
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 1

Virtual IoT HoneyNets to mitigate cyberattacks in
SDN/NFV-enabled IoT networks

Alejandro Molina Zarca∗, Jorge Bernal Bernabe∗, Antonio Skarmeta∗, Jose M. Alcaraz Calero†
∗Department of Information and Communications Engineering, University of Murcia, Murcia, Spain;

{alejandro.mzarca, jorgebernal, skarmeta}@um.es
†School of Engineering and Computing, University of the West of Scotland, Glasgow, Scotland;

jose.alcaraz-calero@uws.ac.uk

Abstract—As the IoT adoption is growing in several fields,
cybersecurity attacks involving low-cost end-user devices are
increasing accordingly, undermining the expected deployment of
IoT solutions in a broad range of scenarios. To address this
challenge, emerging Network Function Virtualization (NFV) and
Software Defined Networking (SDN) technologies can introduce
new security enablers, thereby endowing IoT systems and net-
works with higher degree of scalability and flexibility required
to cope with the security of massive IoT deployments. In this
sense, honeynets can be enhanced with SDN and NFV support,
to be applied into IoT scenarios thereby strengthening the overall
security. IoT honeynets are virtualized services simulating real
IoT networks deployments, so that attackers can be distracted
from the real target. In this paper, we present a novel mechanism
leveraging SDN and NFV aimed to autonomously deploy and
enforce IoT honeynets. The system follows a security policy-
based approach that facilitates management, enforcement and
orchestration of the honeynets and it has been successfully
implemented and tested in the scope of H2020 EU project
ANASTACIA, showing its feasibility to mitigate cyber-attacks.

Index Terms—Cybersecurity, Security models, NFV, IoT, Se-
curity Policies, SDN

I. INTRODUCTION

The Internet of Things comprises billions of heterogeneous
devices interacting each other and generating enormous as-
sorted data traffic. Constrained IoT devices strive to perform
their tasks in potential hostile environments, whereby security
and privacy aspects are even more difficult to address with
hardware limitations in terms of computational power, memory
and battery. Besides, the low-power wireless connectivity,
Machine-to-Machine (M2M) interaction models, low-cost and
unattended deployments, as well as the pervasive and dynamic
environments sparks new security and privacy threats. Diverse
types of evolved cyber-attacks such as for instance, distributed
deny of service (DDoS) attacks, exploiting infected IoT bots
(e.g. Mirai), are growing in IoT [1].

To address this new kind of IoT-based cyber-attacks, diverse
scalable security mechanisms and strategies are emerging to
mitigate them [2]. In this regard, honeynets can be used to help
countering cyber-attacks in IoT. Honeynets are comprised of
network(s) of honeypots, which aim to be used as baseline to
detect cyber-attacks (e.g. botnets) and to learn about attackers’
behaviors, making them believe that they are accessing to the
real network, when they are in fact, accessing to a simulated,
controlled and isolated network.

A highly-interaction honeypot (HIH) honeynet can imitate
the activities of the production network, by hosting a variety
of honeypots and services, to which an attacker is redirected
to access to make him waste his time. This can give some
extra time for the real system to take proper reaction and
countermeasures in order to mitigate cyber-attacks and learn
for future attack attempts. HIHs can capture not only the
network activity, but also the system activity. However, HIHs
can increase resource consumption in large-scale deployments.
Honeynets, and in turn, honeypots, are not subject to deploy
and implement all the services and functionalities of the pro-
duction system. Indeed, honeypots usually provide simulations
of only certain services to reduce maintenance cost. Unlike
HIH, low-interaction honeypot (LIH) honeynet simulates only
part of the network and services. So far honeynets have been
studied and applied successfully mainly for protecting tradi-
tional distributed networks and systems, such as Cloud and
Grid infrastructures and services. However, their application
to the Internet of things has not yet paid enough attention.

Moreover, the process of configuring, setting-up and en-
forcing virtual honeynet is a complex and tedious task, that
becomes even more complex, when the honeynet needs to
be adapted on demand to the pervasive network environment.
Therefore, it is necessary to devise an automated framework to
configure, deploy and manage a flexible honeynet. In this pa-
per, we present an autonomic virtual IoT honeynet deployment
mechanism that relies on Network Function Virtualization
(NFV) (NFV) for orchestration. The use of NFV for honeynets
management enables an efficient way of deploying virtual
HIH, empowering dynamic configuration and reconfiguration
while maintaining the HIH configuration equivalent to the real
IoT environment deployed in production.

Since an IoT network is composed of different sensor nodes,
commonly equipped with a special kind of Operating Systems,
such as Contiki OS [3], specially customized for constrained
IoT devices, our proposal is able to set up virtual IoT hon-
eynets on demand, not only as a proactive measure but also as
a reactive countermeasure to mitigate cyber-attacks, emulating
a real IoT sensor network which the attacker is redirected to.
In our proposal, data and control plane of the honeynet are
managed in a centralized way through an Software Defined
Networks (SDN) architecture. The SDN controller is in charge
of providing traffic filtering and forwarding capabilities, as
well as a redirecting and diverting traffic connections between
the real IoT environment and the virtual one. To the best of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 2

our knowledge, this is the first attempt to define a mechanism
to dynamically deploy virtual IoT honeynets through SDN and
NFV, that can emulate a real physical IoT network of devices.

The proposed system has been designed as part of a holistic
cyber-security framework that has been developed in the scope
of ANASTACIA EU research project [4]. The ANASTACIA
framework follows a context-awareness approach that can
provide support for decision-making, thanks to the continuous
analysis of the network situation provided by the monitoring
module. It endows the system with on-demand dynamic de-
ployment and update of honeypot services for the virtual IoT
honeynet.

The rest of the paper is organized as follows: Section II
discusses the state of the art. Section III introduces the
general ANASTACIA security framework. Section IV delves
into the proposed solution for virtual IoT honeynets dynamic
deployment through SDN-NFV. Section V describes the im-
plementation performed for the autonomic deployment of the
virtual IoT honeynets. Section VI reports the experimental
results to enforce virtual IoT honeynets through SDN-NFV.
Finally, Section VII concludes the paper with a set of final
remarks and presenting future research lines.

II. RELATED WORK

IoT security issues and challenges [5] [6] are unceas-
ingly evolving, mainly due to the intrinsic nature of the IoT
paradigm in terms of constraint features (power, memory and
computing) as well as the huge amount of heterogeneity targets
connecting each other. In this sense, [7] overviews the main
issues and challenges, at different levels, to be tackled, such
as confidentiality, heterogeneity, integrity, authentication or
availability. The paper highlights that the solutions provided
must be as much lightweight as possible due to the constrained
nature of the IoT devices. In this regard, authors in [8] assess
the lightweight virtualization for deploying Virtual Network
Security Functions at the Edge of the network. The IoT
security issues are exposed more in detail in [9] by providing
specific types of attacks per layer like buffer overflow, DoS
Attack or Jamming. That work provides several IoT security
requirements in order to deal with the main identified IoT
security challenges which are differentiated according to the
IoT generation in [10].

Due to properties like dynamic deployment and recon-
figuration, the combination of technologies like SDN and
NFV is a suitable approach to manage several IoT security
challenges at different levels. In fact, to achieve confidentiality,
integrity and availability with self-healing, and self-repair
capabilities in wireless environments, new context-aware and
autonomic softwarized frameworks, such as SELFNET [11]
focused on 5G networks and ANASTACIA [12] targeting IoT
networks have emerged. Farris et al. [13] provided a survey of
SDN/NFV based security mechanisms of which part of them
are currently being deployed and analysed in deep for the
research community. In [14] authors combine SDN and NFV
by deploying and configuring dynamically the infrastructure
in order to provide authentication, authorisation and channel
protection on demand in IoT environments and in [15] authors

address SDN/NFV for network filtering in IoT. [16] and [17]
also take the advantages of SDN and NFV for providing
multi-tenant network slicing in shared IoT infrastructures.
Caraguay et. al [18] take the advantage of the dynamic nature
of SDN/NFV for ensuring quality of service, and [19] follows
the same approach in order to provide horizontal scalability
for massive IoT environments.

By applying and combining SDN/NFV based dynamic
reconfiguration and deployment, other relevant security func-
tions like honeynets for IoT environments can be leveraged.
Current research efforts for IoT honeynets like [20] shows the
relevance of honeypots and honeynets techniques by genera-
tions. They highlight the advantages of these approaches to
deal with DoS attack mitigation, or the detection of unknown
vulnerabilities. In order to ease the honeynet deployments,
Fan et al. [21], [22] present a high-level model to repre-
sent honeynets and they validate it through a framework for
converting the model in specific configurations and apply
them by deploying tools like Dionea and Honeyd honeypots
in LXC-based and KVM-based virtual machines. Guerra et
al. [23] provide multi-purpose implementation of a low-
interaction IoT honeypot (HoneyIo4) for capturing attacks on
four different IoT devices; camera, printer, video game console
and cash registering machine. In [24] authors deploy well
known honeypots like Dionaea or Kippo in order to detect
IoT botnet attacks (e.g. Mirai) by analyzing logs activity. Wang
et al. [25] propose a specific IoT honeypot called ThingPot,
which implements XMPP/MQTT as high-interaction honeypot
module and REST API as low-interaction honeypot module.
Since honeypots and honeynets aim to emulate elements from
the real environment, it is important to take into account that
they should be continuously reconfigured, according to the
status of the real one. In this regard, Narik et al. [26] present
an intelligent and dynamic low-interaction honeypot based
on Dynamic fuzzy rule interpolation approach with dynamic
reconfiguration according to its rule base. Dowling et al. [27]
also provides an adaptive low-interaction honeypot, this time
based on the reinforcement of learned results. Apart from
the configuration, it is worth highlighting the reachability of
honeypot or honeynet. To this aim, there exit static approaches
like HIoTPOT [28] which uses a proxy in order to determine
whether the user is allowed or not to access the real IoT
environment based on the source address, whereas works such
as Fan et al [29] and Lin [30] propose reroutes the traffic from
suspicious nodes dynamically against the honeypot by using
SDN techniques. These kinds of techniques, combined with
NFV, allow us to provide reactive capabilities that takes the
advantage of a dynamic configuration and deployment. Specif-
ically, our solution extends Fan et al concepts and models
by allowing to deploy proactive/reactive IoT high-interaction
honeynets from IoT honeynet security policies which model
the current status of the IoT infrastructure. Then they can be
instantiated and configured or directly reconfigured by NFV
Management and Network Orchestration (NFV-MANO) and
dynamic SDN network reconfiguration.

Table I shows a comparison among the analyzed solutions
focused on the level of interaction, the target (honeypot or
honeynet), whether the solution is related to IoT, whether it

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 3

Solution Int. level Target IoT Policy-b SDN-b NFV-b Dynamic Impl./Val.
Fan et al. [21] High/Low Honeynet NO Model-b YES NO Conf+Dep YES
HoneyIo4 [23] Low Honeypot YES NO NO NO NO YES
Banerjee [24] High/Low Honeynet YES NO NO NO NO YES
ThingPot [25] High Honeypot YES NO NO NO NO YES

Naik et. al [26] Low Honeypot NO NO NO NO Conf. YES
Dowling et. al [27] Low Honeypot NO NO NO NO Conf. YES

HIoTPOT [28] Low Honeypot YES NO NO NO NO YES
Lin et.al [30] Low Honeypot YES NO YES NO NO YES

Proposed model High Honeynet YES YES YES YES Conf+Dep. YES

TABLE I: IoT Honeynet SOTA Comparison

follows a policy-based, SDN-based or NFV-based approaches,
as well as whether it provides dynamic configuration or
deployment and whether the solution has been properly im-
plemented and validated. The comparison shows that there is
still no available solution like the proposed herein, able to
deploy dynamically policy-based IoT specific high-interaction
honeynets through SDN and NFV, which in addition, has been
properly validated.

III. SECURITY FRAMEWORK OVERVIEW

The proposed security framework aims at exploiting the
features of SDN/NFV-based security enablers to ensure self-
protection, self-healing, and self-repair capabilities in IoT
systems, complementing conventional security approaches. To
this aim, security policies are defined according to different
level of abstraction, to ensure higher flexibility and manage
security control over heterogeneous networks. The required
security actions can be enforced in different kinds of physi-
cal and virtual appliances, including both IoT networks and
softwarized networks.

Figure 1 shows the proposed architecture which is composed
by three main planes.

1) User Plane: The user plane provides interfaces and tools
allowing administrators to specify the desired security policy
definitions. Its policy editor provides an intuitive and user-
friendly tool to configure security policies in a high-level
security language, governing the configuration of the system
and network, such as authentication, authorization, filtering,
channel protection, and forwarding.

2) Security Orchestration plane: The Security Orchestra-
tion plane enforces policy-based security mechanisms and
provides run-time reconfiguration and adaptation of security
enablers, thereby providing the framework with intelligent and
dynamic behavior. It is an innovative layer of our architecture
that provides dynamic reconfiguration and adaptation in case
of deviation from the expected behaviour.

The Policy Interpreter module plays a key role in the
refinement of security policies. The high-level policies are
first refined into medium-level security policy language, which
allows to specify workflows related to security procedures in
a technology-agnostic way. Then, these policies are translated
into specific low-level configurations according to the selected
enablers. The policy refinements process are further detailed
in Section IV-D.

The Security Enablers Provider identifies the available se-
curity enablers according to the required capabilities and their
relevant resource requirements. It also manages the security
enabler plugins which implements the translation to low-level
configurations.

The Monitoring component collects security-focused real-
time information related to the system behavior from physi-
cal/virtual appliances. Its main objective is to provide alerts
for the reaction module in case something is misbehaving.
Security probes such as Intrusion Detection Systems (IDS) as
well as flow and resource monitoring probes are deployed into
the SDN, NFV and IoT infrastructure domains to support the
monitoring services. In our framework, these IDS components
are implemented as virtual security enablers that can be con-
figured on demand either proactively and reactively according
to the dynamic monitoring security policies. The security
framework follows hybrid detection approach, thereby sup-
porting both, signature-based intrusion detection using rule-
based approach, as well as machine learning-based anomaly
detection to discover unknown attacks (0-days attacks). Thus,
the monitoring and intrusion detection policies includes the
list of signatures, the detection filters, as well as the associated
actions (e.g. rise alerts, stats, logs..).

The Reaction component is in charge of providing appro-
priate countermeasures, e.g. by selecting policies stored in
the relevant repository and by requiring reconfiguration of the
security enablers to cope with the detected threat.

The Security Orchestrator supervises the orchestration of
the security enablers to be deployed into the Security En-
forcement Plane according to the policy requirements. It has
been designed to achieve interoperability by allowing the on-
boarding of different kind of drivers in order to orchestrate the
enforcement plane through IoT Controllers, SDN Controllers
and NFV-MANO. This approach allows using different con-
troller’s implementations by adding new orchestration drivers.
The connection with IoT controllers is done through REST
interfaces and network protocols such as CoAP, LWM2M,
whereas interactions with SDN Controllers (e.g. ONOS) and
MANO orchestrators (e.g. OpenMANO) are accomplished
through Northbound APIs exposed by specific vendors (usu-
ally REST interfaces). In addition, at run-time, it analyses
the reaction outcomes and orchestrates the corresponding
countermeasures. In this way, the overall framework aims to
achieve self-healing and resilience capabilities, by constantly
ensuring the satisfaction of the security requirements defined
in the end-user policies.

3) Security Enforcement Plane: The security enforcement
plane is divided in different domains. The Control and Man-
agement domain supervises the usage of resources and run-
time operations of security enablers deployed over software-
based and IoT networks. A set of distributed SDN controllers
takes charge of communicating with the SDN-enabled network
elements to manage connectivity in the underneath virtual and
physical infrastructure. NFV ETSI MANO-compliant modules
provide support for the secure placement and management of
virtual security functions over the virtualized infrastructure. As
the envisioned framework aims to cover legacy IoT scenarios,
different IoT controllers can be used to manage IoT devices
as well as low power and lossy networks (LoWPANs). These
IoT controllers are usually deployed at the network edge to
enforce security functions in heterogeneous IoT domains.

The Infrastructure and Virtualization domain comprises all
the physical machines capable of providing computing, stor-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 4

VNF Domain

Virtualization layer

Infrastructure Layer

IoT Controller

IoT Network

Virtual IoT HoneyNet

Monitoring
Module

Reaction Module
Security

Orchestrator

Security Enforcement Plane

Security Orchestration Plane
Policy Interpreter

HoneyNet
Translator

SDN Controller

System Model

User Plane Policy Editor

NFV
Orchestrator

VNF Manager

VIM

NFV MANO

Control and Management Domain

(1) Define Security Policies

(2) Policy Refinement

(3) Policy Enforcement
(deploy IDS as VNF)

Virtual IDS

(4) vIDS reports bot
suspicious

(5) Attack confirmed IODEF
(6) Countermeasure, enforce

virtual IoTHoneyNet

(3.1) Deploy vIDS

(10) Deploy vIoT-HoneyNet

Conpromised IoT
device (bot)

(8) Translate IoT Netwok
System Model

(9)Configure the VNF Virtual
IoT HoneyNetvIoTHoneyNet

Manager

(3.1) Choose proper vIDS

(7) Choose proper
vIoTHoneyNet

(9.1) Select IoT bot image

(11) Deploy a virtual IoT-
Controller as VNF

(12) Redirect traffic towards
vIoTHoneyNet

(14) Restart Flash IoT motes

(13) Drop Malicious traffic

Security
Enablers
Provider

Security VNFs Manager
(+HoneyNets catalog)

e.g. Coap, MQTT, LWM2M
REST interface

REST interface (MSPL)

Fig. 1: High level overview of the proposed architecture

age, and networking capabilities, as well as the virtualization
technologies, to provide an Infrastructures as a Service (IaaS)
layer. This domain also includes the network elements respon-
sible for traffic forwarding, according to the SDN controller
rules, and a distributed set of security probes for data collection
to support the monitoring services.

VNF domain accounts for the VNFs deployed over the
virtualization infrastructure to enforce security within network
services. Specific mechanisms will be developed to verify
the trustworthiness of VNFs and to continuously monitor
their key parameters, as well as specific attentions will be
addressed to the provisioning of advanced security VNFs (such
as virtual firewall, IDS/IPS, channel protection, etc.), capable
to provide the defense mechanisms and threat countermeasures
requested by security policies (e.g. the virtual IoT honeynet
(vIoTHoneynet) Manager in charge of controlling the vIo-
THoneynets, will be deployed as VNF).

IoT domain comprises the IoT devices to be managed. This
includes the security enablers, actuators or software agents
needed to enforce the security directives coming from the
orchestration plane and managed at the enforcement plane
by the IoT Controller. For instance, a special kind of local
security agent can be deployed in IoT devices to protect the
communications between two devices.

IV. POLICY-BASED DEPLOYMENT OF IOT HONEYNETS
BASED ON SDN-NFV

A. Virtual IoT honeynets

Our proposal simulates a real IoT sensor’s network to
which the attacker is redirected to be distracted and investi-
gated, countering the damage of his attack. Unlike traditional
solutions, in our proposal, honeynets can be deployed not
only pro-actively, but also reactively as a countermeasure
to mitigate cyber-attacks, according to the reaction provided
by reaction module. Besides, connectivity and data control
in the honeynet is managed centralized through SDN. The
SDN controller is in charge of providing traffic filtering and
forwarding, as well as a redirection mechanism to divert and
transfer the traffic connections from the real IoT network to the
virtual IoT honeynet, according to the necessities of intrusion
investigations.

The honeynets definition in terms of network and service
topologies evolve dynamically according to the context and the
actual IoT physical deployment. To this aim, the system model
is kept up to date, fed through monitoring services by probe
modules such as IoT crawlers, IDS, FlowMon, notifications,
etc., in charge of generating automatically the description
of the honeynet by scanning the target production network,
whereby obtaining the necessary system and network data
such as, IP address, operating system, services, resources and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 5

open ports. Once the information has been properly gathered,
honeynets are modeled using an extended version of the Tech-
nology Independent Honeynet Description Language (TIHDL)
[21] which, in turn, inherits from the Common Information
Model (CIM) [31]. Our honeynet description model improves
TIHDL by including additional concepts needed for modeling
IoT virtual honeynets, such as, physical location of the devices
and resources provided by the IoT devices as it is defined in
section IV-C.

By using a well-defined model as the TIHDL extended one,
it can be analyzed and translated in order to transform the
model information in configurations for different virtual envi-
ronments. For instance, the Cooja [32] simulator for wireless
sensor networks enables a holistic high interaction simulation
for Contiki [3] operating system of IoT devices. Cooja allows
simulations at network level, operating system level, and
machine code instruction set level, enabling the deployment
of virtualized HIH honeynets. When the virtual environment
configuration is ready to be deployed, a vIoTHoneyNet Man-
ager is installed in an Virtual Network Function (VNF), and
it is deployed dynamically by the NFV-MANO. In this sense,
the Honeynets deployment can be performed at the proper
network location to protect users against the cyber-attack.

Once the VNF has been deployed, the virtual IoT devices
in the honeynet start simulation sensor values, randomly
generated in the scope of some margins, given by the standard
deviation over the mean values that the real IoT system was
reporting so far. Besides, the system is designed to offer
capabilities for reconfiguring the scenario. The probe module
collects in real time updates from the real production network,
adjusting the network structure of the virtual honeynet accord-
ingly. Furthermore, the framework is designed to continuously
monitor the real IoT devices in order to extract information
to be used to provide a HIH of the IoT honeynets, so that in
case of an infected device is detected an alert and reaction
is raised generating then a dynamic up-to-date virtual IoT
honeynet deployment with the updated IoT honeypots.

B. Virtual IoT honeynets data model

The context information maintained and managed by the
System Model database of the Control and Management Do-
main layer of the framework provides meta-model data needed
to interpret the concepts expressed in the high-level security
policy language. The Context Information encompasses the
environmental information retrieved from the security enforce-
ment plane.

The monitored information, along with the real time in-
stantiated system model is defined in a common language
such as CIM (Common Information Model) [31] from DMTF.
CIM provides a modelling mechanism to represent concepts
available in IT domains. Indeed, some operating systems and
platforms already support retrieving the current and instanti-
ated status of the system in CIM model, providing detailed
information about the managed system. This description can
be used to retrieve information about which capabilities are
provided by different system components, as well as partic-
ular network configurations, in order to perform the policy

refinement from high-level security policy to medium-level
policy language. The DTMF also provides other standard
models to represent specific components of the underlying
virtual environment, such as OVF, VMAN, CIMI and hardware
infrastructure (e.g. SMASH, Redfish). For example, a packet
filtering policy should be applied by a firewall element which
has network traffic filtering capabilities, and the needed of
extra information such as network IP addresses associated to a
user or a device identifier can be obtained from the instantiated
system model.

Nonetheless, CIM does not directly provide concepts for
representing honeynets. To fill this gap, the Technology
Independent Honeynet Description Language (TIHDL) [21]
extends CIM allowing to represent flexible virtual honeynet
models, which can comprise a combination of heterogeneous
platforms for deploying honeynet in virtual networks and also
deploy hybrid honeynet for both, low-interaction honeypots
and high-interaction honeypots. It was already validated by
authors in order to model and deploy different number of
virtual honeypots (NVHs) for diverse platforms [22]. However,
TIHDL was not designed having Internet of Things in mind.
Several concepts need to be added, and some others re-
designed, in order to model properly vIoTHoneynets. To this
aim, our proposal extends TIHDL to represent several concepts
needed to deploy vIoTHoneynets. Fig. 2 represents the root
concepts in a Honeynet class.

C:\Users\Jorge\Documents\UMU\PROYECTOS\ANAS...\iot-honeynet.xsd 09/10/2017 11:57:43

©1998-2011 Altova GmbH http://www.altova.com Page 1Registered to pedro (pelas)

tns:ioTHoneyNetType

ioTHoneyNet

tns:nametns:

tns:nettns:

0 ..

tns:routertns:

0 ..

tns:containmentGatewaytns:

0 ..

tns:ioTHoneyPottns:

0 ..

Fig. 2: IoT HoneyNets system data model schema.
Every IoTHoneyNet is comprised of several Nets, Routers,

Honeypots and ContainmentGatways. The ContainmentGat-
way class aims to represent honeywalls and their interfaces.
Notice that, although it has omitted in the model for the sake
of simplicity, the classes inherit from already existing classes
in CIM. For instance, Router and HoneyPot extends from
ComputerSystem, and Interface inherits from NetworkPort.

The IoTHoneyPot class is represented in Fig. 3. A honeypot
in IoT needs special attributes that are not needed in traditional
honeypots. For instance, IoT honeypots can be placed in
wireless devices which are deployed in a particular location.
To represent this notion, the IoTHoneyPot class features the
attribute Location. Besides, an IoT device usually is endowed
with several supplied sensors and resources (e.g. tempera-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 6

attributes

attributes

attributes

Fig. 3: Virtual IoT HoneyNets system model. IoT HoneyPot

ture). In addition, the particular model of the IoT device
(e.g. Sky mote) is also important to be able to instantiate
highly-interactive virtual honeypots. Thanks to this model
and resources properties in the policy, the virtualized system
enforcing the virtual IoT honeyNet will be able to adjust
and configure the virtual IoT device to represent exactly the
same constraints of the real one, including hardware constrains
such as battery, memory and CPU, and other features such as
network protocols supported.

The rest of the classes related to the IoTHoneyPot encom-
passes: Interfaces (Mac, IP, net), the InteractionLevel (low or
high-interactive honeypot), OperatingSystem (e.g. Contiki) and
Software deployed in the honeypot (e.g., Erbium).

Finally, the IoTRouterType is represented in the diagram of
Fig. 4. IoT networks can be comprised of multi-hop wireless
networks in which the IoT devices can act as routers to deliver
the packet to the next hop. As in the IoTHoneyPot class, the
routers also need to represent concepts such as model, location
and resource. Besides, the Router class holds the routing
table with the set of entries (destination-gateway) needed to
represent accurately in the vIoTHoneyNet the same network
topology than in the real physical IoT network. Moreover, the
Router class is associated to a particular software of routing
protocol (e.g. RPL). By modeling these concepts will allow
to configure the vIoTHoneyNet exactly as it is the real IoT
deployment.

attributes

attributes

Fig. 4: Virtual IoT HoneyNets system model. Router class

C. Virtual IoT honeynets behaviour modelling

Slow DoS attacks, such as Slowloris or slowPost aims to
overwhelm a target victim by sending incomplete or mal-
formed requests at slow date rate, thereby occupying available
connections of a target victim server. If an attacker(s) manage
to take up enough connections, the victim server will get
overwhelmed. Since these kind of DDoS attacks do not require
high-performance systems to be accomplished, IoT ecosystems
can be especially subject to these kind of attacks.

The IoT Honeynet behaviour model needed to mitigate
these kind of DDoS attacks can be described as follows. Let
us assume a network N defined as a set of interconnected
computer nodes N = {N1, N2, N3, ..., Nn} where each of the
computer nodes will play one and only one role R, defined
as R =[ATTACKER, SERVICE, HONEYPOT]. Attackers
A = (A1, A2, ...Aa) ⊂ N ⇒ Aa.role = ATTACKER
are a large number of IoT nodes that are performing the
Low-Rate DDoS Attack. SERV ICES = (S1, S2, ...Ss) ⊂
N ⇒ Ss.role = SERV ICE are the nodes victim of the
attack. Notice that the victims of the attack can also be the
own IoT devices. And HONEY POT = (H1, H2, ...Hs) ⊂
N ⇒ Hs.role = HONEY NET are the nodes offering
fake services that are receiving the attack as a result of the
mitigation. This scenario assumes that the behaviour of a node
in terms of the services its offers is modeled as b function.
And, that for each service node, there is an associated node
in the honeypot providing the same behaviour with fake data.
Formally, this is the defined as ∀i ∈ s, b(Si) = b(Hi). Also,
the modeling of the behaviour of the attackers is defined by
the function s indicating the delivery of malicious packet at
a particular packet rate to form a Slow Rate DDoS attack,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 7

defined the packet rate as r. Thus, formally, b(Ai) = s(r).
The implications of sending such packets have been already
explained.

The behaviour of the SDN controller is twofold. Nodes
are interconnected by mean of switches that are controlled
by an SDN controller. The behaviour of the SDN Con-
troller is to forward traffic to the nodes. At the initial state,
before of the detection of the attack, moment defined as
tn, the forwarding will be done to the service nodes. So
that, b(SDNtn) = f(SERV ICE). Then, when the attack
is detected, moment defined as td, the forward will be
updated to redirect the traffic to the honeypot nodes. So
that, b(SDNtd) = f(HONEY POT). The network has
also an special node running an IDS software to perform
the detection of the attack. Such detection is based on the
matching of a well-known signature available in the packets
to perform the detection of the attack against a database of
signatures. Formally, let us define the set of attack signatures
as R = (R1, R2, ...Rr) and thus let us defined the function
to detect an attach as a match m function that will be true
if there is an occurrence of the rule Ri matching against the
signature of every packet, defined as P = (P1, ..., Pk) so that
∀Ri∀pk ⇒ ∃m(Ri, pk) = true. Thus, the behaviour of the
IDS is defined as b(IDS) = m(R,P). Finally, the modeling
of the mitigation of the attack through the honeynet can be
formalized as the change in behaviour from b(SDNtn) to
b(SDNtd) when m(R,P) = true.

D. Policy-based security management in SDN/NFV-enabled
networks

IoT deployments are comprised of disparate kind of de-
vices which might differ a lot in the available resources,
implemented protocols, or connectivity technology employed.
Besides, some domains are prone to receive more attacks than
others and the level of criticality varies among deployments,
thereby changing the economic or strategic interest from
attackers. Consequently, different security requirements might
apply to different IoT deployments. The security refinement
process defined herein is based upon a policy based strategy
for the enforcement and management of security requirements
over an IoT platform providing inter-operability and avoiding
vendor lock-in. Security policies are a flexible way to tailor
the security requirements needed by an IoT platform to the
specific domain where the IoT platform is deployed. Them
also ease the security management activities required to control
the fulfillment of the claims included in the policy, allowing to
set up monitoring activities, measurements, thresholds, alerts,
reaction activities, etc.

In this way, security policy operations are divided into three
main tasks. Namely, the process that parses the high level
policy into a machine readable format (policy refinement), the
transformation of that policy format into low level configura-
tion rules (policy translation) and the process for configuring
the system (policy enforcement). The sequence diagram of Fig.
5 shows the main workflow for a proactive policy definition
and its refinement from High-level Security Policy Language
(HSPL) to Medium-level Security Policy Language (MSPL)

based on [33], as well as the policy translation process from
MSPL to low-level configurations.

First, the security administrator defines the security policy
in HSPL (Fig. 5-step 1). Then, the Policy Interpreter receives
a policy enforcement request, starting the refinement process
by the identification of the capabilities (Fig. 5-step 3), under-
standing a capability as a main purpose of the policy (e.g.
filtering capability will be identified when a security policy is
defined in order to drop traffic).

Once the Policy Interpreter has identified the capabilities, it
performs a request to the Security Enabler Provider (Fig. 5-
step 4), with the aim to get a list of Security Enablers capable
to enforce the mentioned capabilities. In this context, a Secu-
rity Enabler corresponds to a piece of software or hardware
capable to implement some specific security properties (e.g.
filtering, forwarding...). The Security Enabler Provider then
returns the aforementioned list of Security Enablers for each
capability. Afterwards, the Policy Interpreter verifies whether
each security policy could be enforced using at least one of
the Security Enabler received (Fig. 5-step 8).

If the security policy could not be enforced, the Policy Inter-
preter returns a non-enforzable analysis to the user, indicating
the issue (Fig. 5-step 9). Otherwise, the Policy Interpreter
retrieves system model information (e.g. technical information
of an IoT device) and it performs the policy refinement taking
into account the capability of the HSPL policy as well as the
specific system model information in order to generate one or
several (e.g. bi-directional behavior) MSPL policies (Fig. 5-
step 12). Like in the previous case, if there is some issue during
the refinement, the user is notified with a non-enforzable
analysis but, in other case, the MSPL policy and the list of
available security enablers are uploaded to the Security Policy
Repository and they are also sent to the Security Orchestrator
in order to proceed with the best security enabler selection
for the medium-level security policy translation process (Fig.
5-steps 14,15).

When the Security Orchestrator receives the MSPL policy
and the list of security enablers, it retrieves information about
the underlying technologies in order to select the best security
enabler for the policy enforcement by using the current context
and system information to make the decision (Fig. 5-steps
16,17,18). Then, the Security Orchestrator requests the MSPL
translations to the Policy Interpreter for each pair of MSPL and
selected security enabler. The Policy Interpreter retrieves from
the Security Enabler Provider the plugin which implements the
MSPL translation for the selected security enabler, and exe-
cutes it, generating the expected low-level configurations (Fig.
5-steps 21-27), which are sent to the Security Orchestrator
(Fig. 5-step 23) who proceeds with the enforcement process.

Fig. 6 shows the policy enforcement process. The Security
Orchestrator receives the enabler’s configuration and it triggers
the enforcement process through the SDN Controller, the IoT
Controller, the NFV MANO (Fig. 6-steps 1,2,3) or even by
a direct communication with the security enabler (e.g. legacy
physical router), depending on the requirements of the security
policy. On the one hand, if a specific VNF is required, and it
is not already deployed, the NFV-MANO creates, configures
and deploys a new one (Fig. 6-steps 6,7). Otherwise the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 8

Policy
Editor
Tool

Security
Orchestrator System

Model

Policy
Interpreter

Security
Enablers
Provider

Security
Enablers

Repository

Security
Policy

Repository

1 defineHSPL()

High To Medium Level Policy Refinement

2 enforce(HSPL)

3 identifyCapabilities()

4
identifyEnablers
(List<Capability>)

5
getEnablers
(List<capability>)

6 List<Enabler>

7 List<Enabler>

8 nonEnforzableAnalysis()

9
early non-enforzable
analysis report

10 getSysModel()

11 sysModel

12
generateMSPL/s
(HSPL,sysModel)

13
complete non-enforzable
analysis report>

14 uploadMSPL(List<MSPL,List<Enabler>>)

15 enforceMSPL(List<MSPL,List<Enabler>>)

16 getSysModel()

17 sysModel

18
selectBestEnablers
(List<MSPL,List<Enabler>>)

19
non-enforzable
analysis report

Medium to Low Level Policy Tanslation

20
translateMSPL
(List<MSPL,SelectedEnabler>)

loop [For each MSPL Policy]

21 getPlugin(enabler)

22 getPlugin(enabler)

23 enablerPlugin

24 enablerPlugin

25
executePlugin(MSPL,
enablerPlugin)

26
populate
Enabler
Configuration(enablerConf)

27
enforce
Configuration(List
<enablerConf>)

Fig. 5: Policy Refinement and Policy Translation processes
Security Orchestration Plane Security Enforcement Plane IoT/CPS Systems Plane

Security
Orchestrator

IoT
Controller

SDN
Controller NFV-MANO

VNF
Domain

Infrastructure
Domain

IoT
Device

1 enforce(enablerConf)

2 enforce(enablerConf)

3 enforce(enablerConf)

4 applyConfiguration()

5 applyConfiguration()

alt [VNF does not exist]

6 <<create>>

7 applyConfiguration()

8 applyConfiguration()

Fig. 6: Policy Enforcement process

NFV-MANO just enforce the received configuration over the VNF. Besides, if the security policy is SDN related, the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 9

SDN Controller is in charge of enforcing the policy over
the managed SDN network (Fig. 6-steps 4,8). Finally, if the
security policy is IoT related, the IoT Controller enforces the
IoT configurations over the managed IoT devices by using
specific IoT constrained protocols (Fig. 6-steps 5).

E. Attack detection and virtual IoT Honeynet dynamic config-
uration and deployment

By following the previous policy-based approach it is pos-
sible to define a set of pro-active security policies in order
to configure and deploy monitoring agents which feeds the
reaction part of the framework. Thus, the monitored data is
filtered, processed and analyzed, issuing verdicts about anoma-
lies occurring in the monitored platform (potential threats or
ongoing attacks). The identified events are notified to the
reaction module of the framework which creates counter-
measures (i.e. a set of security policies) reacting to threats
or attacks, and triggering the countermeasure’s enforcement.
Besides, the security reaction process is also able to notify the
administrator, who might provide feedback and trigger critical
countermeasures that require explicit consent or to override
the security policy.

When the reaction countermeasure is performed automat-
ically, the reaction module generates and provides a set of
countermeasures as new security policies to the Security
Orchestrator, which acts similar to when it receives the MSPLs
from the Policy Interpreter in the pro-active scenario. Fig. 7
shows the main workflow regarding a botnet DDoS attack
detection, instantiated for an IoT honeynet deployment coun-
termeasure. First, a previously deployed IDS VNF detects
the signature of the botnet attack (e.g. Mirai) [34] (Fig. 7-
steps 1,2). The infected zombie (bot) in the IoT domain can
be detected based on flow-based metrics, which are sent to
ANASTACIA monitoring module for further analysis. The
Monitoring module analyzes the thread and communicates
the alert (e.g. IODEF) to the reaction module (Fig. 7-step
3,4), which is in charge of making the decision regarding the
particular kind of countermeasure to be taken. In this case, the
reaction module indicates that IoTHoneynet and networking
operations that must be enforced, so it requests the enforce-
ment of the countermeasures to the Security Orchestrator (Fig.
7-step 6).

The Security Orchestrator receives the attack information
as well as countermeasures (which could be security policies
pending to be fulfilled) and it executes the orchestrator algo-
rithm (Fig. 7-step 7). Algorithm 1 shows the pseudo-code of
orchestration algorithm.

The algorithm iterates over the countermeasures verifying
whether there is any unsatisfied dependency. If so, the counter-
measure is queued until the dependency is solved (filtering and
forwarding will depend on the vIoTHoneynet deployment).
Otherwise, the algorithm retrieves system model information
of the underlying technologies related to the elements involved
in the countermeasure. If the countermeasure is related with
IoT, the algorithm also includes in the system model the IoT
infrastructure information available in the IoT Controller. The

Data: AI = attackInfo,
C = {countermeasuresList}

Result: EnforcedC′ ⊂ C
1 for c in C do
2 if c has unsatisfied dependencies then
3 queue(c);
4 continue;
5 end
6 sm← getSystemModel(c);
7 if c ⊂ {IoTContermeasures} then
8 ioTsm← getIoTSystemModel(c);
9 sm← sm ∪ ioTsm;

10 end
11 mspl← fillMSPL(c, sm);
12 candidates← getEnablerCandidates(mspl);
13 se← selectEnabler(mspl, candidates, sm);
14 conf ← translate(mspl, se);
15 if mspl ⊂ {HoneynetMSPLs} then
16 cf ← genCustomFirmware(conf,AI);
17 end
18 enforce(conf, se, cf);
19 end

Algorithm 1: Security Orchestrator Algorithm
for countermeasures enforcement

VNF
IDS Monitoring Reaction

Security
Orchestrator

NFV
MANO

VNF
vIoTHoneyNet

manager
SDN

Controller

attack detection phase

1
matchAttack
(DDos)

2
attackDetection
(DDos)

3
analyzeThread
(DDos)

4
alert
(IODEF
message)

attack reaction phase

5

deliberate
Countermeasure
(IODEF
message)

6

reaction(
AttackInfo,
Countermeasures
<IoTHoneynet,
Filtering,
Forwarding>)

7
orchestration
Algorithm()

8

deployVNF
(selectedEnabler,
enablerConf,
firmwares)

alt [VNF does not exist]

9 <<create>>

10

deploy
(enabler
Conf,
firmwares)

11 success

12 enforce(enablerConf)

Fig. 7: IoTHoneyNet deployment process

information of the infrastructure and the countermeasure are
then used in order to fulfill the MSPL policy. The algorithm
then retrieves a list of security enabler candidates capable of
enforcing the MSPL policy, and it selects the best candidate
by considering the current status of the infrastructure (system
model), the candidates and the security policy requirements.

Once the best security enabler is selected, the algorithm ob-
tains the enabler configuration by a MSPL policy translation. If
the security policy is IoT Honeynet related, a custom firmware
generation could be required in order to emulate not only the
current infrastructure, even the specific attack behaviour (e.g.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 10

emulate a Mirai botnet). Finally, the enabler configuration is
enforced through the selected enabler (Fig. 7-steps 8,12). For
the vIoTHoneynet, the NFV-MANO verifies if there is already
deployed a suitable VNF which implements the vIoTHoneynet
manager. If so, the vIoTHoneynet configuration is sent to
the vIoTHoneynet manager who starts the vIoTHoneynet
according on the received parameters. Otherwise, the process
is barely the same, but the NFV-MANO first creates a suitable
VNF instance for the vIoTHoneynet manager.

When the vIoTHoneynet is running, the Security Orches-
trator receives a notification from the vIoTHoneynet manager,
and it verifies whether the event satisfies any queued coun-
termeasure. If so, it processes and enforces the filtering and
forwarding policies through the SDN controller in a transpar-
ent way for the attacker. On the one hand, the traffic from
the real IoT domain to the attacker as well as the traffic from
the real IoT domain which is generating the DDoS attack are
filtered. On the other hand, the traffic from the attacker to the
real IoT infrastructure is redirected to the vIoTHoneynet and
the simulated DDoS generated by the vIoTHoneynet is also
filtered. In this way the attacker believes he is still controlling
the affected bot device, but the attack is unsuccessful and the
process allows security administrators take advantage of the
situation (e.g. learning the attacker methodology).

V. IMPLEMENTATION

Figure 8 shows the deployment that has been instantiated,
based on the developments carried out in the scope of this
research in order to perform the testing of the proposed
architecture. The monitoring module is instantiated using the
XL-SIEM tool, which is a Security Information and Event
Manager able to detect issues along the architecture by moni-
toring network resources, provided by Atos. XL-SIEM is able
to infer cyber-atacks by analyzing the detected anomalies.
Those issues are notified to the Reaction module, providing
the information in the Incident Object Description Exchange
Format IODEF [35] standard.

The Reaction module analyzes the threats and it generates
a reaction which is sent to the Security Orchestrator in an
adequate format, able to represent the coordination and exe-
cution of command and control for cyber-defense components,
i.e. the Open Command and Control (OpenC2) [36] language.
Once the Security Orchestrator knows the reaction, it performs
the requested modifications over the architecture by using
security policies. To provide policy definition, refinement,
and translation features, a Policy Editor Tool and a Policy
Interpreter have been implemented in Python, based on the
outcomes of the SECURED project policy models [33].

Specifically, different plugins have been implemented for
the policy translation from MSPL to low-level configurations.
Namely, a plugin that translates MSPL IoT HoneyNet policies
into Cooja emulator configurations which can be applied by
the Northbound API of our vIoTHoneyNet manager. Listing
1 provides an MSPL policy example which embeds the
IoT honeynet system model. The virtualIoTHoneyNetAction
specifies the action to be performed over the honeynet
(other actions such as reconfigure, stop or restart the

VNF Domain

Virtualization layer

Infrastructure Layer

IoT Controller

IoT Network

Virtual IoT HoneyNet

Monitoring
Module

Reaction Module
Security

Orchestrator

Security Enforcement Plane

Security Orchestration Plane
Policy Interpreter

HoneyNet
Translator

SDN Controller

System Model

User Plane Policy Editor

NFV
Orchestrator

VNF Manager

VIM

NFV MANO

Control and Management Domain

Virtual IDS

vIoTHoneyNet
Manager

Contiki motes

Cooja WSN emulator

 Snort

ONOS

CoAP-DTLs over
6LowPAN

OpenFlow

Python service

OpenSourceManoPython Service

Python Service
XL-SIEM

IODEF

HSPL/MSPL languages

OpenStack

OpenC2

Extended TIHDL
language

Contiki
emulated

motes

Security
Enablers
Provider

Python service

Fig. 8: Architecture instantiation and implementation

environment can be specified), whereas the IoTHoneyNet
model describes general information regarding the network
and the honeynet itself, like identifiers or descriptions. More
concrete information is provided about the main elements
such as routers and IoTHoneyPots, like their interaction levels
(LOW, HIGH), defined as the degree of replication between
the real and virtual environments, the operating system, the
installed software and its version, the available resources
of the IoT honeypot (e.g. temperature sensor, humidity
sensor...) and even its physical location expressed in Cartesian
coordinates.

<c o n f i g u r a t i o n R u l e>
<c o n f i g u r a t i o n R u l e A c t i o n x s i : t y p e = ’ VIoTHoneyNetAction ’ >
<VIoTHoneyNetActionType>DEPLOY</ VIoTHoneyNetActionType>

<ioTHoneyNet >
<name>REST wi th RPL r o u t e r</ name>
<n e t i d =” 1 ”><name>n e t</ name></ n e t>
<r o u t e r i d =” 1 ”>

<name>Wismote RPL Root</ name>
<i n t e r a c t i o n l e v e l>LOW
</ i n t e r a c t i o n l e v e l>
<i f i d =” 1 ” n e t =” s t r 1 2 3 4 ”>

<name>i 1</ name>
<mac addr>ROUTER MAC</ mac addr>
<i p>ROUTER IP</ i p>

</ i f>
<o p e r a t i n g S y s t e m>

<name>c o n t i k i</ name><v e r s i o n>2 . 7</ v e r s i o n>
</ o p e r a t i n g S y s t e m>
<s o f t w a r e i d =” 1 ”>

<name>RPL</ name><v e r s i o n>3 . 1 4</ v e r s i o n>
</ s o f t w a r e>
<model>Wismote</ model>
<l o c a t i o n><x>33 .2601</ x><y>30 .6432</ y></ l o c a t i o n>
<r e s o u r c e>TEMPERATURE</ r e s o u r c e>

</ r o u t e r>

<ioTHoneyPot i d =” 2 ”>
<name>Erbium S e r v e r</ name>
<i n t e r a c t i o n l e v e l>LOW</ i n t e r a c t i o n l e v e l>
<i f> . . .</ i f>
<o p e r a t i n g S y s t e m>

<name>c o n t i k i</ name>
</ o p e r a t i n g S y s t e m>
<s o f t w a r e i d =” 1 ”>

<name>Erbium S e r v e r</ name><v e r s i o n>3 .14159</ v e r s i o n>
</ s o f t w a r e>
<model>Sky</ model>
<l o c a t i o n> . . .</ l o c a t i o n>
<r e s o u r c e>Tempera tu r e</ r e s o u r c e>

</ ioTHoneyPot>
. . .

</ ioTHoneyNet>
</ c o n f i g u r a t i o n R u l e A c t i o n>

</ c o n f i g u r a t i o n R u l e>

Listing 1: IoT HoneyNet Model Example

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 11

<s imconf>
<mote type>

se . s i c s . c o o j a . mspmote . WismoteMoteType
<i d e n t i f i e r>1</ i d e n t i f i e r>
<d e s c r i p t i o n>Wismote RPL Root</ d e s c r i p t i o n>
<s o u r c e>borde r−r o u t e r . c</ s o u r c e>
<commands>make borde r−r o u t e r . wismote

TARGET=wismote</ commands>
<f i r m w a r e>borde r−r o u t e r . wismote</ f i r m w a r e>
<m o t e i n t e r f a c e>P o s i t i o n</ m o t e i n t e r f a c e>
<m o t e i n t e r f a c e>IPAddre s s</ m o t e i n t e r f a c e>

</ mo te type>

<mote type>
se . s i c s . c o o j a . mspmote . WismoteMoteType
<i d e n t i f i e r>2</ i d e n t i f i e r>
<d e s c r i p t i o n>Erbium S e r v e r</ d e s c r i p t i o n>
<s o u r c e>coap−s e r v e r . c</ s o u r c e>
<commands>make coap−s e r v e r . wismote

TARGET=wismote</ commands>
<f i r m w a r e>coap−s e r v e r . wismote</ f i r m w a r e>
<m o t e i n t e r f a c e>P o s i t i o n</ m o t e i n t e r f a c e>
<m o t e i n t e r f a c e>IPAddre s s</ m o t e i n t e r f a c e>
<m o t e i n t e r f a c e>TEMPERATURE</ m o t e i n t e r f a c e>

</ mo te type>

<mote>
<b r e a k p o i n t s></ b r e a k p o i n t s>
<i n t e r f a c e c o n f i g>

org . c o n t i k i o s . c o o j a . i n t e r f a c e s . P o s i t i o n
<x>33 .2601</ x><y>30 .6432</ y><z>0 . 0</ z>

</ i n t e r f a c e c o n f i g>
<i n t e r f a c e c o n f i g>

org . c o n t i k i o s . c o o j a . mspmote .
i n t e r f a c e s . MspMoteID

<i d>1</ i d>
</ i n t e r f a c e c o n f i g>
<m o t e t y p e i d e n t i f i e r>1</ m o t e t y p e i d e n t i f i e r>

</ mote>
. . .

</ s imconf>

Listing 2: Corresponding Cooja CSC model

Listing 1 shows an example of IoT honeynet MSPL whereas
Listing 2 shows its corresponding translation into Cooja
Simulation Model configurations (CSC model). As it can
be observed, it allows specifying the type of IoT device
(motetype), even including the source code to be compiled, or
directly the IoT firmware, as well as the platform and available
resources.

Besides the vIoTHoneynet configuration, additional policy
enforcements like traffic filtering and traffic forwarding must
be accomplished in order to reconfigure the network for
accommodating the new virtual appliance as well as for
redirecting the attacker to the vIoTHoneyNet. In this sense,
it has been developed a plugin to translate MSPL filtering
and forwarding policies to specific SDN ONOS Controller
Northbound API configurations.

<c o n f i g u r a t i o n R u l e>
<c o n f i g u r a t i o n R u l e A c t i o n x s i : t y p e = ’ F i l t e r i n g A c t i o n ’>
<F i l t e r i n g A c t i o n T y p e>DENY</ F i l t e r i n g A c t i o n T y p e>

</ c o n f i g u r a t i o n R u l e A c t i o n>
<c o n f i g u r a t i o n C o n d i t i o n x s i : t y p e = ’ F i l t e r i n g C o n f C o n d i t i o n ’>
<p a c k e t F i l t e r C o n d i t i o n>
<Sourc eAd dre s s>a a a a : : / 6 4</ So u r ceA ddr e s s>
<D e s t i n a t i o n A d d r e s s>c c c c : 2 /128<D e s t i n a t i o n A d d r e s s>
<I n t e r f a c e>2</ I n t e r f a c e>

. . .
<e x t e r n a l D a t a x s i : t y p e = ’ P r i o r i t y ’><v a l u e>60000</ v a l u e>

. . .
</ c o n f i g u r a t i o n R u l e>

<c o n f i g u r a t i o n R u l e>
<c o n f i g u r a t i o n R u l e A c t i o n x s i : t y p e = ’ T r a f f i c D i v e r t A c t i o n ’>
<TD iv e r t A c t i o n T y pe>FORWARD</ T Di ve r t A c t i o n T yp e>
<p a c k e t D i v e r t A c t i o n>
<p a c k e t F i l t e r C o n d i t i o n>
<I n t e r f a c e>3</ I n t e r f a c e>

. . .
</ c o n f i g u r a t i o n R u l e A c t i o n>
<c o n f i g u r a t i o n C o n d i t i o n x s i : t y p e = ’ T D i v e r t C o n f C o n d i t i o n ’>
<p a c k e t F i l t e r C o n d i t i o n>
<Sourc eAd dre s s>c c c c : : 2 /12 8</ S ou r ceA ddr e s s>
<D e s t i n a t i o n A d d r e s s>a a a a : : / 6 4</ D e s t i n a t i o n A d d r e s s>
<I n t e r f a c e>1</ I n t e r f a c e>
. . .

<e x t e r n a l D a t a x s i : t y p e = ’ P r i o r i t y ’><v a l u e>60000</ v a l u e>
. . .

</ c o n f i g u r a t i o n R u l e>

Listing 3: MSPL Filtering Example

[{” p r i o r i t y ” : 60000 ,
” t r e a t m e n t ” : {

” i n s t r u c t i o n s ” : [{” t y p e ” : ”NOACTION”}]} ,
” s e l e c t o r ” : {

” c r i t e r i a ” : [
{” t y p e ” : ” IPV6 SRC” , ” i p ” : ” a a a a : : / 6 4 ”} ,
{” t y p e ” : ” IPV6 DST” , ” i p ” : ” c c c c : : 2 / 128 ”} ,
{” t y p e ” : ”IN PORT” , ” p o r t ” : ” 2 ”}]}},

{” p r i o r i t y ” : 60000 ,
” t r e a t m e n t ” : {

” i n s t r u c t i o n s ” : [{” t y p e ” : ”OUTPUT” , ” p o r t ” : ” 3 ”}]}
” s e l e c t o r ” : {

” c r i t e r i a ” : [
{” t y p e ” : ” IPV6 SRC” , ” i p ” : ” c c c c : : 2 / 128 ”} ,
{” t y p e ” : ” IPV6 DST” , ” i p ” : ” a a a a : : / 6 4 ”} ,
{” t y p e ” : ”IN PORT” , ” p o r t ” : ” 1 ”}]}}]

Listing 4: ONOS Northbound Filtering Configuration
Example

Listing 3 shows examples of filtering and forwarding se-
curity policies. On the one hand, the filtering policy indicates
the traffic that goes from the real IoT deployment (AAAA::/64)
to the attacker (CCCC::2/128) must be dropped. On the other
hand, the forwarding policy indicates the traffic coming from
the attacker to the real IoT deployment must be redirected
to the interface where the vIoTHoneynet has been deployed.
Listing 4 shows the configuration obtained after the policy
translation process for filtering and forwarding policies by
using ONOS as SDN security enabler. Specifically, it provides
filtering and forwarding rules to be applied through the ONOS
Northbound API.

Regarding the orchestration process, it has been developed a
Python application which allows to enforce the aforementioned
security policies by applying the configuration or tasks to
the different policy enforcement points. In the case of the
vIoTHoneyNet security policy, the Security Orchestrator im-
plementation is also in charge of obtaining the IoT physical
architecture model in a extended TIHDL format from the IoT
Controller and include it in an IoTHoneynet MSPL security
policy. Once the MSPL has been generated, the Security Or-
chestrator gets the final Cooja configuration through the Policy
Interpreter, which executes the vIoTHoneyNet plugin in order
to translate the IoT system network modeled in our extended
TIHDL language into Cooja configurations. Cooja has been
chosen, since it allows developing the IoT device functionality
in C language by customizing, compiling and loading the
IoT firmwares and network specifications into the platform.
It even provides the real IoT device locations in coordinates,
and it also allows to provide interesting parameters such as
the transmission range, interference range and success ratio
for LoWPANs.

Once the Cooja CSC model has been obtained, the Se-
curity Orchestrator selects the proper firmwares to replicate
the real IoT behavior and it requests the deployment of the
vIoTHoneyNet with the specific configuration and firmwares
through the NFV-MANO. In order to deploy on demand the
vIoTHoneyNet, our vIoTHoneyNet manager implementation
provides an API capable to receive the Cooja CSC model
and the specific firmwares to configure and execute the Cooja
simulation in the VNF. When the simulation has been started
and the network is ready to be reachable from outside (i.e.
routing protocol algorithm has converged), the vIoTHoneyNet
manager warns the Security Orchestrator, which enforces
the filtering and traffic divert policies through ONOS SDN

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 12

controller for redirecting the traffic generated or received for
the physical architecture to the virtual one. Besides, it drops
the malicious traffic sent to the victim in order to mitigate the
current attack.

VI. PERFORMANCE EVALUATION

The section aims to determine the feasibility of the deploy-
ment for the proposed virtual IoT honeynet mechanism. The
goal is to apply an IoT honeynet security policy as reaction
countermeasure to mitigate an attack in a reasonable time by
deploying a virtual IoT honeynet as much realistic as possible
to the real physical IoT deployment. The performance tests
have been carried out by applying 100 times IoT Honeynet
security policies over each of the two different sections on
the Smart Building floors we are using in our premises. IoT
sensors are heterogeneous in terms of sensoring capabilities
and operating system version installed for each floor.

The full time of the IoT honeynet policy deployment has
been split in different times to allow a fine-grain analysis, as
is shown in figure 9. In the translation among the physical
model to the virtual one, it is measured the time taken by
translator plugin to provide the Cooja CSC model from the
IoT HoneyNet physical model (i). For the compilation (ii)
and load (iii) of the IoT devices code, it is measured the
time taken to compile the code for all IoT devices and the
time required to load the compiled code into the IoT devices.
In addition, it is considered the overall time required by the
simulation to be ready, i.e. all IoT devices are up and running
(iv). In case the simulation uses a routing algorithm, the IoT
network convergence time measures the time needed by the
router to learn a route to all IoT devices (v). Finally, the
Policy Enforcement time measures the time taken to apply
the network policy configurations in order to filter and divert
the traffic as described in previous section (vi). The tests have
been supported by a virtual machine with 4 CPUs and 2 GB
of RAM memory. This virtual machine has been hosted in an
Intel Core i7-2600 at 3.40 GHz with 8 GB of RAM memory.

Regarding the use cases, Figure 10 shows the first use case
corresponding to first floor of our building, which is comprised
by 20 sky motes distributed along 30x15m, executing Contiki
OS 2.7, empowered by 8 Mhz, 10KB RAM and 48KB Flash,
measuring humidity, temperature, light and CO2. One of them
is a RFID sensor as door keeper, and finally, there is one more
as a router using RPL as routing algorithm which connects all
sensors to the smart build network.

On the other hand, figure 11 shows the second-floor use
case which is comprised by 50 wismote motes, distributed
along 37.5x15m, executing contiki OS 3.1, empowered by
16 Mhz, 16KB RAM and 128KB Flash, measuring humidity,
temperature, light, presence and CO2. In this case, all doors
are equipped by RFID sensors, and finally, at the same way
of the previous case, there is one more as a router using RPL
as routing algorithm which connects all sensors to the smart
build network.

Figures 12 and 13 shows the time taken for each step
in the vIoTHoneyNet policy deployment process in order
to virtualise up to 50 Sky and Wismote motes respectively,

without taking into account the spatial location. In the one
hand, in both cases all parameters increase as the number
of IoT devices scales. The translation time is similar in both
cases, since the cooja models are quite similar for the different
contiki versions (less than 1 second). On the other hand, the
compilation and load times are greater in the second case,
since the contiki 3.1 operating system version is heavier, what
lengthens the final start of the simulation. In both cases, the
most expensive time is the compilation time.

According to the physical scenarios proposed, in the first
case (20 sky motes), the IoT honeynet is ready in less than 15
seconds, and in the second case (50 wismote motes) it is up
and running in less than 45 seconds.

These results can be compared with exiting related-works
available in the literature [21], [22]. In this sense, these works,
which measures similar magnitudes, requires up to 40 seconds
in order to deploy only one non-LXC based honeypot, and
therefore our solution outperforms those proposals.

Depending on the grade of the similitude needed, we can
replicate not only the IoT devices with their configurations, but
also the physical network topology. Indeed, we could generate
a different topology in order to obtain some network benefits
such as for instance, improving the convergence time in case
we are not using static IP assignment. Since we are using
RPL as routing protocol and the convergence time could be a
handicap, the translator plugin allows to replicate the physical
environment, and specify a concrete network topology.

Figure 14 shows the IoT honeynet virtualization by replicat-
ing the physical positions for each use case. The mote marked
as 1 represents the router and each square of the grid is 10
meters large. The system is considered converged when the
router learns through RPL routing protocol at least one route
for each device in the virtual IoT honeynet, i.e. when all
nodes are fully reachable from outside. Since the topology
is determinant in this process, we compare the results of the
physical topology deployment emulation with the results of a
classical mesh topology deployment emulation where border
router is located at the upper-left corner.

Figures 15 and 16 show the convergence time for both
use cases by virtualising the physical topology and a mesh
topology. For the first-floor use case, results are quite similar
since the physical topology is close to a mesh topology.
The best results are near to 17 seconds, while the worse
results are close to 100 and 125 seconds respectively, being
the vast majority comprised between 20 and 40 seconds.
On the other hand, in the second-floor use case, since the
physical distribution is more random, we can observe the mesh
topology obtains significant better results, being the majority
of the results close to 35 seconds with a maximum of 334
seconds and a minimum of 24 seconds. It should be noted
that IoT deployments devices are sleeping as much as they can
in order to save energy, thereby generating a great dispersion
in the results. The average values are close to 40 and 191
seconds, respectively.

Regarding filtering and forwarding policies enforcement, the
performance evaluation accomplished measures the time taken
since the filtering/forwarding policies enforcement have been
requested, until them have been enforced in the vSwitch. Since

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 13

HoneyNet Translator

Time (t)

Security Enforcement Plane

NFV Mano

Model Translation
Devices code
compilation

Loading Code in Devices Set-up Honeynet

vIoTNetManager

vIoTHoneyNet Configuration

IoT Network
Convergence

Security Policy
Enforcement

SecurityOrchestrator
Plane

Security
Enforcement

Plane

vIoTHoneyNet Deployment and Security
enforcement

Fig. 9: Testbed measured times representation

Fig. 10: Testbed - Sky 20 physical distribution

in the experiments the networking policies are applied for a
whole IoT subnet, the time taken by policies is independent of
the number of the IoT devices. In this regard, the translation
filtering and forwarding processes are independent of the use
case, and the lightest steps in terms of time consumption.

Table II shows the performance time in the IoT honeynet
policy enforcement process. For the first use case the virtual
IoT honeynet are deployed in less than 60s, whereas in the
second use case the average time is close to 4 minutes.
These times might be improved through the use of static IP
addresses (without the convergence period, the average time
of the second use case is also below 60 seconds) or by a more
detailed study of the simulator parameters for the convergence
times (out of the scope of this paper).

In addition, different tests were conducted to analyze the
CPU and RAM memory usages of our vIoTHoneynet manager.
Figures 17 and 18 show the resources consumption measured
for the different use cases. The CPU metrics are almost use
case independent and the simulation is using completely one
CPU at a 100%, regardless of the number of devices. Finally,
as it was predictable, RAM memory grows according to the
incremental number of devices, being bigger in the second
use case, since the nodes are more complex. Comparing these
memory consumption results against the performance results
achieved by current related works, it can be seen that, in
our solution, an IoT honeynet of 10 Wismote IoT honeypots
consumes around 102,4 MB of RAM, whereas previous works
[21], [22] requires up to 726 MB of RAM for only one non-
LXC based honeypot.

VII. CONCLUSIONS

This paper has exposed a novel solution to manage dy-
namically virtual IoT HoneyNets to mitigate cyberattacks in

SDN/NFV-enabled IoT networks. The proposal allows ad-
ministrators to deploy IoT Honeynets as a service through
high level security policies over IoT infrastructures such as
Smart Buildings. The approach adopted allows to replicate
the physical IoT architecture on a virtual environment, by
translating the physical architecture model to common inter-
operable IoTHoneyNet data model, and in turn, translating it
to a virtualized environment deployed as VNFs. The whole
process is driven by network security policies defined over
the SDN controller and NFV MANO, whereby filtering,
dropping and diverting the network traffic dynamically, and
adapting the network behavior according to the new deployed
vIoTHoneyNets needs.

The performance evaluation accomplished has demonstrated
the feasibility of the proposed solution. Results has shown the
successful deployment of IoT Honeynets with full connectiv-
ity. The deployment times behaves as expected, following a
linear increasing trend as the number of nodes grows. Besides,
the proposal has demonstrated that the virtual IoT Honeynets
can be deployed on demand in a totally transparent way to the
attacker, since the network behavior modification is performed
fast, once the IoT Honeynet has been deployed.

As future work, we envisage to investigate on virtual
IoTHoneynet for 5G-enabled IoT devices to reach broader
and WAN scenarios. Finally, we also expect to design and
implement, in the scope of ANASTACIA cognitive approaches
(e.g. based on AI), in order to counter cyber-attacks in IoT.

ACKNOWLEDGMENTS

This work has been partially funded by ”Fundacion Seneca de
la Region de Murcia”, under the program ”Jimenez de la Espada
de Movilidad Investigadora, Cooperacion e Internacionalizacion”
(20177/EE/17). The research has been also supported by EU projects
H2020 ANASTACIA, G.A. 731558 and H2020 5G-PPP ICT-2016-2
SliceNet project GA 761913, as well as by the a postdoctoral INCIBE
grant, with code INCIBEI-2015-27363.

REFERENCES

[1] Y. Gao, Y. Peng, F. Xie, W. Zhao, D. Wang, X. Han, T. Lu, and
Z. Li, “Analysis of security threats and vulnerability for cyber-physical
systems,” in Proceedings of 2013 3rd International Conference on
Computer Science and Network Technology, Oct 2013, pp. 50–55.

[2] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the internet
of things: A survey of existing protocols and open research issues,”
IEEE Communications Surveys Tutorials, vol. 17, no. 3, pp. 1294–1312,
thirdquarter 2015.

[3] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks, Nov 2004,
pp. 455–462.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 14

Fig. 11: Testbed - Wismote 50 physical distribution
Use case Translation Simulation start Convergence Filtering Forwarding Total (s)
20-mesh 0.288 13.26 36.48 0.37 0.36 50.758
20-phy 0.288 13.26 37.89 0.37 0.36 52.168

50-mesh 0.53 43.41 39.93 0.37 0.36 82.6
50-phy 0.53 43.41 191.57 0.37 0.36 236.24

TABLE II: Policy enforcement timing

0

5

10

15

20

25

10 20 30 40 50

Ti
m

e
(s

)

Motes quantity

Sky IoT Honeynet Startup

Model translation X10 Compilation Load Simulation start

Fig. 12: IoT Honeynet Startup time. Sky Contiki

0

10

20

30

40

50

10 20 30 40 50

Ti
m

e
(s

)

Motes quantity

Wismote IoT Honeynet Startup

Model translation X10 Compilation Load Simulation start

Fig. 13: IoT Honeynet Startup time. Wismote Contiki

[4] A. Molina Zarca, J. B. Bernabe, R. Trapero, D. Rivera, J. Villalobos,
A. Skarmeta, S. Bianchi, A. Zafeiropoulos, and P. Gouvas, “Security
management architecture for nfv/sdn-aware iot systems,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 8005–8020, Oct 2019.

[5] J. B. Bernabe and A. Skarmeta, “Introducing the Challenges in
Cybersecurity and Privacy - The European Research Landscape,” in
Challenges in Cybersecurity and Privacy - the European Research
Landscape, ser. RIVER PUBLISHERS SERIES IN SECURITY
AND DIGITAL FORENSICS, J. B. Bernabe and A. Skarmeta,
Eds. River Publishers, 7 2019, pp. 1–21. [Online]. Available:
https://doi.org/10.13052/rp-9788770220873

[6] S. Ziegler, C. Crettaz, E. Kim, A. Skarmeta, J. B. Bernabe, R. Trapero,
and S. Bianchi, Privacy and Security Threats on the Internet of Things.
Cham: Springer International Publishing, 2019, pp. 9–43.

[7] M. Ahmad, T. Younis, M. A. Habib, R. Ashraf, and S. H. Ahmed, “A

Fig. 14: Testbed Physical Topology

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Iteration

Sky IoT Honeynet RPL Convergence

20 Mesh Topology 20 Physical Topology

Fig. 15: IoT Honeynet RPL Convergence. Sky Contiki

review of current security issues in internet of things,” Recent Trends
and Advances in Wireless and IoT-enabled Networks, p. 11, 2019.

[8] A. BOUDI, I. FARRIS, M. BAGAA, and T. TALEB, “Assessing
lightweight virtualization for security-as-a-service at the network edge,”

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 15

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Iteration

Wismote IoT Honeynet RPL Convergence

50 Mesh Topology 50 Phisical Topology

Fig. 16: IoT Honeynet RPL Convergence. Wismote Contiki

0

20

40

60

80

100

120

10 20 30 40 50

C
o

n
su

m
p

ti
o

n
 (

%
)

Motes quantity

Sky IoT Honeynet Resource Consumption

CPU MEM

Fig. 17: Resource usage consumuption. Sky Contiki.

0

20

40

60

80

100

120

10 20 30 40 50

C
o

n
su

m
p

ti
o

n
 (

%
)

Motes quantity

Wismote IoT Honeynet Resource Consumption

CPU MEM

Fig. 18: Resource usage consumuption.Wismote Contiki

IEICE Transactions on Communications, vol. E102.B, no. 5, pp. 970–
977, 2019.

[9] K. Chen, S. Zhang, Z. Li, Y. Zhang, Q. Deng, S. Ray, and Y. Jin,
“Internet-of-things security and vulnerabilities: taxonomy, challenges,
and practice,” Journal of Hardware and Systems Security, vol. 2, no. 2,
pp. 97–110, 2018.

[10] C. Vorakulpipat, E. Rattanalerdnusorn, P. Thaenkaew, and H. D. Hai,
“Recent challenges, trends, and concerns related to iot security: An
evolutionary study,” in 2018 20th International Conference on Advanced
Communication Technology (ICACT). IEEE, 2018, pp. 405–410.

[11] J. P. Santos, R. Alheiro, L. Andrade, V. Caraguay, Á. Leonardo, L. I.
Barona López, M. A. Sotelo Monge, L. J. Garcia Villalba, W. Jiang,
H. Schotten et al., “Selfnet framework self-healing capabilities for
5g mobile networks,” Transactions on Emerging Telecommunications
Technologies, vol. 27, no. 9, pp. 1225–1232, 2016.

[12] S. Ziegler, A. Skarmeta, J. Bernal, E. Kim, and S. Bianchi, “Anastacia:
Advanced networked agents for security and trust assessment in cps iot
architectures,” in 2017 Global Internet of Things Summit (GIoTS), June
2017, pp. 1–6.

[13] I. Farris, T. Taleb, Y. Khettab, and J. Song, “A survey on emerging sdn
and nfv security mechanisms for iot systems,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 1, pp. 812–837, 2018.

[14] A. M. Zarca, D. Garcia-Carrillo, J. B. Bernabe, J. Ortiz, R. Marin-Perez,
and A. Skarmeta, “Enabling virtual aaa management in sdn-based iot
networks,” Sensors, vol. 19, no. 2, p. 295, 2019.

[15] A. Molina Zarca, J. Bernal Bernabe, I. Farris, Y. Khettab, T. Taleb, and
A. Skarmeta, “Enhancing iot security through network softwarization
and virtual security appliances,” International Journal of Network
Management, vol. 28, no. 5, p. e2038, 2018, e2038 nem.2038. [Online].

Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2038
[16] S. Do, L. V. Le, B. S. P. Lin, and L.-P. Tung, “Sdn/nfv based internet

of things for multi-tenant networks,” Transactions on Networks and
Communications, vol. 6, no. 6, pp. 40–40, 2018.

[17] D. Sinh, L.-V. Le, B.-S. P. Lin, and L.-P. Tung, “Sdn/nfv—a new
approach of deploying network infrastructure for iot,” in 2018 27th
Wireless and Optical Communication Conference (WOCC). IEEE,
2018, pp. 1–5.

[18] Á. L. V. Caraguay, P. L. González, R. T. Tandazo, and L. I. B. López,
“Sdn/nfv architecture for iot networks.” in WEBIST, 2018, pp. 425–429.

[19] S. Do, L.-V. Le, B.-S. P. Lin, and L.-P. Tung, “Sdn/nfv-based network
infrastructure for enhancing iot gateways,” in 2019 International Con-
ference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 2019,
pp. 1135–1142.

[20] A. D. Oza, G. N. Kumar, and M. Khorajiya, “Survey of snaring cyber
attacks on iot devices with honeypots and honeynets,” in 2018 3rd
International Conference for Convergence in Technology (I2CT). IEEE,
2018, pp. 1–6.

[21] W. Fan, D. Fernández, and V. A. Villagrá, “Technology independent hon-
eynet description language,” in Model-Driven Engineering and Software
Development (MODELSWARD), 2015 3rd International Conference on.
IEEE, 2015, pp. 303–311.

[22] W. Fan, D. Fernández, and Z. Du, “Versatile virtual honeynet manage-
ment framework,” IET Information Security, vol. 11, no. 1, pp. 38–45,
2016.

[23] A. Guerra Manzanares, “Honeyio4: the construction of a virtual,
low-interaction iot honeypot,” B.S. thesis, Universitat Politècnica de
Catalunya, 2017.

[24] M. Banerjee and S. Samantaray, “Network traffic analysis based iot
botnet detection using honeynet data applying classification techniques,”
International Journal of Computer Science and Information Security
(IJCSIS), vol. 17, no. 8, 2019.

[25] M. Wang, J. Santillan, and F. Kuipers, “Thingpot: an interactive internet-
of-things honeypot,” arXiv preprint arXiv:1807.04114, 2018.

[26] N. Naik, C. Shang, Q. Shen, and P. Jenkins, “Intelligent dynamic
honeypot enabled by dynamic fuzzy rule interpolation,” in 2018 IEEE
20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS). IEEE, 2018, pp. 1520–1527.

[27] S. Dowling, M. Schukat, and E. Barrett, “Improving adaptive honeypot
functionality with efficient reinforcement learning parameters for auto-
mated malware,” Journal of Cyber Security Technology, vol. 2, no. 2,
pp. 75–91, 2018.

[28] U. D. Gandhi, P. M. Kumar, R. Varatharajan, G. Manogaran, R. Sun-
darasekar, and S. Kadu, “Hiotpot: surveillance on iot devices against
recent threats,” Wireless personal communications, vol. 103, no. 2, pp.
1179–1194, 2018.

[29] W. Fan and D. Fernández, “A novel sdn based stealthy tcp connection
handover mechanism for hybrid honeypot systems,” in 2017 IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2017, pp. 1–9.

[30] H. Lin, “Sdn-based in-network honeypot: Preemptively disrupt and
mislead attacks in iot networks,” arXiv preprint arXiv:1905.13254, 2019.

[31] “Common Information Model (CIM), DMTF.”
http://www.dmtf.org/standards/cim.

[32] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with cooja,” in Proceedings. 2006 31st
IEEE Conference on Local Computer Networks, Nov 2006, pp. 641–648.

[33] C. Basile, “D4.2 Policy transformation and optimization techniques,
Secured EU project.”

[34] S. Mamoru, N. Masafumi, K. Tadashi, K. Minoru, and S. Yuji, “Mirai
botnet detection and countermeasures,” Internet Infrastructure Review
(IIR) Vol.33, 2016.

[35] R. Danyliw, J. Meijer, and Y. Demchenko, “The incident object descrip-
tion exchange format (iodef),” Internet Engineering Task Force (IETF),
RFC-5070, 2007.

[36] O. Forum, “Open command and control (openc2),”
https://openc2.org/members.html.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JSAC.2020.2986621

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

