This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

http://dx.doi.org/10.1109/JI0T.2019.2904123

Security Management Architecture for
NFV/SDN-aware 10T Systems

Alejandro Molina Zarca*, Jorge Bernal Bernabe*, Ruben Traperof, Diego Rivera,
Jesus Villalobos T, Antonio Skarmeta *, Stefano Bianchi ¢, Anastasios Zalfeiropoulosﬂ and Panagiotis GouvasT
*Department of Information and Communications Engineering,
University of Murcia, Spain
{alejandro.mzarca, jorgebernal, skarmeta} @um.es
TATOS Research, Spain,

{ruben.trapero, jesus.villalobosnieto } @atos.net
‘Montimage, Paris, diego.rivera@montimage.com

§Softeco, Geneva, stefano.bianchi @softeco.it
YUbitech, {azafeiropoulos,pgouvas}@ubitech.eu

Abstract—The Internet of Things brings a multi-disciplinary
revolution in several application areas. However, security and
privacy concerns are undermining a reliable and resilient broad-
scale deployment of IoT-enabled Critical Infrastructures (IoT-
CIs). To fill this gap, this paper proposes a comprehensive
architectural design that captures the main security and privacy
challenges related to Cyber-physical Systems and IoT-CIs. The
architecture is devised to empower IoT systems and networks
to make autonomous security decisions through the usage of
novel technologies such as Software Defined Networking (SDN)
and Network Function Virtualization (NFV), as well as endowing
them with intelligent and dynamic security reaction capabilities
by relying on monitoring methodologies and cyber-situational
tools. The architecture has been successfully implemented and
evaluated in the scope of ANASTACIA H2020 EU research
project.

Index Terms—IoT, cybersecurity, SDN/NFYV, architecture

I. INTRODUCTION

The Internet of Things (IoT) [1] is changing the industrial
landscape by leveraging network capabilities of heterogeneous,
pervasive and autonomous smart-objects. IoT promotes a dis-
tributed global network with billions of devices interacting
using Machine-to-Machine (M2M) communications, which
facilitates the creation of innovative smart services and ap-
plications.

However, the constrained nature of IoT devices and net-
works as well as their distributed and pervasive conditions,
makes the [oT subject to new kind of vulnerabilities and cyber-
threats. Traditional network protocols and security solutions
are not suitable for IoT, as they do not cope with unforeseen
interoperability and adaptability problems and do not meet the
dynamic needs, responsiveness and lightness required in IoT.

The lack of automatized software updates, vendor support
as well as user’s mis-configurations make the IoT prone to new
kind of cyber-attacks. These problems and their consequences

Copyright (c) 2019 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org

are aggravated in IoT-enabled Critical Infrastructures (IoT-
ClIs), like energy systems in smart buildings. In this context,
there is a need of advanced and adaptive mechanisms able
to ensure dynamically the proper security levels in the IoT
systems and providing system resiliency through self-healing
and self-repair capabilities, thereby countering cyber-attakcs
and mitigate cyber-threats whenever occur in the managed IoT
network.

In this sense, contextual and monitoring information ob-
tained from the surrounded IoT environments can be used
as baseline for data analysis detect anomalous behaviours,
and in turn, infer smart control and management decisions
through different actuators, agents and controllers deployed
either at the edge or in the core of the IoT network. Indeed,
this contextual and real-time monitoring can be also applicable
to deal with diverse kind of cyber-threats and IoT attacks,
thereby countering them by adapting the security policies and
enforced configurations of the managed IoT system according
to the context [2].

Software-defined networking (SDN) brings forward new
network capabilities by decoupling the control and data planes,
which can introduce novel security defense mechanisms in
IoT such as managing malicious traffic or IoT devices iso-
lation. Likewise, Network Function Virtualization (NFV) can
exploit virtualization to provide on-demand, dynamic, flexible,
scalable and elastic orchestration and deployment of virtual
appliances. NFV can enable the autonomous management
of virtual network security functions that can off-load the
security of IoT networks to the network edge. In this sense,
[3], introduces virtualized versions of security hardware, e.g.
firewalls, DPIs, as well as support mobile IoT scenarios.

Some researches are starting to define architectures aimed to
deal with Cyber-situational network and system management
by exploiting SDN and NFV features in dedicated scenarios-
environments, such as 5G network management [4] or cloud/-
fog Computing [5] applications. However, unlike our proposed
architecture, those ones have not been tailored for dealing with
the security and privacy in SDN/NFV-enabled IoT and critical

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

CPS (Cyber Physical Systems) scenarios.

This paper presents an architecture aimed to deal with
the security management of SDN/NFV-enabled IoT scenar-
ios. The architecture has been already implemented and
evaluated in Critical Infrastructures (CI) deployed in Smart
Buildings, coming up with a policy-based cyber-situational
security framework that has demonstrated its benefits to adapt
dynamically the enforced security mechanisms of IoT net-
works. The automatic reaction against [oT threats and attacks
is done through special purpose IoT agents, SDN and IoT
controllers as well as NFV-based virtual security appliances,
which enforce reaction countermeasures needed to mitigate
cyber-attacks and dynamically adapt the system according to
the context obtained and analyzed by the integrated monitoring
tools and SIEM (Security Information and Event Management)
system.

The rest of this paper is structured as follows. Section
2 studies the current state of the art in this research field.
Section 3 delves into the main IoT attacks/threats as well as
detection and reaction mechanisms proposed. Section 4 details
the proposed Architecture whereas section 5 describes its main
architectural processes. Section 6 is devoted to the imple-
mentation of the proposed architecture, which is evaluated in
Section 7. Finally, section 8 concludes the paper.

II. RELATED WORK

SDN is starting to be exploited as mechanism to handle
security threats [6], as it provides numerous advantages such
as dynamic flow control, IoT traffic and devices isolation,
network monitoring to identify attacks (e.g. botnets) and
flexibility to support deployment of virtual network security
functions.

In this sense, Rawat et al. [7] proposes diverse security
threats and attacks and how they can be mitigated using
proper countermeasures based on SDN. An SDN architecture
to strengthen the IoT is presented by Chakrabarty et al.
[8]. It aims to protect IoT communications by relying on
the SDN centralized controller delivering secure routing and
enhancing system management. Bull et al. [9] use IoT traffic
monitored from SDN gateway, for detecting misbehaviour in
the network and reacting accordingly, either by blocking or
forwarding the traffic. Flauzac et al. [10] delivered an SDN
security solution for IoT wireless networks, that is intended to
avoid compromising a security domain by deploying security
rules throughout different security controllers. Choi et al. [11]
described software-defined security framework for IoT that
allows delivery of security appliances e.g. access control or
channel protection, however they do not exploit NFV.

On the other side, NFV can realize the security as a service
paradigm [12], abstracting security software from hardware, to
achieve performance improvement on virtual network security
functions. Lightweight virtualization enables deployment of
Virtual Network Functions (VNF) at the edge of IoT networks.
For instance, [13] provides a solution based on SDN, NFV,
and cloud computing that can enhance network management
in 6LoWPAN IoT networks. Yu et al. [3] presented IoTSec,
an IoT security architecture that allows delivering micro-
middleboxes, instantiated on demand over lightweight IoT

http://dx.doi.org/10.1109/JI0T.2019.2904123

systems. NFV enables scaling up/down security VNFs at
the edge of the network, such as, for instance, vFirewalls,
vIDS, according to the network and system status. SDN
can be used along with NFV to steering the traffic towards
VNFs, optimizing the chaining of virtualized middleboxes and
enhancing resource utilization.

Yang et al. [14] detail the challenges, opportunities as well
as security issues in NFV. Similarly, other recent surveys [15]
[16] recaps the main benefits of adopting SDN and NFV to
increase security in IoT networks.

The aforementioned research works, unlike ours, do not
provide a holistic cyber-security framework that relies on SDN
and NFV in order to enhance IoT security. The framework is
able to dynamically detect cyber-security incidents and react
according to the actual status of IoT networks, systems and
deployed security policies.

Regarding policy-based frameworks, Shankar et al. [17]
propose a framework which relies on an extended model of
Event-Condition-Action (ECA) policies in order to include
post conditions to verify the successful completion of policy
actions. Rensing et al. [18] provide a policy-based architecture
and framework specific for AAA services. Hadjiantonis et al.
[19] adopts a policy-based network management together with
context awareness for Mobile Ad hoc Networks (MANETS)
and Basile et al. [20] provides a policy-based framework man-
agement for securely deployment and configuring components
which processes network traffic.

A first overview of Anastacia was presented at the beginning
of the project in conference paper [21], which outlined the
main objectives, challenges and foundations of the project.
Similarly, a first insight about how SDN/NFV-based can be ex-
ploited to provide security features over IoT scenarios was pre-
sented in [22]. The Anastacia policy enforcement mechanism
was recently detailed by Zarca et al. [23]. However, unlike
in the research described herein, those previous publications
did not present the whole final architecture and did not deal
with the entire autonomic loop for self-protection and self-
healing of the IoT managed system. Moreover, the monitoring,
detection, and the reaction policies to counter cyber-attacks
were not addressed neither evaluated.

III. SECURITY HANDLING IN NFV/SDN-ENABLED IOT
SCENARIOS

This section gives an overview of the Main threats and
vulnerabilities in IoT, enlightening how our proposed frame-
work detects, and reacts against those threats/attacks by using
NFV/SDN-based security enablers. Table I summarizes those
concepts.

IoT attacks can be split in two main categories: active
where malicious attacker alters or injects messages to exploit
vulnerabilities and passive where the attacker interacts actively
within the network.

Regarding Active attacks, it is work mentioning the Replay
Attack (re-transmission of previous victim’s packets) that aims
to perform a disservice or enable other more advanced attacks
such as Masquerading attacks or impersonation, which in turn,
aims to get victims’ data and/or replicate nodes. In a Tamper-
ing attack, the attacker node makes an unauthorized/malicious

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

action against the IoT device. In our framework, these kinds
of attacks can be detected by the AAA system and analyzing
the logs, the applicable countermeasure might perform device
flashing or its network isolation. VAAA and special agents
can be dynamically deployed in the edge of the IoT network
to facilitate authentication, authorization and key management
redistribution.

IoT Devices infected with Malware, e.g. worms, trojans,
ransomware can be detected through vulnerability assessment
and the countermeasures. When it comes to the protection
of the rest of the IoT system/network, it lies on measures
such as updating the firmware, isolate device, block connection
attempts.

Zero-day vulnerabilities refer to exploitation of software
vulnerabilities not seen before in the network. They are
extremely difficult to detect and mitigate. Our proposed frame-
work covers the detection and handling of this kind of attacks
by means of Artificial Intelligence-based (AI) anomaly detec-
tion. For example, IoT devices malfunctioning and reporting
unusual sensors values can be detected through machine
learning of IoT data in context broker. The countermeasure is
done through special-purpose IoT Controllers that act directly
on the malicious IoT device, using protocols like CoAP or
LWM2M.

Man in the middle attacks allow malicious entities to
intercept communications and impersonate endpoints, to spoof
and alter packets, e.g modifying IoT sensors values to produce
damages. Like in the previous case, it can be detected through
Al-based anomalous detection tools, and counter through IoT
controllers actions over final devices and agents.

Distributed DoS attacks are perpetrated by infecting IoT
devices with malware which, in turn, make them become
part of botnets that launch massive and coordinated DoS
attacks against external victims [24]. DoS can also target IoT
networks, flooding and exhausting them, and causing service
unavailability. In our proposed architecture this can be detected
by a vIDS and special IoT agents. The countermeasures based
on NFV/SDN can be manifold in this case, either deploying
vLoadBalancer next to the victim entity, or stopping the
network traffic in the source, that is, by deploying vFirewalls
that filter traffic coming from infected devices or just stop the
affected device if possible. Network traffic can be also filtered
directly by the SDN controller in the virtual switch (that can
be also deployed on demand in the edge as VNF). In addition,
a virtual IoT honeynet deployed as VNF can emulate the real
IoT network, and the attacker can be redirected to such a
controlled honeynet, thereby countering the potential damage.
In any of the cases, the traffic is diverted to the vFirewall, or
vloTHoneyNet adding new flow rules using SDN.

Malicious code injection in memory or in services, e.g.
SQL Injection, can alter normal IoT and services behaviour,
and it can be detected through monitoring tools that identify
unwanted network accesses, or unexpected queries/accesses in
databases/services. Our architecture aims to mitigate this kind
of attack by isolating Attacker’s traffic using SDN.

On the other hand, regarding passive attacks such as
traffic analysis or sniffing/Eavesdropping private IoT com-
munications, our framework detects those problems through

http://dx.doi.org/10.1109/JI0T.2019.2904123

deep packet inspectors deployed as security VNFs that de-
tect encrypted traffic. The SDN controller can mirroring the
traffic towards the vDPI for analysis. The countermeasure
can be deploying vChannelProtection VNFs, to facilitate re-
bootstrapping of encryption keys and establishing encrypted
network tunnels (e.g. using DTLs), either, end-to-end or
through vProxies.

As identified by Gao et al. [25] there are other specific
attacks such as, for instance, routing attack, sink node attack,
black hole attack, flooding attack, trapdoor, Sybil attack, but
they can be handled in a similar way that the ones summarized
above.

IV. ARCHITECTURE

ANASTACIA is envisioned as a framework integrated on
top of an IoT infrastructure where IoT devices, physical and
virtual network elements interact in the Data Plane. On top
of that, a Control Plane manages the computing, storage, and
networking resources in the Data Plane by leveraging SDN
controllers, NFV orchestration platforms, and IoT controllers.

The ANASTACIA architecture is shown in Figure 1. It
is comprised of diverse planes that provides the intelligence
and dynamic behavior to the system. Namely, the Security
Orchestrator Plane, Monitoring and Reaction Plane, Security
Enforcement Plane, User plane and Seal Manager. The fol-
lowing subsection details each Plane and its domains.

A. Security Enforcement Plane

The Control and Management domain oversees and
controls the usage of resources and run-time operations of the
security enablers deployed either over virtualized or physical
environment, including IoT networks. It connects the Orches-
tration plane with the IoT Platform (Data and Control planes),
managing the interactions among objects and components for
the enforcement of the security policy defined at the User
Plane. The SDN controllers are responsible of communicating
though southbound APIs with the network elements to manage
connectivity applying the networking flow rules. NFV ETSI
MANO-compliant modules are responsible for management
and orchestration of the virtual network and security virtual
functions over the Virtual infrastructure, e.g. Openstack. Fi-
nally, IoT controllers provide different southbound interfaces
in order to manage and control different kind of IoT devices
depending on the IoT protocols. These IoT controllers are
deployed at the network edge (e.g. gateways) to enforce
security functions in heterogeneous IoT domains. Regarding
the main interfaces in this domain it is important to highlight
the following ones:

SDNI: SDN-oriented Security Enforcement Plane Interface:
allows to manage the SDN networking configuration via the
SDN controller(s). The Security Orchestrator can request the
enforcement of the SDN traffic flow rules received as outcome
of the policy refinement process.

NFVI: NFV-oriented Security Enforcement Plane Interface:
allows to manage the security VNFs via the ETSI-oriented
NFV MANO modules. This is, the Security Orchestrator main-
tains the knowledge about the VNF descriptors, the Network

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is availabl

IEEE INTERNET OF THINGS JOURNAL 2019

Replay Attack,
Masquerading, Tampering

AAA system detects illegitimate
access attempts using forged credentials

e at

Device flashing,
Device isolation

http://dx.doi.org/10.1109/JI0T.2019.2904123

VAAA deployment in the Edge (NFV) —
IoT device keys re-Bootstrapping —
Channel Protection (e.g. DTLs)

Devices infected with Malware | Vulnerability Assessment, logs analysis

device’s firmware update
block connection attempts

special purpose IoT controllers

Zero-day Vulnerabilities
(e.g. ToT malfunctioning)

Anomaly behavior detection based on Al
IoT data analysis using Al

Isolate/Stop IoT device

IoT Controller action on device
(e.g. CoAP, LWM2M)

Anomaly-based IDS

Main in the Middle Anomaly behavior detection based on Al

Reset device

10T controllers, IoTAgents

Combined IDS

Distributed DoS (IoT botnets) + Al traffic analysis

Virtual IoT HoneyNet —
Load Balancing

Virtual Firewall (NFV) —
SDN traffic filtering —
SDN traffic divert

SQL Injection (SQL1i) Monitoring, SIEM

Attacker’s traffic isolation

SDN traffic isolation

Deep Packet Inspector

Sniffing/Eavesdropping Traffic mirrored using SDN towards vIDS

M2M Network Channels encryption
Channel keys redistribution
encryption through vProxy

vChannelProtection
(L2 Encryption, DTLs, data encryption...)
vProxy

T/

LE T

MAIN IOT THREATS/ATTACKS AND OUR SUGGESTED POTENTIAL DETECTION AND REACTION MECHANISMS BASED ON NFV-SDN

User/System
admin

3—»

S&P Seal Manager
Analysis

Seal

Manager
DSPS Repository &

DSPS Agent
Monitoring and reaction Plane

Reaction
module

Monitoring module

Security Alert
Service

1

Verdict and Decision
Support System

Attack Signatures

Attack
patterns Attack

Incident VaED

Detector

Y

Mitigation
—> Action
Service

Data
Analysis |oT data Security
P Model AvaTable
capabilitie
s

Filtered and
classified data

Data filtering and pre- Analysis

processing broker

Monitoring d .
onitoring data Securlty

Enforcement
Plane

loT Controller

P ‘data loT nodes

VNF #1

DPI Network traffic
Analysis

IDS, AAA... events

Network

Security
sensors

Reactions S

Control andyanagement Domain

Alerting
dashboard
Security

Orchestration
Plane

User support

System Model

repository Security

Orchestrator

Security
Resource Planning —j\

Configurations and
rdconfigurations

l

SDN Controller

!

VNF Domain
VNF #2

VNF #3

Virtualization Layer

e | o | e

Virtualized Infrastructure Domain

Fig. 1. ANASTACIA Reference Architecture

Services (NS) catalogue as well as the current deployment.
When a VNF management is required, the Security Orches-
trator requests it by sending the configuration to the NFV
MANO through the NFVI. Then, the NFV MANO uses the
Resource Orchestrator (RO) in order to provide the required
resources to cope with the received configuration through a
specific Virtualized Infrastructure Manager (VIM). Finally, the
RO requests the VNF configuration enforcement to the VNF
Configuration and Abstraction (VCA). More information on
this topic can be found at [23].

IoTI: IoT-oriented Security Enforcement Plane Interface:
manages the configuration of IoT nodes through the IoT con-
trollers. The Security Orchestrator can request the enforcement

Policy
Editor Ul

Interpreter

Alerts, warnings,
and vulnerabilities

Set-up new
policy

High to Medium

Medium to Low

Security policies
repository

Security Enablers
Provider

A

Security
Enabler Repository

4

sauljaping Jusawdo|anap 94emos 34nI3S
Ad2uaSunuod pue Suijjapouw s Adeald

NFV MANO

NFV Orchestrator

VNF
Manager

Virtualized
Infrastructure
Manager

of the security controls within the IoT nodes according to the
configurations generated by the policy refinement process.

The Infrastructure and Virtualization domain comprises
all the physical machines capable of providing computing,
storage, and networking capabilities, as well as the virtualiza-
tion technologies, to provide an Infrastructures as a Service
(TaaS) layer. This domain also includes the network elements
responsible for traffic forwarding, following the SDN con-
troller’s rules, and a distributed set of security probes for data
collection to support the monitoring services.

VNF domain represents the Virtual Network Functions
enforcing the security within network services. Anastasia
currently considers diverse kind of network security functions

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

deployed as VNFs in order to provide the defense mechanisms
and threat countermeasures, including vFirewall, vIDS/IPS,
vAAA, vChannelProtection, vloTHoneyNet.

IoT domain refers both, to the final IoT devices as well
as the the security enablers and actuators required to apply
the security directives within the IoT devices. To this aim, the
orchestration plane (either as proactive policy enforcement by
the admin, or as reaction), will apply, over the IoT Controller
the appropriate security service, which, in turn, will contact
the final IoT device or actuator by using specific IoT protocols.

B. Security Orchestration Plane

The Security Orchestrator Plane organizes the resources
that support the Enforcement Plane, carrying out activities
such as the transformation of security properties to con-
figuration rules (through a Policy Interpreter) and aligning
the security policies defined by the Policy Interpreter with
the provisioning of relevant security mechanisms (through a
Security Enabler Providers). It has the whole vision of the
underlying infrastructure in order to orchestrate (through the
Security Orchestrator) resources and interfaces available at the
Security Enforcement Plane.

The Security Enabler Provider is able to identify the
list of security enablers which can provide specific security
capabilities to meet the security policies requirements. Be-
sides, this component will be endowed with an interface for
delivering Medium-to-Low translation plugins (M2Lplugins)
for technology dependant policy translations into low-level
configurations. In this way any kind of software or hardware
could be supported as security enabler by implementing the
corresponding translator plugin. Currently, the framework pro-
vides plugins focused on the current experimentation phase,
encompassing network filtering and forwarding through SDN
and virtual router, XACML authorization, IoT management
through the IoT controller, IoT honeynet configuration and
DTLS configuration.

A Security orchestrator is responsible for selecting the
security enablers to be used in the policy refinement process.
To choose the proper security enabler to apply in a particular
situation (e.g. after a reaction), it oversees the security capabil-
ities, the available resources in the underlying infrastructure,
and the policy requirements. Once received the configuration
of the security enablers by the Policy Interpreter, the Security
Orchestrator interacts with relevant SDN/NFV/IoT control and
management components, so to enforce the required features
in the IoT devices and in the physical/virtual network elements
of the underlying infrastructure.

The SMI interface (Security Orchestrator System Model) al-
lows to request a system model of the underlying architecture.
This information will be used by the Security Orchestrator in
order to make decisions like what could be the best security
enabler for a specific policy enforcement.

The Policy Interpreter transforms the Security policy
(closer to a human readable policy) to a machine-readable pol-
icy that is able to represent lower configurations parameters.
Namely, performs the refinement processes from High-level
Security Policy Language (HSPL) to Medium-level Security

http://dx.doi.org/10.1109/JI0T.2019.2904123

Policy Language (MSPL). These security policy models have
been extended from [26]. Finally, the MSPLs are translated to
Enablers/VNFs configurations or tasks.

The H2MI (High to Medium) interface allows to request a
policy refinement from a High-level Security Policy Language
(HSPL) to a Medium-level Security Policy Language (MSPL).
The M2LI Medium to Lower interface allows to request
a policy refinement from a Medium level Security Policy
Language (MSPL) to a specific enabler configuration/task. The
SEPPI: Security Enabler Provider Plugin Interface allows to
request for a plugin which implements the MSPL to Enabler
translation.

Currently, the framework provides security policy models
for authentication, authorization, channel protection (validated
in [27]), filtering, traffic divert, monitoring, [oT management,
IoT honeynet, Anonymity, Privacy (Identity-based, Attribute-
based and PKI based), QoS, Data Aggregation and policy
for orchestration. In order to prevent conflicts between the
security policies, the framework provides a policy conflict
detection engine which verifies that the security policy will
not generate conflicts like redundancy, priorities, duties (e.g.
packet inspection vs channel protection), dependencies or
contradictions. To this aim, the security policy is processed
against the rule engine which extracts context information
from the policy repository and the system model in order to
perform the verification.

Regarding the policy for orchestration, the framework al-
lows the security administrator to define multiple security poli-
cies related between themselves and with the already deployed
ones by establishing priorities and dependencies. This is, the
security administrator can establish different level of priorities
depending on the magnitude or relevance of the policy. On the
other hand, since the enforcement of a security policy can be
conditioned by the deployment of another policy or even by
the triggering of any kind of event, the security administrator
is able to specify different kind of dependencies depending
on the deployment requirements (e.g. an authorization policy
could depend on a success authentication event).

C. Monitoring and reaction plane

The Monitoring and Reaction Plane connects to the IoT
Platform through the Security Enforcement Plane in order to
collect, through monitoring agents, security-focused informa-
tion related to the system behavior. This plane also evaluates
the fulfilment of the security policy by checking security
models and threats signatures, performing Filtering activities
and data analysis for the detection of anomalies. At this plane,
and based on the anomalies detected, reactions are designed
to mitigate such anomalies through the Mitigation Action
Service that is directly connected to the Service Orchestration
plane. Reactions are designed based on the security model
analysis of the IoT/CPS infrastructure — which determine the
set of possible actions to enforce, and the capabilities of
the network that is being monitored. The specific reaction
chosen is based on a decision support system that evaluate
the convenience of the reaction depending on the available
resources. Additionally, alerts and other reports are available
for system administrators through a security alert service.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

The Monitoring and Reaction plane acts the security-
enabling member of the architecture, providing monitoring and
self-reaction capabilities to the platform. To this end, the plane
needs to communicate with other modules, using different
interfaces:

Monitoring Configuration Interface (MCI): allows config-
uring the Monitoring Module from the Security Orchestrator.
It is intended to provide the required parameters to refine
the detection of potential threats on the network. Reaction
Security Configuration Interface (RCI): enables the Security
Orchestrator to provide the Security Model-related data to the
Reaction Module. In general terms, this information will be
composed by the Capabilities of the Security Policy and the
applied countermeasures on the network as a reaction to a
detected security issue. Monitoring Verdicts Interface (MVI):
This interface is intended to provide the required monitoring
information from the Monitoring to the Reaction Module. The
transferred data is mainly composed of the verdicts of the
security properties tested on the network. Countermeasures
Suggestions Interface (CSI): it was conceived to transmit the
set of suggested countermeasures from the Reaction module
to the Security Orchestrator in form of MSPL files.

D. User plane

The Policy Editor Tool allows administrators to model
security policies with a high/medium-level of abstraction.

SAWI: Security Alerts and Warnings Interface: This inter-
face will transfer the alerts and warnings from the Reaction
Module to the end-user interfaces. It is designed as a com-
munication channel between the Reaction Module and the
ANASTACIA User Plane.

E. Seal Manager Domain

Using security and privacy standards, the Dynamic Security
and Privacy Seal monitors in real time the security and privacy,
Verdict and decision support system. It provides a graphical
representation of the system status to the end-user, through
different GUIs for user and data controller, and data bases to
hold privacy policies and logs.

SMMI: Seal Manager Metadata Interface: provides the re-
quested information to evaluate the security and the privacy in
a real-time fashion. The security and privacy policies defined
by the user are stored inside the policies repository and an
interface is available to retrieve and set them from the seal
manager.

V. MAIN ARCHITECTURAL FLOWS
A. Proactive policy deployment

The framework features two different policy enforcement
approaches, depending on the entity initiating the enforcement
process. Concretely, the proactive (or set-up) approach and
the reactive one. In the first approach the security policy is
enforced as part of a preventive or by-default security plan.
On the other hand, the reactive approach rises the policy
enforcement as part of an automated security countermeasure.

http://dx.doi.org/10.1109/JI0T.2019.2904123

Our previous work [23] already showed the main flow
for the policy-based security enforcement in the proactive
approach. In this case, the security administrator defines
an HSPL through a user-friendly interface using the Policy
Editor Tool and once the policy has been properly defined,
the security administrator requests the policy enforcement.
The Policy Editor Tool then sends the HSPL policy to the
Policy Interpreter which identifies the main capabilities of
the security policy and obtains a list of security enablers
which could enforce the security policy. When there is at
least one security enabler capable of enforcing the security
policy (otherwise the administrator is notified), the Policy
Interpreter performs a high-to-medium level policy refinement,
generating a MSPL policy, still independent of the underlying
technology, but filling some required context information like
real IP addresses or endpoints. This refinement is registered
in the Policy Repository, allowing traceability among policy
abstraction levels. Once the MSPL has been generated, the
Policy Interpreter requests the MSPL policy enforcement to
the Security Orchestrator, providing, not only the policy, but
also the candidate’s security enablers. The Security Orches-
trator receives the request and its Resource Planner makes
the decision concerning the most suitable security enabler to
enforce, according to its knowledge about the architecture.
Then, the Security Orchestrator requests a security policy
translation to the Policy Interpreter in order to get a security
enabler specific configuration from the MSPL security policy.
The Policy Interpreter downloads the proper security enabler
translator plugin from the Security Enabler Provider and the
Policy Interpreter performs the policy translation, generating
the specific security enabler configuration and registering the
relationship among the MSPL and the enabler configuration in
the Policy Repository. Finally, the configuration is returned to
the Security Orchestrator, who enforces it through the specific
technology, deploying if required new resources, and updating
the new status of the security policy in the Policy Repository.

B. Monitoring and Attack Detection

The architecture has been conceived as a security-enabling
framework that allows an autonomic detection of the security
incidents and computation of the countermeasures. To enable
these features, the architecture comprises a monitoring module
that will actively observe the network and ensure its security.

Figure 2 shows the design of the Monitoring Component
that is composed of four principal components: (1) Data Pre-
Processing and Filtering is an intermediate layer between the
Incident Detector and the Network Agents. It is intended to
perform an initial filtering and reformatting of the information
captured by the Network Agents and feed it in a normalized
format to the Incident Detector; (2) Incident Detector is the
core component of the monitoring module. This unit analyses
the processed data form the network agents and executes the
security analysis, searching for security issues and attacks; (3)
Attack signatures is a database containing the set of attacks that
are being monitored in the network. Despite this component
is shown as module from the incident detector, it is usually
embedded in the latter. Data Analysis is an Al-based module

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

Monitoring and reaction Plane Reaction

Monitoring module

Incident

Alarms/Incidents
2 Detector

Data
Analysis

bPl Data filteringand
Analysis 1 pre-processing
broker

MMT-
Security

Data Filtering
(UBITECH)

Kafka broker

rtual Honeypot
Security
Sensors
.i—ﬂ— —=0
Security Enforcement Plane loT nodes \./
@ loTDevice = loTLink Data extraction === Event Notification == Attack Verdicts

Fig. 2. Design of the Monitoring Module (From ANASTACIA Architecture)

that applies machine-learning techniques on the extracted data
to detect behaviour anomalies.

The aforementioned components rely on the data extracted
by the Monitoring Agents of our architecture, which can be
seen at the bottom of Figure 2. Considering their position in
the whole architecture, the monitoring agents take the role of
directly interacting with the monitored network, continuously
extracting information from the data plane that will be used
by the components mentioned above to perform the security
analysis.

Monitoring IoT-based CPS networks introduced a particu-
lar constraint on the monitoring agents: the challenge arose
when using traditional monitoring techniques in state-of-the-
art networks. The proposed framework tackles this challenge
by adapting the traditional tools to the particular requirements
of the IoT networks: (1) Low energy consumption monitor-
ing agents: since IoT devices are restrained in energy, the
implemented monitoring agents efficiently use the available
energy, relegating any complex task to more capable devices;
(2) Restricted computation capabilities: As a consequence of
the restricted energy, the devices that act as monitoring agents
for IoT network have limited computation capability. In this
sense, any complex task (such as the analysis of the data) has
to be delegated to devices with more capacity.

Figure 2 shows how the IoT monitoring agents interact with
the monitoring module. This design allows to use modified
IoT devices to extract information directly from the IoT
network (e.g. capture digital packets from IoT networks or
extract analogue data from sensors) and send it into the
Data Pre-processing and Filtering Module (DPF). This design
also allows to connect the architecture to any IoT system
by deploying the monitoring agents on the network to be
protected. Moreover, since the whole architecture has been
conceived in a distributed way, the analysis of the extracted
data can be done in external premises, minimizing the impact
on the monitored network.

http://dx.doi.org/10.1109/JI0T.2019.2904123

a) Security Monitoring Process: The design of the mod-
ule allows actively monitoring IoT networks by following the
process depicted in Figure 3.

loT Monitoring Data Pre-processing

Inicident
Network Agents and Filtering Data Analysis Detector Reaction Module
= =) H J J]
loop Passive monitoring / ! ! !
1 monitor | |
2 data
3 o]
3 put(data)
4 monitor
fe————|
5 attack
i 6 put(data) | :
I I
, dataP = process ! N
I T
[.

—_ I
T

T T
I I

8 put(dataP) | | |
’ |

10 2nalyse '

(data) behavioural analysis) 1

< |

I

12 put(analysisResult)

9 get(dataP)

11 analysisResult

I
securityAnalysis |
13 (dataP, '
analysisResult) |

! signature-based security analysis]ﬁ
I T

opt [Attack detected]
sendAlert
(incident)

B -

14

Fig. 3. ANASTACIA Monitoring phase workflow

The architecture is devised to employ passive monitoring
techniques to continuously extract information form the net-
work and then put it in the data pre-processing and filtering
component. This module performs an initial processing of the
extracted data in order to harmonize it in a common format.
Once the information has been normalized, it is sent to the
Data Analysis module and the Incident Detector modules.
The functionality of these modules is intentionally different to
guarantee a deep security analysis. The former, on one hand, is
in charge of performing a behavioural analysis using machine
learning techniques to detect any abnormal behaviour. The
latter, on the other hand, performs a signature-based security
analysis, ensuring lower detection times on known attacks.

Once the Data Analysis component has performed the be-
havioural analysis, the result is returned to the Pre-processing
component, which sends the normalized results to the Incident
Detection module. Finally, this module uses all the available
information (raw data extracted from the network and the
behavioural analysis results) to perform the security analysis.
Afterwards, the incident detector generates the security alerts
that are sent to the reaction component. This process concludes
the monitoring phase and triggers the reaction on the platform,
according to the security issues and attacks detected by the
Incident Detector.

b) Monitoring Potential: The monitoring process has
been conceived to be agnostic of the underlying attack to
keep the generality of the security analysis. All the connected
monitoring agents deliver the extracted information in the
DPF component, which makes it available for both the data
analysis and the incident detector components. This design
decision delegates the attack detection functionalities on the
latter components allowing the detection of any attack on the

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

monitored network.

Figure 3 shows that, despite the generic workflow of the
monitoring process is complex, it has been designed to have
a low latency in whole detection process, as shown in section
VIL

The implemented instance of our architecture takes ad-
vantage of this feature by using multiple monitoring agents
such as MMT-Probe, IoT Brokers, IDS instances (e.g. Snort),
multiple Incident Detectors (like MMT-Security) and Al Data
Analysis modules, such as [28]. The AI Data Analysis based
on machine learning techniques allows dealing with anomaly-
based intrusion detection, by analyzing deviations from the
historical a normal data reported by devices. The detection
can be done using statistical methods, such as correlation of
time series, or supervised machine learning techniques such
as, for instance, One Class Support Vector Machine (SVM).

This features empower the architecture to detect a wide
variety of attacks detailed in Table I. Additionally, the mon-
itoring agents also take advantage of the NFV and SDN
techniques, allowing a dynamic deployment of them on the
monitored network. Using these techniques, the Monitoring
and Reaction Plane can determine to deploy new instances
of monitoring agents to harden the security levels. These
instructions (expressed in MSPL language) will be translated
by Policy Interpreter upon demands from the Security Orches-
trator, which will deploy the new monitoring agents — as virtual
security functions — and use SDN to perform the modifications
on the network and deploy the new instances.

Despite the recommended countermeasures are the general
guidelines to mitigate the detected security issues, the frame-
work is designed to dynamically analyze the enforced security
policy and the security capabilities deployed in the network to
compute the most appropriate countermeasure in the detected
case. This empower the framework with highly reactive and
dynamic security capabilities to cope with a wide variety of
attacks.

C. Self-healing and self-protection processes

The reaction process uses the verdicts on ongoing incidents
to infer the possible countermeasures to mitigate them. The
decision depends on the reactions that are possible to be
enforced in the infrastructure and on the resources needed to
be executed. The available reactions depend on the security
model of the infrastructure, which also depends on the security
capabilities available at the platform.

During the reaction set-up, the security model of the IoT
infrastructure is received by the Verdict and Decision Support
System (VDSS) of the Reaction module from the Security
Model Analysis component, which receives this information
from the Security Orchestrator. This security model is directly
related to the security policy being enforced, as it contains
information about the security capabilities available, the po-
tential countermeasures that are possible to be enforced and
information about the cost associated to their enforcement.
The cost is understood here as the amount of resources
required to enforce certain countermeasure, either in terms of
time, human, computation or monetary resources. This set-
up process is to be triggered mainly at the starting point,

http://dx.doi.org/10.1109/JI0T.2019.2904123

Monitoring and Reaction Seal Management | Orchestration

Veredict and
Decision

Mitigation
Action

Security
Alert

Security
Model

Seal Security
Incident Detector Support Service Service Analysis Manager Orchestrator
' — ' '
Reaction setup

| 1 getSecurityModel()

n, 2 securityModelCapabilities ! ' n

IReaction evaluation Lk
Reaction

Lo onoem R F

|3 eventsCorrelation();
securitylncident |
(events) '

5 evaluatelncident()

6 notifyAttackVeredict(risk) |

7 buildstix() |
publishSeallnfo(stix)
T T >

10 generateMSPL() |

9 notifyAttackVeredict(risk) _ |

1 sendMSPLFile(msp)File)

Fig. 4. ANASTACIA reaction process

although updates of the security model can be pushed into
the VDSS in case of updates of the security policy that entail
any modification of the security capabilities.

For every incident detected at the Monitoring module, a
risk evaluation is carried out. The risk analysis is performed
at the VDSS, which evaluates the severity of the incident with
the criticality of the assets affected by the incident (which is
received from the Security Model Analysis) and evaluating
the relevance of the threat in terms of potential propagation,
number of devices exposed to the threat or vulnerabilities
exploited. The risk assessment uses statistical models for its
analysis, which feeds from several sources of input:

1) Current incident (type o threat, severity, etc.).

2) Characteristic of the system affected (number of assets,
whether they are exposed to vulnerability exploits, how
critical these devices are).

3) Information about past incidents (past effects of similar
incidents, costs associated to their mitigation or about
damages caused).

Once the level of risk associated to the incident has been
evaluated, the VDSS evaluates the available counter measures
that the IoT infrastructure supports. This evaluation uses the
information received from the Security Model Analysis, which
also notifies about the cost associated to every mitigation. A
potential human intervention is also considered here as the sys-
tem admin can fine tune values related to costs and mitigations
or evaluate the severity of the incident and criticality of the
asset affected, providing with additional input to the DSS when
proposing the most appropriate countermeasure to mitigate the
ongoing incident. The selected countermeasure is notified to
the Mitigation Action Service, which is in charge of notifying
to the Security Orchestrator by adding the information about
the selected countermeasure to a MSPL policy.

Listine 1. Excent of MSPL file for representing a reaction

<configurationRule>
<configurationRuleAction xsi:type="FilteringAction’ >
<FilteringActionType>DENY</FilteringActionType>
</configurationRuleAction>
<configurationCondition xsi:type="FilteringConfigurationCondition ™>
<isCNE>false</isCNE>
<packetFilterCondition>
<SourceAddress>2001:720:1710:4:1::7</SourceAddress>
<DestinationAddress>abab::6/128</DestinationAddress>
<ProtocolType>ICMRI/ProtocolType>
</packetFilterCondition>
</configurationCondition>

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

<externalData xsi:type='Priority >
<value>60000</value>
</externalData>
<Name>Rule0</Name>
<isCNFE>false</isCNFE>
</configurationRule>

In parallel to the exchange of reaction information between
the Reaction and the Orchestrator modules, additional informa-
tion is exchanged with the Dynamic Security and Privacy Seal
module through the Security Alert Service. A real time push
mechanism is used to notify the Security Alert Service about
the incidents detected, the alerts generated, and the mitigations
chosen. Such information is transformed by the Security Alert
Service into STIX (Structured Threat Information Expression)
messages, whose format was designed by OASIS ! for the
description of cyber-security information in a standard way. It
is mainly conceived for the threat intelligence exchange and it
is used here to formalize the information received by the Seal
Manager from the Monitoring and Reaction modules.

It is worth noticing that, although this process is designed
to be executed in an automatic way, it is also considered
the possibility of requiring explicit consent from the system
administrator, which might also entail the modification of the
security policy. The enforcement of the selected reaction is
enforced at the orchestrator, using virtual network interfaces
and SDN/IoT controllers available at the enforcement plane.

D. Reactive policy deployment

Figure 5 shows the main flow for a security policy enforce-
ment as part of an automatic countermeasure. In this case
the policy enforcement process is initiated by the Reaction
module which is able to generate reactions depending on
the threats (Fig. 5-step 1). As part of the reaction, it can
be included one or several MSPL policies. These security
policies are sent to the Security Orchestrator who identifies
the main capabilities required by the policy (Fig. 5-step 3)
and requests information to the System Model in order to get
the available resources, as well as requesting a list of security
enablers able to cope with the aforementioned capabilities
to the Security Enabler Provider (Fig. 5-steps 4,5). Once
the Security Orchestrator has gathered relevant information
about the underlying architecture, the Resource Planner (in
the Security Orchestrator) decides who is the best security
enabler according to its knowledge of the architecture (Fig. 5-
step 6). Then, it requests a policy translation to the Policy
Interpreter, providing the MSPL policies and the selected
security enablers for each one. When the Policy Interpreter
receives the request, it obtains the specific plugin from the
Security Enabler Provider for each security enabler and it per-
forms the policy translation by executing the plugin for each
received MSPL (Fig. 5-steps 8-12). Afterwards, the Policy
Interpreter sends the result to both, the Policy Repository for
traceability purposes, and the Security Orchestrator, in order
to trigger the policy enforcement (Fig. 5-steps 13,14). Finally,
the Security Orchestrator enforces the enabler configuration
through different components of the framework depending on
the nature of the countermeasure. In case the countermeasure

Ihttps://oasis-open.github.io/cti-documentation/stix/intro

http://dx.doi.org/10.1109/JI0T.2019.2904123

requires a VNF which is not already deployed, the Security
Orchestrator deploys it through the NFV MANO (Fig. 5-
step 15). Otherwise it can use an existent VNF and enforce
the configuration without a previous deployment. At this
point, the configuration can be enforced through the NFV
MANQO, the SDN Controller or the IoT Controller depending
on whether the countermeasure is a networking or IoT related
configuration (Fig. 5-steps 16-18). Finally, once the policies
have been enforced, the Security Orchestrator notifies the new
policies status to the Policy Repository (Fig. 5-step 19).

VI. ARCHITECTURE INSTANTIATION AND DEPLOYMENT

This section describes the implementation of the architec-
ture explained above as well as its deployment for validation
in two main scenarios: Mobile edge Computing and Building
Management system.

Regarding the implementation, the monitoring information
is obtained from three main sources:

o Sensors attached to the IoT network: we include here
sensors such as IDS (such as Suricata/Snort sensors),
honeypots, access control logs, etc.

« Montimage Monitoring Tool (MMT) [29]: carrying out
deep packet inspection for the detection of incidents,
instantiating the monitoring module of the architecture.

o Operational data extracted from IoT devices: it is an-
alyzed by Data analysis tool, which applies machine
learning techniques for identifying anomalous behavior of
IoT devices (for example, very high temperature detected
by climate sensors).

A Kafka broker’ is provided to gather the information

from the different sources, normalizing it and getting it ready
to be sent to the monitoring components.
The normalized data is sent, by using rsyslog, to the anomaly
detection reasoner based on the Atos’ XL-SIEM engine
implementing the VDSS functionality of the architecture.
The XL-SIEM provides a correlation engine that is able to
detect incidents by analyzing events from different sources.
The design of the XL-SIEM allows to attach different
sources just by implementing new plugins that adapt and
interpret new sources. Furthermore, the format used for the
plugins uses a compatible format with open source SIEM
solutions such as OSSIM?, which increases the compatibility
and flexibility of the model. The data retrieved by the
Kafka broker, once normalized in rsyslog, is processed by
the plugins of the XL-SIEM which prepares the received
data for its correlation at the core of the XL-SIEM. The
architecture of the XL-SIEM permits to decouple plugins and
the XL-SIEM core. Since correlation activities can require a
lot of computational resources, the XL-SIEM core allows to
distribute the correlation activities among different instances,
which increases not only efficiency but also robustness.

The correlation activities carried out by the XL-SIEM
core generates alarms for the security incidents detected. The
alarms are labelled with a certain level of criticality, which are

Zhttps://kafka.apache.org/
30SSIM https://www.alienvault.com/products/ossim

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

http://dx.doi.org/10.1109/JI0T.2019.2904123

Reaction Plane Orchestration Plane Enforcement Plane
Security
Security Policy Enablers E - NVF SDN loT
Reaction Orchestrator Interpreter Provider | System Security Security || MANO Controller Controller
Model Enablers Policy
T T T T) I \ T T T
1 generate : : : : : : ' ' '
Reaction(plert) | | | | | | | | |
o i i i i i i i i i
i i i i i i i i i
List | i i i i | | | |
<MSHL I I I I I I I I I
! i i i i i i i i i
reactipns> | I I I I I I I i
™ i i i i i i i i
I I I I I I I I
. ; Mitigation Stage : : : : - ;
! ! Y ! ! ! ! !
I I) I I I I I I
' 3 get ' ' ' ' ' ' ' '
. Capabilities(List<MSPL>)
' ' ' ' ' ' ' ' '
' jooeee ' ' ' ' ' ' ' '
I I I I I I I I I
I 4 I I I I I I I I
' AvailableResources() ! ! ! ! ! ! ! !
i 5 get i i i i i i i i
\ AvailablePlugins(capabilities) | : H H H , , |
I i] I I I I I I
H makeDecision H H H H H H H H
! (capabilities,resources,plugins) ' ' ' ' ' ' '
[I I] S I I I I I I I I
' - oeee : ' ' ' ' ' ' ' '
I I I I I I I I I
! translateMSPL(List<MSPL, ! ! ! ! ! ! ! !
' 7 ' ' ' ' ' ' ' '
i enabler>) i i i i i i i i
I I I I I I I I
i . : i i i i i
[Policy Translation Stage L
L Policy Tr Stage L - L L -
j —: j j j j j
I . . . I I I I
| loop / [Foreach MSPLCouhtermeasure Policy] j ! ! ! !
H 8 getPlugin(enabler) | } } H H H H
I I i I I I I
i |9 getPlugin(enabler) _ | i i i i
I \ I I I I
! 10 enablerPlugin ! ! ! !
| PRl e ! ! I I
I !) I I I I
! 11 enablerPlugin ! ! ! ! ! !
3 executePlugin 3 3 3 3 3 3 3
! 12 (MSPL, . I I I ! ! ! i
! enablerPlugin) ' '] ! ! ! !
I]]] I I I I
I I I I I
i 3 setPoIicyTranslatioH | 1 , , ' '
| (List<MSPL,enablerConf>) : \ i | | |
I i I i] I I I
. 14 enforceConfiguration
| (List<MSPL,enablerConf>) I I I I | | |
i) . . i i i i i
' ' = 1 ' ' ' ' '
- - { Policy Enfor Stage F - - - - -
I I]] I I I I I
I I I I I I I I I
! ! ! ! ! ! ! ! !
| alt [if Security Enabler does not exist] i i)))))
I — | I I I I I I I
' 15 deployVNF() ' ' ' ' ' ' I I
I] |
| leise] i i i i i i i i
} 16 enforce(enablerConf) ' H . . i , } }
I \ \]] l | I I
! 17 enforce(enablerConf) . | . . | . ! .
I i]]]]] | I
: 18 enforce(enablerConf) ' ' ' ' ' ' ' '
I
i 9 updatePolicyStatus H H H H H H H H
i (List<enablerConf,status>) ! ' N ' ; i i i
. . . \ | | . . .

Fig. 5. ANASTACIA reactive policy enforcement process

used by the Mitigation Action Service to decide on the most
suitable counter measure to react to the security incident. The
orchestration engine is notified about the proposed reaction,
along with specific information about the devices to receive
the countermeasure (IPs of the devices affected, incidents to
mitigate, etc.).

A. Mobile Edge Computing (MEC) scenario

Smart security cameras send recorded video to nearby MEC
servers which can realize operations before sending the data to
the cloud. These kind of scenarios are attractive to the hackers
at different levels such as gain access to some security camera
in order to get real time video, capture the data between the
camera and the MEC server, compromise the MEC server in
order to get or manipulate the data or the standard behavior, or
even just take control of the IoT cameras in order to use them
as an army with the aim of performing some kind of DDoS
attack. In this scenario a ping flooding attack is considered.

1) MEC testbed: The testbed emulates several IoT devices
inside a Cooja environment, which will attack with ICMP ping
packets a victim outside the simulation — a server specifically
deployed to act as the victim.

To detect the ongoing attack, an instance of the MMT
monitoring tool is deployed inside the IoT network, including a
specially-developed sniffer that allows extracting packets from
an [oT network. The extracted flows will be analyzed using the
DPI-enabled MMT-Probe tool, which is loaded with specific
rules to detect ICMP ping bursts on IoT traffic. This detector
will send events to the Kafka Broker — containing the IP of
the affected device and the detected attack among other data
— once the threat has been identified.

In the Kafka Broker, an Apache Storm* class will process
these events and reformat the information using rsyslog, mak-
ing them ready to be sent to the XL-SIEM tool for further
analysis. Once the events have been read by the SIEM, the
latter processes the information and produces an attack alert

4Apache Storm: http://storm.apache.org/

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

that is sent to the Mitigation Action Service by using a
RabbitMQ channel.

To compute the countermeasures, our Mitigation Action
Service implementation receives the SIEM alert and extracts
the information contained within. This information is used
to create the countermeasures defined in MSPL policies. The
Mitigation Action Service uses a generates a MSPL with the
the countermeasures for an ICMP flooding attack. The MSPL
defines a filtering rule for the ICMP protocol, instantiated
with context such as the IP addresses contained in the SIEM
alert. The MSPL is sent to the Security Orchestrator that starts
the deployment process of the countermeasures, retrieving the
list of available security enforcers capable of enforcing the
specified countermeasures.

To enforce the filtering policies, OSM (Open Source
MANO)’ together with ONOS® are suitable security enforcers,
and the Security Enablers Provider returns this as a single
security enforcer. Using this output, the Orchestrator selects a
set of security enforcers and transforms the countermeasures,
expressed in MSPL, into a lower-level configuration; the set
of ONOS/OSM specific configurations that will be used to
deploy the countermeasure. With this final translation, the
Orchestrator deploys the countermeasures, creating a new
Virtual Firewall using OMS and ONOS and deploying specific
rules to redirect the traffic of the affected devices and filter the
ICMP traffic.

The detection part of the instance described above is com-
posed of 3 machines: a Cooja machine (for emulating an IoT
network), an MMT-IoT-Probe machine (to run the incident
detector), a Mitigation Action Service (MAS) machine (for
executing the mitigation service). These instances were Vir-
tualized using VMs with the following features: 2 vCPUs @
2.40GHz, 2 GB RAM and 20 GB of HDD.

B. Building Management System (BMS)

Nowadays it is very common to find a lot of sensors
scattered in buildings. In fact, there are usually several sensors
by room or dependencies measuring temperature, humidity,
presence and luminosity among others. These measurements
can be sent to a SCADA management system which usually
implements different behaviors depending on the received
measures (e.g., If the system receives a measurement beyond
the configured threshold it could generate an alarm). Some-
times, this kind of reactions are really expensive to deploy, or
just alter the standard behavior. On the other hand, if there is a
real emergency but the sensors have been manipulated, the ab-
sence of reactions could be fatal. With this in mind, a malicious
attacker could try to exploit the system in order to take some
kind of advantage, to waste the resources of the target or harm
in somehow to the target. This scenario permits to evaluate the
benefits provided by the architecture to deal with the security
challenges in IoT-enabled Critical Infrastructure (IoT-ClIs) that
can be affected by the sensor’s manipulation. Instantiating this
scenario, the architectural framework has been deployed in a

SOSM: https://osm.etsi.org/
6ONOS: https://onosproject.org/

http://dx.doi.org/10.1109/JI0T.2019.2904123

real building where several IoT devices, including temperature,
humidity and presence sensors deployed.

In our testbed, one of these IoT devices is compromised
by an attacker, who gain access to it in order to manipulate
the temperature sensor value to trigger the fire alarm of
the building. As explained in [28] the monitoring modules
are able to discern a regular situation of a abnormal one
based on a previous training, so once the monitoring modules
receive the tramped temperature, these analyze and correlate
the information against its knowledge and them generates an
alert to the reaction module (Mitigation Action Service). This
reaction module computes the countermeasures based on the
received information and determines that it is necessary to
turn off the IoT device until a physical verification has been
performed.

The countermeasure is modelled by a new MSPL policy,
sent to the Security Orchestrator, that analyzes the security pol-
icy and obtains the required capability for the countermeasure.
Since it is an IoT-related management operation, the Security
Orchestrator decides to use the IoT controller and requests
the policy translation to obtain the IoT configuration from the
MSPL. Then, it gathers information from the system model in
order to decide through which component it will enforce the
configuration, that is sent to IoT controller. Finally, the IoT
device receives the IoT message by the IoT controller to be
turned off.

1) BMS testbed: The Policy Interpreter, Policy Repository,
Security Enabler provider, Security Orchestrator and IoT con-
troller have been developed from scratch in python using
Django’ rest framework and Falcon for the rest APIs and
Mysql as main database engine. The MSPL policy models
are an extended version of [26], that has been extended to
consider additional requirements imposed by IoT. The IoT
domain security enabler plugin also has been developed from
scratch in order to translate the extended MSPL into IoT
controller configuration. The Policy interpreter implements
four different HTTP APIs to only translate and enforce the
two different security policy levels. The policy Repository
implements two different APIs to store the policy translations
as well as the policy enforcement status. The Security enabler
provider implements two different APIs to get the security
enabler candidates as well as to get the selected plugin code.
the Security Orchestrator implements three APIs to receive
the reactions, to perform the policy translations and to gather
information from the system model as well as the APIs
for the infrastructure management. Finally, the IoT controller
implements two APIs to receive the IoT devices configuration
and to send the configuration using the specific IoT protocol
implementation. In this case the IoT controller uses CoAP as
IoT protocol.

Regarding the equipment used in this scenario, the moni-
toring and reaction modules has been deployed in the same
premises as the previous scenario. The Policy Interpreter,
Policy Repository, Security Enabler Provider and Security
Orchestrator have been virtualized and dockerized in a Intel(R)
Core(TM) i17-2600 CPU at 3.4GHz, using 3 vCores, 3.5GB

"Django https://www.djangoproject.com/

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

of RAM and 30GB of HDD. The IoT Controller has been
virtualized and dockerized in a Intel Core Processor (Haswell)
at 1.5GHz using 2vCores, 2GB of RAM and 15GB of HDD.
IoT devices: They are MSP430F5419A-EP at 25Mhz, 128
KB ROM and 16 KB RAM, running a customized version
of Contiki OS 2.7 and erbium CoAP server. The 6lowPAN
bridge: It is a MSP430F5419A-EP at 25Mhz, 128 KB ROM
and 16 KB RAM, running a customized version of Contiki OS
2.7 in order to allow the communication between 802.15.4 and
802.3.

VII. PERFORMANCE EVALUATION

1) Monitoring performance: To measure the performance
of the monitoring phase we have conducted different exper-
iments in order to determine the detection time of a ping
flooding attack in an IoT scenario. We have setup an emulated
IoT network (using Cooja) that contains a compromised device
which will perform a ping DoS attack towards another device.
In addition, we have setup the MMT-IoT solution to extract
the IoT packets and detect the ICMP flooding using MMT-
Probe. The test script analyzed the logs of two tools: the
Cooja logs to identify the timestamp when the attack was
triggered and the logs of MMT-Probe in order to identify
the timestamp when the attack was detected by the Incident
Detector. The test script triggered the attack in the (emulated)
compromised device. The verdicts generated by MMT are then
sent to the Monitoring Module, composed by two components
of the XL-SIEM tool: the XL-SIEM Agent and the XL-SIEM
Server, measuring the processing time on both components.
The former will receive, process and filter the events from
the MMT-Probe sensor, while the latter will perform the risk
analysis and generate a detailed attack report. Finally, this
attack report is sent to the MAS which will generate the
respective MSPL containing the reaction. The processing time
is also measured in this last step. This experiment was run 100
times, in order to compute the average detection and reaction
times for the ICMP flooding attack (MEC) at each component
of the platform.

Figure 6 depicts the measured times in each component.
For each iteration, the processing times have been stacked to
show the total processing time of the ANASTACIA platform.
The principal contributor of the platform’s reaction time are
the analysis and detection components — MMT in this case
— with an average of 445 ms. The MMT needs to test a
security property: observe different ICMP packets per second,
raising the alert as soon as this condition is met. The second
contributor to the total time is the XL-SIEM Server, with an
average of 57 ms. This includes the risk analysis performed,
aimed to enrich the data received from the detection engines
and determine the best set of countermeasures to the ongoing
attack. On the contrary, the XL-SIEM Agent and the MAS
add constant times to the whole process (3.4 and 8.4 ms
respectively) due to their high parallelism. The average time
for the four analyzed components is 514 ms, counting from the
moment the attack is triggered until the reaction is computed.

2) Incident handling Performance: To evaluate the per-
formance of the Incident handling in both MEC and BMS

http://dx.doi.org/10.1109/JI0T.2019.2904123

scenarios we have increasing number of events that are sent to
the Incident Detector at different pace. The Incident Detector
(XL-SIEM), is an Apache Storm based incident detector
that uses an complex event processing (CEP) engine, namely
Esper®, to correlate events. Events received by the Incident De-
tector are filtered, processed and correlated to generate security
alarms, which are then sent to the Reaction Module via the
Kafka broker. The MAS collects these alarms and generates a
MSPL file which is sent to the Security Orchestrator.

To perform the tests, we have sent a burst of 100 events at
different frequencies: 20Hz, 10Hz and 4Hz. In order to test the
performance of the components involved in the monitoring,
detection and reaction, we have forced the generation of a
security alert per event sent. Therefore, the Incident Detector
has generated 100 alarms at the pace indicated above. It is
worth noticing that, in a normal operation environment, events
from the same source IP will trigger just one alarm every 60
seconds or several minutes (depending on the rule configured
at the Esper engine). This would allow to filter large amounts
of events and to avoid unnecessary overload to the system.
In this performance evaluation we have simulated one of
the worst cases in terms of workload, both for the Incident
Detector, VDSS, MAS and Orchestrator.

The results of the tests are represented in the following chart
(Figure 7). The y-axis represents the time taken by the Incident
Detector to process each event, from the time it is received to
the time when it is sent to the messaging queue to be consumed
by the MAS. As it can be seen, the response time of Incident
Detector is stable, although some peaks are present in all tests.
The higher peak is present at 10Hz (in event #79), with a
response time of 307ms. Despite those anomalies the Incident
Detector recovers the normality quickly. It must be observed,
however, that at 20Hz it takes longer to recover the stability
(e.g. from event #38 to #45).

To understand those delays we have to consider the XL-
SIEM architecture. It is implemented in Apache Storm which
uses multiple threads in order to process several processes
simultaneously. Each thread (or bolt, as Apache Storm names
a singular thread or process) is in charge of a singular task,
like storing events in database, correlate events, send alarms
to RabbitMQ, store alarms in database, etc. As long as there
are more threads than cores, the cores are shared by different
threads. The execution order of the different tasks can be
different in some cases, consequently the measured process-
ing time may fluctuate. Furthermore, some tasks use shared
resources (like databases), hence mutual exclusion situations
may occur and increase the processing time. Those variations
are appreciated in the charts as peaks.

Alarms generated by the Incident Detector are sent to a
RabbitMQ message queue, where the MAS is attached to
receive these alarms. There’s a transfer time of approximately
40-50ms. This time may vary depending on the network
conditions and on the sync difference between the machines
where the time-stamps are measured.

In addition, some extra tests have been done to evaluate the
XL-SIEM Server performance in a different stressing scenario.

8Esper http://www.espertech.com/esper

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

1200

http://dx.doi.org/10.1109/JI0T.2019.2904123

1000 o =
800 ul
- -
~ B | _ =
= | L] -
o 600 - al] M
= = -
= - h] Ll | w [| = = ||
p e (p LN . LI . B o | N B m a
o M BeN N BH wTENEN NNWeNE SE TH Bl B T W ol R o Bl
el R B b i L e W e b Mo
400 [L | e || N "Nl = Sreeagl . S i 5§ gl | -
200
0
I e e N N N T T T T
SRV S2RNRRRAFRRERIILTLIARIBLEATCBBEBIRNRRRAZIIBEIARRLE
=3 Detection Time (ms) SIEM Agent Time (ms) ~ EEEEISIEM Server Time (ms) mmmm MAS Time (ms)
«— Detection Average (ms) —o— SIEM Agent Average (ms) —a— SIEM Server Average (ms) —+— MAS Average (ms)

Fig. 6. DDoS attack detection performance in MEC scenario

350
@ 20Hz

300 @ 10Hz

— @ 4Hz
250

200

150

Processing time (ms)

100

50

0II|

1 4 7

/
diliMunaitn

350
300
250
200
150
100

50

0

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Event #

Fig. 7. Incident handling performance, bursts of 100 events at different frequencies

In this case, the alerts are triggered when detecting different
combined attacks, mixing up to 11 events to generate an
alarm. Once again, the attacks have been generated at different
frequencies: 4Hz, 10Hz and 20Hz. This scenario stresses the
correlation engine, creating a bottleneck in this component
at higher frequencies. The tests results are represented in
Figure 8, where the processing time increases constantly at
20Hz and the bottleneck effect can be appreciated. These tests
demonstrate how the complexity of the alarm rules can impact
the XL-SIEM performance.

3) Reaction enforcement Performance: Figure 9 shows the
performance for the reactive policy translation. It measures
along 100 iterations the time required by the Policy Interpreter
to translate the reactive MSPL into both, filtering SDN and
power management IoT configurations. As it can be seen, the
measurements obtained for the policy translation are quite
similar, with an average time close to 36 ms taking into
account the variations that the system may suffer during
execution. This is due to the extension and complexity of the
filtering policies for both scenarios are similar.

Figure 10 shows the performance for the reactive policy en-
forcement, which measures along 100 iterations the time taken
by the Security Orchestrator to enforce the configurations.
It covers since the Security Orchestrator receives the MSPL
policy until it receives the enforcement confirmation from the
security enabler. In this case it is not taking into account
the policy translation since it has been shown previously. In
the results we can see that the policy enforcement though
the SDN controller takes approximately half the time of the
enforcement through the IoT controller. It can be explained
as the enforcement against the IoT devices is sent through a
6LowPAN network while the SDN enforcement is performed
through Ethernet.

If we look at the full life-cycle of the framework detection
and reaction processes in terms of average times, taking as
example the first scenario, we can see that the detection part
takes around 460 ms, the incident handling takes around 58
ms, the policy translation is close to 36 ms, and finally,
the policy enforcement shows results around 370 ms. If we
consider the whole cycle, the framework is detecting and

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
http://dx.doi.org/10.1109/JI0T.2019.2904123

The final version of record is available

IEEE INTERNET OF THINGS JOURNAL 2019

6500

@ 20Hz
5500 @ 10Hz
— @ 4Hz

4500

3500

2500

Processing time (ms)

at

6500
5500
4500
3500

2500

1500

5

o
S

i

500 14

7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

1500

n
o

0

500

Event #

Fig. 8. Incident handling performance, bursts of 100 combined attacks (1100 events) at different frequencies

«
3 -
S

Reactive Policy Translation
[0 MEC (Avg: 0.036's)
[BMS (Avg: 0.038 s)

A

14 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

0.06

Time (s)
0.04

Iteration

Fig. 9. Reactive Policy Translation

enforcing the countermeasures in less than one second. It is
important to highlight that this result depends largely on the
complexity of the countermeasure as well as the kind of attack.
i.e. in general, the more complex countermeasure, the longer
it will take its deployment.

VIII. CONCLUSIONS

This paper has presented Anastacia security management
architecture aimed to deal with the security and privacy
in NFV/SDN-enabled IoT scenarios, detailing the different
planes of the architecture as well as the main architectural
flows. In addition, the main IoT thread/attacks and their
suggested potential detection and reaction mechanisms based
on NFV-SDN has been presented. The architecture has been
successfully instantiated and tested in two different scenar-
ios; The Mobile Edge Computing and IoT-enabled Critical
Infrastructure in Building Management Systems. In these sce-
narios we tested DDos and IoT malware attacks respectively
detailing the autonomic reaction processes to mitigate them.

Reactive Policy Enforcement

i

14

[0 MEC (Avg: 0.369 5)
B BMS (Avg: 0.85)

12

1.0

Time (s)
06 08

0.4

02

|
|

|

14 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

0.0

lteration

Fig. 10. Reactive Policy Enforcement

The accomplished performance evaluation demonstrated the
feasibility of the solution to automatically monitor, detect,
react and mitigate IoT cyber-attacks, enforcing proper security
policies, in reasonable times (depending on kind of attack and
reaction countermeasure), accounting the latency and delays
incurred in IoT networks.

As future work, we envisage to extend the supported cyber-
threats detection and mitigation possibilities by addressing
reactive VNF orchestration and deployment at the edge of IoT
constrained systems and networks.

ACKNOWLEDGMENT

The research has been supported by the H2020 EU project
ANASTACIA, Grant Agreement N 731558. The research has
been also supported by a postdoctoral INCIBE grant within the
”Ayudas para la Excelencia de los Equipos de Investigacion
Avanzada en Ciberseguridad” Program, with code INCIBEI-
2015-27363.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE INTERNET OF THINGS JOURNAL 2019

[1]

[2]

[5

=

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES
L. Atzori, A. TIera, and G. Morabito, “The internet
of things: A survey,” Computer Networks, vol. 54,
no. 15, pp. 2787 — 2805, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128610001568

J. L. H. Ramos, J. B. Bernabe, and A. F. Skarmeta, “Managing context
information for adaptive security in iot environments,” in 2015 [EEE
29th International Conference on Advanced Information Networking and
Applications Workshops, March 2015, pp. 676-681.

T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things,” in Proceedings of the 14th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XIV. New
York, NY, USA: ACM, 2015, pp. 5:1-5:7. [Online]. Available:
http://doi.acm.org/10.1145/2834050.2834095

J. P. Santos, R. Alheiro, L. Andrade, n. L. Valdivieso Caraguay,
L. I. Barona Lépez, M. A. Sotelo Monge, L. J. Garcia Villalba,
W. Jiang, H. Schotten, J. M. Alcaraz-Calero, Q. Wang, and
M. J. Barros, “Selfnet framework self-healing capabilities for 5g
mobile networks,” Transactions on Emerging Telecommunications
Technologies, vol. 27, no. 9, pp. 1225-1232. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3049

P. Ostberg, J. Byme, P. Casari, P. Eardley, A. F. Anta, J. Forsman,
J. Kennedy, T. L. Duc, M. N. Marino, R. Loomba, M. . L. Peiia,
J. L. Veiga, T. Lynn, V. Mancuso, S. Svorobej, A. Torneus, S. Wes-
ner, P. Willis, and J. Domaschka, “Reliable capacity provisioning for
distributed cloud/edge/fog computing applications,” in 2017 European
Conference on Networks and Communications (EuCNC), June 2017, pp.
1-6.

S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of securing
networks using software defined networking,” IEEE transactions on
reliability, vol. 64, no. 3, pp. 1086-1097, 2015.

D. B. Rawat and S. R. Reddy, “Software defined networking architec-
ture, security and energy efficiency: A survey,” IEEE Communications
Surveys Tutorials, vol. 19, no. 1, pp. 325-346, Firstquarter 2017.

S. Chakrabarty, D. W. Engels, and S. Thathapudi, “Black sdn for the
internet of things,” in 2015 IEEE 12th International Conference on
Mobile Ad Hoc and Sensor Systems, Oct 2015, pp. 190-198.

P. Bull, R. Austin, E. Popov, M. Sharma, and R. Watson, “Flow
based security for iot devices using an sdn gateway,” in 2016 [EEE
4th International Conference on Future Internet of Things and Cloud
(FiCloud), Aug 2016, pp. 157-163.

O. Flauzac, C. Gonzailez, A. Hachani, and F. Nolot, “Sdn based
architecture for iot and improvement of the security,” in 2015 IEEE
29th International Conference on Advanced Information Networking and
Applications Workshops, March 2015, pp. 688-693.

S. Choi and J. Kwak, “Enhanced sdiot security framework models,”
International Journal of Distributed Sensor Networks, vol. 12, no. 5,
2016.

V. Varadharajan and U. Tupakula, “Security as a service model for cloud
environment,” IEEE Transactions on Network and Service Management,
vol. 11, no. 1, pp. 60-75, 2014.

B. R. Al-Kaseem and H. S. Al-Raweshidyhamed, “Sd-nfv as an en-
ergy efficient approach for m2m networks using cloud-based 6lowpan
testbed,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1787-1797,
Oct 2017.

W. Yang and C. Fung, “A survey on security in network functions virtu-
alization,” in 2016 IEEE NetSoft Conference and Workshops (NetSoft),
June 2016, pp. 15-19.

F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet
of things security: A survey,” Journal of Network and Computer
Applications, vol. 88, pp. 10 — 28, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804517301455

1. Farris, T. Taleb, Y. Khettab, and J. S. Song, “A survey on emerging sdn
and nfv security mechanisms for iot systems,” /[EEE Communications
Surveys Tutorials, pp. 1-1, 2018.

C. Shiva Shankar, A. Ranganathan, and R. Campbell, “An eca-p policy-
based framework for managing ubiquitous computing environments,” 08
2005, pp. 33— 42.

C. Rensing and M. Karsten, “Aaa: a survey and a policy-based archi-
tecture and framework,” 2002.

A. M. Hadjiantonis, A. Malatras, and G. Pavlou, “A context-aware,
policy-based framework for the management of manets,” Seventh IEEE
International Workshop on Policies for Distributed Systems and Net-
works (POLICY’06), pp. 10 pp.—34, 2006.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

http://dx.doi.org/10.1109/JI0T.2019.2904123

A. L. Shaw, L. Jacquin, A. Lioy, C. Pitscheider, C. Basile, F. Risso,
R. Bonafiglia, F. Ciacca, M. Nemirovsky, J. Kuusijdrvi, D. Montero,
R. Serral-Gracia, M. Yannuzzi, and F. Bosco, “Specification of the
secured architecture (alpha version),” Tech. Rep.

S. Ziegler, A. Skarmeta, J. Bernal, E. Kim, and S. Bianchi, “Anastacia:
Advanced networked agents for security and trust assessment in cps iot
architectures,” in 2017 Global Internet of Things Summit (GIoTS), June
2017, pp. 1-6.

I. Farris, J. Bernabe, N. Toumi, D. Garcia-Carrillo, T. Taleb,
A. Skarmeta, and B. Sahlin., “Towards Provisioning of SDN/NFV-based
Security Enablers for Integrated Protection of IoT Systems,” in IEEE
Conference on Standards for Communications and Networking (CSCN-
2017), 2017.

A. Molina Zarca, J. Bernal Bernabe, 1. Farris, Y. Khettab, T. Taleb, and
A. Skarmeta, “Enhancing iot security through network softwarization
and virtual security appliances,” International Journal of Network
Management, vol. 28, no. 5, p. 2038, €2038 nem.2038. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2038

E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 2, pp. 76-79, Feb. 2017. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MC.2017.62

Y. Gao, Y. Peng, F. Xie, W. Zhao, D. Wang, X. Han, T. Lu, and
Z. Li, “Analysis of security threats and vulnerability for cyber-physical
systems,” in Proceedings of 2013 3rd International Conference on
Computer Science and Network Technology, Oct 2013, pp. 50-55.

C. Basile, A. Lioy, C. Pitscheider, F. Valenza, and M. Vallini, “A
novel approach for integrating security policy enforcement with dynamic
network virtualization,” in Proceedings of the 2015 1st IEEE Conference
on Network Softwarization (NetSoft), April 2015, pp. 1-5.

A. Molina Zarca, D. Garcia-Carrillo, J. Bernal Bernabe, J. Ortiz,
R. Marin-Perez, and A. Skarmeta, “Enabling virtual aaa management
in sdn-based iot networks T,” Sensors, vol. 19, no. 2, 2019. [Online].
Available: http://www.mdpi.com/1424-8220/19/2/295

D. Mehta, A. E.-D. Mady, M. Boubekeur, and D. M. Shila, “Anomaly-
based intrusion detection system for embedded devices on internet,” in
The Tenth International Conference on Advances in Circuits, Electronics
and Micro-electronics, 2018.

B. Wehbi, E. M. de Oca, and M. Bourdelles, “Events-based security
monitoring using mmt tool,” in 2012 IEEE Fifth International Confer-
ence on Software Testing, Verification and Validation, April 2012, pp.
860-863.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

