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Container Description Ontology for CaaS

Abstract: Besides its classical three service models (IaaS, PaaS, and SaaS),
Container as a Service (CaaS) has gained a significant acceptance since it
offers without difficulty of high-performance challenges of traditional hypervisors
deployable applications. As the adoption of containers is increasingly wide
spreading, the use of tools to manage them across the infrastructure becomes
a vital necessity. In this paper, we propose a conceptualization of a domain
ontology for the container description called CDO. CDO presents, in a detailed
and equal manner, the functional and non-functional capabilities of containers,
dockers and container orchestration systems. In addition, we provide a framework
that aims at simplifying the container management not only for the users but
also for the cloud providers. In fact, this framework serves to populate CDO,
help the users to deploy their application on a container orchestration system
and enhance interoperability between the cloud providers by providing migration
service for deploying applications among different host platforms. Finally, the
CDO effectiveness is demonstrated relying on a real case study on the deployment
of a micro-service application over a containerized environment under a set of
functional and non-functional requirements.

Keywords: Container as a Service; Docker; Container Orchestration System;
Ontology; Container Discovery.

1 Introduction

More and more the enterprises are turning to the cloud computing due to its various
advantages, including reduced costs and availability of services and data from any location,
on any type of media at any time [1, 20, 25]. Besides its classical three service models
(IaaS, PaaS, and SaaS), cloud computing has been recently empowered by a new service
offering called Containers-as-a-Service (CaaS) [26]. In fact, container-based virtualization
is gaining significant acceptance because it offers a lightweight solution that allows bundling
applications and data in a simpler and more performance-oriented manner, making them
runnable on different cloud infrastructures. In a recent study, Cloud Foundry has reported
that the adoption of container technologies is on fire, with 53% of the enterprises either
investigating or using containers in development or in production [6].

As the use and the wide adoption of containers rises, the need for tools to manage
them across the infrastructure becomes a vital necessity. The container management
and automation tools represent a hot area for development as organizations race to fill
the growing need to manage highly distributed, cloud-native applications. Major cloud
providers, including Amazon Web Services (AWS), Azure and Google, offer container
services and orchestration tools to manage the container creation and deployment.
Orchestrating a cluster of containers is a competitive and rapidly evolving area where
many tools are proposed offering various feature sets. Container orchestration tools can be
broadly defined as providing a dedicated framework for the integration and management of
containers at scale. Such tools aim at simplifying the container management and provide
a framework not only for defining container deployment but also for managing multiple
containers as one entity for purposes of availability, scaling, and networking.
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Not all orchestration systems are equally created, and some of them have particular
strengths and functionalities that are worth considering such as some of them provide
framework(s) to deploy multiple containers, provide container clusters using cloud VMs,
and/or compact multiple apps onto a premise or public cloud infrastructure, etc. Deploying
an application on a container orchestration system can be a challenging task especially
when relying on public cloud providers for a particular application workload. The container
orchestration system often have similar services described differently or provide different
capabilities. For instance, Amazon EC2 Container Service (ECS) offers a container
management service that supports Docker containers for running applications on a managed
cluster of Amazon EC2 instances. While ECS uses its proprietary orchestrator, Microsoft
Azure orchestrates using DC/OS, Docker Swarm, or Kubernetes. Some of the orchestration
tools can be installed on-premise or in most public clouds, while others can be offered
only as a hosted solution [31]. Such heterogeneous usage mode complicates the container
orchestration system discovery. It is worsened by the absence of a standard language
for describing the container tools and services. Therefore, the application of ontology in
container orchestration systems needs to be emphasized and a systematic approach for the
application needs to be developed.

We propose in this paper to conceptualize ontology for container description. The
proposed ontology, which is called Container Description Ontology (CDO), semantically
and structurally represents container specification along with the orchestration systems.
The CDO is linked to an existing ontology [33] to point to some classes. To recapitulate,
this paper makes a three-fold contribution: (i) the conceptualization and population of a
domain ontology dealing with container, Docker and container orchestration system related
concepts and properties; (ii) a framework dedicated for managing the ontology, which is
composed of a set of modules that provides more flexibility and plain basis for further
system enhancement. This framework can be used by both the final users and CaaS providers
to help them with the discovery of container orchestration system and the migration of
the containers instances into different host platforms achieving interoperability, and (iii)
the proposition of capabilities-based inference rules for a pertinent container orchestrator
discovery.

The remainder of the paper is organized as follows: Sect. 2 summarizes the existing
works on semantic descriptions of virtualization principles and management. Sect. 3
presents a detailed design and construction of the ontology. Sect. 4 depicts the proposed
framework for the CDO population, the container migration and the reasoning upon the
CDO ontology. In Sect. 5, we evaluate the ontology based on its application on a real case
study. Finally, we conclude the paper and give some directions for future work.

2 Related work

Cloud-related standards like OCCI [24], CIMI [7] and Open Virtual Format (OVF) [8]
already cover the management of virtual infrastructure level elements such as naming,
addressing, identity, presenting, messaging as well as identifying the objects involved in
the means to transfer, store, and process information.

In this sense, recently the authors, in [3], propose a software capability container and its
related ontology which offers a wider view qualification to improve the discovery and reuse
of REST-based services. Their proposed EACP ontology is based on a proposed Enterprise
Architecture Capability Profile offering a qualification covering business, operational and



Container Description Ontology for CaaS 3

technical aspects for services. The qualification profile is based on a meta-model that helps
to retrieve and gather initial requirements used to guide the development of existing REST-
based Web Applications. Furthermore, a Framework is proposed to exploit the designed
container in order to respond to users requirements for developing future business process
and efficiently reuse the qualified services.

Rekik et al. [28] propose a Cloud Service description Ontology (CSO) based on
standards and covers functional and non-functional capabilities of the three main cloud
provision models (IaaS, PaaS, SaaS). To ensure the quality of the CSO ontology, the
authors define an evaluation approach that detects and corrects consistency, redundancy and
incompleteness errors.

Similarly, the mOSAIC ontology [21] models the cloud concepts and definitions
according to NIST [5]. The ontology allows modeling the proper cloud resources at the
IaaS level, including virtual machines. The mOSAIC infrastructure makes use of a semantic
engine in order to handle the ontology and to assist customers with the selection of API
components and functionalities needed for building new cloud applications. The mOSAIC
does not properly cover security aspects, and SOFIC [4] extended mOSAIC to enable
security assessments in the Intercloud.

Although the aforementioned ontologies deal with virtualization principles and
management, they do not cover container-based virtualization and management, as it is
done in the paper presented herein. In this sense, Ayed et al. [2] present an ontology that
describes docker images reusing concepts from SIOC and PROV vocabularies. Besides,
they automatically extract data from the Docker Hub Registry to populate such ontology.

In [16], the ontology called Smart Container (SC) conceptualizes Docker software
objects. SC ontology is aligned with other existing ontologies, such a PROV-O and Core
Software Ontology to provide a mechanism that can capture the provenance of Docker
containers as artifacts themselves and potential enable sharing Docker information on the
Semantic Web via Linked Data principles.

In [9], the authors provide a simple framework to address the preservation of the docker
containers and their environment. They create a domain specific language to ensure that
docker files be reused at a later stage, recreating the original environment. It reuses PROV
and Functional Requirements for Bibliographic Record (FRBR) ontologies.

Recently, the Big Data Analysis Community Group of the W3C populate new Docker
Ontology [33] that models the main semantic vocabularies of the docker ecosystem. The
current ontology version is ’alpha’ quality and it basically ports to OWL classes and
properties of the JSON structure taken from docker instances. Our ontology also models
the main classes of the docker instance in OWL, such as HostConfig, State, Mounts, and
NetworkSettings. Nonetheless, our ontology aims at covering a broader spectrum, since it
also includes semantic vocabularies for container orchestration systems and inference rules
for a pertinent container orchestrator discovery.

3 Container Description Ontology (CDO)

3.1 Construction Methodology

We proceed to conceptualize our ontology according to NIST and by analyzing TOSCA
[23], CMN, CNI and OCI standards as well as research papers from the literature. To create
the ontology, we use NOY and McGuinness methodology [22] since it is the most cited
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and used methodology. This includes the following steps: (1) Ontology domain and goal
identification, (2) Existing ontology examination, (3) Concepts and hierarchy definition,
(4) Data and object property definition, (5) Property facet definition as well as domains,
and ranges and cardinality definition, and finally (6) Class instantiation from the real
world. On the other hand, we follow the design principles, presented on [14], which are
objective criteria for guiding and evaluating ontology designs. By following the presented
methodology, we propose the Thing class which covers all the CDO’s concepts (see
Figure 1). In addition, we adopt the Protégé editor [27] to create, visualize and manipulate
our container description ontology. In what follows, we detail the main classes.

Figure 1 Thing Class: CDO Main Concepts

3.2 CDO Main Concepts

3.2.1 Container Class

A container is an OS-level virtualization for running multiple isolated systems on a single
host. Referring to [33], the Container class has a host configuration, amounts of CPU,
memory, and block IO, a state, and network settings. In addition, a container has a set of
libraries and isolation features (Resource_Isolation, Process_Isolation, Network_Isolation,
and FileSystem_Isolation) provided respectively through Linux Cgroups, Pid, Namespaces
and Chroot. Obviously, the container uses a Docker and in reverse the Docker manages a
container (see Figure 2).

3.2.2 Docker Class

Docker is an open source platform that enables the development, shipping, and running of
applications as containers. Docker containers can run in multiple infrastructures including
VMs, bare-metal servers, and public cloud instances. The major cloud providers, such
as AWS, Azure and Google, support the docker containers. Docker manages container
by managing namespaces for each container, which are: Process ID (PID), Networking,
InterProcess Communication (IPC), Mount (MNT) namespace and UNIX Timesharing
System (UTS). Docker uses control group (cgroups) to manage available hardware resources
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Figure 2 Container Class

among containers and a lightweight file system called (UnionFS) to prove the building
blocks for containers. Then Docker combines these components into a container format
called libcontainer [19].

The Docker container is created using an image which is a read-only template containing
everything required by the application and from which the container is launched. The
description of a Docker container image is presented in a configuration file named
Image_File. As shown in Figure 3, the description could contain:

• URL: this class includes Description_URL, ImageBug_URL, Company_URL,
MetaDataDetails_URL, and HelpPage_URL sub-classes to specify, respectively, URLs
for the pages (i) that provide information of the image like installation parameters
(e.g. [10]), (ii) in which issues and bugs are reported, (iii) of companies supporting
this image, (iv) of repository information describing image metadata used to enrich the
description of the docker image (e.g. [11]), and (v) providing help about this image.

• Supported architecture: it defines the supported computer architectures (e.g. amd64,
arm32).

• Supported Docker version: it presents the supported docker versions (e.g. v17.09.0-ce).

• Local: it specifies a link indicating the exact location of the docker image files.

• Command: this class serves to automatically perform actions on a base image. It
is divided into three sub-classes: (i) Pull_Command: command needed to download
the image (e.g. docker pull Ubuntu), (ii) Run_Command: command needed to run
the image (e.g. docker run ubuntu:16.04 grep -v ’#̂’ /etc/apt/sources.list), and (iii)
Default_Command: command used to build a Docker on the host.

• Manifest MIME: it provides information about the image in a JSON text file. It serves to
install a docker to the home-screen of a host, providing users with quicker access along
with other capabilities such as being available offline and receiving push notifications.
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• Supported tag: the user can group his images together using tags, and then upload them
to share images via repositories.

• Image platform: it specifies the environment in which a docker is executed (e.g.
windows amd64).

• Package: this class provides information about all the packages used in the docker file.

Once a Docker image is built, it can be stored in a Public or Private Registry and then be
searched, removed, updated, to serve as the basis of other images. Indeed, a Docker registry
is setup to store Docker images. The Docker Daemon will able to search and pull the Docker
Image from the Docker registry. The Docker includes a huge Docker repository called
Docker_Hub. The Docker hub provides both public and private storage for images. The
public storage is searchable and can be downloaded by anyone. Private storage is excluded
from the search results and only authorized users can pull images down and use them to
run containers.

Figure 3 Docker_Image Class

3.2.3 Docker_Capability Class

Based on [30, 18], the Docker has a set of functional and non-functional capabilities (see
Figure 4). The functional capabilities cover:

• Discovery: it is enabled thanks to the Docker registries.

• Deployment: the Docker containers can be deployed on desktops, physical servers,
virtual machines, data centers, and up to public and private clouds in a very short time,
since they do not had boot up process. By consequently, the application process within
a container is able to start instantaneously.
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Figure 4 Docker_Capability Class

• Docker_Storage: it has a type (DockerStorage_Type) that can be
Persistent_DockerStorage or NonPersistent_DockerStorage. Persistent can
be HostBased_DockerStorage or SharedMultiHost_DockerStorage. The
HostBased_DockerStorage is one of the early implementations of data persistence in
containers. This kind of storage supposes that containers depend on the underlying host.
It can be ImplicitStorage_PerContainer or ExplicitSharedStorage. The first creates
an implicit storage sandbox for the container that requests host-based persistence.
The second exposes an explicit location on the host file-system as a mount within
one or more containers. It is needed to share data across multiple containers running
on the same host. The SharedMultiHost_DockerStorage addresses the container
non-portability issue caused by HostBased_DockerStorage. It requires a distributed
storage, which is made available to all the hosts and is then exposed to the containers
through a consistent namespace. In addition, caching data via shared and replicated
volumes offers decoupling data from services.

• Scaling: Docker’s lightweight containers make scaling up and down easier. More
containers can be launched when needed and then shut them down easily when they
are no longer used.

• Management and migration: a Docker container is created and maintained differently
than hypervisor-based virtual machines. The entire environment, except the host OS, is
created and recreated on each update or a change made inside the container. In addition,
after configure an application in a Docker container, the Docker container is easier to
shift from one location to another.

The non-functional capabilities of the Docker_Capability class include:

• Security: the standard security features of the Linux kernel are implemented into
docker, and added as a layer of configurable amendments to the containers executed by
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the docker engine. This layer considers the risk management needed when containers
are scaled upward with accelerating release velocity. Indeed, it enables an easier
management of some security configurations and limits containers to interact with the
appropriate resources.

• Portability: docker container is a simple directory which can be compressed and copied
anywhere.

• Social sharing: the developers can share container images in a public or private way,
something that enables and encourages the development of the platform. The images
of the new containers can be based on other ones built by other developers.

3.2.4 Container_OrchestrationSystem Class

The container orchestration system also named container scheduler or container cluster is
a tool for integrating and managing containers at scale. The main task of the container
orchestration system is to launch containers on the adequate host and connect them together.
Usually, the container orchestration system follows a master/slave Architecture.

ContainerOrchestrationSystem_Capability Class

The container orchestration system has a set of functional and non-functional capabilities.
As shown in Figure 5, the functional ones cover:

Figure 5 ContainerOrchestrationSystem_FunctionalCapability Class

• Application_Definition: it specifies the blueprint for an application workload and its
configuration in a standard schema, using languages such as YAML and JSON. It can
also include the container image repositories, ports, storage, etc.

• Deployment_Infrastructure: which is also called Supported_Platform, consists in
running containers either on a physical infrastructure, or outside on a virtual
infrastructure of private or public clouds.

• Storage: which is also called Data_Volume, consists in persisting data in a container
writable layer.
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• Service_Discovery: container orchestration systems provide a distributed key-value
store, a lightweight DNS or some other mechanism to enable the discovery of
containers. Some container orchestration systems, such as the Nomad, lack this
capability.

• Scalability: it is the ability to schedule any number of container replicas across a group
of node instances to meet an applications scale.

• Networking: it connects containers running on the cluster nodes.

• Monitoring: it consists in tracking the health of the containers and hosts in the cluster.
If a container crashes, a new one can be spun up. When a host fails, the container
orchestration system will restart the failed containers on another host. It will also run
specified health checks at the appropriate frequency and update the list of available
nodes based on the results.

• Load_Balancing: it is the capability to load balance requests across any of the containers
on any of the hosts in the cluster.

• Provisioning: it determines the right placement for the containers by selecting an
appropriate host based on the specified constraints such as resource requirements,
location affinity etc.

• Configuration: also called installation, is the ability to make the orchestration system
ready for execution.

However, as shown in Figure 6, the non-functional capabilities are:

Figure 6 ContainerOrchestrationSystem_NonFunctionalCapability Class

• Availability: it is provided through container replication and service redundancy. The
same container is deployed on multiple nodes to provide redundancy and redeployed
again if a host running the service goes down making the service self-healing.

• Rolling upgrades: once a new version of an application is available, rolling upgrades,
incrementally across the cluster, should be performed.

• Rollback: if the new version of an updated application does not perform as expected,
then the container cluster system can roll back the applied change.
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• Security: is a critical element of the container orchestration system. It deals with the
used security mechanisms, such as role-based access control, transport layer security
(TLS), X.509 certificate or token-based, etc. For example, the container orchestration
tool should ensure that the container images be regularly scanned for vulnerabilities,
and that the images are digitally signed.

Storage Class

Container orchestration system offers NonPersistent_Storage and/or Persistent_Storage
types. The latter has an Access_Mode which may be: Read Write Once (RWO), Read Only
Many (ROX), and/or Read Write Many (RWX) describing how the storage volume can
be mounted by nodes. SharedMultiHost_Storage, which is a persistent storage used by
almost all the container orchestration systems, takes advantage of a distributed filesystem
combined with the explicit storage technique. Examples of shared filesystems, such as Ceph,
GlusterFS, Network File System (NFS) and others, can be used to configure a distributed
filesystem on each host running the containers. In addition, some container orchestration
systems can propose NonPersistant_Storage that can be used to read and write files with
a container. To extend the capabilities of the containers to a variety of storage backends,
container orchestration system employs Storage_Plugin. For instance, Flocker, which is a
storage plugin that works with Docker Swarm, Kubernetes and Mesos, enables the storage
support ranging from Amazon Elastic Block Store (EBS), GCE persistent disk, OpenStack
Cinder, vSphere, vSAN and more. The implementation of an orchestration system storage
follows NFS, ISCSI and/or cloudProvider_StorageSpecificSystem. Indeed, NFS enables
files to be shared among multiple client machines. In contrast, a block protocol, such as
iSCSI supports a single client for each volume on the block server, while in the case of
cloud provider specific system, the data sharing spans multiple servers.

Figure 7 Storage Class

Networking Class

Since containers reside on either a local or a virtual host, they require a adequate networking
approach to provide communication to other containers or components (other nodes).
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Without efficient communication, containers are almost useless. Container networking is
similar to VM networking with two main differences [29]. The first deals with the fact
that containers are short-lived compared to VMs and hence users are running many more
containers than VMs, so the address space should be a lot bigger. The second is that VMs
emulate the hardware and encompass virtual network interface cards (NIC) used to connect
to the physical NIC, in contrast with containers which are just processes sharing the same
host kernel. Therefore, containers can be connected to either the same network interface
and namespace as the host, or to an internal virtual network interface and their own network
namespace and then connected to the external world in various ways.
Based on [17], the Network class has a set of object properties, such as the
Networking_Model, NetworkingSecurity_Mode and Networking_Implementation (see
Figure 8).

Figure 8 Networking Class

• Networking_Model: it describes the network model respected by a container
orchestration system. According to the two container network standards, there are
two main models used to configure interfaces in Linux containers: the Container
Networking Model (CNM) and the Container Network Interface (CNI). The CNM is a
standard proposed by Docker, which enables all the containers on the same network to
freely communicate one another. On the other hand, the CNI is a container networking
standard proposed by CoreOS, which provides a simple set of interfaces for adding and
removing a container from a network. Both standards are driver-based or plugin-based
model, in order to create and manage network stacks for containers.

• NetworkSecurity_Mode: it may be automatic or manual. It depicts the manner of
securing the connections between nodes. Usually, TLS authentication is used by
container orchestration systems. While the connections are automatically secured
through TLS authentication with certificates with Docker Swarm, it should be manually
configured with Kubernetes.

• Networking_Implementation: there are a large number of network implementation
technologies used by container orchestration systems [31], among which we cite:
Contrail, Flannel, Contiv and Cilium.
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Configuration Class

The configuration differs from an orchestration system to another. In fact, it may be
considered as a serious advantage for a user to easily view, edit, and update the
configuration file definitions of services and containers. This is introduced throughout
the user-guide, getting-started documentation, and/or examples and via a Dashboard;
either by using a Dashboard_CLI or by accessing via a Dashboard_UI (see Figure 9).
Obviously, the configuration specifies a stable API version; which may be Automatic
or Manual by writing the necessary configuration files. In both configuration modes,
the user should follow a set of installation instructions which depends mainly on
the supported OS and/or cloud provider platforms. Moreover, an orchestration system
configuration needs launchable DiscoveryService_Component, Networking_Component
and ContainerRuntime_Component.

Figure 9 Configuration Class

4 Proposed Framework and Ontology Population

4.1 Framework Overview

As illustrated by the proposed framework shown in Figure 10, different Cloud Service
Providers (CSPs) running different Container-as-a-Service (CaaS) would incorporate our
Container Description Ontology Service in charge of dealing with the management of
the CDO ontology. The CDO Service features different modules and interfaces. The main
module is the semantic rule engine that holds the Knowledge Base of the ontology, that
is, the terminological part (TBox) explained in Sect. 3, the assertion part (ABox) with the
instantiated individuals of the TBox (see Sect. 4), as well as the SWRL rules. In addition,
our CDO Service is endowed with different parsers that allow instantiating the ontology, as
explained in the following subsection.

The CDO Service interfaces with the Container Orchestration System to maintain up-
to-date the instantiated ontology according to the status of the users’ containers. In addition,
the CDO service is endowed with a Container Migration Service that can assist the user
on porting their containers across different CaaS. It allows contacting other peer modules
deployed in other CaaS to share the instantiated CDO and the container images in order to
port a container from one cloud provider to another. Additionally, final users that run their



Container Description Ontology for CaaS 13

own containers orchestration system in their premises, can install our proposed CDO App.
It is a similar application as the CDO service running on the Cloud. In addition, the CDO
App also features a Container selector Helper to aid users on discovering the container
orchestration system instantiated in the ontology. This particular module will be shown in
Sect. 5.

Figure 10 Overview of the proposed Framework

4.2 Ontology Population

Our proposed framework supports three main ways to populate the ontology:

1. Instantiation from Docker Hub: in this case, the Docker hub ontology parser acts as
a crawler that collects the set of Docker URLs and Docker file instructions from the
official Docker registry hub. This module can parse the hub and instantiate different
classes, such as the Docker Image class, thereby adding the ABox statements to the
knowledge base. The instantiated CDO ontology can be shared among other users for
interoperability, or can be just used to launch a new container. Thus, the module can then
communicate using the CDO ontology with the on-premise container orchestration
system to launch the container.

2. Instantiation from Docker tool: both final users and CSPs can make use of the Docker
instance ontology parser component of the framework to populate CDO ontology
with the actual containers running in the user’s premises or in the Cloud (i.e., in the
CaaS). This module relies on the container orchestration system to obtain the ontology
individuals and properties. The module parses the JSON generated as outcome of
the command Docker inspect $instance, which allows obtaining the configuration of
the particular running Docker instance. Among other classes and properties, it allows
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instantiating the HostConfig and NetworkSettings classes of the ontology. Then, the
instantiated ontology can be shared along with the image in order to migrate the Docker
instances among different host platforms achieving interoperability.

3. Manual instantiation: advanced users and administrators can also instantiate the
ontology based on their own expertise. To this aim, they can rely on tools, such as
Protégé, to create the individuals and properties of the ontology.

For instance, as orchestration systems, CDO is instantiated with Docker Swarm, Amazon
EC2 Container Service (ECS), Azure Container Service (ACS), Google Container Engine,
Mesosphere Marathon and Nomad.

Once CDO is populated, one can apply the inference rules to generate knowledge to
help final users during their discovery for an appropriate container orchestration system.

4.3 Capabilities-based Inference Generation

By reusing a common vocabulary, semantic descriptions of the container orchestration
systems can be shared and understood by the cloud user. Currently, container orchestration
system discovery requires a significant amount of expertise. However, for a wide acceptance
of the CDO, such task should become easier and more intuitive. Inference rules capable of
reasoning with service descriptions used to ease the discovery task should be introduced.
To define such rules, the majority of inference engines support Semantic Web Rule
Language (SWRL) [15]. In fact, through a set of inference rules, we try to quantify the
orchestration system capabilities in order to facilitate their discovery while satisfying
the user’s requirements. In other words, for an adequate container orchestration system
discovery, we propose to introduce inferences based on functional and non-functional
orchestration system capabilities.

4.3.1 Storage Capability-based Inference Generation

The container orchestration systems are classified according to their offered storage type
into three levels of inductive inferences: High_StorageC-
apability, Medium_StorageCapability, and Low_StorageCapability. Indeed, an
orchestration system is classified as High_StorageCapability if it offers non-persistent
and persistent data storage as well as the storage plugins (see Rule 1). An orchestration
system has a Medium_StorageCapability if it provides two types of storage. However, it is
considered as a Low_StorageCapability if it offers only one storage type either persistent
or non-persistent storage.

Rule 1 High_StorageCapability Rule
Container_OrchestrationSytsem(?p) ∧ ContainerOrchestrationSystem_Capability(?p, ?c) ∧
ContainerOrchestrationSytsem_FunctionalCapability(?c) ∧ Storage (?c, ?v) ∧ Storage_Type(?s)
∧ sqwrl:makeSet(?s, ?v) ∧ sqwrl:groupBy(?s, ?p) ∧ sqwrl:size(?l, ?s) ∧ swrlb:equal(?l, 2)
∧ sqwrl:element("Persistent_Storage", ?s) ∧ sqwrl:element("NonPersistent_StorageâŁž, ?s) ∧
Persistent_Storage (?v) ∧ sqwrl:element("Storage_Plugin", ?v) −→ High_StorageCapability(?p)



Container Description Ontology for CaaS 15

4.3.2 Configuration Capability-based Inference Generation

We introduce two inference reasoning rules (Hard_ToIns-tall and Easy_ToInstall) which
serve to assist users in their choices. An orchestration system is considered as
Hard_ToInstall, if its configuration manually supports multi-OS and multi-cloud providers
and covers the container runtime service discovery and networking components. Otherwise,
the orchestration system is considered as Easy_ToInstall. Rule 2 defines the Hard_ToInstall
inference rule:

Rule 2 Hard_ToInstall Rule
Container_OrchestrationSytsem(?p) ∧ ContainerOrchestrationSystem_Capability(?p,
?c) ∧ ContainerOrchestrationSytsem_FunctionalCapability(?c) ∧ Configuration(?c,
?v) ∧ sqwrl:makeSet(?s, ?v) ∧ sqwrl:groupBy(?s, ?p) ∧ sqwrl:size(?l, ?s)
∧ swrlb:equal(?l, 4) ∧ sqwrl:element("ContainerRuntime_Component", ?s) ∧
sqwrl:element("ServiceDiscovery_ComponentâŁž, ?s)∧ sqwrl:element("Networking_ComponentâŁž,
?s) ∧ Dashboard(?v) ∧ sqwrl:element("Dashboard_CLI", ?v) ∧ Configuration_Mode(?v)
∧ sqwrl:element("Manual", ?v) ∧ Installation_Instruction (?v) ∧ OS_Support (?s) ∧
sqwrl:element("Multi", ?s) ∧ sqwrl:element("Manual", ?v) ∧ Installation_Instruction (?v) ∧
Provider_Support (?s) ∧ sqwrl:element("Multi", ?s) −→ Hard_ToInstall(?p)

4.3.3 Networking Capability-based Inference Generation

Regarding the networking capability, each container orchestration system exposes
its networking security mode as a proof that ensures the adoption of the best
security strategies as well as its implementation technology. According to these two
criteria, we classify orchestration systems into three classes: Low_NetworkingCapability,
Medium_NetworkingCapability, and High_Network-
ingCapability. An orchestration system is considered as: (1) High_NetworkingCa-
pability if it has greater than two implementation technologies and its security model is
automatic TLS with certifications (see Rule 3), (2) Medium_Networking- Capability if it has
two implementation technologies and its security model is manual TLS with certifications,
and (3) Low_NetworkingCapability if it has less than two implementation technologies and
its security model is manual TLS without certification.

Rule 3 High_NetworkingCapability Rule
Container_OrchestrationSystem(?p) ∧ ContainerOrchestrationSystem_Capability(?p, ?c)
∧ ContainerOrchestrationSytem_FunctionalCapability(?c) ∧ Networking(?c, ?v) ∧
NetworkingSecurity_Mode(?v, ?s) ∧ sqwrl:element("AutomaticTLS_WithCertificationâŁž, ?s)
∧ Networking_Implementation(?c, ?s) ∧ sqwrl:makeSet(?s, ?v) ∧ sqwrl:groupBy(?s, ?p) ∧
sqwrl:size(?l, ?s) ∧ swrlb:greaterThan(?l, 2) −→ High_NetworkingCapability(?p)

5 CDO Evaluation

This section demonstrates the CDO effectiveness and the performance evaluation of the
proposed framework. Performance measures the checking time of the ontology consistency,
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the time spent on the SPARQL discovery query and the reasoning time expended to infer
knowledge.

5.1 CDO Effectiveness

Firstly, according to [12], we evaluate the ontology structure (concepts, axioms and
taxonomy) while verifying its consistency. After that, to ensure a large and a best CDO
usage, we propose to apply it on a real case study. For this purpose, we consider an online
retail application used by an offshore petroleum logistics company (INA-Group [13]) along
with its subsidiaries. This application is implemented as a fully independent set, fine-
grained, and self-contained (micro) services (see Figure 11). These services are implemented
on top of different technology stacks where each of which addresses a specific business
scope. For instance, the purchase requisition service follows the process by which the
company’s employees may request to purchase goods or services. The company’s IT experts

Figure 11 The Online Retail Application

are willing to run the micro-services application on containers. Using the CDO App, they
request to deploy the micro-services on-permise and/or on an orchestration system from
the available ones, such as Docker Swarm, Kubernetes, Mesos with Marathon, etc. The
IT experts formulate a set of requirements using the Container Selector Helper interface
(see Figure 12). Besides, the monitoring, the high-availability and the update of the running
instances, expect an orchestration system with a large scale capability, a fault tolerance
cluster and a high network capability. However, they do not pay a lot of attention to the
system configuration.
Based on the inference rules already defined in Sect. 5, the CDO querying result is presented
(See bottom part of Figure 12). The Kubernetes system is recognized to be an adequate
orchestration system. Such result can be argued by the fact that Kubernetes is suited for
large scale deployment. Moreover, it provides a high storage capability, since it offers non-
persistent and persistent data storage and a set of storage plugins. Besides, as the IT experts
do not pay attention to the system configuration, the kubernetes is the best alternative,
otherwise Docker swarm can be selected, as it requires less configuration efforts. Compared
to Swarm, Kubernetes offers the automatic scaling and can deliver updates to the running
instances, which are missing in the Swarm. On the contrary, Mesos offers these capabilities
and adds cluster health check which enhances the cluster fault tolerance, however, it fails
to propose a high or a medium network capability. In the second querying scenario shown
on Figure 13, the IT experts choose to deploy the application on the cloud infrastructure
while preserving the same requested capabilities. Reasoning over the CDO reveals that
Kubernetes over the Google cloud provider or Microsoft Azure can be adequate deployment
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choices. These results seem to convince the IT experts, which proves that the CDO can
properly meet the user’s requirements.

Figure 12 Container Selector Helper: First Querying Scenario

Figure 13 Container Selector Helper: Second Querying Scenario

5.2 Performance Evaluation

An important part of our framework, which widely affects the performance, is the reasoner
in charge of making the container orchestration discovery. Indeed, the discovery is taken
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based on ontology instances present on the KB. A way of measuring the performance of our
Container Selector Helper is making different complexity executions based on different sets
of workloads in the KB (individuals and statements) which make the test becoming more and
more complex. Thus, the complexity of executions is incremented by increasing the number
of individuals present in the ABox component of the ontology which, in turn, increases the
number of statements held in the knowledge base. It should be noticed that the number of
axioms or statements that are held in the ABox differs from that of individuals which are
present in the ontology, since more than one axiom is usually necessary to represent one
individual. Obviously, a population represents the knowledge provided by a Docker tool
and an orchestration system at a given moment. The addition of new instances leads the
KB to reach the next population state, making it necessary to perform the KB consistency
checking again.

As shown in Table 1, the testbed makes use of 10 incremental populations and the query
proposed in Sect. 5.1. Each population is composed of individuals representing instances of
different OWL classes defined in our ontology. These populations will be used to quantify the
time that our Container Selector Helper takes to check the KB consistency, infer knowledge
in order to derive information explicitly specified in the Sect. 4.3, and carrying out discovery
query. It worth mentioning that we have checked the ontology consistency and derived
the capability-based inferences by using the FaCT++ reasoner [32] and that the selection
time is the one taken by the Container Selector Helper to interpret the user’s query and
present the target outputs (i.e., the adequate container orchestration system) to the user. The
proposed framework has also been tested based on CPU speed. In fact, the experiments
have been conducted on a set of workstations with different hardware configurations (6 GB
RAM with 2.4 GHz, 2.5 GHz, and 2.7 GHz). For the results depicted in Figure 14, it can

Table 1 Performance Evaluation

Population Individual Statement
1 270 1200
2 390 3600
3 450 5200
4 630 6800
5 710 8600
6 770 9800
7 950 11000
8 990 11400
9 1030 11800

10 1050 12200

be concluded that the consistency checking and the selection time depend on three major
factors: the size of the testbed, the CPU speed and the complexity of reasoning (i.e, the
rules to infer knowledge, such illustrated in Figure 15). Overall, the proposed framework
provides a reasonable checking consistency and selection time. For instance, in the case
of CPU with 2.4 GHz and for the biggest population in the testbed (1050 individuals and
12200 statements), the consistency checking time takes 5.5 seconds; while the selection
time needs only 5.53 seconds, which is usually considered as acceptable time. For this
querying, the three inference rules are activated, the selection time can be decreased once
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Figure 14 Consistency Checking and Selection Time Evaluation

one or two rules are used to infer over the CDO (see reasoning time per rule in Figure 15
for the three CPU speed).

6 Conclusion and Future Work

Inventoried from existing container standards as well as by referring to research papers, we
proposed in this paper a conceptualization of domain ontology for container description
called CDO. CDO covers the functional and non-functional capabilities for containers,
Dockers and container orchestration systems. It is instantiated and interrogated using a
dedicated framework. This framework can be used by both the final users and CaaS
providers. In fact, it helps users to make the discovery of an adequate container orchestration
system easier through a set of capability-based inference rules and enhances interoperability
between CSPs by providing migration service for deploying applications among different
host platforms. The CDO effectiveness is demonstrated relying on a real case study where the
company’s IT experts are willing to deploy a micro-service application on a containerized
environment under a set of functional and non-functional requirements. In addition, the
performance evaluation over the system shows reasonable times, thereby demonstrating the
feasibility of the proposal.
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Figure 15 Reasoning Time Evaluation

As a future endeavor, we plan to further investigate the linking of CDO with other
ontologies to achieve the interoperability and usability. In addition, we plan to take advantage
of the Docker image information to recommend adequate deployment. Moreover, our aim
is to extend the CDO evaluation while treating the interoperability between CSPs.
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