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* MEDICAL PROBLEM

— Reduce spread of resistant bacteria in hospitals

— AST: Antimicrobial suscep. test

e Effect of AB on bacteria strains

* Days to be completed

—Predict if infected by resistant bacteria before
AST

—Focus on VRE: enterococcus species resistant to
vancomycin

Enterococci / enterau kokpi/

Source: https://en.wikipedia.org/wiki/Diagnostic_microbiology
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* OUTLINE:
1. Medical problem\/
2. Proposal
3. Requirements & experiments

4. Conclusions & future work
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* PROPOSAL

— Assess the impact of ML models

— For VRE predictor in a CDSS
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User & Data REQUIREMENTS
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 Requirements: INTREPRETABLE

—Vague term
— Lipton’s classification:

* Transparent

* Post-Hoc explanation
—Trust and easy evaluation
— Approach:

* Logistic Regression
* Decision Trees

* Rule-based
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* Requirements: Concept Drift

— Influence of factors vary over time
— Bacteria develop resistance
— Seasonal variations dissemination bacteria

— Change clinical protocols

— Approach: \\\%@MWELA

N
:\\\ I =N s

e Sliding windows time
e Understand & Implement @DELB
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 Requirements: High Dimensionality

— Patient clinical record + Lab test results

— Approach:

* Filters (FCBF)
 Requirements: Imbalanced Dataset

— Few observations Resistant class
— Many Susceptible class

— Approach:

 Random oversampling (1:1)
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Junts for the fact that occasionally the decision surface lies
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. The points most deeply imbedded within each class were the
two points in the random ordering.

more realistic experiment was performed using data supplied
agy of IBM.U This data consisted of approximately 12 000
imensional binary vectors drawn from 25 different statistical
lations. (The data represent upper-case typewritten characters,
ding “L” typed with nine different styles of fonts.) The
)0 samples were divided into a training set and  testing set of
loximately equal size, and the CNN algorithm was used on the
ing set. The algorithm terminated after four iterations through
BAG, at which time sTORE contained 197 of the original 6295
les. An error rate of 1.28 percent was obtained on the indepen-
test set. This was somewhat disappointing in view of the fact
a number of simpler classifiers (the ternary reference classi-
) linear machine,!¥) and piecewise-linear machinel®)), using
iderably less computer time, achieved error rates on the order

Let X and Y take on the values (z:: ¢
1, -+ ,n}, respectively, where n > m. A decision rule for X in torms
of ¥ can be considered as a partition [A. i =1, -+, m} such that
Ai NA;=¢,i5j,and Ul A; = 1, -++, n} where the
decision is 2 if ¥ ¢ A;. This also defines 1 “post-decision” random
variable Z, where Z is defined by Z = z;if ¥ e Ay i =1, -1, m.
Two putative measures of the efficiency of this system are un-
certainty (or equivocation) and probability of error. It is desxmble
to determine the relationship between these two measures.
particular, we can compare H(X|¥) with the minimum probabi z
of error Py(e) if we want to evaluate the channel independent of
the decision rule. Otherwise we can compare, given a particular
decision rule, H(X|Z) with the probability of error P(e). The pur-
pose of the paper is to demonstrate the exact relationship between
H(X|Y) and Py(e).

First, we relate H(X|ys) to Po(elys) for each k. Now Pylelys) =
1—max; P(zilys)}, and letting yx be ﬁxed, we donete P; = P(zilys),
i=1,--,m,suchthat Py > Py i =2, -, m. Then Polelys) =
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* EXPERIMENTS
— VRE:

e Bacteria: Enterococci faecium + Enterococci faecalis

e Antibiotic: Vancomycin

— Dataset:

 WASPSS platform

e University Hospital Getafe

« 2010-2016

* 1393 + Enterococci cultures (42 VRE)

e 571 attributes + binary class (resistant|suscept.)

ARTIFICIAL
INTELLIGENCE

rrrrrrr
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* EXPERIMENTS:

Model
Selected




Number of predictors
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Results

AUC

Mean (95% C.l1) number of predictors per model

None Oversampling

75- T
- e
Y =2 //’.",’ i
50= L 2=
8 1 —
S ” — 7
a2’ —— = Vi

25- -

0- -
75-
50 -
25-

0 h L) _I___ I— 1 1 1 _-I 1 1 1 L) L L}

12 18 24 30 36 42 None 12 18 24 30 36 42

Size of the sliding window (months)

— I ——
Model: —‘ Logistic regression i---+ Conditional tree l——: Rule-based model

Mean (95% C.I) AUC obtained with test dataset

None

0.80~-
0.75=
0.70=
0.65-
0.60~-
0.55~-
0.50~-

0.80-
0.75=
0.70= P
0.65- -

0.60-
0.55=

.....

1 1 1 1
None 12 18 24

36

UNIVERSIDAD DE

MURCIA

Oversampling

SUON

\
4904

_______

1
None

Size of the sliding window (months)

\B

|
\ |

F——

o ——

Model: |~ Logh \c regression EE Conditional tree }——-I Rule-based

el

auoN

48904

==

1
None

13



UNIVERSIDAD DE

Exploring antimicrobial resistance prediction using ... MURCIA

Mean (95% C.I) AUC obtained with test dataset =0.8 mean AUC

* Results Q/
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* Conclusions & future work

— 3 interpretable models for VRE problem

— Temporal dependence: concept drifting

— v/’ Oversampling +FCBF in VRE

— Performance vs. interpretability (80%+75p. vs. 73%+16p.)
— How evaluate interpretability of models

— Models in CDSS and clinical activity flow

15
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Machine Learning

- | HUNTING CHEETAHS...
| why not?

i e *‘ ge o
| . Machine Learnlng
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