we can replace
each of these by the tables (zero or more up to 2EZ of them)
which constitute an occurrence of the respective definite event.
We shall say that two regular events, as given in the notations
of Sect. 7.1 starting with specified definite events, are
identical if the resulting classes of k x X tables (for various
X) are the same. We write identity by =.

The empty class of k x Z tables goes with the improper

event; call this event I. We have:
(9) EYT = TVE =E.

(10) ET = TE T.

(11) E«T = T,

(12) T*E = E.

These permit simplifications of ewvents into which T is built; in
fact, all T's can be removed, unless the whole becomes T.

Now, unfortunétely, given an event as simply a partition
of the possible inputs over the whole past for the net, the
class of k x 2 tables in terms of which it can be constructed
as a regular event is not unlque.

Consider the example of NV NI*I and N, where k = 1, and
N signifies the event of length 1 consisting of the firing of
the one input neuron N at time P

The only k x X table for N is that having a 1 in 1ts one
position. But NV NI*I has this table, also both tables of
length 2 agreelng in the first row, also all four tables of
length 3 agreeing in the first row, etc.
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.But N V NI*I and N each oceur, if and only if the input
neuron fires st time p; so as events they are the same. We

call this sameness equivalence, and write NV N*I = N.

The importance of the distinction is that from EEZ F we
can infer EG = FG, GE = QF, E*Q = F#G, and G*E = G*F; but we
cannot make the firat and third inferences in terms of equlva—

lence= . In particular, NVNI*I= N, but not (NVNI*I)NZ NN.
(Of ecourse, EE F implies E= F; but not conversely.) As another
example, I*I = I#I°, but I*INFE I*I°N= T (by (13) below and
(11)).

Summarizing, our theory of regular "events," with our
operations EVF, EF and E*F and the relation £ apply to classes
of k x X tables (fixed k and varying X) in terms of which we can
represent the events, rather than to the events in the simple
sense. More particularly, it i1s the two operations EF and E¥*F
for which the c¢lass of tables for E, rather than merely fhe
resulting event E, must be known, because the lengths of the
tables enter into the meaning of the operations.

It would thus be more expliclit to say that we are dealing
with a theory of certain expressions for events ("representa-—
tiona™ would be a good word, if we were not using it already in
another sense).

We now extend our notion of "prepositive" to initial events,
by saying that all except the improper one {(which 1s at the same
time non—-initial and as such prepositive under the definition

. in Sect. 6.3) are not prepositive. Single k x Y tables are

special cases of definite events of length Y; so the definition

applies to them.
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Now we say that a regular eQent as given by a class of
k x Y tables (fixed k and varying X) 1s prepositive, if all
the tables of the class are prepositive.

In Sect. 6.3 we saw that prepositiveness was necessary
and sufficient that a nerve net with all inner neurons ini-
tially quiet constructed to represent a non-initial definite
event of length Z when p > Z should also represent it correctly
(without "hallucinations™) when p < Z.

The extension tb initial definite events preserves thils
as a necessary and sufficlent condition for representability
with all inner neurons 1nit1a11y quiet; the necessity is clear
by reasoning similar to that in Sect. 6.3, and the sufficié&ncy
holds because there 18 no such prepositive event except the

impossible one.

Furthermore, now a sufficient condition that in represen-—
ting an event it be possible to take all inner neurons quiet
initially is that there be a way of expressing the event in
terme of definite events and our three operations for which the
corresponding class of tables (or of definite events) is pre—
positive. This will be 1ncluded as part of the next theorem.

To get a necessary condition, we introduce the idea of
a minimal set of k x X tables (fixed k and varying X) for an
event. Start with any set of k x Z tables for the event, and
to each table consider the least segment of it ending at time p
for which all backward extensions describe occurrences of the
event. Replace the table by this. Carrying out the process

for each table in the given set, we get a minimal set.
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The minimal set so obtalned is unique for a given event,
as one gets the same minimal set by first extending each given
table to an 1initial table in all possible ways (which method

gives the complete set of tables, which is unique for the event);

and then minimizing this (by the above process which leads to
a unique result), we get the same class of tables as in minimizing
directly.

Of course, the method of minimizing iIs not described

' and one question which arises at once 1is

"eonstructively,'
whether a constructive minimizatlion process for a set of tables
corresponding to a regular event as expressed in terms of defi-
nite events and our three operations exists.

Another question 1s whether the minimal set of tables must,
for a regular event, necessarlily be one which corresponds to
an expression for the event in terms of definite events and
the operations. (The complete table does, as will follow from 7
the proof of Theorem 6 in Sect. 9.)

We do not go into these questions, which one would naturally
investigate 1f the study is to be continued.

However, we can now say that a necessary condition -that é
regular event be representable by a net with all inner neurons
initially qulet is that the minimal set of tables for it be.pre—
positive.

Some algebralc simplifications are poséible when initial

definite events erter into an expression for a regular event.

Say E° 1s an initial definite event. Then for any regular event F:

T.
T.

(13) E°F

il

(14) EoO*F

nn
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Used along with (2) — (4) (and for simplification (9) - (12)),
we come out with the result that no initial event need enter
into an expression for a regular event, other than as an
"earliest" event in the following sense.

For a given expression for a regulaf event in terms
of definite events, we define recursively as follows
which occurrences of definite events in it are

earl;est.

In a regular event glven as simply a definite event, that

definite event 13 earliest.

The earlliest events in E and the earliest events in F are

the earliest in EVF.

The earliest events in F are the earliest in EF and in E#*F.

7.4 Representability of regular events:

Theorem 4: To each regular event, a nerve net can be con-—

structed which, when started in a prescribed way, represents

the event by firing a certain inner neuron at time p +2, if and

only if that event has occurred ending at time p inclusive. If

the given event is prepositive, the representation can be by

a net started with all inner neurons quiet.

Proof 1s based on Lemma 1, Sect. 7.2, for 8 = 2. The
Theorem is true for T, by Fig. 9, Sect. 5.2; and for other events,
by Sect. 7.3, we can exclude T as a unit.

So first we give the proof for the case of an event

(not T) constructed out of units (not TI) each of length 2 or more.
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This we do by induction on the number n of occurrences
of units in the expresslon for the event.

In the induction we will arrange at each stage that the
neuron which 1s to fire at time p+2 will be (as in Sect. 5.2,
since T 1s excluded) one of threshold 1 impinged upon by only
excltatory endbulbs (1.e., it effectuates a disjunction opera—
tion) with no axons feeding bhack into the net.

If n = 1, then the event 18 a definlte one E. We have
three cases. (a) E 1s prepositive, hence not initial. The net
is as gilven in Sect. 5.2, the reasoning that this net works
being supplemented as in Sect. 6.3. (b) E 1is not initial and
not prepositive. We use the treatment given in Sect. 6.2
employing Fig. 21. (c) E 18 initial. Then we usBe an inner
neuron a8 follows, treated for the net constructlon of Sect. 5.2
as though it were an additional input neuron required for the

occurrence of the event to fire at time p—Y+1.

+ L

Figure 24

This, of course, 1s simply a neuron whose condition for firlng
is p = 1.

Now if n > 1, the event under conslideration is of one of
the forms EVF, EF, and E*F where E and F are each constructed

from (¢ n units.
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First, suppose the event i1s EVF. Then by the hypothesis
of the induction we can construct nets to represent E and to
represent F, say with representing neurons P and Q, respec-—
tively, each with threshold 1 and only excitatory endbulbs
impinging, and with no axons feeding back. To represent EV'F
we "identify" P and Q; 1l.e., we replace them by a single neuron
—call it P—having all the endbulbs which separately lmpinged
on P and on Q, and we similarly identify the input neurons

Ny,...,N, for the two nets, i.e., the axons which led from

k

k

Niy...,N, 1n the net for E, and those in the net for F now both

lead from N,,...,Nk. The construction can be dlagramed as

follows, using heavy lines to represent a number of axons.

P
Net for E Net for P
except input except input
and output and output
neurons neurons
N N
! Figure 25 k

The heavy bundle of neurons leading to P from the left are
those which would be required in the net for E separately; like--

wise from the right in the net for F. The bundle from N; toward
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the left, those from N, in the net for E, to the right in the
net for F, etec. The fact that the output neurons for the two
given nets had no axons leading back 1in insures that they
still operate 1ndependently of each other in this comblination.
Next consider an event EF. 1In the construction out of
units whilch we are using for E, conslider those occurrences of
units in 1t which are earlliest. The events we are considering
refer to k input neurons N,,...,Nk, Now conslider the event
E' which is obtained from E by moaifying each earliest unit to
make 1t refer to One new neuron Nk+l which 1s required to filre
at the second moment of each such_éarliest unit. There 1s
such a second mament in the period of the unit, by our assump-
tion in connection with the use of Lemma 1 that each unit is
of length > 2. Also, the resulting event E'vis reguiar with the
same number of occurrences of units, since this change in the
earliest units only gilves an event wilth the same structure in
terms of 1ts respective components by the operations EVF, EF,
and E*F. 8o by the hypothesls of the inductlon on n, we can
represent thls event E1 by a net. However, we simplify the
construction by leaving out the neuron of Fig. 21 in the case
of earliest events in E which come under Case (b) for definite
events. (By remarks in Sect. 7.4, Case (c) can be excluded.)
Now the net for EF 1s obtained by identifying Nk+l in the
net for E' with the output neuron @ of the net for FT.and of

course, identifylng N,,...,Nk as input neurons for the two nets.

—

]
The output neuron 1s that for E . The econstruction can be
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dlagramed thus:

|

]
Net for E
except input and

N

' _l§_+1
Net for P

except input and
output neurons

P

output neurons

N: Nk
Figure gé -

The event E 1is positive, requiring a firing of Nk+1;at'1ts{
second moment. But Nk+l can be fired only at a tzﬁe'later
than 2, since in its ;Ble of output neuron for the net for P
it fires at time p+2 (E an) where p 1s the last moment of an
'.occurrence of F. No "hallucination" 1s possible as a result af'f
leaving out the neurons of Fig. 21 for the units in E' which
were not prepositive, as this necessity that Nk+l fire at the
second moment, which must be > 2, prevents. (Eﬁ fact, the
arguments of Sect. 6.3 that "hallucinations" can occur when an
event 18 not prepositive do not apply now, since some inner
neurons of the net for F will necessarily be firing at the
first moment of these units of E'.) These remarks (with the
avoldance of the neuron of Fig. 21) are necessary to establish
the last remark of the theorem.

We have lastly the case for E*F. As in the preceding

1
case we modify E to E . Then we combine the nets obtained by
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the hypothesis of the induction (omitting Fig. 21 in treating

| ]
earliest units in E ) as diagramed thus:

P
? :
Net for E N1 Net for F
except input and except input and
output neurons output neurons

N, N

k

Figgre gl

Under the assumption of infinite past time (as in Sect. 6.1),

the firing of P could, of course, be explained by E having

occurred repeatedly ad infinitum into the past. But here we

are understanding that the whole net is started in a certain
condition, which 1s elther that all inner neurons are qulet or
that some inner neuron {or neurons, if we prefer) in the net
for F are fired, according as F (and therefore E*F) 18 preposi-
tive or not. Then as in the reasoning under the treatment of
EF, the net for E' can only be a cause of P and Nk+1's firing
if there has originally been a firing derived fro; the net for
F, which serves as an input into that for E' that must be fired
at the second moment for the latter. Of course, thereafter P
will be fired on each repetition of E. (P and Ny, must be
separate, to meet the condition that the output ;;uron not

feed back into the net.)
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This completes the treatment for regular events construc-—

ted from units each of length > 2.
Now by Lemma 1, and using the method already indicated

for the basis (i.e., for n « 1) to treat definite events of
length 1, and the method already used under the case of the
induction step (n > 1) for EVF to combine nets for different
disjunctive members, we get the theorem for regular events in

general.

7.5 Discussion of the proof and further problems: As

we have already remarked in Sect. 6.2, the use of a net with
initially fired inner neurons seems unnatural. But this is
unavoidable, if we are to represent non-prepositive events,
since we must (by examples such as are given at the beginning
of Sect. 7.1) make our mathematical theory complete. A way
of avolding the use of such nets blologically, namely by con-
sidering only events dated from some environmental stimull,
has been indicated (Sect. 6.2).

A second respect in which the present proof seems arti-
ficlal and leads to complicated nets 1s 1n the use of Lemma 1,
the proof of which involves rather extensive reformulation of
the events.

If we deal only with events which are already expressed
in terms of units each of length > 2, or have the form for
Lemma 1, the proof of the theorem is straightforward and the
nets constructed are simple, 1.e., of a degree of complexity
corresponding very well to the complexity of the gilven descrlip-

tion of the event to be represented.
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The necessity of using Lemma 1, 1f we do not restrict
the events to be already expressed in the form for that lemma,
arises from the fact that in Sect. 5 we needed a lag of 2 to
represent definite events 1in general.

Some simple events can be represented with lag of 1; and
for these the units into which we feed the outputs from the
nets representing the preceding events would not need to be
of length > 2. Thus, to glve a uniform treatment in proving
the theorem, we resorted to a device (the proof of Lemma 1)
or a restriction (that the property of Lemma 1 is already present)
which can be dispensed with 1n many partlcular cases. This is
why, e.g., in Sect. 6.2., simpler nets are avallable for repre-—
senting certain indefinite events than would be given by the
method of proof of the present theorem.

As was noted in Sect. 5.3, often definite events can be
represented by simpler nets by using a lag greater than 2. Then
the method of net construection for the proof of Theorem 4 would
require the use of Lemma 1 for s = the greatest lag used in
any of the units (or possibly not this great, depending on how
the units enter). As the proof of Theorem 4 is given, also tie
net would have to be chosen so that the representing neuron
appears as in Fig. 2; l.e., performs a disjunction operation.
This could always be arranged by an increase of 1 in the lag.
But also probably the proof can be adapted to apply directly,
somewhat as the proof of Theorem 1 was generalized to get

Theorem 2 (but we have not examined this in detail).
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The difficulty which calls for Lemma 1 arises when we
try to represent a repetition of some event which is shorter
than the time necessary for the net to organlze a representa-
tion of 1t by the firing of a single newory the solutlon by
Lemma 1 consists in consldering grosser events before attemp-—
ting to represent repetitions of them.

If we consilder that one or two synaptlc delays are pro-
bably not significant for determining behavior in an organiam
(as we remarked at the end of Sect. 6.3), it seems that the
complication is connected with an over—refinement in our model
of the bilological reality.

So we can urge that the methods of net construction used
in proving the theorem are simple enough, grantiﬁg that from
the general method we can often start out to find simpler nets
in special cases.

The question may occur to the reader, why did we select
the particular three operations E VF, EF, and E*F? When we
say that the net consatructions are simple, we mean simple for
events already described from definite events by use of these
operations.

A pressling problem now 18 to consider what kinds of events,
described originally in other terms, can be described in these
terms; and so eventually what kind of behavior can be explained
on the basis of nerve net control.

This is a problem one would naturally investigate in detall

next. We have not done so thus far, since this report is
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intended only to reduce to writing the author's thinking on
the subject during August 1951, and not to try to carry the
investigation further, except for the minimum amount of filling
in details which was unavoldable in the process of writing.

However, 1t 1s very plausible that the notation for
regular events in terms of definite events combined by the
three operations will prove handy in deacribingiéyents. The
simple examples given at the end of Sect. 7«1, and some others
slightly more complicated, encourage this hope.

On the other hand, glven a description of an event in tems
of definite events and the three operations, it will in some
cases be difficult to see what the event consists of; we know
of cases in which a very compllcated description is actually
equivalent to a2 much simpler one. (This, in fact, is usually
the case for deseriptions provided by the method of proof of
Theorem 6 in Part II1.) '

So there are problems of translatability in both directions
between the notations for regular events and other notations for |
events or descriptions of events 1n ordinary language. These
problems have so far been touched only superficlally, and are
crucial for determining how far the present results carry us
toward practical general techniques for construction of nets
for given purposes.

These questions are related to questions about transforma-—
tions between different expressions for the same event in terms
of our operations. Can we obtain any normal forms, 1li.e.,

simplest forms or convenient standard forms, for descriptions
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of regular events, to which given forme are equivalent in the
sense of Sect. 7.3? Is there any decision procedure for the
equivalence of two expressions for events (in the technical
sense of modern logic)? These questions are closely related
to questions ralsed in Sect. 7.3.

Similar questions apply to identity in the sense of
Sect. 7.3; but equivalence is the important relation for the-
applications df the theory.

These questions are partly algebraic in character. Some
questions are also raised in Part 1I and Appendix 2.

Success in reducing, to terms of definite events and
EVF, EF, and E*F, events as expressed in ordinary language
or as they arise in explaining organic behavior or creating
robots for prescribed purposes would, of course, give a Justi-
ficatlon for our selection of the operations.

Our actual reason for selecting them is that (as was men—
tioned in Sect. 7.1) a converse of Theorem 4 will be proved
in Part II.

Thus, every event which can be represented must be expres-
sible in terms of EVF, EF, and E*¥F, starting from definite events.

In particular, we have thus demonstrated that McCulloch-—
Pitts neurons can govern any kind of behavior which any other
kind of digital automaton at-all can govern. This, of course,
includes a number of special results which they obtained for

alternative kinds of nerve nets, but is more general.
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Having been first led to the three operations in connec—
tion with the converse of Theorem 4 (i.e., Theorem 6 in Part II),
i1t was natural to see whether the present theorem would hold.

But, of course, the fact that our three operations are
completely general (by Theorem 6) does not settle the question
whether they will prove to be a convenlent and practical way
to deal with events. Posslibly some other selection will prove
to be more convenient. Or, we may add other operations and

express these in turn in terms of our three.

7.6 ConJunctlon and negation: We did not include the

operations Rﬂ(and) and ™ (not) in our definition of regular
events, because in the converse theorem (Theorem 6) we do not
need to.

In this section we wlll show that net constructlons can
be managed so that the two operations can be included. However,
we will only treat them when applled to events already repre-
sented by nets, and we will not thereafter use EF and E*F.

From the converse theorem 1t will follow that any events
we thus express using also 2 and T must be expressible without
them. But the definitions obtalned in this way are very com—
plicated, and simple definitions do not appear to be immediately
forthcoming. (But we have not examined the problem thoroughly. )

We are not attempting to use 8\and T inside EF and E*F
(except in the original constructions of definite events as
the units) since we have not set up a representation of these

operations in terms of classes of definite events or of k x X
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tables. It does not seem to be immediate what is the best
way to do this.

Theorem 5: Each event constructible from regular events
by use of the operations & , V, and — of the propositional
c¢aloulus 1s repregentable with lag 2; i.e., a perve net and a
neuron can be found, together with an initial state of the
net, so that the neuron fires at time p+2, 1f and only if the
event hag taken place ending at time p.

Proof: Say the event is constructed by the operations of

the propositional calculus from certain expressions for regular
events. Consider any one of the latter. Wwherever a part occurs
in 1t of the form E*F, replace this by FVE(E*F) using (8).
After this, apply (4) and (5) whenever possible. Using 2also

(2) 1f necessary, we are thus led to an expression for the
original event by operations of the propositional calculus in
terms of regular parts of the form E,( ...En) where E; 18 defi-
nite; for this purpose we take the V's which have been brought
outermost in the expressions for the regular events as part of
the construction in terms of the operations of the propositional

calculus. Say there are m such parts; call their first factors

E,(i)( i=1,...,m), and the whole expressions Esi)(...z(t)))

Let E:(il“ be E;(E)’ or E;(lj according as n(y) is>lor=1,

where ' has the meaning given it in the proof of Theorem 4, Now
we can take exactly the same combination by operatione of the

propositional calculus of E;(‘)", cee E;(E)" that the given

event 18 of El(‘)( E( 1) Y, vee E(ﬁ)(...E(m) }. This can
2(1) ! (m
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be treated as a definite event of length equal to the greatest
length of any of 1ts components, and a net can be constructed
for 1t by Thecrem 1, with input neurons N1,...,Nk and for
each 1 for which P"(l). > 1 a neuron Nl_c_+_i._ required to fire at

time 271(1)+2 for the event to occur. Feeding the outputs

from the nets for Esi) ‘o Eﬁ%)) appropriately into this, instead
=1

of as before into respective nets for E‘i)', we get a net for

the event in question.

PART 1I — FINITE AUTOMATA:

8. The Concept of a Finite Automaton:

8.1 Cells: Time shall consist (as in Sect. 3 ff.) of a
succession of discrete moments numbered as integers. We shall
mainly be concerned with the case of only positive integers, as
in Sect. 6.2 £f, but will consider the case of all the integers
in Appendix 1.

We shall consider automata constructed of a finite number
of parts, each being capable of a finite number > 2 of states
at any given moment. Call these parts cells.

We shall distinguish two kinds of cells, input cells and

inner cells. Say there are k input cells and m inner cells,

An input cell admits 2 states O and 1 (or "quiet" and
"firing"), which we consider to be determined by the environment.
This restriction to 2 states for input cells 1s to make
the notion of an input to the automaton coincide with the notion

of input to a nerve net as formulated in Sect. 4. But the
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present theory would work equally well with more than 2 states.
Nothing 1s gained thereby, however, as p cells each admitting 2
states could be used to replace one cell admitting any number q
(2 < g < 2B) states 0, 1, ... , g-1, where 1f g < 2E we could
consider only inputs in which atates g, ... , 2B do not oeccur
or identify all of these states with the state g—-l1 in all the
operations of the automaton.

The number of states of an inner cell is not restricted
to 2, and different inner cells may have different numbers of
states,

Say the input cells are N,,...,nE (x > 0); and the inner
cells are M,,...,M (m > 1), with respective numbers of states
Biyeees8y (each > 2).

The state of each lnner cell at any time t i1s determined
by the states of all the cells at time t-1. Of course, 1t
may happen that we do not need to know the states of all the
cells at time t-1 to infer the state of a given inner cell at
time t. Our formulation merely leaves it unspecified what
kind of a law of determination we use, except to say that
nothing else than the states of the cells at t-1 can matter.

If time 13 given as beginning with t = 1, the state of the
inner cells at that time 1s to be specified.

A particular example of a finite automaton 1s a MocCulloch-
Pitts nerve net. Here 211 the cells have Jjust 2 states, and
the principles stated in Sect. 3, together with the arrangement

of axons and the kind of endbulbs on each case, give the law
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determining the state of each inner neuron at time t from the
states of all the neurons (or, in fact, from only those having
endbulbs synapsing on the given one) at time 1.

Another example 1s obtained by eonsidering neurons with
Yalterable synapses" or "alterable endbulbs®™ of the following
kind. Each neuron may have besides the usual endbulbs also
exeltatory ones which are not effective unless at some previous
time the neuron having the endbulb and the neuron to which the
endbulb is adjacent were simultaneously fired. If a neuron

has r such alterable endbulbs, 1t 1s oapable of o+l

states,
according as it 1s quiet or firing and according to which of
the r alterable endbulbs have thus far been made effective.

Many other possibilities suggest themselves.

8.2 State: With input cells N"""Nk and inner cells

M"""Mm with respective numbers of etates‘g,,...,gm, there

are posasible at a given moment exactly 25' Bi°.. states of

="
the entire automaton. We can consider each as a combination
of an external state, of which there are 25-possib1e, and an

internal state of which there are 5,'...‘§m possible.

The law by which the states of the inner cells at time ¢
are determined by the states of all the cells at time t-1 can
be given by specifying to each of the complete states at time
t-1 vwhich one of the inner states at time t shall succeed 1it.

Now, indeed, there 1s no reason for our general theory

why we cannot consider the entire aggregate of internal cells
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as replaced by & single one admitting B1*. states. This

- By
normalization of our concept of a finite automgkon is always
possible, though we did not start out with 1it, because we

were interested in making clear the application to such automata
as a MeCulloch~Pitts nerve net, where ﬁhe cells are given cer—
taln simple properties and are connected in a certain way.

We could also restrict ourselves to one input cell, by
scheduling the inputs on the k original input cells to come in
successively in some order on the new one, which would alter
the time scale so that k moments of the new time scale correspond
to 1 of the original. Events referring to the new time scale
could then be interpreted in terms of the original. However,
we do not find any advantage in this reduction to one input
neuron; so we do not use it.

We will now assume that time starts with t = 1. Say we

call the states B1y000,8, where r = 25"31 '...'gm and the

-—

internal states b,,...,bgiwhere q = 8, -...'gm. We specify that

the internal state at time t = 1 be b,.

Under this assumption, the state at time t = p 1is a funetion
of the input over time 1,...,p (ineluding the value of p, or only
this when k = 0). (Had we not specified the initial state as b,
the state at time p would be a function of the initial state glso .)

S0 sach of the states a;,...,a corresponds to (or repre—

T
sents) an event, whieh occurs ending at time p, if and only 1f
the input over the time 1,...,p i1s one which results in that

one of B1y.00,58, being the state at time p. Thus, the automaton
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can know about the past (inclusive of the present) only that
it falls into one of r mutually exclusive classes (possibly
some of them empty).

Similar remarks apply to representations of the past by
an internal state assumed at time p+l, or by a property of the
state at time p, or of the internal state at time p+l., For
to say the internal state at time p+l 1is b, means that the com-
plete state at time p was one of certain o;;s, i.e., those
which are succeeded by b1 under the law determining internal
state. So then the past—falls into a class of possible pasts
constituting the set sum of the classes represented by those
complete states at time p, or 1in logical terms the disjunction;
- similarly, for properties of the state (similarly also,

e.g., a property of the internal state at time p+s for s > 1,
whenever thlis property does not depend on the input over time
ptl,...,p+s=1).

What sorts of events can be represented? The question 1s
answered by the following theorem, referring, of course, to
automata started in state b,. Had we not specified the initial
state,rwe would merely add (or disjoin) the classes corresponding
thus to the g internal states, each in turn as initial state.

Had we not specified past time to be finite, the state at
a given time p would not necessarily be determined by the input.
The facts in this case (already mentioned in Sect. 6.1 for
McCulloch-Pitts nerve nets) are dealt with in Appendix 1.

As the concept of 1lnput 1s the same as in Part I, we can

use the notion of "regular event" which was introduced in Sect. 7.
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9. Regularity of Representable Events:

Theorem 6: For any finite automaton (in particular, for

a McCulloch—Pitts nerve net) started at a gilven time t =1

with internal state b; at that time, the event represented

by a given state existing at time p is regular; i.e., the

automaton assumes that state at time p, if and only 1if a cer-

tain regular event occurs ending at time p.

Proof: Since the initial internal state 1s specified,
there are 25 initial states (the results of combining the
given initial internal state with each of the 25 possible
external states at time t = 1) from which the automaton could
start at time t = 1 to reach the state in question at time
t=p

So if we can show that the automaton can start from a glven
state at time 1 and reach a given state at time p, 1f and only
i1f a certain regular event occurs ending at time p, then the
theorem will follow by taking the disjunction of 25 respective
regular events, which (by Sect. 7.1) is itself a regular event.

Given any state a at time t-1 (t-1 > 1), exactly 2K gtates
are possible at time t, since the internal part of the state at
time t is determined by a, and the external part can happen in
25 ways.

So we have a one-many relationship between states. Now
invert this relation and consider for any state a at time t
what states at time t—1 are ocompatible with 1t (there may be

none, one, or more than one); say a 1s in relation R to each

of these.
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The next part of our analysis will apply to any binary
relation R defined on a given set ¢f r objects CRPRRN: (called
"states"), whether or not it arises in the manner Just E?s—
cribed.

Consider any two a and a of the states, not necessarily
distinet. We will seek a characterization of the strings of

states dZéZ?J"'dl for which dZ is a, d; 1s a, and for each

i (l = 1,000,2=1) dlfl is in the relation R to di; call these
strings which connect a to a.

Let A be a class of such strings. We call A regular, if
A can be described by an expression bullt out of the following
operations (chosen in analogy to the definition of regular
events in Sect. 7.1.)

The empty set and the unit set consisting of Jjust 8, for
any 1 are regular. If A and B are regular, so is thelr ;ﬁm
which we write AVB. If A snd B are regular, so is the set,
written AB, of strings obtalned by writing a string belonging
to A Just left of a string belonging to B. If A and B are
regular, so is A*B which abbreviates niiggggﬁg (2 Z.O),

i.e., the sum of these classes for all 5_2.0.

Now we prove the lemma by induction on r that the strings

"dZ...dl connecting a to a form a reéular class.

Basis: r = 1. Then, of course, 3 18 a. 1f a R a (1.e.,
1f not a R a), the class of the connecting strings is simply
the unit set consisting of a (as string of length 1), which is
regular. If a R a, then the class 1s {a, aa, aaa, ...} , Which
is regular, since 1t can be written A*A where A -{a} .
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Induction step: r > 1.

Case 1l: a = a. In this case any string leading from
a to a 1s of the form

8 ——) 8 ———3 ... 8 —— a,

no ats no a's no a's

Figure 28

where each arrow is either empty (this being possible only if
a R a), or stands for a string without a in it.

Let e;,...,6_ be the states e such that a R e, but e ¥ a,

4
and fi,...,f, the states f such that f R a but f ¥ a. Now any

string of the kind represented by the arrow (when the arrow
does not reprasent the absence of a string) must start with

one of e1,...,e_ and end with one of f;,...,fh. For each pair

g a3
eifl, by the hypothesis of the induction, the class of the

strings leading from e, to fi (without a in 1it) 1s regular.
Say B"""BEE are these regular classes; let A be {a}. Now

if a R a and the B's are not all empty (Subcase 1), the class

of possible strings a—for Fig. 28 is A\/A(34~J...\/BEE); if

a R a2 but all B's are empty (Subcase 11), 1t is A; if @ R a and
the B's are not all empty (Subcase 11i), it is A(B,\/...\/BEE);

and if a R a and the B's are all empty (Subcase iv), 1t is
empty. In the first three subcases, let C denote the class men-—
tioned, which 1s non-empty and regular. Now in these subcases,

the class of strings leading from a to a (as in Fig. 28) 1is

C*A, while in the fourth subcase it 1s simply A.
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Case 2: a # a. Now we have instead of Fig. 28 the

following:
8oy 8 e ... 8 y a —>
no a's no a's no a's - no a's or a's

.a-, —\, LI I ] -a,- —> E
no a's or a's no a's or a's

Flgure 29

The treatment 1s slimllar. For example, in the case the classes

of strings represented by "a.———3", by "a — " in
no a's no a's or a's
the middle, and by "& > " at the right, are none

no a's or a's
of them empty, call them C, D, and E, respectively, the class
of strings for Fig. 29 i1s C#ADE*K, where K = {E .

So the lemma is proved. Now we return to the point where
we were in the proof of the theorem. We wish to show that for
given state a at time p and each of 2E-possible states 3 at
time 1, that a holds at t = p and @ at £ = 1, if and only if
a certaln proper event (different in general for each of the
2% T's) occuples the time 1 to p-

Now by the lemma, the strings of states which can lead
from a to a form a regular class. If that class is empty,
then the event 1a the Ilmproper one, which is regular. If that
class 1is not empty, consider the expression for the class as
a regular class of stringa. We bulld a corresponding expression

for the event as a regular event by translating each unit

class A1 = {ai} (for each state ai) into the deflnite event E1
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of length 1 which occurs at time p exactly 1f the 1lnput at

time p 1s the external part of the state a,. (If k¥ = O, E,

is the event I of length 1 which always occurs, having né other

features. However, 1t may be initlal 1, that 1is, Eg- The only

other event of length 1 1n this case is the improper one T.)
Having done this, then the operations EVF, EF, and E#F for
building regular events parallel those AY B, AB, and A*B for
building regular classes of strings. The earliest units
(Sect. 7.3) in the expressions obtained should be marked as
being initilal.

This proves the theorem. No attempt has been made to
consider, in this proof, how simply the event represented by
the state at time p can be constructed as a regular event. We
have worked out some simple 1illustrations in which very compli-
cated expressions stand for regular events capable of simple
ones. The expressions obtained have entirely initial events
as earliest units, and are built of units of length 1. It is
clear that in most examples great simplifications can be obtained
by use of equivalences (Sect. 7.3); but no study has yet been
made of the possibilities for proceeding systematically with
such simplifications, or of rearranging the proof of Theorem 6
to come out directly with simpler expressions when possible.

The study of the structure of a set of objects B1seees@y
under a relation R, which 1s at the heart of the above proof:
might profitably draw on some algebraic theory, since it is
possible (though whether profitable or not we do not know) to

see the situation as a generalization of permutation groups.
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Corollary: The event ending at time p represented by

each of the following is likewise regular: (a) a certain -

internal state at time p+l. (b) a property of the state at

time p. (c) a property of the internal state at time p+l.

(4) a.certain internal state at time p+s for & given 8 > 1,

when thls does not depend on the input over p+l to p+s-l.

(e) a_property of the internal state at time p+s for a given

8 > 1, when this does not depend on the input over p+l to

pre-1.

Proof: As remarked at the end of Sect. 8, each of these
18 equivalent to one of certain states existing at time p; so
the event represented 1s a disjunction of the regular events
given by the theorem for the latter, and hence 1is regular.

This corollary brings our result now into correspondence
(as converse) of the result in Sect. 7. There we represented
an event by firing a certain neuron at time p+2. This is8 a
property of the internal state at time p+2, since it means the

m—1

internal state then 1s one of 2 different ones (according

to the states of the other m—l inner neurons).

Incidentally, the representations in Sect. 7 by firing a
certaln neuron at time p+2 are equivalent to representations
by a property of the state at time p, namely by the property
which those states at timeAE share which wlll lead to the firing
of this neuron at time p+2.

The event whlch 1s represented by & state a is the solu—
tion in the sense in which MeCulloch-Pitts speak of "solution"

for the case of nerve nets, except that we give the solution
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for a given internal initial state. A solution without pre-
supposing an initial internal state would then be obtained as
a disjunction of the solutions for us for each of the 8,:°...%8
(for nerve nets, 20) internal atates. -
Appendix 3 contains an example of an event which cannot
be represented in a finite automaton.
It 18, of course, essentlial for our arguments here that

the number of cells or parts (under our first definition of
a finite automaton) and the number of states for each, be
finite, so that the number of complete states 1s fixed in
advance. A machine of Turing (1937) which 1s supplied with an
unlimited amount of tape, is not a finite automaton in our
present sense, since, although in its operation only a finite
number of squares of tape are printed upon at any time, there
is no preassigned bound to this number.

| The Turing machine could be thought of as a finite auto-—
maton, which 1s also able to store information in the environ-
ment and reach for 1t later, so that in certain cases the inputs
are ldentified with inputs at earlier times or with states of
certain inner cells at earlier times, and thus the present input
is not entirely imdependent of the past. Whether this compari-
son may lead to any useful insights into Turing machines, or

reciprocally into finite automata, remains undetermined.



RM--T04
Page 87

APPENDIX 1: DEFINITENESS OF EVENTS REPRESENTABLE IN A FINITE
AUTOMATON WITH AN INFINITE PAST:

Theorem 7: Every event E ending at time p representable

by a certain state exlsting at time p (or by one of the other

methods listed in Corollary Theorem 6) in a finite automaton
with an infinite past 1s deflnite.

The result was cited in Sect. 6.1. The notion of auto-
maton to which we refer i1s given in Sect. 8.

Proof: With k input cells} the complete past is generated
by choosing between a flnite number of 25 possible inputs at
time t = p, then between a finite number 2E at time t = p-1,
etc., ad infinitum.

By a theorem given by Brouwer (1924) and also by Konig
(192?), 1f for each infinite past (i.e., for any such cholce
sequence) it 1s determined at some finite stage whether the
event occurs (ending at time p) or not, then there must be a
number N > O such that, whether the event occurs or not i1s known
for all pasts (1.e., all choice sequences) from only that part
of the past occupying the time p—N to p. In this case the event
| would be definlte of length N+1. (Brouwer's proof of the theorem
is intended for readers acquainted with the intuitionistic set
theory, and the main effort in his proof 1s to demonstrate the
theorem 1ntuitionist1ca11y.)

Now we show that indefinite events are not representable.
Contraposing the mentioned theorem, we conclude that for an
indefinite event, there is some barticular infinite past such

that for every u 1t 1s not known from the part from pu top

. of the past whether the event occurs or not.
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Case 1: The event E does not occur for this particular
past. Then for every u there 1s a past coinciding with the
given one over the time p-u to p and diverging from it prilor
to p-u, for which the event occurs.

Now suppose the representation of the event is by a‘pro-'
perty of the state at time p; say the notation 1s arranged sgo

that the states which have this property are a;,...,arz and

the states which do not are a£1+1,...,ar.

Now consider the set S of all the sequences of states

dodld2 ... compatible with the present state being one of

a ; l.e., do is one of a£1+1,...,a£, and each di has

-

£1+1,...,a£

as 1its Internal part that which is determined by di+1. There

are r-r; cholces for d,, at most r for d, , at most r for da, etc.
But for any u there i1s a past coinciding with the glven

one over the time p—u to p, and diverging from it before that,

along which the event does not occur. Along this past, any

gsequence dodld2 ... must belong to S arnd must in its first
ut+l choices d,yd,...d, be compatible with the given past (as
selected above); 1.e., the external parts of dys Ay, ceendy

must be the inputs over the last u+l moments of that past.
Now by Brouwer's theorem (contraposed) there must be an

infinite sequence dodldz*" in the set S which 1s compatible

with the entire given past (along which E occurs, but from

every finite segment of which a past diverges along which E

does not occur).
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But do is one of the states a£r+1,...,a£ » contrary to

our assumption that E 1s represented by the state at t = p belng

one of a;,...,8, . Thus, E cannot be 8o represented.

s

If we had assumed simply that whenever E ogceurs, the
present state must be one of a;,...,arl, the above considera—
tions show that there must also be examples in which the present

state will be one of a,,...,arx without E having occurred.

Case 2: The event E does not occur for this particular
past. The reasoning already applied gives the absurdity of E
being represented, hence of E itself being represented, by a

property of the state at t = p.
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APPENDIX 2: PRIMITIVE RECURSIVENESS OF REGULAR EVENTS:

Theorem 8: Every regular event is primitive recursive.

The terminology in the theorem is from the theory of
recursive functions and predicates as developed in the last 25
years. A book by Péter summarizes the theory, also & book by
the author which 1t is hoped will soon be in print.

The formulas given below "place” the regular events in
relation to number—theoretic predicates studied in the theory
of recursive functions. Although we have not pursued the mat—
ter further than to get one way of expressing regular events
recursively, possibly useful characterizations may be obtain-
able in this direction.

We already know from Sects. 5, 6.3, and 7.1 that number—
theoretic formulas can be constructed to stand for definite
events. The symbolism required can be seen by inspection of
the examples given. Terms p—1, p-2, ... are used only when
they are greater than O, as 1s insured by adding p > X
(Seet. 6.3) or now sometimes p = Y (Sect. 7.1) to the expres—
sions as given in Sect. 5. '

The range of the variables in the theory of recursive
functions is customarily O, 1, 2, ... rather than 1, 2, 3, ... .
To avoid having to reconstruct the notations in that theory
for the present application, let us in this appendix supbpoae
the time scale for events starts with t = O inatead of t = 1.
Slight changes are then required in the formulas for definite
events. Incidentally, now p-—l, p-2, ... are used in the sense

of ptl, ps2 in the theory o recursive functions.
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We shall simultaneously bulld expresslons for regular
events and for the lengths of the definite events of the class
of definite events which we use in characterizing the regular

events. More precisely, we describe to each regular event E

expressions A(p), Alp,n), € (p), and _A(n) such that

{g_ has occurred ending at time p_} = (E_q)n‘(.é(a)g(g,g)g A(p),

where for each gg{e(g), A(p,n) describes a definite event of
length /‘(p_). Here€ (p) 1s the number (> 1) of definite events,
in the occurrence of one of whiech the regular event consists.
(OurE(p_) is not necessarily the least number of such definilte
events, but 1s the number we use in our construction. Also,
the £ (p) regular aevents need not all be different.)

For a definite event used as a2 unit in the construction of
a regular event, £(p) = 1 (so n has only one value 0);
and A(p) 1s the expression already mentioned for the event;
A(p,n) can be simply A{p), or A(p) £ n=0 if we wish n to appear
explicitly in this case; while_/“(o) = Y where Y is the length
of the definite event under consideration.

For a regular event of the form FV@, say that B{p,n),
z (p) and )/(g) are the "A(p,n)", "&(p)" and 'f/“(_{i_)" for F,
and C(p,n), Y((P-) and % (n) are those for G.

Now take

=@ e [ §® 8 2] v (2@ 8 clen § )]

(the scope of the prefix (__E_n_)n<&(2) in the last being A(p,n)),

A(p) = (§2)n<6(2) A(p,n)
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where

yirn< Z(p),
€ (p) =g(g) + 71 (p), A(n) = Vi) 1 n 97?

£(n+ £(p) 1> £(p).
Let [g/‘g] = the quotient, and /O(g,p_) = the remainder,
when an integer a 1s dilvided by a positive integer b. Note
that as & ranges from O to kb-1 (b ¥ 0), the pair of quanti-
ties [E/}_a;l , f(g_,p_) range over all pairs of numbers X,y with
x <k, y<b.
Now for FG, given expresslons for F and for G as before

by the hypothesis of the inductlion, we have

= By e 2 @ /@D b g 2AME@] ),
Flo e |,

where €(p) = X(P.) N (p)

A =V ([yn@]) +E(fane).

For the remaining case we use the function (-8-')1 defined
thus. First let Py = Ehe i-th prime counting 2 as the O--tl'_ﬁ.
(So py =2, p1 = 3, Py = 13, ete.) Now
the highest power of p, which divides a, if a ¥ 0,

(2); =

Note that (:_a_)1 is also O 1f a 7‘ 0, but B3 does not divide a.

For example, 28 = 2%:.7; g0 (28)0-2, (28), = 0, (28)2 = 0,
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(28)s = 1, and (28)1 = 0 for any 1 > 3.

As a ranges over all non-negative integers, (2)0,...,(§)m_l

range over all m—tuples of natural numbers; and, in fact, as &

b
ranges over O to ggo "eud” P m]1 or heyond the funetions
max ((2)0?30)"‘°’max((§)m~1’§my&) range over all m—tuples

xé”;"%g-l for x, S'2°’°"’£E?1 S'Eﬂf&' (The function»(g)é
could have been used in place of {?/b] and'/g(g,g) in treating
the preceding case.)

Now say E 1s F*G, wheré expressions as before are assumed

already constructed for F and for G. An occurrence of E 1is

u factors
an occurrence orf ¥ T, FG for some u > 0. But for a

glven p, we must have u { p, Since F and G are eagch of length
> 1. So now we have for E*F the following: ‘

it

En)ne ¢(p) (Wigiq max ((n)y, p)BMax((n)y, £ (@)=2),

i
p =2 Vimax ((n)y, () =)

max ((n),,p)
fo ¢ (mex ((Rpay (), pyn @ =, =2 0"

s=l
v/(max ((n)g, §(2) = 1)))] ,

where

(p)+ (p)
€(p) =z§132+772

since each n which would be wanted is of the form



X
2.‘.3‘.. . Ell LI By‘l
u
| where
u < p
Virerong < £()
W < 72(9,) s
an ((2)gsp)
max{{n)n,
/(.(}'_1_) azl 2ok
S

g (0 (a1

It will be seen by readers familiar with recursive function
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Y
Tu+l

Y/ (max ((n),,4(p) = 1)) +

oy R = 1)),

theory that {% occure ending at time g} is thus primitive

recursive in the predicates N, (_g),...,gk(g) glving the inputs

over time t = 0,...,p, though, of course, the recursive

expresslions are complicated.

by saying {% occurs ending

Also, we can express the result

at time é} is primitive recursive in

p and a number giving in code form the combined input from

t=0¢tot =p.
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APPENDIX 3: AN EXAMPLE OF AN EVENT WHICH IS NOT REPRESENTABLE
(AND THEREFORE NOT REGULAR), THOUGH IT IS PRIMITIVE
RECURSIVE:

Consider the event E referring to one input cell N, des-

crived as follows:

N fires at time t = v® for every v such that v® < p, and

only then.

(This is primitive recursive, since it can be expressed

@y {[@z)m ] d )] v (B9, [=vaf .rs‘@]} )

No nerve net or finlte automaton of any other kind can

represent this event. ¥For consider an automaton with states

a1,...,a£-

Assume given a representation of the event by a property
of the automaton at time p; i.e., we assume that there are
states, say 1;,...,ar1 (ry < m), such that at time p the state

——

is or is not one of these, acecording as the event has occurred

or not..

We shall show that this assumption leads to absurdity.
Consider any number 8 such that 28 > r,.

,  Say that N 1s fired at times t = 1, 4, 9,...,8? and

‘niever trereafuer. v
Then E oceurs for p = 1, 2,...,kgf1)'@; 1 and for
no greater p.
Consider the states of the automaton at times s®+1, s2+2,

ess o These must all be from the 1list 81,0058,
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However, beginning with time gf+1, N is never fired; so
the external state is constant. Thus, each state for all time
thereafter will be determined by the immediately preceding
state. Hence, since there 1is only a finite number of possible
states 81,...,8, , the sequence of the states d,,d2,da,...
beginning with ;hat at time g?+1 is ultimately periodic. For
after r states at most, a state must be taken for the second
time, and thereafter the states since the first occurrence of
that one must repeat themselves cyclically.

However, during the time s®+1,...,8%+2s, the state must

be one of a;,...,arl, since the event occurs for these values

of p; and hence, since 28 > r,, the period must already have
become established (i.e., the first repetition in d,,dz,ds,...
must already have occurred) by the time s2+2s. Hence the

state at time 8*+28+1 (= (s+1)%) is one of 81,0-58, contrary
to the fact that the event has not occurred ending ;f time

p = (s+1)%.

It 18 not suggested that the event in question would be
of any bilological significance. But the example 18 given to
show the mathematical limitations to what events can be repre-
sented. Of course, by Appendix 2 we already knew that events
'not primitive recursive are not representable; but the present
example is much simpler.

Without elther appendix, one would not expect events

whose verification involves the completion of an infinite pro-

cess (these being non-recursive) to be representable. The
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present example does not involve the completion of an infinite
process; but 1t does involve the completion of a finite process,
which as p varies 18 unbounded, and this likewlse transcends

the capabilities of a fixed finlte automaton.

bje
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