
10
Transmission Lines

10.1 General Properties of TEM Transmission Lines

We saw in Sec. 9.3 that TEM modes are described by Eqs. (9.3.3) and (9.3.4), the latter
being equivalent to a two-dimensional electrostatic problem:

HT = 1

η
ẑ× ET

∇∇∇T × ET = 0

∇∇∇T · ET = 0

(TEM modes) (10.1.1)

The second of (10.1.1) implies that ET can be expressed as the (two-dimensional)
gradient of a scalar electrostatic potential. Then, the third equation becomes Laplace’s
equation for the potential. Thus, the electric field can be obtained from:

∇2
Tϕ = 0

ET = −∇∇∇Tϕ
(equivalent electrostatic problem) (10.1.2)

Because in electrostatic problems the electric field lines must start at positively
charged conductors and end at negatively charged ones, a TEM mode can be supported
only in multi-conductor guides, such as the coaxial cable or the two-wire line. Hollow
conducting waveguides cannot support TEM modes.

Fig. 10.1.1 depicts the transverse cross-sectional area of a two-conductor transmis-
sion line. The cross-section shapes are arbitrary.

The conductors are equipotentials of the electrostatic solution. Let ϕa,ϕb be the
constant potentials on the two conductors. The voltage difference between the conduc-
tors will be V =ϕa −ϕb. The electric field lines start perpendicularly on conductor (a)
and end perpendicularly on conductor (b).

The magnetic field lines, being perpendicular to the electric lines according to Eq. (10.1.1),
are recognized to be the equipotential lines. As such, they close upon themselves sur-
rounding the two conductors.
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Fig. 10.1.1 Two-conductor transmission line.

In particular, on the conductor surfaces the magnetic field is tangential. According
to Ampère’s law, the line integrals of the magnetic field around each conductor will
result into total currents I and −I flowing on the conductors in the z-direction. These
currents are equal and opposite.

Impedance, Inductance, and Capacitance

Because the fields are propagating along the z-direction with frequencyω and wavenum-
ber β =ω/c, the z, t dependence of the voltage V and current I will be:

V(z, t)= Vejωt−jβz
I(z, t)= Iejωt−jβz (10.1.3)

For backward-moving voltage and current waves, we must replace β by−β. The ratio
V(z, t)/I(z, t)= V/I remains constant and independent of z. It is called the character-
istic impedance of the line:

Z = V
I

(line impedance) (10.1.4)

In addition to the impedance Z, a TEM line is characterized by its inductance per unit
length L′ and its capacitance per unit length C′. For lossless lines, the three quantities
Z,L′, C′ are related as follows:

L′ = μ Z
η
, C′ = ε η

Z
(inductance and capacitance per unit length) (10.1.5)

where η = √
μ/ε is the characteristic impedance of the dielectric medium between the

conductors.† By multiplying and dividing L′ and C′, we also obtain:

Z =
√
L′

C′
, c = 1√εμ =

1√
L′C′

(10.1.6)

†These expressions explain why μ and ε are sometimes given in units of henry/m and farad/m.
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The velocity factor of the line is the ratio c/c0 = 1/n, where n = √
ε/ε0 = √εr is the

refractive index of the dielectric, which is assumed to be non-magnetic.
Because ω = βc, the guide wavelength will be λ = 2π/β = c/f = c0/fn = λ0/n,

where λ0 is the free-space wavelength. For a finite length l of the transmission line, the
quantity l/λ = nl/λ0 is referred to as the electrical length of the line and plays the same
role as the optical length in thin-film layers.

Eqs. (10.1.5) and (10.1.6) are general results that are valid for any TEM line. They can
be derived with the help of Fig. 10.1.2.

Fig. 10.1.2 Surface charge and magnetic flux linkage.

The voltage V is obtained by integrating ET ·dl along any path from (a) to (b). How-
ever, if that path is chosen to be an E-field line, then ET · dl = |ET|dl, giving:

V =
∫ b
a
|ET|dl (10.1.7)

Similarly, the current I can be obtained by the integral of HT · dl along any closed
path around conductor (a). If that path is chosen to be an H-field line, such as the
periphery Ca of the conductor, we will obtain:

I =
∮
Ca
|HT|dl (10.1.8)

The surface charge accumulated on an infinitesimal area dldz of conductor (a) is
dQ = ρsdldz, where ρs is the surface charge density. Because the conductors are
assumed to be perfect, the boundary conditions require that ρs be equal to the normal
component of the D-field, that is, ρs = ε|ET|. Thus, dQ = ε|ET|dldz.

If we integrate over the peripheryCa of conductor (a), we will obtain the total surface
charge per unit z-length:

Q′ = dQ
dz
=
∮
Ca
ε|ET|dl

But because of the relationship |ET| = η|HT|, which follows from the first of Eqs. (10.1.1),
we have:

Q′ =
∮
Ca
ε|ET|dl = εη

∮
Ca
|HT|dl = εηI (10.1.9)

where we used Eq. (10.1.8). Because Q′ is related to the capacitance per unit length and
the voltage by Q′ = C′V, we obtain
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Q′ = C′V = εηI ⇒ C′ = εη I
V
= ε η

Z

Next, we consider an E-field line between pointsA and B on the two conductors. The
magnetic flux through the infinitesimal area dldz will be dΦ = |BT|dldz = μ|HT|dldz
because the vector HT is perpendicular to the area.

If we integrate from (a) to (b), we will obtain the total magnetic flux linking the two
conductors per unit z-length:

Φ′ = dΦ

dz
=
∫ b
a
μ|HT|dl

replacing |HT| = |ET|/η and using Eq. (10.1.7), we find:

Φ′ =
∫ b
a
μ|HT|dl = μη

∫ b
a
|ET|dl = μη V

The magnetic flux is related to the inductance via Φ′ = L′I. Therefore, we get:

Φ′ = L′I = μ
η
V ⇒ L′ = μ

η
V
I
= μ Z

η

Transmitted Power

The relationships among Z,L′, C′ can also be derived using energy considerations. The
power transmitted along the line is obtained by integrating the z-component of the
Poynting vector over the cross-section S of the line. For TEM modes we have Pz =
|ET|2/2η, therefore,

PT = 1

2η

∫∫
S
|ET|2dxdy = 1

2η

∫∫
S
|∇∇∇Tϕ|2dxdy (10.1.10)

It can be shown in general that Eq. (10.1.10) can be rewritten as:

PT = 1

2
Re(V∗I)= 1

2
Z|I|2 = 1

2Z
|V|2 (10.1.11)

We will verify this in the various examples below. It can be proved using the following
Green’s identity:

|∇∇∇Tϕ|2 +ϕ∗∇2
Tϕ =∇∇∇T · (ϕ∗∇∇∇Tϕ)

Writing ET = −∇∇∇Tϕ and noting that ∇2
Tϕ = 0, we obtain:

|ET|2 = −∇∇∇T · (ϕ∗ET)

Then, the two-dimensional Gauss’ theorem implies:
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PT = 1

2η

∫∫
S
|ET|2dxdy = − 1

2η

∫∫
S
∇∇∇T · (ϕ∗ET)dxdy

= − 1

2η

∮
Ca
ϕ∗ET · (−n̂)dl− 1

2η

∮
Cb
ϕ∗ET · (−n̂)dl

= 1

2η

∮
Ca
ϕ∗(ET · n̂)dl+ 1

2η

∮
Cb
ϕ∗(ET · n̂)dl

where n̂ are the outward normals to the conductors (the quantity −n̂ is the normal
outward from the region S.) Because the conductors are equipotential surfaces, we have
ϕ∗ =ϕ∗a on conductor (a) andϕ∗ =ϕ∗b on conductor (b). Using Eq. (10.1.9) and noting
that ET · n̂ = ±|ET| on conductors (a) and (b), we obtain:

PT = 1

2η
ϕ∗a

∮
Ca
|ET|dl− 1

2η
ϕ∗b

∮
Cb
|ET|dl = 1

2η
ϕ∗a

Q′

ε
− 1

2η
ϕ∗b

Q′

ε

= 1

2
(ϕ∗a −ϕ∗b )

Q′

εη
= 1

2
V∗
εηI
εη
= 1

2
V∗I = 1

2
Z|I|2

The distribution of electromagnetic energy along the line is described by the time-
averaged electric and magnetic energy densities per unit length, which are given by:

W′e =
1

4
ε
∫∫
S
|ET|2dxdy , W′m =

1

4
μ
∫∫
S
|HT|2dxdy

Using Eq. (10.1.10), we may rewrite:

W′e =
1

2
εηPT = 1

2c
PT , W′m =

1

2

μ
η
PT = 1

2c
PT

Thus, W′e = W′m and the total energy density is W′ = W′e +W′m = PT/c, which
implies that the energy velocity will be ven = PT/W′ = c. We may also express the
energy densities in terms of the capacitance and inductance of the line:

W′e =
1

4
C′|V|2 , W′m =

1

4
L′|I|2 (10.1.12)

Power Losses, Resistance, and Conductance

Transmission line losses can be handled in the manner discussed in Sec. 9.2. The field
patterns and characteristic impedance are determined assuming the conductors are per-
fectly conducting. Then, the losses due to the ohmic heating of the dielectric and the
conductors can be calculated by Eqs. (9.2.5) and (9.2.9).

These losses can be quantified by two more characteristic parameters of the line, the
resistance and conductance per unit length, R′ and G′. The attenuation coefficients due
to conductor and dielectric losses are then expressible in terms R′, G′ and Z by:

αc = R′

2Z
, αd = 1

2
G′Z (10.1.13)
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They can be derived in general terms as follows. The induced surface currents on
the conductor walls are Js = n̂×HT = n̂× (ẑ× ET)/η, where n̂ is the outward normal
to the wall.

Using the BAC-CAB rule, we find Js = ẑ(n̂ · ET)/η. But, n̂ is parallel to ET on the
surface of conductor (a), and anti parallel on (b). Therefore, n̂ · ET = ±|ET|. It follows
that Js = ±ẑ|ET|/η = ±ẑ|HT|, pointing in the +z direction on (a) and −z direction on
(b). Inserting these expressions into Eq. (9.2.8), we find for the conductor power loss per
unit z-length:

P′loss =
dPloss

dz
= 1

2
Rs

∮
Ca
|HT|2 dl+ 1

2
Rs

∮
Cb
|HT|2 dl (10.1.14)

Because HT is related to the total current I via Eq. (10.1.8), we may define the resis-
tance per unit length R′ through the relationship:

P′loss =
1

2
R′|I|2 (conductor ohmic losses) (10.1.15)

Using Eq. (10.1.11), we find for the attenuation coefficient:

αc = P
′
loss

2PT
=

1

2
R′|I|2

2
1

2
Z|I|2

= R′

2Z
(10.1.16)

If the dielectric between the conductors is slightly conducting with conductivity σd
or loss tangent tanδ = σd/εω, then there will be some current flow between the two
conductors.

The induced shunt current per unit z-length is related to the conductance by I′d =
G′V. The shunt current density within the dielectric is Jd = σdET. The total shunt
current flowing out of conductor (a) towards conductor (b) is obtained by integrating Jd
around the periphery of conductor (a):

I′d =
∮
Ca

Jd · n̂dl = σd
∮
Ca
|ET|dl

Using Eq. (10.1.9), we find:

I′d = σd
Q′

ε
= G′V ⇒ G′ = σd

ε
C′ = σd ηZ

It follows that the dielectric loss constant (9.2.5) will be:

αd = 1

2
σdη = 1

2
G′Z

Alternatively, the power loss per unit length due to the shunt current will be P′d =
Re(I′dV∗)/2 = G′|V|2/2, and therefore, αd can be computed from:

αd = P′d
2PT

=
1

2
G′|V|2

2
1

2Z
|V|2

= 1

2
G′Z
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It is common practice to express the dielectric losses and shunt conductance in terms
of the loss tangent tanδ and the wavenumber β =ω/c =ωεη:

αd = 1

2
σdη = 1

2
ωεη tanδ = 1

2
β tanδ and G′ = σd

ε
C′ =ωC′ tanδ (10.1.17)

Next, we discuss four examples: the parallel plate line, the microstrip line, the coaxial
cable, and the two-wire line. In each case, we discuss the nature of the electrostatic
problem and determine the characteristic impedance Z and the attenuation coefficients
αc and αd.

10.2 Parallel Plate Lines

The parallel plate line shown in Fig. 10.2.1 consists of two parallel conducting plates of
width w separated by height h by a dielectric material ε. Examples of such lines are
microstrip lines used in microwave integrated circuits.

For arbitrary values of w and h, the fringing effects at the ends of the plates cannot
be ignored. In fact, fringing requires the fields to have longitudinal components, and
therefore TEM modes are not strictly-speaking supported.

Fig. 10.2.1 Parallel plate transmission line.

However, assuming the width is much larger than the height, w� h, we may ignore
the fringing effects and assume that the fields have no dependence on the x-coordinate.

The electrostatic problem is equivalent to that of a parallel plate capacitor. Thus,
the electric field will have only a y component and will be constant between the plates.
Similarly, the magnetic field will have only an x component. It follows from Eqs. (10.1.7)
and (10.1.8) that:

V = −Eyh , I = Hxw
Therefore, the characteristic impedance of the line will be:

Z = V
I
= −Eyh
Hxw

= η h
w

(10.2.1)

where we used Ey = −ηHx. The transmitted power is obtained from Eq. (10.1.10):

PT = 1

2η
|Ey|2(wh)= 1

2η
V2

h2
wh = 1

2η
w
h
V2 = 1

2Z
V2 = 1

2
ZI2 (10.2.2)
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The inductance and capacitance per unit length are obtained from Eq. (10.1.5):

L′ = μ h
w
, C′ = εw

h
(10.2.3)

The surface current on the top conductor is Js = n̂ × H = (−ŷ)×H = ẑHx. On the
bottom conductor, it will be Js = −ẑHx. Therefore, the power loss per unit z-length is
obtained from Eq. (9.2.8):

P′loss = 2
1

2
Rs|Hx|2w = 1

w
RsI2

Comparing with Eq. (10.1.15), we identify the resistance per unit length R′ = 2Rs/w.
Then, the attenuation constant due to conductor losses will be:

αc = P
′
loss

2PT
= R′

2Z
= Rs
wZ

= Rs
hη

(10.2.4)

10.3 Microstrip Lines

Practical microstrip lines, shown in Fig. 10.3.1, have width-to-height ratios w/h that are
not necessarily much greater than unity, and can vary over the interval 0.1 < w/h < 10.
Typical heights h are of the order of millimeters.

Fig. 10.3.1 A microstrip transmission line.

Fringing effects cannot be ignored completely and the simple assumptions about the
fields of the parallel plate line are not valid. For example, assuming a propagating wave
in the z-direction with z, t dependence of ejωt−jβz with a common β in the dielectric
and air, the longitudinal-transverse decomposition (9.1.5) gives:

∇∇∇TEz × ẑ− jβ ẑ× ET = −jωμHT ⇒ ẑ× (∇∇∇TEz + jβET)= jωμHT

In particular, we have for the x-component:

∂yEz + jβEy = −jωμHx
The boundary conditions require that the components Hx and Dy = εEy be contin-

uous across the dielectric-air interface (at y = h). This gives the interface conditions:

∂yEair
z + jβEair

y = ∂yEdiel
z + jβEdiel

y

ε0Eair
y = εEdiel

y
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Combining the two conditions, we obtain:

∂y
(
Ediel
z − Eair

z
) = jβε− ε0

ε
Eair
y = jβ

ε− ε0

ε0
Ediel
y (10.3.1)

Because Ey is non-zero on either side of the interface, it follows that the left-hand
side of Eq. (10.3.1) cannot be zero and the wave cannot be assumed to be strictly TEM.

However, Ey is small in both the air and the dielectric in the fringing regions (to the
left and right of the upper conductor). This gives rise to the so-called quasi-TEM approx-
imation in which the fields are assumed to be approximately TEM and the effect of the
deviation from TEM is taken into account by empirical formulas for the line impedance
and velocity factor.

In particular, the air-dielectric interface is replaced by an effective dielectric, filling
uniformly the entire space, and in which there would be a TEM propagating mode. If
we denote by εeff the relative permittivity of the effective dielectric, the wavelength and
velocity factor of the line will be given in terms of their free-space values λ0, c0:

λ = λ0√
εeff

, c = c0√
εeff

(10.3.2)

There exist many empirical formulas for the characteristic impedance of the line
and the effective dielectric constant. Hammerstad and Jensen’s are some of the most
accurate ones [862,868]:

εeff = εr + 1

2
+ εr − 1

2

(
1+ 10

u

)−ab
, u = w

h
(10.3.3)

where εr = ε/ε0 is the relative permittivity of the dielectric and the quantities a,b are
defined by:

a = 1+ 1

49
ln

[
u4 + (u/52)2

u4 + 0.432

]
+ 1

18.7
ln

[
1+

(
u

18.1

)3
]

b = 0.564
(
εr − 0.9
εr + 3

)0.053
(10.3.4)

The accuracy of these formulas is better than 0.01% foru < 1 and 0.03% foru < 1000.
Similarly, the characteristic impedance is given by the empirical formula:

Z = η0

2π
√
εeff

ln

⎡
⎣ f(u)

u
+
√

1+ 4

u2

⎤
⎦ (10.3.5)

where η0 =
√
μ0/ε0 and the function f(u) is defined by:

f(u)= 6+ (2π− 6)exp

[
−
(

30.666

u

)0.7528
]

(10.3.6)

The accuracy is better than 0.2% for 0.1 ≤ u ≤ 100 and εr < 128. In the limit of
large ratio w/h, or, u → ∞, Eqs. (10.3.3) and (10.3.5) tend to those of the parallel plate
line of the previous section:
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εeff → εr , Z → η0√
εr
h
w
= η h

w

Some typical substrate dielectric materials used in microstrip lines are alumina, a
ceramic form of Al2O4 with er = 9.8, and RT-Duroid, a teflon composite material with
εr = 2.2. Practical values of the width-to-height ratio are in the range 0.1 ≤ u ≤ 10
and practical values of characteristic impedances are between 10–200 ohm. Fig. 10.3.2
shows the dependence of Z and εeff on u for the two cases of εr = 2.2 and εr = 9.8.
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Fig. 10.3.2 Characteristic impedance and effective permittivity of microstrip line.

The synthesis of a microstrip line requires that we determine the ratiow/h that will
achieve a given characteristic impedance Z. The inverse of Eq. (10.3.5)—solving for u in
terms of Z—is not practical. Direct synthesis empirical equations exist [863,868], but
are not as accurate as (10.3.5). Given a desired Z, the ratio u = w/h is calculated as
follows. If u ≤ 2,

u = 8

eA − 2e−A
(10.3.7)

and, if u > 2,

u = εr − 1

πεr

[
ln(B− 1)+0.39− 0.61

εr

]
+ 2

π
[
B− 1− ln(2B− 1)

]
(10.3.8)

where A,B are given by:

A = π√2(εr + 1)
Z
η0
+ εr − 1

εr + 1

(
0.23+ 0.11

εr

)

B = π
2
√
εr
η0

Z

(10.3.9)

The accuracy of these formulas is about 1%. The method can be improved iteratively
by a process of refinement to achieve essentially the same accuracy as Eq. (10.3.5). Start-
ing with u computed from Eqs. (10.3.7) and (10.3.8), a value of Z is computed through
Eq. (10.3.5). If that Z is more than, say, 0.2% off from the desired value of the line
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impedance, then u is slightly changed, and so on, until the desired level of accuracy is
reached [868]. Because Z is monotonically decreasing with u, if Z is less than the de-
sired value, then u is decreased by a small percentage, else, u is increased by the same
percentage.

The three MATLAB functions mstripa, mstrips, and mstripr implement the anal-
ysis, synthesis, and refinement procedures. They have usage:

[eff,Z] = mstripa(er,u); % analysis equations (10.3.3) and (10.3.5)

u = mstrips(er,Z); % synthesis equations (10.3.7) and (10.3.8)

[u,N] = mstripr(er,Z,per); % refinement

The function mstripa accepts also a vector of several u’s, returning the correspond-
ing vector of values of εeff and Z. In mstripr, the output N is the number of iterations
required for convergence, and per is the desired percentage error, which defaults to
0.2% if this parameter is omitted.

Example 10.3.1: Given εr = 2.2 andu = w/h = 2,4,6, the effective permittivities and impedances
are computed from the MATLAB call:

u = [2; 4; 6];
[eff, Z] = mstripa(er,u);

The resulting output vectors are:

u =
⎡
⎢⎣

2
4
6

⎤
⎥⎦ ⇒ εeff =

⎡
⎢⎣

1.8347
1.9111
1.9585

⎤
⎥⎦ , Z =

⎡
⎢⎣

65.7273
41.7537
30.8728

⎤
⎥⎦ ohm

Example 10.3.2: To compare the outputs of mstrips and mstripr, we design a microstrip line
with εr = 2.2 and characteristic impedance Z = 50 ohm. We find:

u = mstrips(2.2,50)= 3.0779 ⇒ [εeff, Z]= mstripa(2.2, u)= [1.8811, 50.0534]

u = mstripr(2.2,50)= 3.0829 ⇒ [εeff, Z]= mstripa(2.2, u)= [1.8813, 49.9990]

The first solution has an error of 0.107% from the desired 50 ohm impedance, and the
second, a 0.002% error.

As another example, if Z = 100 Ω, the function mstrips results in u = 0.8949, Z =
99.9495 Ω, and a 0.050% error, whereas mstripr gives u = 0.8939, Z = 99.9980 Ω, and a
0.002% error. ��

In using microstrip lines several other effects must be considered, such as finite strip
thickness, frequency dispersion, dielectric and conductor losses, radiation, and surface
waves. Guidelines for such effects can be found in [862–868].

The dielectric losses are obtained from Eq. (10.1.17) by multiplying it by an effective
dielectric filling factor q:

αd = qω
2c

tanδ = f
c0
πq
√
εeff tanδ = 1

λ0
πq
√
εeff tanδ , q = 1− ε−1

eff

1− ε−1
r

(10.3.10)
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Typical values of the loss tangent are of the order of 0.001 for alumina and duroid
substrates. The conductor losses are approximately computed from Eq. (10.2.4):

αc = Rs
wZ

(10.3.11)

10.4 Coaxial Lines

The coaxial cable, depicted in Fig. 10.4.1, is the most widely used TEM transmission line.
It consists of two concentric conductors of inner and outer radii of a and b, with the
space between them filled with a dielectric ε, such as polyethylene or teflon.

The equivalent electrostatic problem can be solved conveniently in cylindrical coor-
dinates ρ,φ. The potential ϕ(ρ,φ) satisfies Laplace’s equation:

∇2
Tϕ =

1

ρ
∂
∂ρ

(
ρ
∂ϕ
∂ρ

)
+ 1

ρ2

∂2ϕ
∂2φ

= 0

Because of the cylindrical symmetry, the potential does not depend on the azimuthal
angle φ. Therefore,

1

ρ
∂
∂ρ

(
ρ
∂ϕ
∂ρ

)
= 0 ⇒ ρ

∂ϕ
∂ρ
= B ⇒ ϕ(ρ)= A+ B lnρ

where A,B are constants of integration. Assuming the outer conductor is grounded,
ϕ(ρ)= 0 at ρ = b, and the inner conductor is held at voltageV,ϕ(a)= V, the constants
A,B are determined to be B = −V ln(b/a) and A = −B lnb, resulting in the potential:

ϕ(ρ)= V
ln(b/a)

ln(b/ρ) (10.4.1)

It follows that the electric field will have only a radial component, Eρ = −∂ρϕ, and
the magnetic field only an azimuthal component Hφ = Eρ/η:

Eρ = V
ln(b/a)

1

ρ
, Hφ = V

η ln(b/a)
1

ρ
(10.4.2)

Integrating Hφ around the inner conductor we obtain the current:

Fig. 10.4.1 Coaxial transmission line.
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I =
∫ 2π

0
Hφ ρdφ =

∫ 2π

0

V
η ln(b/a)

1

ρ
ρdφ = 2πV

η ln(b/a)
(10.4.3)

It follows that the characteristic impedance of the line Z = V/I, and hence the
inductance and capacitance per unit length, will be:

Z = η
2π

ln(b/a), L′ = μ
2π

ln(b/a), C′ = 2πε
ln(b/a)

(10.4.4)

Using Eq. (10.4.3) into (10.4.2), we may express the magnetic field in the form:

Hφ = I
2πρ

(10.4.5)

This is also obtainable by the direct application of Ampère’s law around the loop of
radius ρ encircling the inner conductor, that is, I = (2πρ)Hφ.

The transmitted power can be expressed either in terms of the voltage V or in terms
of the maximum value of the electric field inside the line, which occurs at ρ = a, that is,
Ea = V/

(
a ln(b/a)

)
:

PT = 1

2Z
|V|2 = π|V|2

η ln(b/a)
= 1

η
|Ea|2(πa2)ln(b/a) (10.4.6)

Example 10.4.1: A commercially available polyethylene-filled RG-58/U cable is quoted to have
impedance of 53.5 Ω, velocity factor of 66 percent, inner conductor radius a = 0.406 mm
(AWG 20-gauge wire), and maximum operating RMS voltage of 1900 volts. Determine the
outer-conductor radius b, the capacitance per unit length C′, the maximum power PT that
can be transmitted, and the maximum electric field inside the cable. What should be the
outer radius b if the impedance were required to be exactly 50 Ω?

Solution: Polyethylene has a relative dielectric constant of εr = 2.25, so that n = √εr = 1.5.
The velocity factor is c/c0 = 1/n = 0.667. Given that η = η0/n = 376.73/1.5 = 251.15
Ω, we have:

Z = η
2π

ln(b/a) ⇒ b = ae2πZ/η = 0.406e2π53.5/251.15 = 1.548 mm

Therefore, b/a = 3.81. If Z = 50, the above calculation would give b = 1.418 mm and
b/a = 3.49. The capacitance per unit length is found from:

C′ = εη
Z
= 1

cZ
= n
c0Z

= 1.5
3×108×53.5

= 93.46 pF/m

For Z = 50 Ω, we find C′ = 100 pF/m. The peak voltage is related to its RMS value by
|V| = √2Vrms. It follows that the maximum power transmitted is:

PT = 1

2Z
|V|2 = V

2
rms

Z
= 19002

53.5
= 67.5 kW

The peak value of the electric field occurring at the inner conductor will be:
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|Ea| = |V|
a ln(b/a)

=
√

2Vrms

a ln(b/a)
=

√
21900

0.406×10−2 ln(3.096/0.406)
= 0.5 MV/m

This is to be compared with the dielectric breakdown of air of 3 MV/m. For a 73-Ω RG-
59/U cable with a = 0.322 mm (AWG 22-gauge wire), we find b = 2 mm, C′ = 68.5 pF/m,
PT = 49.5 kW, and Emax = 0.46 MV/m. ��

Example 10.4.2: Most cables have a nominal impedance of either 50 or 75 Ω. The precise value
depends on the manufacturer and the cable. For example, a 50-Ω cable might actually have
an impedance of 52 Ω and a 75-Ω cable might actually be a 73-Ω cable.

The table below lists some commonly used cables with their AWG-gauge number of the
inner conductor, the inner conductor radius a in mm, and their nominal impedance. Their
dielectric filling is polyethylene with εr = 2.25 or n = √εr = 1.5.

type AWG a Z

RG-6/U 18 0.512 75
RG-8/U 11 1.150 50
RG-11/U 14 0.815 75
RG-58/U 20 0.406 50
RG-59/U 22 0.322 75
RG-174/U 26 0.203 50
RG-213/U 13 0.915 50

The most commonly used cables are 50-Ω ones, such as the RG-58/U. Home cable-TV uses
75-Ω cables, such as the RG-59/U or RG-6/U.

The thin ethernet computer network, known as 10base-2, uses RG-58/U or RG-58A/U,
which is similar to the RG-58/U but has a stranded inner copper core. Thick ethernet
(10base-5) uses the thicker RG-8/U cable.

Because a dipole antenna has an input impedance of about 73 Ω, the RG-11, RG-6, and
RG-59 75-Ω cables can be used to feed the antenna. ��

Next, we determine the attenuation coefficient due to conductor losses. The power
loss per unit length is given by Eq. (10.1.14). The magnetic fields at the surfaces of
conductors (a) and (b) are obtained from Eq. (10.4.5) by setting ρ = a and ρ = b:

Ha = I
2πa

, Hb = I
2πb

Because these are independent of the azimuthal angle, the integrations around the
peripheries dl = adφ or dl = bdφ will contribute a factor of (2πa) or (2πb). Thus,

P′loss =
1

2
Rs

[
(2πa)|Ha|2 + (2πb)|Hb|2

] = Rs|I|2
4π

(
1

a
+ 1

b

)
(10.4.7)

It follows that:

αc = P
′
loss

2PT
=
Rs|I|2

4π

(
1

a
+ 1

b

)

2
1

2
Z|I|2
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Using Eq. (10.4.4), we finally obtain:

αc = Rs
2η

(
1

a
+ 1

b

)

ln
(
b
a

) (10.4.8)

The ohmic losses in the dielectric are described by Eq. (10.1.17). The total attenuation
constant will be the sum of the conductor and dielectric attenuations:

α = αc +αd = Rs
2η

(
1

a
+ 1

b

)

ln
(
b
a

) + ω
2c

tanδ (attenuation) (10.4.9)

The attenuation in dB/m will be αdB = 8.686α. This expression tends to somewhat
underestimate the actual losses, but it is generally a good approximation. The αc term
grows in frequency like

√
f and the term αd, like f .

The smaller the dimensions a,b, the larger the attenuation. The loss tangent tanδ
of a typical polyethylene or teflon dielectric is of the order of 0.0004–0.0009 up to about
3 GHz.

The ohmic losses and the resulting heating of the dielectric and conductors also
limit the power rating of the line. For example, if the maximum supported voltage is
1900 volts as in Example 10.4.2, the RMS value of the current for an RG-58/U line would
be Irms = 1900/53.5 = 35.5 amps, which would melt the conductors. Thus, the actual
power rating is much smaller than that suggested by the maximum voltage rating. The
typical power rating of an RG-58/U cable is 1 kW, 200 W, and 80 W at 10 MHz, 200 MHz,
and 1 GHz.

Example 10.4.3: The table below lists the nominal attenuations in dB per 100 feet of the RG-8/U
and RG-213/U cables. The data are from [1322].

f (MHz) 50 100 200 400 900 1000 3000 5000

α (dB/100ft) 1.3 1.9 2.7 4.1 7.5 8.0 16.0 27.0

Both are 50-ohm cables and their radii a are 1.15 mm and 0.915 mm for RG-8/U and RG-
213/U. In order to compare these ratings with Eq. (10.4.9), we took a to be the average of
these two values, that is, a = 1.03 mm. The required value of b to give a 50-ohm impedance
is b = 3.60 mm.

Fig. 10.4.2 shows the attenuations calculated from Eq. (10.4.9) and the nominal ones from
the table. We assumed copper conductors with σ = 5.8×107 S/m and polyethylene di-
electric with n = 1.5, so that η = η0/n = 376.73/1.5 = 251.15 Ω and c = c0/n = 2×108

m/sec. The loss tangent was taken to be tanδ = 0.0007.

The conductor and dielectric attenuations αc and αd become equal around 2.3 GHz, and
αd dominates after that.

It is evident that the useful operation of the cable is restricted to frequencies up to 1 GHz.
Beyond that, the attenuations are too excessive and the cable may be used only for short
lengths. ��
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Fig. 10.4.2 Attenuation coefficient α versus frequency.

Optimum Coaxial Cables

Given a fixed outer-conductor radius b, one may ask three optimization questions: What
is the optimum value of a, or equivalently, the ratio b/a that (a) minimizes the electric
field Ea inside the guide, (b) maximizes the power transfer PT, and (c) minimizes the
conductor attenuation αc.

The three quantities Ea, PT,αc can be thought of as functions of the ratio x = b/a
and take the following forms:

Ea = Vb
x

lnx
, PT = 1

η
|Ea|2πb2 lnx

x2
, αc = Rs

2ηb
x+ 1

lnx
(10.4.10)

Setting the derivatives of the three functions of x to zero, we obtain the three
conditions: (a) lnx = 1, (b) lnx = 1/2, and (c) lnx = 1 + 1/x, with solutions (a)
b/a = e1 = 2.7183, (b) b/a = e1/2 = 1.6487 and (c) b/a = 3.5911.

Unfortunately, the three optimization problems have three different answers, and
it is not possible to satisfy them simultaneously. The corresponding impedances Z for
the three values of b/a are 60 Ω, 30 Ω, and 76.7 Ω for an air-filled line and 40 Ω, 20 Ω,
and 51 Ω for a polyethylene-filled line.

The value of 50 Ω is considered to be a compromise between 30 and 76.7 Ω corre-
sponding to maximum power and minimum attenuation. Actually, the minimum of αc
is very broad and any neighboring value to b/a = 3.5911 will result in an αc very near
its minimum.

Higher Modes

The TEM propagation mode is the dominant one and has no cutoff frequency. However,
TE and TM modes with higher cutoff frequencies also exist in coaxial lines [838], with
the lowest being a TE11 mode with cutoff wavelength and frequency:

λc = 1.873
π
2
(a+ b) , fc = c

λc
= c0

nλc
(10.4.11)
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This is usually approximated by λc = π(a + b). Thus, the operation of the TEM
mode is restricted to frequencies that are less than fc.

Example 10.4.4: For the RG-58/U line of Example 10.4.2, we have a = 0.406 mm and b = 1.548
mm, resulting in λc = 1.873π(a+b)/2 = 5.749 mm, which gives for the cutoff frequency
fc = 20/0.5749 = 34.79 GHz, where we used c = c0/n = 20 GHz cm.

For the RG-8/U and RG-213/U cables, we may use a = 1.03 mm and b = 3.60 as in Example
10.4.3, resulting in λc = 13.622 mm, and cutoff frequency of fc = 14.68 GHz.

The above cutoff frequencies are far above the useful operating range over which the
attenuation of the line is acceptable. ��

10.5 Two-Wire Lines

The two-wire transmission line consists of two parallel cylindrical conductors of radius
a separated by distance d from each other, as shown in Fig. 10.5.1.

Fig. 10.5.1 Two-wire transmission line.

We assume that the conductors are held at potentials ±V/2 with charge per unit
length ±Q′. The electrostatic problem can be solved by the standard technique of re-
placing the finite-radius conductors by two thin line-charges ±Q′.

The locations b1 and b2 of the line-charges are determined by the requirement that
the cylindrical surfaces of the original conductors be equipotential surfaces, the idea
being that if these equipotential surfaces were to be replaced by the conductors, the
field patterns will not be disturbed.

The electrostatic problem of the two lines is solved by invoking superposition and
adding the potentials due to the two lines, so that the potential at the field point P will
be:

ϕ(ρ,φ)= − Q′

2πε
lnρ1 − −Q

′

2πε
lnρ2 = Q′

2πε
ln

(
ρ2

ρ1

)
(10.5.1)

where the ρ1, ρ2 are the distances from the line charges to P. From the triangles
OP(+Q′) and OP(−Q′), we may express these distances in terms of the polar co-
ordinates ρ,φ of the point P:
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ρ1 =
√
ρ2 − 2ρb1 cosφ+ b2

1 , ρ2 =
√
ρ2 − 2ρb2 cosφ+ b2

2 (10.5.2)

Therefore, the potential function becomes:

ϕ(ρ,φ)= Q′

2πε
ln

(
ρ2

ρ1

)
= Q′

2πε
ln

⎛
⎝
√√√√ρ2 − 2ρb2 cosφ+ b2

2

ρ2 − 2ρb1 cosφ+ b2
1

⎞
⎠ (10.5.3)

In order that the surface of the left conductor at ρ = a be an equipotential surface,
that is, ϕ(a,φ)= V/2, the ratio ρ2/ρ1 must be a constant independent of φ. Thus, we
require that for some constant k and all angles φ:

ρ2

ρ1

∣∣∣∣∣
ρ=a
=
√√√√a2 − 2ab2 cosφ+ b2

2

a2 − 2ab1 cosφ+ b2
1
= k

which can be rewritten as:

a2 − 2ab2 cosφ+ b2
2 = k2(a2 − 2ab1 cosφ+ b2

1)

This will be satisfied for all φ provided we have:

a2 + b2
2 = k2(a2 + b2

1) , b2 = k2b1

These may be solved for b1, b2 in terms of k:

b2 = ka , b1 = ak (10.5.4)

The quantity k can be expressed in terms of a,d by noting that because of symmetry,
the charge −Q′ is located also at distance b1 from the center of the right conductor.
Therefore, b1 + b2 = d. This gives the condition:

b1 + b2 = d ⇒ a(k+ k−1)= d ⇒ k+ k−1 = d
a

with solution for k:

k = d
2a
+
√(

d
2a

)2

− 1 (10.5.5)

An alternative expression is obtained by setting k = eχ. Then, we have the condition:

b1 + b2 = d ⇒ a(eχ + e−χ)= 2a coshχ = d ⇒ χ = acosh
(
d
2a

)
(10.5.6)

Because χ = lnk, we obtain for the potential value of the left conductor:

ϕ(a,φ)= Q′

2πε
lnk = Q′

2πε
χ = 1

2
V

This gives for the capacitance per unit length:
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C′ = Q
′

V
= πε
χ
= πε

acosh
(
d
2a

) (10.5.7)

The corresponding line impedance and inductance are obtained from C′ = εη/Z
and L′ = μZ/η. We find:

Z = η
π
χ = η

π
acosh

(
d
2a

)
L′ = μ

π
χ = μ

π
acosh

(
d

2a

)
(10.5.8)

In the common case when d � a, we have approximately k  d/a, and therefore,
χ = lnk = ln(d/a). Then, Z can be written approximately as:

Z = η
π

ln(d/a) (10.5.9)

To complete the electrostatic problem and determine the electric and magnetic fields
of the TEM mode, we replace b2 = ak and b1 = a/k in Eq. (10.5.3) and write it as:

ϕ(ρ,φ)= Q′

2πε
ln

⎛
⎝k

√
ρ2 − 2akρ cosφ+ a2k2

ρ2k2 − 2akρ cosφ+ a2

⎞
⎠ (10.5.10)

The electric and magnetic field components are obtained from:

Eρ = ηHφ = −∂ϕ∂ρ , Eφ = −ηHρ = − ∂ϕ
ρ∂φ

(10.5.11)

Performing the differentiations, we find:

Eρ = − Q′

2πε

[
ρ− ak cosφ

ρ2 − 2akρ cosφ+ a2k2
− ρk2 − ak cosφ
ρ2k2 − 2akρ cosφ+ a2

]

Eφ = − Q′

2πε

[
ak sinφ

ρ2 − 2ak cosφ+ a2k2
− akρ sinφ
ρ2k2 − 2akρ cosφ+ a2

] (10.5.12)

The resistance per unit length and corresponding attenuation constant due to con-
ductor losses are calculated in Problem 10.3:

R′ = Rs
πa

d√
d2 − 4a2

, αc = R′

2Z
= Rs

2ηa
d

acosh(d/2a)
√
d2 − 4a2

(10.5.13)

10.6 Distributed Circuit Model of a Transmission Line

We saw that a transmission line has associated with it the parameters L′, C′ describing
its lossless operation, and in addition, the parameters R′, G′ which describe the losses.
It is possible then to define a series impedance Z′ and a shunt admittance Y′ per unit
length by combining R′ with L′ and G′ with C′:
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Z′ = R′ + jωL′
Y′ = G′ + jωC′ (10.6.1)

This leads to a so-called distributed-parameter circuit, which means that every in-
finitesimal segment Δz of the line can be replaced by a series impedance Z′Δz and a
shunt admittance Y′Δz, as shown in Fig. 10.6.1. The voltage and current at location z
will be V(z), I(z) and at location z+Δz, V(z+Δz), I(z+Δz).

Fig. 10.6.1 Distributed parameter model of a transmission line.

The voltage across the branch a–b is Vab = V(z + Δz) and the current through it,
Iab = (Y′Δz)Vab = Y′ΔzV(z + Δz). Applying Kirchhoff’s voltage and current laws,
we obtain:

V(z) = (Z′Δz) I(z)+Vab = Z′ΔzI(z)+V(z+Δz)
I(z) = Iab + I(z+Δz)= Y′ΔzV(z+Δz)+I(z+Δz)

(10.6.2)

Using a Taylor series expansion, we may expand I(z + Δz) and V(z + Δz) to first
order in Δz:

I(z+Δz) = I(z)+I′(z)Δz
V(z+Δz) = V(z)+V′(z)Δz and Y′ΔzV(z+Δz)= Y′ΔzV(z)

Inserting these expressions in Eq. (10.6.2) and matching the zeroth- and first-order
terms in the two sides, we obtain the equivalent differential equations:

V′(z)= −Z′I(z)= −(R′ + jωL′)I(z)
I′(z)= −Y′V(z)= −(G′ + jωC′)V(z) (10.6.3)

It is easily verified that the most general solution of this coupled system is express-
ible as a sum of a forward and a backward moving wave:

V(z) = V+e−jβcz +V−ejβcz

I(z) = 1

Zc

(
V+e−jβcz −V−ejβcz

) (10.6.4)
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where βc,Zc are the complex wavenumber and complex impedance:

βc = −j
√
(R′ + jωL′)(G′ + jωC′) =ω

√
L′C′

√(
1− j R

′

ωL′

)(
1− j G

′

ωC′

)

Zc =
√
Z′

Y′
=
√
R′ + jωL′
G′ + jωC′

(10.6.5)

The time-domain impulse response of such a line was given in Sec. 3.3. The real and
imaginary parts of βc = β − jα define the propagation and attenuation constants. In
the case of a lossless line, R′ = G′ = 0, we obtain using Eq. (10.1.6):

βc =ω
√
L′C′ =ω√με = ω

c
= β , Zc =

√
L′

C′
= Z (10.6.6)

In practice, we always assume a lossless line and then take into account the losses by
assuming that R′ andG′ are small quantities, which can be evaluated by the appropriate
expressions that can be derived for each type of line, as we did for the parallel-plate,
coaxial, and two-wire lines. The lossless solution (10.6.4) takes the form:

V(z) = V+e−jβz +V−ejβz = V+(z)+V−(z)

I(z) = 1

Z
(
V+e−jβz −V−ejβz

) = 1

Z
(
V+(z)−V−(z)

) (10.6.7)

This solution is identical to that of uniform plane waves of Chap. 5, provided we
make the identifications:

V(z)←→ E(z)
I(z)←→ H(z)
Z ←→ η

and
V+(z)←→ E+(z)
V−(z)←→ E−(z)

10.7 Wave Impedance and Reflection Response

All the concepts of Chap. 5 translate verbatim to the transmission line case. For example,
we may define the wave impedance and reflection response at location z:

Z(z)= V(z)
I(z)

= Z0
V+(z)+V−(z)
V+(z)−V−(z) , Γ(z)= V−(z)

V+(z)
(10.7.1)

To avoid ambiguity in notation, we will denote the characteristic impedance of the
line by Z0. It follows from Eq. (10.7.1) that Z(z) and Γ(z) are related by:

Z(z)= Z0
1+ Γ(z)
1− Γ(z) , Γ(z)= Z(z)−Z0

Z(z)+Z0
(10.7.2)

For a forward-moving wave, the conditions Γ(z)= 0 and Z(z)= Z0 are equivalent.
The propagation equations of Z(z) and Γ(z) between two points z1, z2 along the line
separated by distance l = z2 − z1 are given by:
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Z1 = Z0
Z2 + jZ0 tanβl
Z0 + jZ2 tanβl

� Γ1 = Γ2e−2jβl (10.7.3)

where we have the relationships between Z1, Z2 and Γ1, Γ2:

Z1 = Z0
1+ Γ1

1− Γ1
, Z2 = Z0

1+ Γ2

1− Γ2
(10.7.4)

We may also express Z1 in terms of Γ2:

Z1 = Z0
1+ Γ1

1− Γ1
= Z0

1+ Γ2e−2jβl

1− Γ2e−2jβl (10.7.5)

The relationship between the voltage and current waves at points z1 and z2 is ob-
tained by the propagation matrix:

[
V1

I1

]
=
[

cosβl jZ0 sinβl
jZ−1

0 sinβl cosβl

][
V2

I2

]
(propagation matrix) (10.7.6)

Similarly, we may relate the forward/backward voltages at the points z1 and z2:

[
V1+
V1−

]
=
[
ejβl 0
0 e−jβl

][
V2+
V2−

]
(propagation matrix) (10.7.7)

It follows from Eq. (10.6.7) that V1±, V2± are related to V1, I1 and V2, I2 by:

V1± = 1

2
(V1 ± Z0I1) , V2± = 1

2
(V2 ± Z0I2) (10.7.8)

Fig. 10.7.1 depicts these various quantities. We note that the behavior of the line
remains unchanged if the line is cut at the point z2 and the entire right portion of the
line is replaced by an impedance equal to Z2, as shown in the figure.

This is so because in both cases, all the points z1 to the left of z2 see the same
voltage-current relationship at z2, that is, V2 = Z2I2.

Sometimes, as in the case of designing stub tuners for matching a line to a load,
it is more convenient to work with the wave admittances. Defining Y0 = 1/Z0, Y1 =
1/Z1, and Y2 = 1/Z2, it is easily verified that the admittances satisfy exactly the same
propagation relationship as the impedances:

Y1 = Y0
Y2 + jY0 tanβl
Y0 + jY2 tanβl

(10.7.9)

As in the case of dielectric slabs, the half- and quarter-wavelength separations are
of special interest. For a half-wave distance, we have βl = 2π/2 = π, which translates
to l = λ/2, where λ = 2π/β is the wavelength along the line. For a quarter-wave, we
have βl = 2π/4 = π/2 or l = λ/4. Setting βl = π or π/2 in Eq. (10.7.3), we obtain:
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Fig. 10.7.1 Length segment on infinite line and equivalent terminated line.

l = λ
2

⇒ Z1 = Z2, Γ1 = Γ2

l = λ
4

⇒ Z1 = Z
2
0

Z2
, Γ1 = −Γ2

(10.7.10)

The MATLAB functions z2g.m and g2z.m compute Γ from Z and conversely, by
implementing Eq. (10.7.2). The functions gprop.m, zprop.m and vprop.m implement
the propagation equations (10.7.3) and (10.7.6). The usage of these functions is:

G = z2g(Z,Z0); % Z to Γ

Z = g2z(G,Z0); % Γ to Z

G1 = gprop(G2,bl); % propagates Γ2 to Γ1

Z1 = zprop(Z2,Z0,bl); % propagates Z2 to Z1

[V1,I1] = vprop(V2,I2,Z0,bl); % propagates V2, I2 to V1, I1

The parameter bl is βl. The propagation equations and these MATLAB functions
also work for lossy lines. In this case, β must be replaced by the complex wavenumber
βc = β− jα. The propagation phase factors become now:

e±jβl −→ e±jβcl = e±αle±jβl (10.7.11)

10.8 Two-Port Equivalent Circuit

Any length-l segment of a transmission line may be represented as a two-port equivalent
circuit. Rearranging the terms in Eq. (10.7.6), we may write it in impedance-matrix form:

[
V1

V2

]
=
[
Z11 Z12

Z21 Z22

][
I1
−I2

]
(impedance matrix) (10.8.1)
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where the impedance elements are:

Z11 = Z22 = −jZ0 cotβl

Z12 = Z21 = −jZ0
1

sinβl
(10.8.2)

The negative sign, −I2, conforms to the usual convention of having the currents
coming into the two-port from either side. This impedance matrix can also be realized
in a T-section configuration as shown in Fig. 10.8.1.

Fig. 10.8.1 Length-l segment of a transmission line and its equivalent T-section.

Using Eq. (10.8.1) and some trigonometry, the impedancesZa,Zb,Zc of theT-section
are found to be:

Za = Z11 − Z12 = jZ0 tan(βl/2)

Zb = Z22 − Z12 = jZ0 tan(βl/2)

Zc = Z12 = −jZ0
1

sinβl

(10.8.3)

The MATLAB function tsection.m implements Eq. (10.8.3). Its usage is:

[Za,Zc] = tsection(Z0,bl);

10.9 Terminated Transmission Lines

We can use the results of the previous section to analyze the behavior of a transmission
line connected between a generator and a load. For example in a transmitting antenna
system, the transmitter is the generator and the antenna, the load. In a receiving system,
the antenna is the generator and the receiver, the load.

Fig. 10.9.1 shows a generator of voltage VG and internal impedance ZG connected
to the load impedance ZL through a length d of a transmission line of characteristic
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Fig. 10.9.1 Terminated line and equivalent circuit.

impedance Z0. We wish to determine the voltage and current at the load in terms of the
generator voltage.

We assume that the line is lossless and hence Z0 is real. The generator impedance
is also assumed to be real but it does not have to be. The load impedance will have in
general both a resistive and a reactive part, ZL = RL + jXL.

At the load location, the voltage, current, and impedance are VL, IL, ZL and play
the same role as the quantities V2, I2, Z2 of the previous section. They are related by
VL = ZLIL. The reflection coefficient at the load will be:

ΓL = ZL − Z0

ZL + Z0
� ZL = Z0

1+ ΓL
1− ΓL (10.9.1)

The quantities ZL, ΓL can be propagated now by a distance d to the generator at the
input to the line. The corresponding voltage, current, and impedance Vd, Id, Zd play
the role of V1, I1, Z1 of the previous section, and are related by Vd = ZdId. We have the
propagation relationships:

Zd = Z0
ZL + jZ0 tanβd
Z0 + jZL tanβd

� Γd = ΓLe−2jβd (10.9.2)

where

Γd = Zd − Z0

Zd + Z0
� Zd = Z0

1+ Γd
1− Γd = Z0

1+ ΓLe−2jβd

1− ΓLe−2jβd (10.9.3)

At the line input, the entire length-d line segment and load can be replaced by the
impedance Zd, as shown in Fig. 10.9.1. We have now a simple voltage divider circuit.
Thus,

Vd = VG − IdZG = VGZd
ZG + Zd , Id = VG

ZG + Zd (10.9.4)

Once we have Vd, Id in terms of VG, we can invert the propagation matrix (10.7.6)
to obtain the voltage and current at the load:
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[
VL
IL

]
=
[

cosβd −jZ0 sinβd
−jZ−1

0 sinβd cosβd

][
Vd
Id

]
(10.9.5)

It is more convenient to express Vd, Id in terms of the reflection coefficients Γd and
ΓG, the latter being defined by:

ΓG = ZG − Z0

ZG + Z0
� ZG = Z0

1+ ΓG
1− ΓG (10.9.6)

It is easy to verify using Eqs. (10.9.3) and (10.9.6) that:

ZG + Zd = 2Z0
1− ΓGΓd

(1− ΓG)(1− Γd) , ZG + Z0 = 2Z0
1

1− ΓG
From these, it follows that:

Vd = VGZ0

ZG + Z0

1+ Γd
1− ΓGΓd , Id = VG

ZG + Z0

1− Γd
1− ΓGΓd (10.9.7)

where Γd may be replaced by Γd = ΓLe−2jβd. If the line and load are matched so that
ZL = Z0, then ΓL = 0 and Γd = 0 and Zd = Z0 for any distance d. Eq. (10.9.7) then
reduces to:

Vd = VGZ0

ZG + Z0
, Id = VG

ZG + Z0
(matched load) (10.9.8)

In this case, there is only a forward-moving wave along the line. The voltage and
current at the load will correspond to the propagation of these quantities to location
l = 0, which introduces a propagation phase factor e−jβd:

V0 = VGZ0

ZG + Z0
e−jβd , I0 = VG

ZG + Z0
e−jβd (matched load) (10.9.9)

where V0, I0 denote VL, IL when ZL = Z0. It is convenient also to express VL directly in
terms of Vd and the reflection coefficients Γd and ΓL. We note that:

VL = VL+(1+ ΓL) , VL+ = Vd+e−jβd , Vd+ = Vd
1+ Γd

It follows that the voltage VL and current IL = VL/ZL are:

VL = Vde−jβd 1+ ΓL
1+ Γd , IL = Ide−jβd 1− ΓL

1− Γd (10.9.10)

Expressing VL and also IL = VL/ZL directly in terms of VG, we have:

VL = VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓd e

−jβd , IL = VG
ZG + Z0

1− ΓL
1− ΓGΓd e

−jβd (10.9.11)

It should be emphasized that d refers to the fixed distance between the generator
and the load. For any other distance, say l, from the load (or, distance z = d − l from
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the generator,) the voltage and current can be expressed in terms of the load voltage
and current as follows:

Vl = VLejβl 1+ Γl
1+ ΓL , Il = ILejβl 1− Γl

1− ΓL , Γl = ΓLe−2jβl (10.9.12)

10.10 Power Transfer from Generator to Load

The total power delivered by the generator is dissipated partly in its internal resistance
and partly in the load. The power delivered to the load is equal (for a lossless line) to
the net power traveling to the right at any point along the line. Thus, we have:

Ptot = Pd + PG = PL + PG (10.10.1)

This follows from VG = Vd + IdZG, which implies

VGI∗d = VdI∗d + ZG|Id|2 (10.10.2)

Eq. (10.10.1) is a consequence of (10.10.2) and the definitions:

Ptot = 1

2
Re(V∗GId)=

1

2
Re
[
(Vd + ZGId)∗Id

]
PG = 1

2
Re(ZGIdI∗d )=

1

2
Re(ZG)|Id|2

Pd = 1

2
Re(V∗d Id)=

1

2
Re(V∗L IL)= PL

(10.10.3)

The last equality follows from Eq. (10.9.5) or from Vd± = VL±e±jβd:

1

2
Re(V∗d Id)=

1

2Z0

(|Vd+|2 − |Vd−|2) = 1

2Z0

(|VL+|2 − |VL−|2) = 1

2
Re(V∗L IL)

In the special case when the generator and the load are matched to the line, so that
ZG = ZL = Z0, then we find the standard result that half of the generated power is
delivered to the load and half is lost in the internal impedance. Using Eq. (10.9.8) with
ZG = Z0, we obtain Vd = IdZG = VG/2, which gives:

Ptot = |VG|
2

4Z0
, PG = |VG|

2

8Z0
= 1

2
Ptot , Pd = PL = |VG|

2

8Z0
= 1

2
Ptot (10.10.4)

Example 10.10.1: A load ZL = 50+ j10 Ω is connected to a generator VG = 10∠0o volts with a
100-ft (30.48 m) cable of a 50-ohm transmission line. The generator’s internal impedance
is 20 ohm, the operating frequency is 10 MHz, and the velocity factor of the line, 2/3.

Determine the voltage across the load, the total power delivered by the generator, the
power dissipated in the generator’s internal impedance and in the load.

Solution: The propagation speed is c = 2c0/3 = 2×108 m/sec. The line wavelength λ = c/f =
20 m and the propagation wavenumber β = 2π/λ = 0.3142 rads/m. The electrical length
is d/λ = 30.48/20 = 1.524 and the phase length βd = 9.5756 radians.
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Next, we calculate the reflection coefficients:

ΓL = ZL − Z0

ZL + Z0
= 0.0995∠84.29o , ΓG = ZG − Z0

ZG + Z0
= −0.4286

and Γd = ΓLe−2jβd = 0.0995∠67.01o. It follows that:

Zd = Z0
1+ Γd
1− Γd = 53.11+ j9.83 , Vd = VGZd

ZG + Zd = 7.31+ j0.36 = 7.32∠2.83o

The voltage across the load will be:

VL = Vde−jβd 1+ ΓL
1+ Γd = −7.09+ j0.65 = 7.12∠174.75o V

The current through the generator is:

Id = VdZd = 0.13− j0.02 = 0.14∠−7.66o A

It follows that the generated and dissipated powers will be:

Ptot = 1

2
Re(V∗GId)= 0.6718 W

PG = 1

2
Re(ZG)|Id|2 = 0.1838 W

PL = Pd = 1

2
Re(V∗d Id)= 0.4880 W

We note that Ptot = PG + PL. ��

If the line is lossy, with a complex wavenumber βc = β − jα, the power PL at the
output of the line is less than the power Pd at the input of the line. Writing Vd± =
VL±e±αde±jβd, we find:

Pd = 1

2Z0

(|Vd+|2 − |Vd−|2) = 1

2Z0

(|VL+|2e2αd − |VL−|2e−2αd)
PL = 1

2Z0

(|VL+|2 − |VL−|2)

We note that Pd > PL for all ΓL. In terms of the incident forward power at the load,
Pinc = |VL+|2/2Z0, we have:

Pd = Pinc
(
e2αd − |ΓL|2e−2αd) = Pince2αd(1− |Γd|2

)
PL = Pinc

(
1− |ΓL|2

) (10.10.5)

where |Γd| = |ΓL|e−2αd. The total attenuation or loss of the line is Pd/PL (the inverse
PL/Pd is the total gain, which is less than one.) In decibels, the loss is:

L = 10 log10

(
Pd
PL

)
= 10 log10

(
e2αd − |ΓL|2e−2αd

1− |ΓL|2
)

(total loss) (10.10.6)
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If the load is matched to the line, ZL = Z0, so that ΓL = 0, the loss is referred to as
the matched-line loss and is due only to the transmission losses along the line:

LM = 10 log10

(
e2αd) = 8.686αd (matched-line loss) (10.10.7)

Denoting the matched-line loss in absolute units by a = 10LM/10 = e2αd, we may
write Eq. (10.10.6) in the equivalent form:

L = 10 log10

(
a2 − |ΓL|2
a(1− |ΓL|2)

)
(total loss) (10.10.8)

The additional loss due to the mismatched load is the difference:

L− LM = 10 log10

(
1− |ΓL|2e−4αd

1− |ΓL|2
)
= 10 log10

(
1− |Γd|2
1− |ΓL|2

)
(10.10.9)

Example 10.10.2: A 150 ft long RG-58 coax is connected to a load ZL = 25+ 50j ohm. At the
operating frequency of 10 MHz, the cable is rated to have 1.2 dB/100 ft of matched-line
loss. Determine the total loss of the line and the excess loss due to the mismatched load.

Solution: The matched-line loss of the 150 ft cable is LM = 150×1.2/100 = 1.8 dB or in absolute
units, a = 101.8/10 = 1.51. The reflection coefficient has magnitude computed with the
help of the MATLAB function z2g:

|ΓL| = abs(z2g(25+ 50j,50)= 0.62

It follows that the total loss will be:

L = 10 log10

(
a2 − |ΓL|2
a(1− |ΓL|2)

)
= 10 log10

(
1.512 − 0.622

1.51(1− 0.622)

)
= 3.1 dB

The excess loss due to the mismatched load is 3.1 − 1.8 = 1.3 dB. At the line input, we
have |Γd| = |ΓL|e−2αd = |ΓL|/a = 0.62/1.51 = 0.41. Therefore, from the point of view of
the input the line appears to be more matched. ��

10.11 Open- and Short-Circuited Transmission Lines

Open- and short-circuited transmission lines are widely used to construct resonant cir-
cuits as well as matching stubs. They correspond to the special cases for the load
impedance: ZL = ∞ for an open-circuited line and ZL = 0 for a short-circuited one.
Fig. 10.11.1 shows these two cases.

Knowing the open-circuit voltage and the short-circuit current at the end terminals
a,b, allows us also to replace the entire left segment of the line, including the generator,
with a Thévenin-equivalent circuit. Connected to a load impedance ZL, the equivalent
circuit will produce the same load voltage and current VL, IL as the original line and
generator.

Setting ZL = ∞ and ZL = 0 in Eq. (10.9.2), we obtain the following expressions for
the wave impedance Zl at distance l from the open- or short-circuited termination:
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Fig. 10.11.1 Open- and short-circuited line and Thévenin-equivalent circuit.

Zl = −jZ0 cotβl

Zl = jZ0 tanβl

(open-circuited)

(short-circuited)
(10.11.1)

The corresponding admittances Yl = 1/Zl will be:

Yl = jY0 tanβl

Yl = −jY0 cotβl

(open-circuited)

(short-circuited)
(10.11.2)

To determine the Thévenin-equivalent circuit that replaces everything to the left of
the terminals a,b, we must find the open-circuit voltage Vth, the short-circuit current
Isc, and the Thévenin impedance Zth.

The impedance Zth can be determined either by Zth = Vth/Isc, or by disconnecting
the generator and finding the equivalent impedance looking to the left of the terminals
a,b. It is obtained by propagating the generator impedance ZG by a distance d:

Zth = Z0
ZG + jZ0 tanβd
Z0 + jZG tanβd

= Z0
1+ Γth

1− Γth
, Γth = ΓGe−2jβd (10.11.3)

The open-circuit voltage can be determined from Eq. (10.9.11) by setting ZL = ∞,
which implies that ΓL = 1, Γd = e−2jβd, and ΓGΓd = ΓGe−2jβd = Γth. The short-
circuit current is also obtained from (10.9.11) by setting ZL = 0, which gives ΓL = −1,
Γd = −e−2jβd, and ΓGΓd = −ΓGe−2jβd = −Γth. Then, we find:

Vth = VGZ0

ZG + Z0

2e−jβd

1− Γth
, Isc = VG

ZG + Z0

2e−jβd

1+ Γth
(10.11.4)

It follows that Vth/Isc = Zth, as given by Eq. (10.11.3). A more convenient way of
writing Eq. (10.11.4) is by noting the relationships:
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1− Γth = 2Z0

Zth + Z0
, 1+ Γth = 2Zth

Zth + Z0

Then, Eq. (10.11.4) becomes:

Vth = V0
Zth + Z0

Z0
, Isc = I0 Zth + Z0

Zth
(10.11.5)

where V0, I0 are the load voltage and currents in the matched case, given by Eq. (10.9.9).
The intuitive meaning of these expressions can be understood by writing them as:

V0 = Vth
Z0

Zth + Z0
, I0 = Isc

Zth

Zth + Z0
(10.11.6)

These are recognized to be the ordinary voltage and current dividers obtained by
connecting the Thévenin and Norton equivalent circuits to the matched load impedance
Z0, as shown in Fig. 10.11.2.

Fig. 10.11.2 Thévenin and Norton equivalent circuits connected to a matched load.

The quantities V0, I0 are the same as those obtained by connecting the actual line to
the matched load, as was done in Eq. (10.9.9).

An alternative way of determining the quantities Vth and Zth is by replacing the
length-d transmission line segment by its T-section equivalent circuit, as shown in
Fig. 10.11.3.

Fig. 10.11.3 T-section and Thévenin equivalent circuits.
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The Thévenin equivalent circuit to the left of the terminals a,b is easily determined
by shorting the generator and finding the Thévenin impedance and then finding the
open-circuit voltage. We have:

Zth = Zb + Zc(Za + ZG)
Zc + Za + ZG , Vth = VGZc

Zc + Za + ZG (10.11.7)

where Za,Zb,Zc for a length-d segment are given by Eq. (10.8.3):

Za = Zb = jZ0 tan
(
βd
2

)
, Zc = −jZ0

1

sinβd

It is straightforward to verify that the expressions in Eq. (10.11.7) are equivalent to
those in Eq. (10.11.3) and (10.11.4).

Example 10.11.1: For the generator, line, and load of Example 10.10.1, determine the Thévenin
equivalent circuit. Using this circuit determine the load voltage.

Solution: We work with the T-section approach. The following MATLAB call gives Za and Zc,
with Z0 = 50 and βd = 9.5756:

[Za,Zc]= tsection(50, 9.5756)= [−661.89j, 332.83j]

Then, Eq. (10.11.7) gives with Zb = Za:

Zth = Zb + Zc(Za + ZG)
Zc + Za + ZG = 20.39+ j6.36 Ω

Vth = VGZc
Zc + Za + ZG = −10.08+ j0.61 = 10.10∠176.52o V

Alternatively, Zth can be computed by propagating ZG = 20 by a distance d:

Zth = zprop(20,50,9.5756)= 20.39+ j6.36 Ω

The load voltage is found from the Thévenin circuit:

VL = VthZL
ZL + Zth

= −7.09+ j0.65 = 7.12∠174.75o V

which agrees with that found in Example 10.10.1. ��

10.12 Standing Wave Ratio

The line voltage at a distance l from the load is given by Eq. (10.9.12), which can be
written as follows in terms of the forward wave VL+ = VL/(1+ ΓL):

Vl = VL+ejβl(1+ Γl) (10.12.1)

The magnitude of Vl will be:
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|Vl| = |VL+||1+ Γl| = |VL+||1+ ΓLe−2jβl| (10.12.2)

It follows that |Vl| will vary sinusoidally as a function of l. Its limits of variation are
determined by noting that the quantity |1+ Γl| varies between:

1− |ΓL| = 1− |Γl| ≤ |1+ Γl| ≤ 1+ |Γl| = 1+ |ΓL|

where we used |Γl| = |ΓL|. Thus, |Vl| will vary over the limits:

Vmin ≤ |Vl| ≤ Vmax (10.12.3)

where

Vmin = |VL+| − |VL−| = |VL+|
(
1− |ΓL|

)
Vmax = |VL+| + |VL−| = |VL+|

(
1+ |ΓL|

) (10.12.4)

We note that the reflection coefficient at a load ZL = RL+jXL has always magnitude
less than unity, |ΓL| ≤ 1. Indeed, this follows from the positivity ofRL and the following
property:

ZL = Z0
1+ ΓL
1− ΓL ⇒ RL = Re(ZL)= Z0

1− |ΓL|2
|1+ ΓL|2 (10.12.5)

The voltage standing wave ratio (SWR) of a terminated transmission line is a measure
of the degree of matching of the line to the load and is defined as the ratio of the
maximum to minimum voltage along the line:

S = Vmax

Vmin
= 1+ |ΓL|

1− |ΓL| � |ΓL| = S− 1

S+ 1
(10.12.6)

Because |ΓL| ≤ 1, the SWR will always be S ≥ 1. A matched load, ΓL = 0, has S = 1.
The more unmatched the load is, the larger the SWR. Indeed, S → ∞ as |ΓL| → 1. A
matched line has Vmin = |Vl| = Vmax at all points l, and is sometimes referred to as a
flat line. The MATLAB function swr.m calculates the SWR from Eq. (10.12.6):

S = swr(Gamma); % calculates SWR from reflection coefficient Γ

The SWR can be used to quantify the amount of power delivered to the load. The
percentage of reflected power from the load is |ΓL|2. Therefore, the percentage of the
power delivered to the load relative to the incident power will be:

PL
Pinc

= 1− |ΓL|2 = 4S
(S+ 1)2

(10.12.7)

The larger the SWR, the smaller the percentage of delivered power. For example, if
S = 9, the reflection coefficient will have magnitude |ΓL| = 0.8, resulting in 1− |ΓL|2 =
0.36, that is, only 36 percent of the incident power gets transferred to the load.

Example 10.12.1: If the reflected wave at the load of a transmission line is 6 dB below the
incident wave, what is the SWR at the load? What percentage of the incident power gets
transferred to the load?
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Solution: The relative power levels of the reflected and incident waves will be:

|ΓL|2 = |V−|
2

|V+|2 = 10−6/10 = 1

4
⇒ |ΓL| = 1

2
⇒ S = 1+ 0.5

1− 0.5
= 3

The fraction of power transferred to the load is 1− |ΓL|2 = 0.75, or 75 percent. ��

If both the line and load impedances are real-valued, then the standing wave ratio is
S = ZL/Z0 if ZL ≥ Z0, and S = Z0/ZL, if ZL ≤ Z0. This follows from the identity:

S = 1+ |ΓL|
1− |ΓL| =

|ZL + Z0| + |ZL − Z0|
|ZL + Z0| − |ZL − Z0| =

max(ZL,Z0)
min(ZL,Z0)

(10.12.8)

or, explicitly:

S = 1+ |ΓL|
1− |ΓL| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ZL
Z0
, if ZL ≥ Z0

Z0

ZL
, if ZL ≤ Z0

(10.12.9)

10.13 Determining an Unknown Load Impedance

Often a transmission line is connected to an unknown impedance, and we wish to de-
termine that impedance by making appropriate measurements of the voltage along the
line.

The SWR can be readily determined by measuring |Vl| and finding its maximum and
minimum values Vmax and Vmin. From the SWR, we then determine the magnitude of
the reflection coefficient |ΓL|.

The phase of ΓL can be determined by finding the locations along the line at which
a voltage maximum or a voltage minimum is measured. If θL is the required phase, so
that ΓL = |ΓL|ejθL , then we have:

|Vl| = |VL+||1+ Γl| = |VL+||1+ ΓLe−2jβl| = |VL+|
∣∣1+ |ΓL|ej(θL−2βl)∣∣

At all locations l for which θL − 2βl = ±2πn, where n is an integer, we will have
Γl = |ΓL| and |Vl| will be equal to Vmax. Similarly, at all locations for which θL − 2βl =
±(2n+ 1)π, we will have Γl = −|ΓL| and |Vl| will be equal to Vmin.

We note that two successive maxima, or two successive minima, are separated by a
distance λ/2 and a maximum is separated by the next minimum by a distance λ/4, so
that |lmax − lmin| = λ/4.

Once such distances lmax, lmin have been determined, the full reflection coefficient
can be constructed fromΓL = Γle2jβl, whereΓl = ±|ΓL| depending on using a maximum-
or minimum-voltage distance l. From ΓL and the knowledge of the line impedance Z0,
the load impedance ZL can be computed. Thus, we have:

ΓL = |ΓL|ejθL = |ΓL|e2jβlmax = −|ΓL|e2jβlmin ⇒ ZL = Z0
1+ ΓL
1− ΓL (10.13.1)
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If 0 ≤ θL ≤ π, the locations for the closest maxima and minima to the load are
determined from the conditions:

θL − 2βlmax = 0 , θL − 2βlmin = −π

resulting in the distances:

lmax = θL
4π

λ , lmin = θL +π
4π

λ , (0 ≤ θL ≤ π) (10.13.2)

Similarly, if −π ≤ θL ≤ 0, we must solve θL − 2βlmax = −2π and θL − 2βlmin = −π:

lmax = θL + 2π
4π

λ , lmin = θL +π
4π

λ , (−π ≤ θL ≤ 0) (10.13.3)

Of course, one wants to solve for θL in terms of the measured lmax or lmin. Using lmin

is more convenient than using lmax because θL is given by the same expression in both
cases. The lengths lmax, lmin may be assumed to be less than λ/2 (if not, we may subtract
enough multiples of λ/2 until they are.) Expressing θL in terms of the measured lmin,
we have:

θL = 4πlmin

λ
−π = 2βlmin −π (10.13.4)

Alternatively, we have in terms of lmax:

θL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4πlmax

λ
= 2βlmax if 0 ≤ lmax ≤ λ

4
4πlmax

λ
− 2π = 2βlmax − 2π if

λ
4
≤ lmax ≤ λ

2

(10.13.5)

Example 10.13.1: A 50-ohm line is connected to an unknown impedance. Voltage measure-
ments along the line reveal that the maximum and minimum voltage values are 1.75 and
0.25 volts, respectively. Moreover, the closest distance to the load at which a voltage max-
imum is observed is 0.125λ.

Determine the reflection coefficient ΓL, the load impedance ZL, and the closest distance
to the load at which a voltage minimum is observed.

For another load, the same maxima and minima are observed, but now the closest distance
to the load at which a minimum is observed is 0.125λ. Determine ΓL and ZL.

Solution: The SWR is determined to be S = Vmax/Vmin = 1.75/0.25 = 7. Then, the magnitude
of the reflection coefficient is found to be |ΓL| = (S−1)/(S+1)= (7−1)/(7+1)= 0.75.

Given that at lmax = λ/8 we observe a voltage maximum, we compute the phase from
Eq. (10.13.5), θL = 2βlmax = 4π/8 = π/2. Then, the reflection coefficient will be:

ΓL = |ΓL|ejθL = 0.75ejπ/2 = 0.75j

It follows that the load impedance will be:
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ZL = Z0
1+ ΓL
1− ΓL = 50

1+ 0.75j
1− 0.75j

= 14+ 48j Ω

The closest voltage minimum will occur at lmin = lmax + λ/4 = 0.375λ = 3λ/8. Alter-
natively, we could have determined the phase from Eq. (10.13.4), θL = 2βlmin − π =
4π(3/8)−π = π/2. The left graph of Fig. 10.13.1 shows a plot of |Vl| versus l.
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Fig. 10.13.1 Standing wave patterns.

Note the locations of the closest voltage maxima and minima to the load, that is λ/8 and
3λ/8. In the second case, we are given lmin = λ/8. It follows that θL = 2βlmin − π =
π/2 − π = −π/2. Alternatively, we may work with lmax = lmin + λ/4 = 3λ/8. Because
lmax > λ/4, Eq. (10.13.5) will give θL = 2βlmax − 2π = 4π(3/8)−2π = −π/2. The
reflection coefficient and load impedance will be:

ΓL = |ΓL|ejθL = 0.75e−jπ/2 = −0.75j ⇒ ZL = 14− 48j Ω

The right graph of Fig. 10.13.1 depicts the standing wave pattern in this case. ��

It is interesting also to determine the wave impedances at the locations along the
line at which we have voltage maxima or minima, that is, at l = lmax or lmin. The answers
are expressed in terms of the SWR. Indeed, at l = lmax, we have Γl = |ΓL| which gives:

Zmax = Z0
1+ Γl
1− Γl = Z0

1+ |ΓL|
1− |ΓL| = SZ0 (10.13.6)

Similarly, at l = lmin, we have Γl = −|ΓL| and find:

Zmin = Z0
1+ Γl
1− Γl = Z0

1− |ΓL|
1+ |ΓL| =

1

S
Z0 (10.13.7)

We note that ZmaxZmin = Z2
0, as is expected because the points lmax and lmin are

separated by a quarter-wavelength distance λ/4.
Because at lmax and lmin the wave impedances are real-valued, these points can be

used as convenient locations at which to insert a quarter-wave transformer to match a
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line with real Z0 to a complex load ZL. Given θL, the required locations are determined
from Eq. (10.13.2) or (10.13.3). We discuss this matching method later on.

The MATLAB function lmin.m calculates the locations lmin and lmax from Eqs. (10.13.2)
and (10.13.3), and the corresponding impedances Zmin and Zmax. It has usage:

[lm,Zm] = lmin(ZL,Z0,’min’); % locations of voltage minima

[lm,Zm] = lmin(ZL,Z0,’max’); % locations of voltage maxima

For a lossless line the power delivered to the load can be measured at any point l
along the line, and in particular, at lmax and lmin. Then, Eq. (10.12.7) can be written in
the alternative forms:

PL = 1

2Z0

(|VL+|2 − |VL−|2) = VmaxVmin

2Z0
= V2

min

2Zmin
= V2

max

2Zmax
= V2

max

2SZ0
(10.13.8)

The last expression shows that for a given maximum voltage that can be supported
along a line, the power transmitted to the load is S times smaller than it could be if the
load were matched.

Conversely, for a given amount PL of transmitted power, the maximum voltage will
be Vmax =

√
2SPLZ0. One must ensure that for a highly unmatched load, Vmax remain

less than the breakdown voltage of the line.
If the line is lossy, measurements of the SWR along its length will give misleading

results. Because the reflected power attenuates as it propagates backwards away from
the load, the SWR will be smaller at the line input than at the load.

For a lossy line with βc = β− jα, the reflection coefficient at the line input will be:
Γd = ΓLe−2(α+jβ)d, which gives for the input SWR:

Sd = 1+ |Γd|
1− |Γd| =

1+ |ΓL|e−2αd

1− |ΓL|e−2αd =
e2αd + |ΓL|
e2αd − |ΓL| =

a+ |ΓL|
a− |ΓL| (10.13.9)

where we expressed it in terms of the matched-line loss of Eq. (10.10.7).

Example 10.13.2: For the RG-58 coax cable of Example 10.10.2, we find the SWRs:

SL = 1+ |ΓL|
1− |ΓL| =

1+ 0.62

1− 0.62
= 4.26 , Sd = 1+ |Γd|

1− |Γd| =
1+ 0.41

1− 0.41
= 2.39

If one does not know that the line is lossy, and measures the SWR at the line input, one
would think that the load is more matched than it actually is. ��

Example 10.13.3: The SWR at the load of a line is 9. If the matched-line loss is 10 dB, what is
the SWR at the line input?

Solution: We calculate the reflection coefficient at the load:

|ΓL| = S− 1

S+ 1
= 9− 1

9+ 1
= 0.8

The matched-line loss is a = 10LM/10 = 1010/10 = 10. Thus, the reflection coefficient
at the input will be |Γd| = |ΓL|/a = 0.8/10 = 0.08. The corresponding SWR will be
S = (1+ 0.08)/(1− 0.08)= 1.17. ��



10.14. Smith Chart 431

Example 10.13.4: A 50-ohm line feeds a half-wave dipole antenna with impedance of 73+j42.5
ohms. The line has matched-line loss of 3 dB. What is the total loss of the line? What is
the SWR at the load and at the line input?

If the line length is doubled, what is the matched-line loss, the total loss, the input and
load SWRs?

Solution: The matched-line loss in absolute units isa = 103/10 = 2. Using the MATLAB functions
z2g and swr, we compute the reflection coefficient at the load and its SWR:

|ΓL| =
∣∣∣∣ZL − Z0

ZL + Z0

∣∣∣∣ =
∣∣∣∣∣73+ j42.5− 50

73+ j42.5+ 50

∣∣∣∣∣ = abs(z2g(73+ 42.5j,50))= 0.3713

The SWR will be S = swr(0.3713)= 2.1814. The reflection coefficient at the line input will
be |Γd| = |ΓL|e−2αd = |ΓL|/a = 0.1857, and its SWR, S = swr(0.1857)= 1.4560.

If the line length is doubled, the matched-line loss in dB will double to 6 dB, since it is
given by LM = 8.686αd. In absolute units, it is a = 22 = 4.

The corresponding reflection coefficient at the line input will be |Γd| = |ΓL|/a = 0.0928,
and its SWR, S = swr(0.0928)= 1.2047. ��

10.14 Smith Chart

The relationship between the wave impedance Z and the corresponding reflection re-
sponse Γ along a transmission line Z0 can be stated in terms the normalized impedance
z = Z/Z0 as follows:

Γ = z− 1

z+ 1
� z = 1+ Γ

1− Γ (10.14.1)

It represents a mapping between the complex impedance z-plane and the complex
reflection coefficient Γ-plane, as shown in Fig. 10.14.1. The mapping is similar to the
bilinear transformation mapping in linear system theory between the s-plane (playing
the role of the impedance plane) and the z-plane of the z-transform (playing the role of
the Γ-plane.)

A complex impedance z = r + jx with positive resistive part, r > 0, gets mapped
onto a point Γ that lies inside the unit-circle in the Γ-plane, that is, satisfying |Γ| < 1.

An entire resistance line z = r (a vertical line on the z-plane) gets mapped onto
a circle on the Γ-plane that lies entirely inside the unit-circle, if r > 0. Similarly, a
reactance line z = jx (a horizontal line on the z-plane) gets mapped onto a circle on the
Γ-plane, a portion of which lies inside the unit-circle.

The Smith chart is a graphical representation of the Γ-plane with a curvilinear grid
of constant resistance and constant reactance circles drawn inside the unit-circle. In
effect, the Smith chart is a curvilinear graph paper.

Any reflection coefficient point Γ falls at the intersection of a resistance and a reac-
tance circle, r, x, from which the corresponding impedance can be read off immediately
as z = r + jx. Conversely, given z = r + jx and finding the intersection of the r, x
circles, the complex point Γ can be located and its value read off in polar or cartesian
coordinates.
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Fig. 10.14.1 Mapping between z-plane and Γ-plane.

To determine the centers and radii of the resistance and reactance circles, we use
the result that a circle with center C and radius R on the Γ-plane has the following two
equivalent representations:

|Γ|2 −C∗Γ−CΓ∗ = B � |Γ−C| = R , where B = R2 − |C|2 (10.14.2)

Setting z = r + jx in Eq. (10.14.1) and extracting the real and imaginary parts, we
can write r and x in terms of Γ, as follows:

r = Rez = 1− |Γ|2
|1− Γ|2 , x = Imz = j(Γ

∗ − Γ)
|1− Γ|2 (10.14.3)

In particular, the expression for the resistive part implies that the condition r > 0 is
equivalent to |Γ| < 1. The r, x circles are obtained by putting Eqs. (10.14.3) in the form
of Eq. (10.14.2). We have:

r|Γ− 1|2 = 1− |Γ|2 ⇒ r
(|Γ|2 − Γ− Γ∗ + 1

) = 1− |Γ|2

and rearranging terms:

|Γ|2 − r
r + 1

Γ− r
1+ rΓ

∗ = 1− r
1+ r ⇒

∣∣∣∣Γ− r
1+ r

∣∣∣∣2

= 1− r
1+ r +

r2

(1+ r)2
=
(

1

1+ r
)2

Similarly, we have

x|Γ− 1|2 = j(Γ∗ − Γ) ⇒ x
(|Γ|2 − Γ− Γ∗ + 1

) = j(Γ∗ − Γ)
which can be rearranged as:

|Γ|2−
(

1− j
x

)
Γ−

(
1+ j

x

)
Γ∗ = −1 ⇒

∣∣∣∣Γ−
(

1+ j
x

)∣∣∣∣2

= −1+
(

1+ 1

x2

)
=
(

1

x

)2
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To summarize, the constant resistance and reactance circles are:

∣∣∣∣Γ− r
1+ r

∣∣∣∣ = 1

1+ r (resistance circles)

∣∣∣∣Γ−
(

1+ j
x

)∣∣∣∣ = 1

|x| (reactance circles)

(10.14.4)

The centers of the resistance circles are on the positive half of the real axis on the Γ-
plane, lying between 0 ≤ Γ ≤ 1. When r = 0, the impedance circle is the entire unit-circle
with center at Γ = 0. As r increases, the radii become smaller and the centers move
towards Γ = 1. The centers of the reactance circles lie on the tangent of the unit-circle
at Γ = 1.

Example 10.14.1: Fig. 10.14.2 depicts the resistance and reactance circles for the following
values of r, x:

r = [0.2, 0.5, 1, 2, 5] , x = [0.2, 0.5, 1, 2, 5]

Because the point A is at the intersection of the r = 0.2 and x = 0.5 circles, the corre-
sponding impedance will be zA = 0.2+ 0.5j. We list below the impedances and reflection
coefficients at the points A,B,C,D,E, S, P,O:

zA = 0.2+ 0.5j, ΓA = −0.420+ 0.592j = 0.726∠125.37o

zB = 0.5− j, ΓB = 0.077− 0.615j = 0.620∠−82.88o

zC = 2− 2j, ΓC = 0.539− 0.308j = 0.620∠−29.74o

zD = j, ΓD = j = 1∠90o

zE = −j, ΓE = −j = 1∠−90o

(short circuit) zS = 0, ΓS = −1 = 1∠180o

(open circuit) zP = ∞, ΓP = 1 = 1∠0o

(matched) zO = 1, ΓO = 0 = 0∠0o

The points S and P correspond to a short-circuited and an open-circuited impedance. The
center of the Smith chart at point O corresponds to z = 1, that is, an impedance matched
to the line. ��

The Smith chart helps one visualize the wave impedance as one moves away from
or towards a load. Assuming a lossless line, the wave impedance and corresponding
reflection response at a distance l from the load are given by:

zl = zL + j tanβl
1+ jzL tanβl

� Γl = e−2jβlΓL (10.14.5)

The magnitude of Γl remains constant as l varies, indeed, |Γl| = |ΓL|. On the Smith
chart, this represents a circle centered at the origin Γ = 0 of radius |ΓL|. Such circles
are called constant SWR circles because the SWR is related to the circle radius by

S = 1+ |ΓL|
1− |ΓL|

The relative phase angle between Γl and ΓL is negative,−2βl, and therefore, the point
Γl moves clockwise along the constant SWR circle, as shown in Fig. 10.14.3. Conversely,
if l is decreasing towards the load, the point Γl will be moving counter-clockwise.
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Fig. 10.14.2 Smith chart example.

Fig. 10.14.3 Moving towards the generator along a constant SWR circle.

The rotation angle φl = 2βl can be read off in degrees from the outer periphery of
the Smith chart. The corresponding length l can also be read off in units of wavelengths
towards the generator (WTG) or wavelengths towards the load (WTL). Moving towards
the generator by a distance l = λ/8 corresponds to a clockwise rotation by an angle of
φl = 2(2π/8)= π/2, that is, 90o. Moving by l = λ/4 corresponds to a 180o rotation,
and by l = λ/2, to a full 360o rotation.

Smith charts provide an intuitive geometrical representation of a load in terms of
its reflection coefficient and help one design matching circuits—where matching means
moving towards the center of the chart. However, the computational accuracy of the
Smith chart is not very high, about 5–10%, because one must visually interpolate between
the grid circles of the chart.
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Smith charts are used widely to display S-parameters of microwave amplifiers and
help with the design of matching circuits. Some of the tools used in such designs are the
stability circles, gain circles, and noise figure circles of an amplifier, which are intuitively
represented on a Smith chart. We discuss them in Chap. 13.

Various resources, including a history of the Smith chart and high-quality download-
able charts in Postscript format can be found on the web site [1317].

Laursen’s Smith chart MATLAB toolbox can be used to draw Smith charts. It is avail-
able from the Mathworks web site [1328]. Our MATLAB function smith.m can be used
to draw simple Smith charts.

10.15 Time-Domain Response of Transmission Lines

So far we discussed only the sinusoidal response of transmission lines. The response to
arbitrary time-domain inputs can be obtained by writing Eq. (10.6.3) in the time domain
by replacing jω→ ∂/∂t. We will assume a lossless line and set R′ = G′ = 0.† We obtain
then the system of coupled equations:

∂V
∂z
= −L′∂I

∂t
,

∂I
∂z
= −C′∂V

∂t
(10.15.1)

These are called telegrapher’s equations. By differentiating again with respect to z,
it is easily verified that V and I satisfy the uncoupled one-dimensional wave equations:

∂2V
∂z2

− 1

c2

∂2V
∂t2

= 0 ,
∂2I
∂z2

− 1

c2

∂2I
∂t2

= 0

where c = 1/
√
L′C′. As in Sec. 2.1, it is better to deal directly with the first-order coupled

system (10.15.1). This system can be uncoupled by defining the forward and backward
wave components:

V±(t, z)= V(t, z)±Z0I(t, z)
2

, where Z0 =
√
L′

C′
(10.15.2)

These satisfy the uncoupled equations:

∂V±
∂z

= ∓1

c
∂V±
∂t

(10.15.3)

with general solutions given in terms of two arbitrary functions f(t), g(t):

V+(t, z)= f(t − z/c) , V−(t, z)= g(t + z/c) (10.15.4)

These solutions satisfy the basic forward and backward propagation property:

V+(t, z+Δz) = V+(t −Δt, z)
V−(t, z+Δz) = V−(t +Δt, z)

, where Δt = Δz
c

(10.15.5)

†At RF,R′, G′may be small but cannot be assumed to be frequency-independent, for example,R′ depends
on the surface impedance Rs, which grows like f1/2.
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In particular, we have:

V+(t, z) = V+(t − z/c,0)
V−(t, z) = V−(t + z/c,0)

(10.15.6)

These allow the determination of the line voltages at any point z along the line from
the knowledge of the voltages at z = 0. Next, we consider a terminated line, shown in
Fig. 10.15.1, driven by a generator voltage VG(t), which is typically turned on at t = 0
as indicated by the closing of the switch.

Fig. 10.15.1 Transient response of terminated line.

In general, ZG and ZL may have inductive or capacitive parts. To begin with, we will
assume that they are purely resistive. Let the length of the line be d, so that the one-
and two-way travel-time delays will be T = d/c and 2T = 2d/c.

When the switch closes, an initial waveform is launched forward along the line. When
it reaches the load T seconds later, it gets reflected, picking up a factor of ΓL, and begins
to travel backward. It reaches the generator T seconds later, or 2T seconds after the
initial launch, and gets reflected there traveling forward again, and so on. The total
forward- and backward-moving componentsV±(t, z) include all the multiple reflections.

Before we sum up the multiple reflections, we can express V±(t, z) in terms of the
total forward-moving component V+(t)≡ V+(t,0) at the generator end, with the help
of (10.15.6). In fact, we have V+(t, z)= V+(t − z/c). Applying this at the load end
z = d, we have V+L (t)= V+(t, d)= V+(t − d/c)= V+(t − T). Because of Ohm’s law at
the load, VL(t)= ZLIL(t), we have for the forward/backward components:

V±L (t)=
VL(t)±Z0IL(t)

2
= ZL ± Z0

2
IL(t) ⇒ V−L (t)=

ZL − Z0

ZL + Z0
V+L (t)= ΓL V+(t−T)

Therefore, we find the total voltage at the load end:

VL(t)= V+L (t)+V−L (t)= (1+ ΓL)V+(t −T) (10.15.7)

Using (10.15.6), the backward component at z = 0 is:

V−(t +T) = V−(t + d/c,0)= V−(t, d)= V−L (t)= ΓLV+(t −T) , or,

V−(t) = ΓLV+(t − 2T)
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Thus, the total line voltage at the generator end will be:

Vd(t)= V+(t)+V−(t)= V+(t)+ΓLV+(t − 2T) (10.15.8)

More generally, the voltage at any point z along the line will be:

V(t, z)= V+(t, z)+V−(t, z)= V+(t − z/c)+ΓLV+(t + z/c− 2T) (10.15.9)

It remains to determine the total forward component V+(t) in terms of the multiple
reflections of the initially launched wave along the line. We find below that:

V+(t) =
∞∑
m=0

(ΓGΓL)m V(t − 2mT)

= V(t)+(ΓGΓL)V(t − 2T)+(ΓGΓL)2V(t − 4T)+· · ·
(10.15.10)

where V(t) is the initially launched waveform:

V(t)= Z0

ZG + Z0
VG(t) (10.15.11)

Thus, initially the transmission line can be replaced by a voltage divider with Z0 in
series with ZL. For a right-sided signal V(t), such as that generated after closing the
switch, the number of terms in (10.15.10) is finite, but growing with time. Indeed, the
requirement that the argument of V(t − 2mT) be non-negative, t − 2mT ≥ 0, may be
solved for the limits on m:

0 ≤m ≤M(t) , where M(t)= floor
(
t

2T

)
(10.15.12)

To justify (10.15.10) and (10.15.11), we may start with the single-frequency case dis-
cussed in Sec. 10.9 and perform an inverse Fourier transform. Defining the z-transform
variable ζ = ejωT = ejβd,† we may rewrite Eq. (10.9.7) in the form:

Vd = V 1+ ΓLζ−2

1− ΓGΓLζ−2
, Z0Id = V 1− ΓLζ−2

1− ΓGΓLζ−2
, where V = VGZ0

ZG + Z0

The forward and backward waves at z = 0 will be:

V+ = Vd + Z0Id
2

= V
1− ΓGΓLζ−2

V− = Vd − Z0Id
2

= VΓLζ−2

1− ΓGΓLζ−2
= ΓLζ−2V+

Vd = V+ +V− = V+ + ΓLζ−2V+ ⇒ Vd(ω)= V+(ω)+ΓLe−2jωTV+(ω)

(10.15.13)

where in the last equation we indicated explicitly the dependence onω. Using the delay
theorem of Fourier transforms, it follows that the equation for Vd(ω) is the Fourier
transform of (10.15.8). Similarly, we have at the load end:

†We use ζ instead of z to avoid confusion with the position variable z.
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VL = VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓLζ−2

ζ−1 = (1+ ΓL)ζ−1V+

which is recognized as the Fourier transform of Eq. (10.15.7). Next, we expand V+ using
the geometric series noting that |ΓGΓLζ−2| = |ΓGΓL| < 1:

V+ = V
1− ΓGΓLζ−2

= V + (ΓGΓL)ζ−2V + (ΓGΓL)2ζ−4V + · · · (10.15.14)

which is equivalent to the Fourier transform of Eq. (10.15.10). The same results can be
obtained using a lattice timing diagram, shown in Fig. 10.15.2, like that of Fig. 5.6.1.

Fig. 10.15.2 Lattice timing diagram.

Each propagation segment introduces a delay factor ζ−1, forward or backward, and
each reflection at the load and generator ends introduces a factor ΓL or ΓG. Summing
up all the forward-moving waves at the generator end gives Eq. (10.15.14). Similarly, the
summation of the backward terms at the generator, and the summation of the forward
and backward terms at the load, give:

V− = VΓLζ−2[1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ΓLζ−2V+

V+L = Vζ−1[1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ζ−1V+

V−L = ΓLVζ−1[1+ (ΓGΓL)ζ−2 + (ΓGΓL)2ζ−4 + · · · ] = ΓLζ−1V+ = ΓLV+L
Replacing V+(t) in terms of (10.15.10), we obtain from (10.15.7) and (10.15.8):

Vd(t) = V(t)+
(

1+ 1

ΓG

) ∞∑
m=1

(ΓGΓL)m V(t − 2mT)

VL(t) = (1+ ΓL)
∞∑
m=0

(ΓGΓL)m V
(
t − (2m+ 1)T

) (10.15.15)
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The line voltage at an arbitrary location z along the line, can be determined from
(10.15.9). The substitution of the series expansion of V+ leads to the expression:

V(t, z)=
∞∑
m=0

(ΓGΓL)m V(t − z/c− 2mT)+ΓL
∞∑
k=0

(ΓGΓL)k V(t + z/c− 2kT − 2T)

For a causal input V(t), the allowed ranges for the summation indices m,k are:

0 ≤m ≤ floor
(
t − z/c

2T

)
, 0 ≤ k ≤ floor

(
t + z/c− 2T

2T

)

Example 10.15.1: A terminated line has Z0 = 50, ZG = 450, ZL = 150 Ω. The corresponding
reflection coefficients are calculated to be: ΓG = 0.8 and ΓL = 0.5. For simplicity, we
take c = 1, d = 1, T = d/c = 1. First, we consider the transient response of the line
to a step generator voltage VG(t)= 10u(t). The initial voltage input to the line will be:
V(t)= VG(t)Z0/(ZG + Z0)= 10u(t)·50/(450 + 50)= u(t). It follows from (10.15.15)
that:

Vd(t)= u(t)+2.25
∞∑
m=1

(0.4)m u(t − 2mT) , VL(t)= 1.5
∞∑
m=1

(0.4)m u
(
t − (2m+ 1)T

)
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Fig. 10.15.3 Transient step and pulse responses of a terminated line.

These functions are plotted in Fig. 10.15.3. The successive step levels are calculated by:

Vd(t) VL(t)
1 0
1+ 2.25[0.41]= 1.90 1.5
1+ 2.25[0.41 + 0.42]= 2.26 1.5[1+ 0.41]= 2.10
1+ 2.25[0.41 + 0.42 + 0.43]= 2.40 1.5([1+ 0.41 + 0.42]= 2.34
1+ 2.25[0.41 + 0.42 + 0.43 + 0.44]= 2.46 1.5([1+ 0.41 + 0.42 + 0.43]= 2.44

Both Vd and VL converge to the same asymptotic value:

1+2.25[0.41+0.42+0.43+0.44+· · · ]= 1.5[1+0.41+0.42+0.43+· · · ]= 1.5
1− 0.4

= 2.5

440 10. Transmission Lines

More generally, the asymptotic level for a step input VG(t)= VGu(t) is found to be:

V∞ = V 1+ ΓL
1− ΓGΓL =

VGZ0

ZG + Z0

1+ ΓL
1− ΓGΓL =

VGZL
ZG + ZL (10.15.16)

Thus, the line behaves asymptotically like a lumped circuit voltage divider with ZL in series
with ZG. We consider next, the response to a pulse input VG(t)= 10

[
u(t)−u(t − τ)], so

thatV(t)= u(t)−u(t−τ), where τ is the pulse duration. Fig. 10.15.3 shows the generator
and load line voltages for the case τ = T/10 = 1/10. The pulse levels are:

[1, 2.25(0.4)m] = [1.00, 0.90, 0.36, 0.14, 0.06, . . . ] (at generator)

1.5(0.4)m = [1.50, 0.60, 0.24, 0.10, 0.04, . . . ] (at load)

The following MATLAB code illustrates the computation of Vd(t):

d = 1; c=1; T = d/c; tau = T/10; VG = 10;
Z0 = 50; ZG = 450; ZL = 150;
V = VG * Z0 / (ZG+Z0);
gG = z2g(ZG,Z0); gL = z2g(ZL,Z0); % reflection coefficients ΓG, ΓL

t = 0 : T/1500 : 10*T;

for i=1:length(t),
M = floor(t(i)/2/T);
Vd(i) = V * upulse(t(i), tau);
if M >= 1,
m = 1:M;
Vd(i) = Vd(i) + (1+1/gG)*V*sum((gG*gL).^m .* upulse(t(i)-2*m*T, tau));

end
end

plot(t, Vd, ’r’);

where upulse(t, τ) generates the unit-pulse function u(t)−u(t − τ). The code can be
adapted for any other input function V(t).

The MATLAB file pulsemovie.m generates a movie of the step or pulse input as it propa-
gates back and forth between generator and load. It plots the voltage V(t, z) as a function
of z at successive time instants t. ��

Next, we discuss briefly the case of reactive terminations. These are best han-
dled using Laplace transforms. Introducing the s-domain variable s = jω, we write
ζ−1 = e−jωT = e−sT. The terminating impedances, and hence the reflection coeffi-
cients, become functions of s. For example, if the load is a resistor in series with an
inductor, we have ZL(s)= R+ sL. Indicating explicitly the dependence on s, we have:

V+(s)= V(s)
1− ΓG(s)ΓL(s)e−2sT , where V(s)= VG(s)Z0

ZG(s)+Z0
(10.15.17)

In principle, we may perform an inverse Laplace transform on V+(s) to find V+(t).
However, this is very tedious and we will illustrate the method only in the case of a
matched generator, that is, when ZG = Z0, or, ΓG = 0. Then, V+(s)= V(s), where
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V(s)= VG(s)Z0/2Z0 = VG(s)/2. The line voltages at the generator and load ends will
be from (10.15.13) and (10.15.7):

Vd(s) = V(s)+ΓL(s)e−2sTV(s)

VL(s) =
[
1+ ΓL(s)

]
e−sTV(s)

(10.15.18)

We consider the four typical cases of series and parallel R–L and series and parallel
R–C loads. The corresponding ZL(s) and ΓL(s) are shown below, where in all cases
ΓR = (R − Z0)/(R + Z0) and the parameter a gives the effective time constant of the
termination, τ = 1/a:

series R–L parallel R–L series R–C parallel R–C

ZL(s)= R+ sL ZL(s)= RsL
R+ sL ZL = R+ 1

sC
ZL(s)= R

1+RCs
ΓL(s)= s+ aΓRs+ a ΓL(s)= sΓR − as+ a ΓL(s)= sΓR + as+ a ΓL(s)= −s+ aΓRs+ a
a = R+ Z0

L
a = Z0R

(R+ Z0)L
a = 1

(R+ Z0)C
a = R+ Z0

RZ0C
We note that in all cases ΓL(s) has the form: ΓL(s)= (b0s+b1)/(s+a). Assuming

a step-input VG(t)= 2V0 u(t), we have V(t)= V0 u(t), so that V(s)= V0/s. Then,

Vd(s)= V0

[
1

s
+ ΓL(s)1

s
e−2sT

]
= V0

[
1

s
+ b0s+ b1

s(s+ a)e
−2sT

]
(10.15.19)

Using partial-fraction expansions and the delay theorem of Laplace transforms, we
find the inverse Laplace transform:

Vd(t)= V0 u(t)+V0

[
b1

a
+
(
b0 − b1

a

)
e−a(t−2T)

]
u(t − 2T) (10.15.20)

Applying this result to the four cases, we find:

Vd(t)= V0 u(t)+V0
[
ΓR + (1− ΓR)e−a(t−2T)]u(t − 2T) (series R–L)

Vd(t)= V0 u(t)+V0
[−1+ (1+ ΓR)e−a(t−2T)]u(t − 2T) (parallel R–L)

Vd(t)= V0 u(t)+V0
[
1− (1− ΓR)e−a(t−2T)]u(t − 2T) (series R–C)

Vd(t)= V0 u(t)+V0
[
ΓR − (1+ ΓR)e−a(t−2T)]u(t − 2T) (parallel R–C)

(10.15.21)
In a similar fashion, we determine the load voltage:

VL(t)= V0
[
(1+ ΓR)+(1− ΓR)e−a(t−T)

]
u(t −T) (series R–L)

VL(t)= V0(1+ ΓR)e−a(t−T) u(t −T) (parallel R–L)

VL(t)= V0
[
2− (1− ΓR)e−a(t−T)

]
u(t −T) (series R–C)

VL(t)= V0(1+ ΓR)
[
1− e−a(t−T)]u(t −T) (parallel R–C)

(10.15.22)
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Example 10.15.2: We take V0 = 1, Z0 = 50, R = 150 Ω, and, as before, d = 1, c = 1, T = 1.
We find ΓR = 0.5. Fig. 10.15.4 shows the voltages Vd(t) and VL(t) in the four cases.

In all cases, we adjusted L and C such that a = 1. This gives L = 200 and C = 1/200, and
L = 37.5 and C = 1/37.5, for the series and parallel cases.

Asymptotically, the series R–L and the parallel R–C cases look like a voltage divider Vd =
VL = VGR/(R + Z0)= 1.5, the parallel R–L case looks like a short-circuited load Vd =
VL = 0, and the series R–C looks like and open circuit so that Vd = VL = VG = 2.

Using the expressions for V(t, z) of Problem 10.40, the MATLAB file RLCmovie.m makes a
movie of the step input as it propagates to and gets reflected from the reactive load. ��
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Fig. 10.15.4 Transient response of reactive terminations.

10.16 Problems

10.1 Design a two-wire line made of two AWG 20-gauge (diameter 0.812 mm) copper wires that
has a 300-ohm impedance. Calculate its capacitance per unit length.

10.2 For the two-wire line shown in Fig. 10.5.1, show that the tangential component of the electric
field vanishes on both cylindrical conductor surfaces. Show that the surface charge and
current densities on the positively charged conductor are given in terms of the azimuthal
angle φ as follows:

ρs(φ)= Q′

2πa
k2 − 1

k2 − 2k cosφ+ 1
, Jsz(φ)= I

2πa
k2 − 1

k2 − 2k cosφ+ 1

Show and interpret the following:
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∫ 2π

0
ρs(φ)adφ = Q′ ,

∫ 2π

0
Jsz(φ)adφ = I

10.3 For the two-wire line of the previous problem, show that the power loss per unit length due
to ohmic conductor losses is given by:

P′loss = Rs
∫ 2π

0
|Jsz(φ)|2adφ = Rs|I|

2

2πa
k2 + 1

k2 − 1

From this result, derive Eq. (10.5.13) for R′ and αc.

10.4 A polyethylene-filled RG-59 coaxial cable has impedance of 75 ohm and velocity factor of
2/3. If the radius of the inner conductor is 0.322 mm, determine the radius of the outer
conductor in mm. Determine the capacitance and inductance per unit length. Assuming
copper conductors and a loss tangent of 7×10−4 for the polyethylene dielectric, calculate
the attenuation of the cable in dB/100-ft at 50 MHz and at 1 GHz. Finally, calculate the cutoff
frequency of higher propagating modes.

10.5 Computer Experiment: Coaxial Cable Attenuation. Consider the attenuation data of an RG-
8/U cable given in Example 10.4.3.

a. Reproduce the graph of that Example. Show that with the assumed characteristics of
the cable, the total attenuation may be written as a function of frequency in the form,
where α is in dB per 100 ft and f is in GHz:

α(f)= 4.3412 f1/2 + 2.9131 f

b. Carry out a least-squares fit of the attenuation data given in the table of that Exam-
ple by fitting them to a function of the form α(f)= Af1/2 + Bf , and determine the
fitted coefficients A,B. This requires that you find A,B by minimizing the weighted
performance index:

J =∑
i
wi
(
αi −Af1/2

i − Bfi
)2 = min

where you may take the weights wi = 1. Show that the minimization problem gives
rise to a 2×2 linear system of equations in the unknowns A,B, and solve this system
with MATLAB.

Plot the resulting function of α(f) on the same graph as that of part (a). How do the
fitted coefficients compare with those of part (a)?

Given the fitted coefficients A,B, extract from them the estimated values of the loss
tangent tanδ and the refractive index n of the dielectric filling (assuming the cable
radii a,b and conductivity σ are as given.)

c. Because it appears that the 5-GHz data point is not as accurate as the others, redo part
(b) by assigning only 1/2 weight to that point in the least-squares fit. Finally, redo part
(b) by assigning zero weight to that point (i.e., not using it in the fit.)

10.6 Computer Experiment—Optimum Coaxial Cables. Plot the three quantities Ea, PT , and αc
given in Eq. (10.4.10) versus the ratio b/a over the range 1.5 ≤ b/a ≤ 4. Indicate on the
graphs the positions of the optimum ratios that correspond to the minima of Ea and αc,
and the maximum of PT .

Moreover, write a MATLAB function that solves iteratively (for example, using Newton’s
method) the equation for minimizing αc, that is, lnx = 1+ 1/x.
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10.7 Let Zl = Rl + jXl be the wave impedance on a lossless line at a distance l from a purely
resistive load ZL. Derive explicit expressions for Rl and Xl in terms of ZL and the charac-
teristic impedance Z0 of the line for the distances l = nλ/8, where n = 1,2,3,4,5,6,7,8.
Discuss the signs of Xl (inductive or capacitive) for the two cases ZL > Z0 and ZL < Z0.
What happens to the above expressions when ZL = Z0?

10.8 A dipole antenna operating in the 30-meter band is connected to a transmitter by a 20-meter
long lossless coaxial cable having velocity factor of 0.66 and characteristic impedance of 50
ohm. The wave impedance at the transmitter end of the cable is measured and found to be
39.9+ 34.2j ohm. Determine the input impedance of the antenna.

10.9 It is desired to measure the characteristic impedanceZ0 and propagation constantγ = α+jβ
of a lossy line. To this end, a length l of the line is short-circuited and its input impedanceZsc

is measured. Then, the segment is open-circuited and its input impedance Zoc is measured.
Explain how to extract the two unknown quantities Z0 and γ from Zsc and Zoc.

10.10 The wave impedances of a 100-meter long short- and open-circuited segment of a lossy
transmission line were measured to be Zsc = 68.45+ 128.13j ohm and Zoc = 4.99− 16.65j
ohm at 10 MHz. Using the results of the previous problem, determine the characteristic
impedance of the line Z0, the attenuation constant α in dB/100-m, and the velocity factor
of the cable noting that the cable length is at least two wavelengths long.

10.11 For a lossless line, show the inequality:

1− |ΓL|
1+ |ΓL| ≤

∣∣∣∣∣1+ ΓLe−2jβl

1− ΓLe−2jβl

∣∣∣∣∣ ≤ 1+ |ΓL|
1− |ΓL|

where ΓL is the load reflection coefficient. Then, show that the magnitude of the wave
impedance Zl along the line varies between the limits:

Zmin ≤ |Zl| ≤ Zmax , Zmin = 1

S
Z0 , Zmax = SZ0

where Z0 is the characteristic impedance of the line and S, the voltage SWR.

10.12 For a lossless line, show that the current Il at a distance l from a load varies between the
limits:

Imin ≤ |Il| ≤ Imax , where Imin = 1

Z0
Vmin , Imax = 1

Z0
Vmax

where Vmin and Vmax are the minimum and maximum voltage along the line. Then, show
that the minimum and maximum wave impedances of the previous problem can be written
in the alternative forms:

Zmax = Vmax

Imin
, Zmin = Vmin

Imax

Recall from Sec. 10.13 that Zmax, Zmin correspond to the distances lmax and lmin. However,
show that Imin and Imax correspond to lmax and lmin, respectively.

10.13 If 500 W of power are delivered to a load by a 50-ohm lossless line and the SWR on the line is
5, determine the maximum voltage Vmax along the line. Determine also the quantities Vmin,
Imax, Imin, Zmax, and Zmin.

10.14 A transmitter is connected to an antenna by an 80-ft length of coaxial cable of characteristic
impedance of 50 ohm and matched-line loss of 0.6 dB/100-ft. The antenna impedance is
30+40j ohm. The transmitter delivers 1 kW of power into the line. Calculate the amount of
power delivered to the load and the power lost in the line. Calculate the SWR at the antenna
and transmitter ends of the line.
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10.15 Let SL and Sd be the SWRs at the load and at distance d from the load on a lossy and
mismatched line. Let a = e2αd be the matched-line loss for the length-d segment. Show that
the SWRs are related by:

Sd = SL − (a− 1)(S2
L − 1)

a(SL + 1)−(SL − 1)
and SL = Sd + (a− 1)(S2

d − 1)
(Sd + 1)−a(Sd − 1)

Show that 1 ≤ Sd ≤ SL. When are the equalities valid? Show also that Sd → 1 as d→∞.

10.16 A 100-Ω lossless transmission line is terminated at an unknown load impedance. The line
is operated at a frequency corresponding to a wavelength λ = 40 cm. The standing wave
ratio along this line is measured to be S = 3. The distance from the load where there is a
voltage minimum is measured to be 5 cm. Based on these two measurements, determine the
unknown load impedance.

10.17 The wavelength on a 50 Ω transmission line is 80 cm. Determine the load impedance if the
SWR on the line is 3 and the location of the first voltage minimum is 10 cm from the load.
At what other distances from the load would one measure a voltage minimum? A voltage
maximum?

10.18 A 75-ohm line is connected to an unknown load. Voltage measurements along the line reveal
that the maximum and minimum voltage values are 6 V and 2 V. It is observed that a voltage
maximum occurs at the distance from the load:

l = 0.5λ− λ
4π

atan(0.75)= 0.44879λ

Determine the reflection coefficient ΓL (in cartesian form) and the load impedance ZL.

10.19 A load is connected to a generator by a 30-ft long 75-ohm RG-59/U coaxial cable. The SWR
is measured at the load and the generator and is found to be equal to 3 and 2, respectively.
Determine the attenuation of the cable in dB/ft. Assuming the load is resistive, what are all
possible values of the load impedance in ohm?

10.20 A lossless 50-ohm line with velocity factor of 0.8 is connected to an unknown load. The
operating frequency is 1 GHz. Voltage measurements along the line reveal that the maximum
and minimum voltage values are 6 V and 2 V. It is observed that a voltage minimum occurs
at a distance of 3 cm from the load. Determine the load reflection coefficient ΓL and the
load impedance ZL.

10.21 The SWR on a lossy line is measured to be equal to 3 at a distance of 5 meters from the load,
and equal to 4 at a distance of 1 meter from the load.

a. Determine the attenuation constant of the line in dB/m.

b. Assuming that the load is purely resistive, determine the two possible values of the
load impedance.

10.22 A lossless 50-ohm transmission line of length d = 17 m is connected to an unknown load
ZL and to a generator VG = 10 volts having an unknown internal impedance ZG, as shown
below. The wavelength on the line is λ = 8 m. The current and voltage on the line at the
generator end are measured and found to be Id = 40 mA and Vd = 6 volts.
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a. Determine the wave impedance Zd at the generator end, as well as the generator’s
internal impedance ZG.

b. Determine the load impedance ZL.

c. What percentage of the total power produced by the generator is absorbed by the load?

10.23 The wavelength on a 50-ohm transmission line is 8 meters. Determine the load impedance
if the SWR on the line is 3 and the location of the first voltage maximum is 1 meter from
the load. At what other distances from the load would one measure a voltage minimum? A
voltage maximum?

10.24 A 10-volt generator with a 25-ohm internal impedance is connected to a 100-ohm load via
a 6-meter long 50-ohm transmission line. The wavelength on the line is 8 meters. Carry out
the following calculations in the stated order:

a. Calculate the wave impedanceZd at the generator end of the line. Then, using an equiv-
alent voltage divider circuit, calculate the voltage and current Vd, Id. Then, calculate
the forward and backward voltages Vd+, Vd− from the knowledge of Vd, Id.

b. Propagate Vd+, Vd− to the load end of the line to determine the values of the forward
and backward voltages VL+, VL− at the load end. Then, calculate the corresponding
voltage and current VL, IL from the knowledge of VL+, VL−.

c. Assuming that the real-valued form of the generator voltage is

VG = 10 cos(ωt)

determine the real-valued forms of the quantities Vd,VL expressed in the sinusoidal
form A cos(ωt + θ).

10.25 A lossless 50-ohm transmission line is connected to an unknown load impedanceZL. Voltage
measurements along the line reveal that the maximum and minimum voltage values are
(
√

2 + 1) volts and (
√

2 − 1) volts. Moreover, a distance at which a voltage maximum is
observed has been found to be lmax = 15λ/16.

a. Determine the load reflection coefficient ΓL and the impedance ZL.

b. Determine a distance (in units of λ) at which a voltage minimum will be observed.

10.26 A 50-ohm transmission line is terminated at a load impedance:

ZL = 75+ j25 Ω

a. What percentage of the incident power is reflected back into the line?

b. In order to make the load reflectionless, a short-circuited 50-ohm stub of length d is
inserted in parallel at a distance l from the load. What are the smallest values of the
lengths d and l in units of the wavelength λ that will make the load reflectionless?
Show all work.

10.27 A load is connected to a generator by a 20-meter long 50-ohm coaxial cable. The SWR is
measured at the load and the generator and is found to be equal to 3 and 2, respectively.

a. Determine the attenuation of the cable in dB/m.

b. Assuming that the load is resistive, what are all possible values of the load impedance
in ohm? [Hint: the load impedance can be greater or less than the cable impedance.]
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10.28 A 50-ohm lossless transmission line with velocity factor of 0.8 and operating at a frequency
of 15 MHz is connected to an unknown load impedance. The voltage SWR is measured to be
S = 3+ 2

√
2. A voltage maximum is found at a distance of 1 m from the load.

a. Determine the unknown load impedance ZL.

b. Suppose that the line is lossy and that it is connected to the load found in part (a).
Suppose that the SWR at a distance of 10 m from the load is measured to be S = 3.
What is the attenuation of the line in dB/m?

10.29 A lossless 50-ohm transmission line is connected to an unknown load impedance. Voltage
measurements along the line reveal that the maximum and minimum voltage values are 6 V
and 2 V. Moreover, the closest distance to the load at which a voltage minimum is observed
has been found to be such that: e2jβlmin = 0.6−0.6j.Determine the load reflection coefficient
ΓL and the impedance ZL.

10.30 A resonant dipole antenna operating in the 30-meter band is connected to a transmitter
by a 30-meter long lossless coaxial cable having velocity factor of 0.8 and characteristic
impedance of 50 ohm. The wave impedance at the transmitter end of the cable is measured
to be 40 ohm. Determine the input impedance of the antenna.

10.31 The next four problems are based on Ref. [945]. A lossless transmission line with real
characteristic impedance Z0 is connected to a series RLC circuit.

a. Show that the corresponding load impedance may be written as a function of frequency
in the form (with f , f0 in Hz):

ZL = R+ jRQ
(
f
f0
− f0
f

)

where f0 and Q are the frequency and Q-factor at resonance. Such a load impedance
provides a simplified model for the input impedance of a resonant dipole antenna.

Show that the corresponding SWR SL satisfies SL ≥ S0 for all f , where S0 is the SWR
at resonance, that is, corresponding to ZL = R.

b. The SWR bandwidth is defined by Δf = f2 − f1, where f1, f2 are the left and right
bandedge frequencies at which the SWR SL reaches a certain level, say SL = SB, such
that SB > S0. Often the choice SB = 2 is made. Assuming that Z0 ≥ R, show that the
bandedge frequencies satisfy the conditions:

f1f2 = f2
0 , f2

1 + f2
2 = 2f2

0 + f2
0
(S0 + 1)2Γ2

B − (S0 − 1)2

Q2(1− Γ2
B)

, where ΓB = SB − 1

SB + 1

c. Show that the normalized bandwidth is given by:

Q
Δf
f0
=
√
(SB − S0)(S0 − S−1

B ) =
√√√√ 4(Γ2

B − Γ2
0)

(1− Γ0)2(1− Γ2
B)
, with Γ0 = S0 − 1

S0 + 1

Show that the left and right bandedge frequencies are given by:

f1 =
√
f2

0 +
(Δf)2

4
− Δf

2
, f2 =

√
f2

0 +
(Δf)2

4
+ Δf

2
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d. Show that the maximum bandwidth is realized for a mismatched load that has the
following optimum SWR at resonance:

S0 = SB + S
−1
B

2
, Γ0 = Γ2

B ⇒ Q
Δfmax

f0
= S

2
B − 1

2SB
= 2ΓB

1− Γ2
B

For example, if SB = 2, we have ΓB = 1/3, S0 = 1.25, and Δf/f0 = 0.75/Q, whereas
for a matched load we have S0 = 1 and Δf/f0 = 0.50/Q.

10.32 We assume now that the transmission line of the previous problem is lossy and that the
RLC load is connected to a generator by a length-d segment of the line. Let a = e2αd be the
matched-line loss. For such lossy line, we may define the bandwidth in terms of the SWR Sd
at the generator end.

Show that the normalized bandwidth is given by the same expression as in the previous
problem, but with the replacement ΓB → ΓLB, where ΓLB ≡ aΓB:

Q
Δf
f0
=
√
(SLB − S0)(S0 − S−1

LB) =
√√√√ 4(Γ2

LB − Γ2
0)

(1− Γ0)2(1− Γ2
LB)

, where SLB = 1+ ΓLB
1− ΓLB

Show that ΓLB, SLB are the quantities ΓB, SB referred to the load end of the line. Show
that the meaningful range of the bandwidth formula is 1 ≤ S0 ≤ SLB in the lossy case, and
1 ≤ So ≤ SB for the lossless case. Show that for the same S0 the bandwidth for the lossy
case is always greater than the bandwidth of the lossless case.

Show that this definition of bandwidth makes sense as long as the matched line loss satisfies
aΓB < 1. Show that the bandwidth vanishes at the S0 that has Γ0 = aΓB. Show that the
maximum bandwidth is realized for the optimum S0:

S0 = SLB + S
−1
LB

2
, Γ0 = Γ2

LB ⇒ Q
Δfmax

f0
= S

2
LB − 1

2SLB
= 2ΓLB

1− Γ2
LB
= 2aΓB

1− a2Γ2
B

Show that the optimum S0 is given at the load and generator ends of the line by:

S0 = 1+ a2Γ2
B

1− a2Γ2
B
, Sd0 = 1+ aΓ2

B

1− aΓ2
B

10.33 Assume now that Z0 ≤ R in the previous problem. Show that the normalized bandwidth is
given by:

Q
Δf
f0
=
√
(SLB − S−1

0 )(S−1
0 − S−1

LB) =
√√√√ 4(Γ2

LB − Γ2
0)

(1+ Γ0)2(1− Γ2
LB)

Show that the maximum always occurs at S0 = 1. Show that the conditions aΓB < 1 and
0 ≤ S0 ≤ SLB are still required.

Show that, for the same S0, the bandwidth of the case Z0 ≤ R is always smaller than that of
the case Z0 ≥ R.

10.34 Computer Experiment—Antenna Bandwidth. An 80-meter dipole antenna is resonant at f0 =
3.75 MHz. Its input impedance is modeled as a series RLC circuit as in Problem 10.31. Its
Q-factor is Q = 13 and its resistance R at resonance will be varied to achieve various values
of the SWR S0. The antenna is connected to a transmitter with a length of 75-ohm coaxial
cable with matched-line loss of a = e2αd.
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a. For a lossless line (a = 0 dB), plot the normalized bandwidths Q(Δf)/f0 versus the
SWR at the antenna at resonance S0. Do two such plots corresponding to SWR band-
width levels of SB = 2 and SB = 1.75. On the same graphs, add the normalized
bandwidth plots for the case of a lossy line with a = 2 dB. Identify on each graph the
optimum bandwidth points and the maximum range of S0 (for convenience, use the
same vertical and horizontal scales in all graphs.)

b. Assume now that S0 = 1.25. What are the two possible values of R? For these two
cases and assuming a lossy line with a = 2 dB, plot the SWR at the antenna end of
the line versus frequency in the interval 3.5 ≤ f ≤ 4 MHz. Then, plot the SWRs at
the transmitter end of the line. Using common scales on all four graphs, add on each
graph the left and right bandedge frequencies corresponding to the two SWR levels of
SB = 2 and SB = 1.75. Note the wider bandwidth in the lossy case and for the case
having Z0 ≥ R.

10.35 For the special case of a matched generator havingZL = Z0, or, ΓG = 0, show that Eq. (10.15.15)
reduces to:

Vd(t)= V(t)+ΓLV(t − 2T) and VL(t)= (1+ ΓL)V(t −T)

10.36 A terminated transmission line may be thought of as a sampled-data linear system. Show
that Eq. (10.15.15) can be written in the convolutional form:

Vd(t)=
∫∞
−∞
hd(t′)V(t − t′)dt′ , VL(t)=

∫∞
−∞
hL(t′)V(t − t′)dt′

so that V(t) may be considered to be the input and Vd(t) and VL(t), the outputs. Show
that the corresponding impulse responses have the sampled-data forms:

hd(t) = δ(t)+
(

1+ 1

ΓG

) ∞∑
m=1

(ΓGΓL)m δ(t − 2mT)

hL(t) = (1+ ΓL)
∞∑
m=0

(ΓGΓL)m δ
(
t − (2m+ 1)T

)

What are the corresponding frequency responses? Show that the effective time constant of
the system may be defined as:

τ = 2T
ln ε

ln |ΓGΓL|
where ε is a small number, such as ε = 10−2. Provide an interpretation of τ.

10.37 Computer Experiment—Rise Time and Propagation Effects. In digital systems where pulses
are transmitted along various interconnects, a rule of thumb is used according to which if
the rise time-constant of a pulse is tr ≤ 2.5T, where T = d/c is the propagation delay along
the interconnect, then propagation effects must be taken into account. If tr > 5T, then a
lumped circuit approach may be used.

Consider the transmission line of Example 10.15.1. Using the MATLAB function upulse.m,
generate four trapezoidal pulses of duration td = 20T and rise times tr = 0, 2.5T, 5T, 10T.
You may take the fall-times to be equal to the rise-times.

For each pulse, calculate and plot the line voltages Vd(t),VL(t) at the generator and load
ends for the time period 0 ≤ t ≤ 80T. Superimpose on these graphs the initial trapezoidal
waveform that is launched along the line. Discuss the above rule of thumb in the light of
your results.
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10.38 Two coaxial transmission lines of lengths d1, d2, impedances Z01, Z02, and propagation
speeds c1, c2 are connected in cascade as shown below. Define the one-way travel times
and z-transform variables by T1 = d1/c1, T2 = d2/c2, ζ1 = ejωT1 , and ζ2 = ejωT2 .

Show that the reflection response at the left of the junction is given by:

Γ1 = ρ+ ΓLζ−2
2

1+ ρΓLζ−2
2
= ρ+ ΓL(1− ρ

2)ζ−2
2

1+ ρΓLζ−2
2

where ρ = (Z02 − Z01)/(Z02 + Z01) and ΓL is the load reflection coefficient. Show that the
forward and backward voltages at the generator end and to the right of the junction are:

V+ = V
1− ΓGΓ1ζ−2

1
, V− = Γ1ζ−2

1 V+ , where V = VGZ01

ZG + Z01

V′1+ =
(1+ ρ)ζ−1

1

1+ ρΓLζ−2
2
V+ , V′1− =

(1+ ρ)ΓLζ−1
1 ζ−2

2

1+ ρΓLζ−2
2

V+

Assume a matched generator, that is, having ZG = Z01, or, ΓG = 0, and a purely resistive
load. Show that the time-domain forward and backward transient voltages are given by:

V+(t)= V(t)= 1

2
VG(t)

V−(t)= ρV(t − 2T1)+ΓL(1− ρ2)
∞∑
m=0

(−ρΓL)m V(t − 2mT2 − 2T2 − 2T1)

V′+(t)= (1+ ρ)
∞∑
m=0

(−ρΓL)m V(t − 2mT2 −T1)

V′−(t)= ΓL(1+ ρ)
∞∑
m=0

(−ρΓL)m V(t − 2mT2 − 2T2 −T1)

Show that the line voltage V(t, z) is given in terms of the above quantities by:

V(t, z)=
⎧⎨
⎩V+(t − z/c1)+V−(t + z/c1), for 0 ≤ z ≤ d1

V′1+
(
t − (z− d1)/c2

)+V′1−(t + (z− d1)/c2
)
, for d1 ≤ z ≤ d1 + d2

10.39 Computer Experiment—Transient Response of Cascaded Lines. For the previous problem,
assume the numerical values d1 = 8, d2 = 2, c1 = c2 = 1, Z01 = 50, Z02 = 200, ZG = 50,
and ZL = 600 Ω.

Plot the line voltage Vd(t)= V+(t)+V−(t) at the generator end for 0 ≤ t ≤ 5T1, in the
two cases of (a) a step input VG(t)= 3.25u(t), and (b) a pulse input of width τ = T1/20
defined by VG(t)= 3.25

[
u(t)−u(t−τ)]. You may use the MATLAB functions ustep.m and

upulse.m.

For case (a), explain also the initial and final voltage levels. In both cases, explain the reasons
for the time variations of Vd(t).
The MATLAB file pulse2movie.m generates a movie of the pulse or step signal V(t, z) as it
propagates through this structure.
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10.40 Equations (10.15.21) and (10.15.22) represent the line voltages at the generator and load
ends of a line terminated by a reactive load. Using inverse Laplace transforms, show that
the line voltage at any point z along such a line is given by:

V(t, z)= V0 u(t − z/c)+V0
[
ΓR + (1− ΓR)e−a(t+z/c−2T)]u(t + z/c− 2T) (series R–L)

V(t, z)= V0 u(t − z/c)+V0
[−1+ (1+ ΓR)e−a(t+z/c−2T)]u(t + z/c− 2T) (parallel R–L)

V(t, z)= V0 u(t − z/c)+V0
[
1− (1− ΓR)e−a(t+z/c−2T)]u(t + z/c− 2T) (series R–C)

V(t, z)= V0 u(t − z/c)+V0
[
ΓR − (1+ ΓR)e−a(t+z/c−2T)]u(t + z/c− 2T) (parallel R–C)

The MATLAB file RLCmovie.m generates a movie of these waves as they propagate to and get
reflected from the reactive load.

10.41 Time-domain reflectometry (TDR) is used in a number of applications, such as determining
fault locations in buried transmission lines, or probing parts of circuit that would otherwise
be inaccessible. As a fault-location example, consider a transmission line of impedance Z0

matched at both the generator and load ends, having a fault at a distance d1 from the source,
or distance d2 from the load, as shown below.

The fault is shown as a shunt or series capacitor C. But C can equally well be replaced by
an inductor L, or a resistor R. Assuming a unit-step input VG(t)= 2V0 u(t), show that the
TDR voltage Vd(t) measured at the generator end will be given by:

Vd(t)= V0 u(t)−V0 e−a(t−2T1)u(t − 2T1) (shunt C)

Vd(t)= V0 u(t)−V0
[
1− e−a(t−2T1)

]
u(t − 2T1) (shunt L)

Vd(t)= V0 u(t)+V0
[
1− e−a(t−2T1)

]
u(t − 2T1) (series C)

Vd(t)= V0 u(t)+V0 e−a(t−2T1)u(t − 2T1) (series L)

Vd(t)= V0 u(t)+V0 Γ1 u(t − 2T1) (shunt or series R)

where T1 = d1/c is the one-way travel time to the fault. Show that the corresponding time
constant τ = 1/a is in the four cases:

τ = Z0C
2
, τ = 2Z0C , τ = 2L

Z0
, τ = L

2Z0

For a resistive fault, show that Γ1 = −Z0/(2R + Z0), or, Γ1 = R/(2R + Z0), for a shunt or
series R. Moreover, show that Γ1 = (Z1 − Z0)/(Z1 + Z0), where Z1 is the parallel (in the
shunt-R case) or series combination of R with Z0 and give an intuitive explanation of this
fact. For a series C, show that the voltage wave along the two segments is given as follows,
and also derive similar expressions for all the other cases:

V(t, z)=
⎧⎨
⎩V0 u(t − z/c)+V0

[
1− e−a(t+z/c−2T1)

]
u(t + z/c− 2T1), for 0 ≤ z < d1

V0 e−a(t−z/c)u(t − z/c), for d1 < z ≤ d1 + d2

Make a plot of Vd(t) for 0 ≤ t ≤ 5T1, assuming a = 1 for the C and L faults, and Γ1 = ∓1
corresponding to a shorted shunt or an opened series fault.
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The MATLAB file TDRmovie.m generates a movie of the step input as it propagates and gets
reflected from the fault. The lengths were d1 = 6, d2 = 4 (in units such that c = 1), and the
input was V0 = 1.


