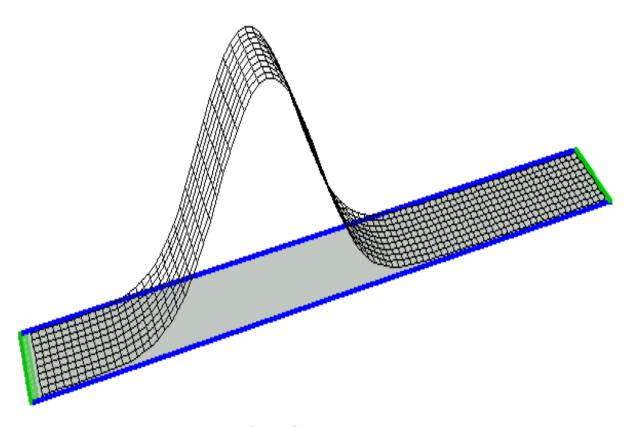
Prácticas con Mefisto Isabel Guillamón Gómez

Ampliación de Electromagnetismo Universidad de Murcia, 2004


Índice

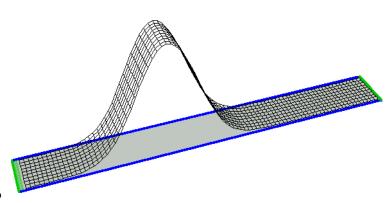
1.	Pro	pagación en medios indefinidos: onda circular	3
2.	Propagación en líneas de transmisión homogeneas		
	2.1.	Propagación de ondas TEM: pulsos gaussianos y señales armónicas .	4
		Ondas estacionarias:	5
		2.2.1. Reflexión en un cortocircuito	5
		2.2.2. Reflexión en un circuito abierto	6
		2.2.3. Reflexión parcial en una carga resistiva	7
			8
3.	Propagación en una guía de ondas rectangular		
		Propagación de un modo TE_{10} sinusoidal en una guía rectangular sin	
		pérdidas	9
	3.2.	Reflexión de un modo TE_{10} sinusoidal por un cortocircuito	10
		Reflexión de un modo TE_{10} sinusoidal por un circuito abierto	11
		Reflexión parcial de un modo TE_{10} sinusoidal por una carga resistiva	12
4.	Cavidades resonantes		

1. Propagación en medios indefinidos: onda circular

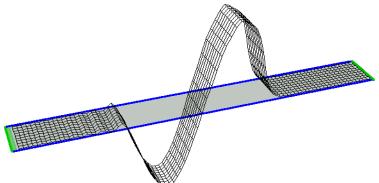
1. Construcción del sistema:

- $Z \times X = 49 \times 49$, L = 1mm
- **■** *Draw*:
 - Reflection Wall en todos los bordes: TEM Ref. Coef.=0
 - *Source Point*: en (24,24)
 - Computational Region: Toda con eps=1, cond=0
 - Animation Region: Toda menos la fuente
- Source Waveform: Gaussian(T):1/2/10
- Simulation Control: Control Data: 100/1/10
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

Onda Circular


2. Propagación en líneas de transmisión homogeneas

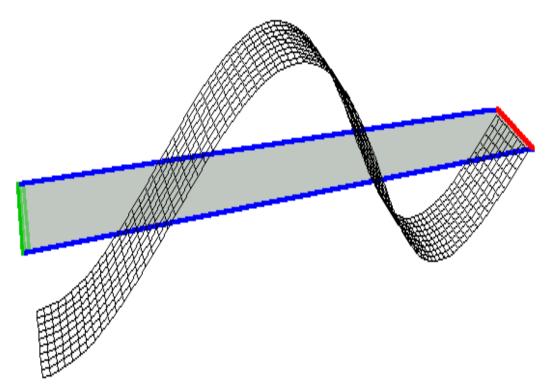
2.1. Propagación de ondas TEM: pulsos gaussianos y señales armónicas


1. Construcción del sistema:

- $Z \times X = 90 \times 11$, L = 1mm
- *Draw*:
 - Reflection Wall en los bordes izquierdo y derecho: TEM Ref. Coef.=0; y Magnetic Wall en los bordes inferior y superior.
 - Source Region: en la parte izquierda
 - Computational Region: Toda con eps=1, cond=0
 - Animation Region: Toda menos la fuente
- Source Waveform: (a) Gaussian(T):0.5/10/50 ó (b) Sin(T):0.5/50
- Simulation Control: Control Data: 274/10/50
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

2. Resultados:

(a) Pulso Gaussiano

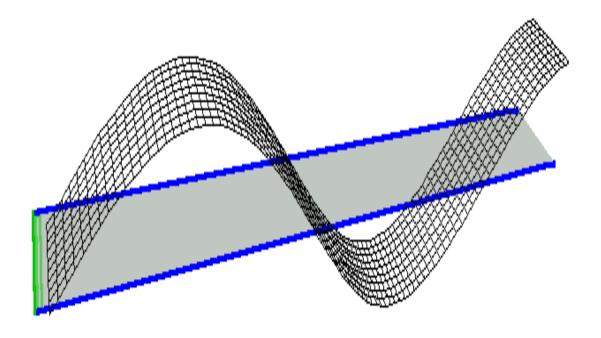

(b) Señal Armónica

2.2. Ondas estacionarias:

2.2.1. Reflexión en un cortocircuito

1. Construcción del sistema:

- $Z \times X = 90 \times 11$, L = 1mm
- \blacksquare Draw:
 - Reflection Wall en el borde izquierdo: TEM Ref. Coef.=0; Magnetic Wall en los bordes inferior y superior; y Electric Wall en el borde derecho
 - Source Region: en la parte izquierda
 - Computational Region: Toda con eps=1, cond=0
 - Animation Region: Toda menos la fuente
- Source Waveform: Sin(T):1/100
- Simulation Control: Control Data: 1000/5/10
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

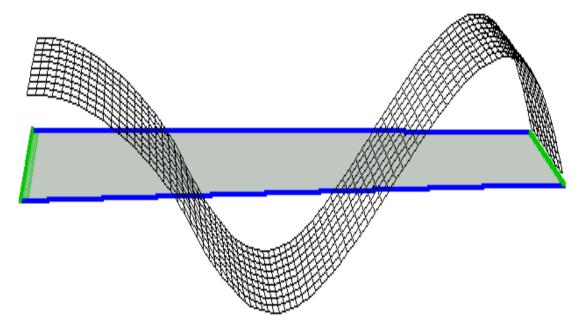


Reflexion en cortocircuito

2.2.2. Reflexión en un circuito abierto

1. Construcción del sistema:

- $Z \times X = 90 \times 11, L = 1mm$
- \blacksquare Draw:
 - Reflection Wall en el borde izquierdo: TEM Ref. Coef.=0; y Magnetic Wall en los bordes inferior y superior
 - Source Region: en la parte izquierda
 - Computational Region: Toda con eps=1, cond=0
 - Animation Region: Toda menos la fuente
- Source Waveform: Sin(T):1/100
- Simulation Control: Control Data: 1000/5/10
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

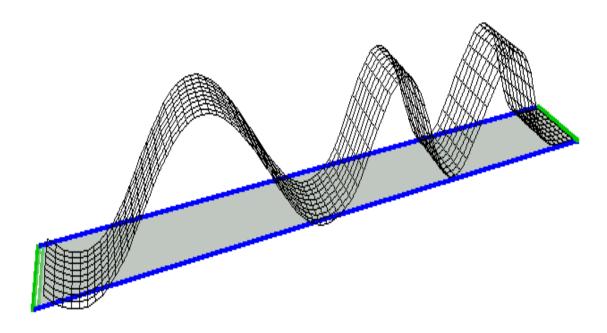


Reflexion en circuito abierto

2.2.3. Reflexión parcial en una carga resistiva

1. Construcción del sistema:

- $Z \times X = 90 \times 11$, L = 1mm
- \blacksquare Draw:
 - Reflection Wall en el borde izquierdo: TEM Ref. Coef.=0; Reflection Wall en el borde derecho: TEM Ref. Coef.=-0,6; y Magnetic Wall en los bordes inferior y superior
 - Source Region: en la parte izquierda
 - Computational Region: Toda con eps=1, cond=0
 - Animation Region: Toda menos la fuente
- Source Waveform: Sin(T):10.5/50
- Simulation Control: Control Data: 1000/5/10
- Sampling Mode: $V_y = E_y$
- \blacksquare Ejecutar (Desplegar Field: Field Display Attributes)

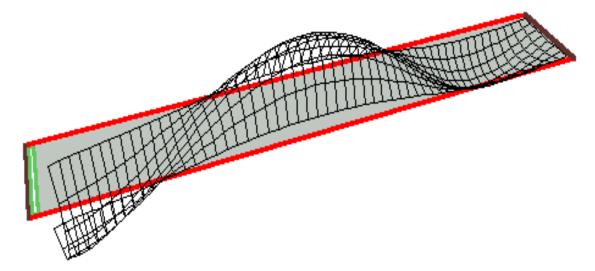

Reflexion parcial en una carga resitiva

2.2.4. Reflexión en una discontinuidad dieléctrica

1. Construcción del sistema:

- $Z \times X = 90 \times 11$, L = 1mm
- \blacksquare Draw:
 - Reflection Wall en los bordes izquierdo y derecho: TEM Ref. Coef.=0; y Magnetic Wall en los bordes inferior y superior
 - Source Region: en la parte izquierda
 - Computational Region: La mitad izquierda con eps=1, cond=0; y la mitad derecha con eps=3, cond=0
 - Animation Region: Toda menos la fuente
- Source Waveform: Sin(T):1/50
- Simulation Control: Control Data: 1000/5/10
- Sampling Mode: $V_y = E_y$
- \blacksquare Ejecutar (Desplegar Field: Field Display Attributes)

2. Resultados:

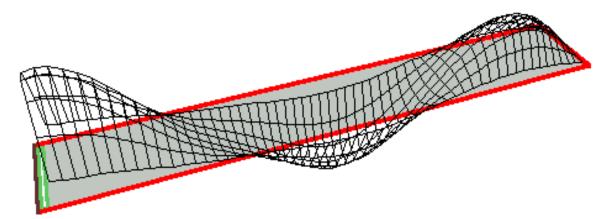

Reflexion en una discontinuidad dieléctrica

3. Propagación en una guía de ondas rectangular

3.1. Propagación de un modo TE_{10} sinusoidal en una guía rectangular sin pérdidas

1. Construcción del sistema:

- $Z \times X = 60 \times 11, \ L = 0,646545mm$
- **■** *Draw*:
 - Johns Matrix Wall en los bordes izquierdo y derecho del rectángulo entre (1,1) y (58,9); y Electric Wall en los bordes inferior y superior de dicho rectángulo
 - Source Region: en la parte izquierda del rectángulo
 - Computational Region: Todo el rectángulo con eps=1, cond=0
 - Animation Region: Todo el rectángulo menos la fuente
- Source Waveform: Sin(f):1/30
- Simulation Control: Control Data: 500/1/25
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

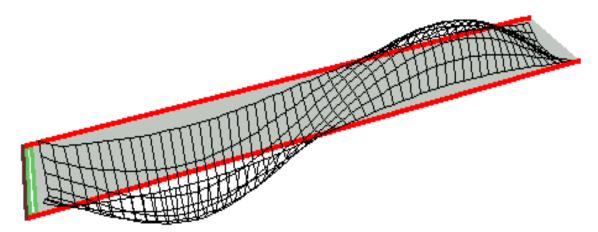

Propagación del modo TE_{10} en guía rectangular sin perdidas

3.2. Reflexión de un modo TE_{10} sinusoidal por un cortocircuito

1. Construcción del sistema:

- $Z \times X = 60 \times 11, \ L = 0,646545mm$
- \blacksquare Draw:
 - Johns Matrix Wall en el borde izquierdo del rectángulo entre (1,1) y (58,9); y Electric Wall en los bordes derecho, inferior y superior de dicho rectángulo
 - Source Region: en la parte izquierda del rectángulo
 - Computational Region: Todo el rectángulo con eps=1, cond=0
 - Animation Region: Todo el rectángulo menos la fuente
- Source Waveform: Sin(f):1/30
- Simulation Control: Control Data: 500/1/25
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

2. Resultados:

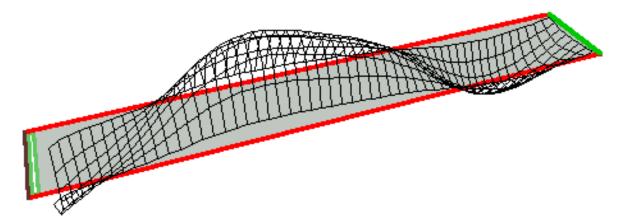

Reflexión del modo TE_{10} en guía rectangular por cortocircuito

3.3. Reflexión de un modo TE_{10} sinusoidal por un circuito abierto

1. Construcción del sistema:

- $Z \times X = 60 \times 11, \ L = 0,646545mm$
- \blacksquare Draw:
 - Johns Matrix Wall en el borde izquierdo del rectángulo entre (1,1) y (58,9); y Electric Wall en los bordes inferior y superior de dicho rectángulo
 - Source Region: en la parte izquierda del rectángulo
 - Computational Region: Todo el rectángulo con eps=1, cond=0
 - Animation Region: Todo el rectángulo menos la fuente
- Source Waveform: Sin(f):1/30
- Simulation Control: Control Data: 500/1/25
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

2. Resultados:

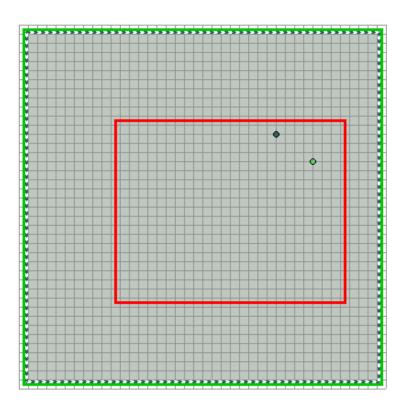

Reflexión del modo TE_{10} en guía rectangular por circuito abierto

3.4. Reflexión parcial de un modo TE_{10} sinusoidal por una carga resistiva

1. Construcción del sistema:

- $Z \times X = 60 \times 11, \ L = 0,646545mm$
- \blacksquare Draw:
 - Johns Matrix Wall en el borde izquierdo del rectángulo entre (1,1) y (58,9); Electric Wall inferior y superior de dicho rectángulo; y Reflexion Wall en el borde derecho: TEM Ref. Coef.=-0,6
 - Source Region: en la parte izquierda del rectángulo
 - Computational Region: Todo el rectángulo con eps=1, cond=0
 - Animation Region: Todo el rectángulo menos la fuente
- Source Waveform: Sin(f):1/30
- Simulation Control: Control Data: 500/1/25
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

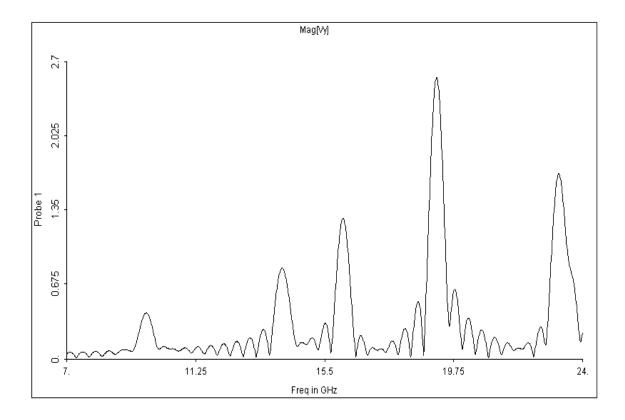
2. Resultados:



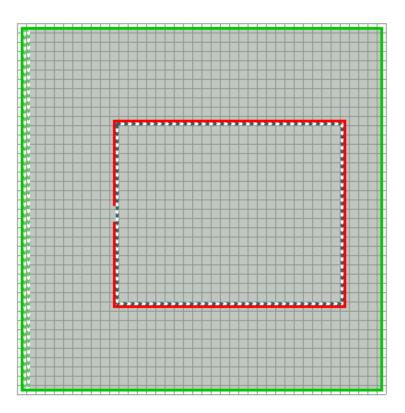
Reflexión parcial del modo TE_{10} en guía rectangular por carga resistiva

4. Cavidades resonantes

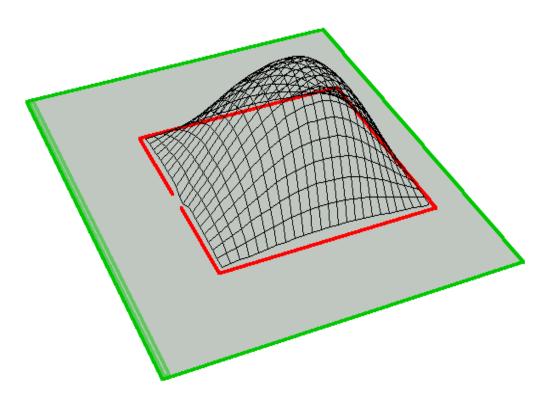
1. Construcción del sistema:


- $Z \times X = 40 \times 40, L = 1mm$
- \blacksquare Draw:
 - \bullet Reflexion Wall en los bordes: TEM Ref. Coef. = 0
 - Source Point: en (32,15) con Node Voltage $V_y=1$
 - *Probe* en (28,12)
 - Computational Region: Toda con eps=1, cond=0
 - Animation Region: Toda
- Source Waveform: Impulse(T): Magnitude 1
- Simulation Control: Control Data: 1000/50
- Sampling Mode: $V_y = E_y$
- Ejecutar (Desplegar Field: Field Display Attributes)

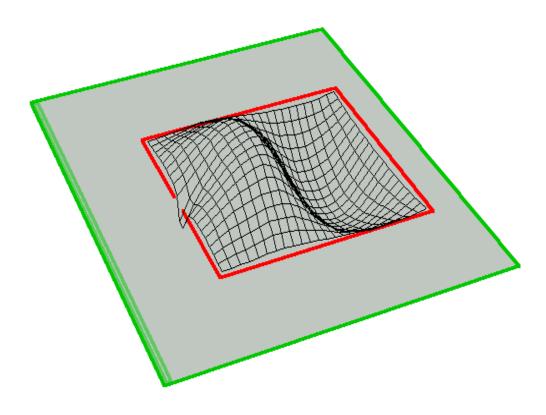
2. Resultados: Los resultados teóricos y los obtenidos con Mefisto son:


TE	f_{Th} (GHz)	f_{Mef} (GHz)
101	9,59497	9,590
102	$14,\!13666$	14,134
201	16,13915	16,112
202	19,18994	19,196
103	19,48027	19,452
301	23,26271	23,161
203	$23,\!40705$	23,390

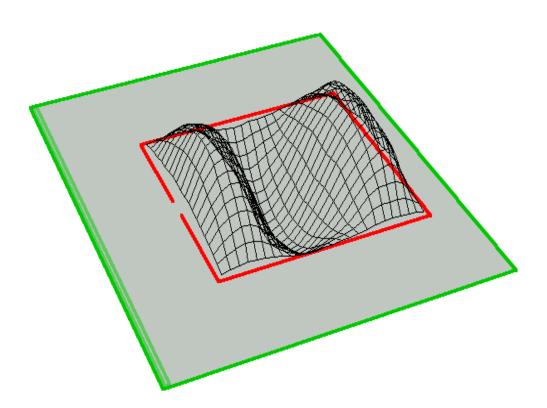
Para obtener estos resultados hemos ido variando la localización de la fuente y la prueba. Un ejemplo de espectro que hemos obtenido es:


3. Comprobación de las resonancias y visualización de las distribuciones asociadas a los modos.

Para ello vamos a introducir un iris por donde excitar a la cavidad y una region de alimentación sinusoidal (a la izquierda, ocupando todo el alto de la región), tras haber eliminado la fuente y prueba del sistema anterior. El iris (ausencia de pared eléctrica) ocupa del (10,19) al (10,21) y restringimos la región de animación al interior de la cavidad.



4. Resultados para los primeros modos:


 \blacksquare Modo TE_{101} : Excitado a la frecuencia de 9,6 GHz

 \blacksquare Modo TE_{102} : Excitado a la frecuencia de 14,1 GHz

- Modo TE_{201} : Probado a la frecuencia de 16,1 GHz. No se excita ya que tiene un nodo en la región del iris. Con carácter general no se excitarán los modos con primer índice par.
- Modos TE_{202} y TE_{103} : Probados a las frecuencias de 19,2 y 19,5 GHz. Sólo aparece en modo TE_{103} . El otro no se excita por la razon dada anteriormente.

