New preservation properties for stochastic orderings and aging classes under the formation of order statistics and systems

Jorge Navarro¹,
Universidad de Murcia, Spain
E-mail: jorgenav@um.es

¹Supported by Ministerio de Economía y Competitividad under grant MTM2012-34023-FEDER and Fundación Séneca under grant 08627/PI/08.
Outline

1 Distorted Distributions
 - Proportional hazard rate model
 - Order statistics
 - Coherent systems
 - Other examples

2 Preservation results
 - Stochastic orders-DD
 - Stochastic orders-GDD
 - Stochastic aging classes
 - Examples

3 Parrondo’s paradox
 - Parrondo’s paradox
 - Randomized GDD.
 - Example

4 References
The distorted distributions were introduced in Yaari's dual theory of choice under risk (Econometrica 55 (1987):95–115).

The *distorted distribution* (DD) associated to a distribution function (DF) F and to an increasing continuous distortion function $q : [0, 1] \rightarrow [0, 1]$ such that $q(0) = 0$ and $q(1) = 1$, is

$$F_q(t) = q(F(t)). \quad (1.1)$$

If q is strictly increasing, then F and F_q have the same support.

For the reliability functions (RF) $\overline{F} = 1 - F$, $\overline{F}_q = 1 - F_q$, we have

$$\overline{F}_q(t) = \overline{q}(\overline{F}(t)), \quad (1.2)$$

where $\overline{q}(u) = 1 - q(1 - u)$ is the dual distortion function.
The distorted distributions were introduced in Yaari’s dual theory of choice under risk (Econometrica 55 (1987):95–115).

The distorted distribution (DD) associated to a distribution function (DF) F and to an increasing continuous distortion function $q : [0, 1] \rightarrow [0, 1]$ such that $q(0) = 0$ and $q(1) = 1$, is

$$F_q(t) = q(F(t)). \quad (1.1)$$

If q is strictly increasing, then F and F_q have the same support.

For the reliability functions (RF) $\overline{F} = 1 - F$, $\overline{F}_q = 1 - F_q$, we have

$$\overline{F}_q(t) = \overline{q}(\overline{F}(t)), \quad (1.2)$$

where $\overline{q}(u) = 1 - q(1 - u)$ is the dual distortion function.
Definition Distorted Distributions (DD)

- The distorted distributions were introduced in Yaari’s dual theory of choice under risk (Econometrica 55 (1987):95–115).
- The *distorted distribution* (DD) associated to a distribution function (DF) F and to an increasing continuous *distortion function* $q : [0, 1] \rightarrow [0, 1]$ such that $q(0) = 0$ and $q(1) = 1$, is
 \[F_q(t) = q(F(t)). \]
 \[(1.1) \]

- If q is strictly increasing, then F and F_q have the same support.
- For the reliability functions (RF) $\overline{F} = 1 - F$, $\overline{F}_q = 1 - F_q$, we have
 \[\overline{F}_q(t) = \overline{q}(\overline{F}(t)), \]
 \[(1.2) \]
 where $\overline{q}(u) = 1 - q(1 - u)$ is the *dual distortion function*.

11th International Conference on Ordered Statistical Data
Jorge Navarro, E-mail: jorgenav@um.es
The distorted distributions were introduced in Yaari’s dual theory of choice under risk (Econometrica 55 (1987):95–115).

The **distorted distribution** (DD) associated to a distribution function (DF) \(F \) and to an increasing continuous distortion function \(q : [0, 1] \rightarrow [0, 1] \) such that \(q(0) = 0 \) and \(q(1) = 1 \), is

\[
F_q(t) = q(F(t)).
\]
(1.1)

If \(q \) is strictly increasing, then \(F \) and \(F_q \) have the same support.

For the reliability functions (RF) \(\overline{F} = 1 - F \), \(\overline{F}_q = 1 - F_q \), we have

\[
\overline{F}_q(t) = \overline{q}(\overline{F}(t)),
\]
(1.2)

where \(\overline{q}(u) = 1 - q(1 - u) \) is the **dual distortion function**.
The generalized distorted distribution (GDD) associated to \(n \) DF \(F_1, \ldots, F_n \) and to an increasing continuous multivariate distortion function \(Q : [0,1]^n \rightarrow [0,1] \) such that \(Q(0,\ldots,0) = 0 \) and \(Q(1,\ldots,1) = 1 \), is

\[
F_Q(t) = Q(F_1(t), \ldots, F_n(t)). \tag{1.3}
\]

If \(Q \) is strictly increasing and \(F_1, \ldots, F_n \) have the same support, then \(F_Q \) also has the same support.

For the RF we have

\[
\bar{F}_Q(t) = \overline{Q}(\bar{F}_1(t), \ldots, \bar{F}_n(t)), \tag{1.4}
\]

where \(\bar{F} = 1 - F \), \(\bar{F}_Q = 1 - F_Q \) and \(\overline{Q}(u_1, \ldots, u_n) = 1 - Q(1 - u_1, \ldots, 1 - u_n) \) is the multivariate dual distortion function.
The generalized distorted distribution (GDD) associated to \(n \) DF \(F_1, \ldots, F_n \) and to an increasing continuous multivariate distortion function \(Q : [0, 1]^n \rightarrow [0, 1] \) such that \(Q(0, \ldots, 0) = 0 \) and \(Q(1, \ldots, 1) = 1 \), is

\[
F_Q(t) = Q(F_1(t), \ldots, F_n(t)).
\] (1.3)

If \(Q \) is strictly increasing and \(F_1, \ldots, F_n \) have the same support, then \(F_Q \) also has the same support.

For the RF we have

\[
\bar{F}_Q(t) = \bar{Q}(\bar{F}_1(t), \ldots, \bar{F}_n(t)),
\] (1.4)

where \(\bar{F} = 1 - F \), \(\bar{F}_Q = 1 - F_Q \) and \(\bar{Q}(u_1, \ldots, u_n) = 1 - Q(1 - u_1, \ldots, 1 - u_n) \) is the multivariate dual distortion function.
Generalized Distorted Distributions (GDD)

- The *generalized distorted distribution* (GDD) associated to n DF F_1, \ldots, F_n and to an increasing continuous *multivariate distortion function* $Q : [0, 1]^n \to [0, 1]$ such that $Q(0, \ldots, 0) = 0$ and $Q(1, \ldots, 1) = 1$, is

$$F_Q(t) = Q(F_1(t), \ldots, F_n(t)).$$ \hspace{1cm} (1.3)

- If Q is strictly increasing and F_1, \ldots, F_n have the same support, then F_Q also has the same support.

- For the RF we have

$$\overline{F}_Q(t) = \overline{Q}(\overline{F}_1(t), \ldots, \overline{F}_n(t)), \hspace{1cm} (1.4)$$

where $\overline{F} = 1 - F$, $\overline{F}_Q = 1 - F_Q$ and

$$\overline{Q}(u_1, \ldots, u_n) = 1 - Q(1 - u_1, \ldots, 1 - u_n)$$ is the *multivariate dual distortion function.*
The PHR (Cox) model associated to a RF \bar{F} is

$$\bar{F}_\alpha(t) = (\bar{F}(t))^{\alpha} = \bar{q}(\bar{F}(t))$$

for $\alpha > 0$. \bar{F}_α a DD with $\bar{q}(u) = u^\alpha$ and $q(u) = 1 - (1 - u)^\alpha$.

The hazard (failure) rate function is defined by $h(t) = f(t)/\bar{F}(t)$ where f is the PDF.

Under the PHR model, $h_\alpha(t) = \alpha h(t)$.

The proportional reversed hazard rate (PRHR) model is

$$F_\alpha(t) = (F(t))^{\alpha} = q(F(t))$$

for $\alpha > 0$. F_α is a DD with $q(u) = u^\alpha$.
The PHR (Cox) model associated to a RF \bar{F} is

$$\bar{F}_\alpha(t) = (\bar{F}(t))^\alpha = \bar{q}(\bar{F}(t))$$

for $\alpha > 0$. \bar{F}_α a DD with $\bar{q}(u) = u^\alpha$ and $q(u) = 1 - (1 - u)^\alpha$.

The hazard (failure) rate function is defined by $h(t) = f(t)/\bar{F}(t)$ where f is the PDF.

Under the PHR model, $h_\alpha(t) = \alpha h(t)$.

The proportional reversed hazard rate (PRHR) model is

$$F_\alpha(t) = (F(t))^\alpha = q(F(t))$$

for $\alpha > 0$. F_α is a DD with $q(u) = u^\alpha$.
Proportional hazard rate (PHR) model

• The PHR (Cox) model associated to a RF \bar{F} is

$$\bar{F}_\alpha(t) = (\bar{F}(t))^\alpha = \bar{q} (\bar{F}(t))$$

for $\alpha > 0$. \bar{F}_α a DD with $\bar{q}(u) = u^\alpha$ and $q(u) = 1 - (1 - u)^\alpha$.

• The hazard (failure) rate function is defined by $h(t) = f(t)/\bar{F}(t)$ where f is the PDF.

• Under the PHR model, $h_\alpha(t) = \alpha h(t)$.

• The proportional reversed hazard rate (PRHR) model is

$$F_\alpha(t) = (F(t))^\alpha = q (F(t))$$

for $\alpha > 0$. F_α is a DD with $q(u) = u^\alpha$.
The PHR (Cox) model associated to a RF \overline{F} is

$$\overline{F}_\alpha(t) = (\overline{F}(t))^{\alpha} = \overline{q}(\overline{F}(t))$$

for $\alpha > 0$. \overline{F}_α a DD with $\overline{q}(u) = u^{\alpha}$ and $q(u) = 1 - (1 - u)^{\alpha}$.

The hazard (failure) rate function is defined by

$$h(t) = f(t)/\overline{F}(t)$$

where f is the PDF.

Under the PHR model, $h_\alpha(t) = \alpha h(t)$.

The proportional reversed hazard rate (PRHR) model is

$$F_\alpha(t) = (F(t))^{\alpha} = q(F(t))$$

for $\alpha > 0$. F_α is a DD with $q(u) = u^{\alpha}$.
Order statistics (OS)

- X_1, \ldots, X_n IID~F random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any permutation σ
 \[(X_1, \ldots, X_n) =_{ST} (X_{\sigma(1)}, \ldots, X_{\sigma(n)}). \]
- (X_1, \ldots, X_n) is an arbitrary random vector with
 \[F(x_1, \ldots, x_n) = \Pr(X_1 \leq x_1, \ldots, X_n \leq x_n) \]
 \[\overline{F}(x_1, \ldots, x_n) = \Pr(X_1 > x_1, \ldots, X_n > x_n). \]
- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$ be the DF.
- Let $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ be the RF.
Order statistics (OS)

- X_1, \ldots, X_n IID$\sim F$ random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any permutation σ

$$ (X_1, \ldots, X_n) = ST (X_{\sigma(1)}, \ldots, X_{\sigma(n)}). $$

- (X_1, \ldots, X_n) is an arbitrary random vector with

$$ F(x_1, \ldots, x_n) = \Pr(X_1 \leq x_1, \ldots, X_n \leq x_n) $$

$$ \bar{F}(x_1, \ldots, x_n) = \Pr(X_1 > x_1, \ldots, X_n > x_n). $$

- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$ be the DF.
- Let $\bar{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ be the RF.
Order statistics (OS)

- $X_1, \ldots, X_n \text{ IID} \sim F$ random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any permutation σ

$$
(X_1, \ldots, X_n) = S_T (X_{\sigma(1)}, \ldots, X_{\sigma(n)}).
$$

- (X_1, \ldots, X_n) is an arbitrary random vector with

$$
F(x_1, \ldots, x_n) = \Pr(X_1 \leq x_1, \ldots, X_n \leq x_n)
$$

$$
\overline{F}(x_1, \ldots, x_n) = \Pr(X_1 > x_1, \ldots, X_n > x_n).
$$

- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$ be the DF.
- Let $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ be the RF.
Order statistics (OS)

- X_1, \ldots, X_n IID $\sim F$ random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any permutation σ
 \[
 (X_1, \ldots, X_n) = ST (X_{\sigma(1)}, \ldots, X_{\sigma(n)}).
 \]
- (X_1, \ldots, X_n) is an arbitrary random vector with
 \[
 F(x_1, \ldots, x_n) = \Pr(X_1 \leq x_1, \ldots, X_n \leq x_n)
 \]
 \[
 \bar{F}(x_1, \ldots, x_n) = \Pr(X_1 > x_1, \ldots, X_n > x_n).
 \]
- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$ be the DF.
- Let $\bar{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ be the RF.
Order statistics (OS)

- X_1, \ldots, X_n IID $\sim F$ random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any permutation σ

$$ (X_1, \ldots, X_n) = sT (X_{\sigma(1)}, \ldots, X_{\sigma(n)}). $$

- (X_1, \ldots, X_n) is an arbitrary random vector with

$$ F(x_1, \ldots, x_n) = \Pr(X_1 \leq x_1, \ldots, X_n \leq x_n) $$

$$ F(x_1, \ldots, x_n) = \Pr(X_1 > x_1, \ldots, X_n > x_n). $$

- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$ be the DF.
- Let $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ be the RF.
Order statistics (OS)

- \(X_1, \ldots, X_n \) IID \(\sim F \) random variables.
- \(X_1, \ldots, X_n \) exchangeable (EXC), i.e., for any permutation \(\sigma \)

\[
(X_1, \ldots, X_n) = s_T (X_{\sigma(1)}, \ldots, X_{\sigma(n)}).
\]

- \((X_1, \ldots, X_n) \) is an arbitrary random vector with

\[
F(x_1, \ldots, x_n) = \Pr(X_1 \leq x_1, \ldots, X_n \leq x_n)
\]

\[
\overline{F}(x_1, \ldots, x_n) = \Pr(X_1 > x_1, \ldots, X_n > x_n).
\]

- Let \(X_{1:n}, \ldots, X_{n:n} \) be the associated OS.
- Let \(F_{i:n}(t) = \Pr(X_{i:n} \leq t) \) be the DF.
- Let \(\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t) \) be the RF.
Distorted Distribution Representation-IID case

In the IID case, we have

\[F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} F_{j:j}(t) = q_{i:n}(F(t)), \quad (1.5) \]

(see David and Nagaraja 2003, p. 46) where

\[F_{j:j}(t) = \Pr(X_{j:j} \leq t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = F^j(t) \]

and

\[q_{i:n}(u) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} u^j \]

is a strictly increasing polynomial in \([0, 1]\).

Both \(F_{j:j}\) and \(F_{i:n}\) are DD from \(F\).
Distorted Distribution Representation-IID case

In the IID case, we have

\[F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} F_{j:j}(t) = q_{i:n}(F(t)), \quad (1.5) \]

(see David and Nagaraja 2003, p. 46) where

\[F_{j:j}(t) = \Pr(X_{j:j} \leq t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = F^j(t) \]

and

\[q_{i:n}(u) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} u^j \]

is a strictly increasing polynomial in [0, 1].

Both \(F_{j:j} \) and \(F_{i:n} \) are DD from \(F \).
The upper OS $X_{j:j}$ (lifetime of the parallel system) satisfies the PRHR model with $\alpha = j$ since

$$F_{j:j}(t) = \Pr(X_{j:j} \leq t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = (F(t))^j.$$

The lower OS $X_{1:j}$ (lifetime of the series system) satisfies the PHR model

$$\overline{F}_{1:j}(t) = \Pr(X_{1:j} \leq t) = \Pr(\min(X_1, \ldots, X_j) > t) = (\overline{F}(t))^j.$$

Both $F_{j:j}$ and $F_{1:j}$ are DD from F.
The upper OS $X_{j:j}$ (lifetime of the parallel system) satisfies the PRHR model with $\alpha = j$ since

$$F_{j:j}(t) = \Pr(X_{j:j} \leq t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = (F(t))^j.$$

The lower OS $X_{1:j}$ (lifetime of the series system) satisfies the PHR model

$$\overline{F}_{1:j}(t) = \Pr(X_{1:j} \leq t) = \Pr(\min(X_1, \ldots, X_j) > t) = (\overline{F}(t))^j.$$

Both $F_{j:j}$ and $F_{1:j}$ are DD from F.

Distorted Distribution Representation-IID case
Distorted Distribution Representation-IID case

- The upper OS $X_{j:j}$ (lifetime of the parallel system) satisfies the PRHR model with $\alpha = j$ since

$$F_{j:j}(t) = \Pr(X_{j:j} \leq t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = (F(t))^j.$$

- The lower OS $X_{1:j}$ (lifetime of the series system) satisfies the PHR model

$$\overline{F}_{1:j}(t) = \Pr(X_{1:j} \leq t) = \Pr(\min(X_1, \ldots, X_j) > t) = (\overline{F}(t))^j.$$

- Both $F_{j:j}$ and $F_{1:j}$ are DD from F.

11th International Conference on Ordered Statistical Data

Jorge Navarro, E-mail: jorgenav@um.es
In the EXC case the left hand side of (1.5) holds with

\[F_{j:j}(t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = F(t, \ldots, t, \infty, \ldots, \infty). \]

The copula representation for \(F \) is

\[F(x_1, \ldots, x_n) = C(F_1(x_1), \ldots, F_n(x_n)), \]

where \(F_i(t) = \Pr(X_i \leq t) \) and \(C \) is the copula.

In the EXC case, \(F_1 = \cdots = F_n = F \) and

\[F_{j:j}(t) = C(F(t), \ldots, F(t), 1, \ldots, 1) = q_{j:j}^{C}(F(t)) \]

\[F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} q_{j:j}^{C}(F(t)) = q_{i:n}^{C}(F(t)) \]

Both \(F_{j:j} \) and \(F_{i:n} \) are DD from \(F \).
In the EXC case the left hand side of (1.5) holds with
\[F_{j:j}(t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = F(t, \ldots, t, \infty, \ldots, \infty). \]

The copula representation for \(F \) is
\[F(x_1, \ldots, x_n) = C(F_1(x_1), \ldots, F_n(x_n)), \quad (1.6) \]
where \(F_i(t) = \Pr(X_i \leq t) \) and \(C \) is the copula.

In the EXC case, \(F_1 = \cdots = F_n = F \) and
\[F_{j:j}(t) = C(F(t), \ldots, F(t), 1, \ldots, 1) = q_{j:j}^C(F(t)) \]
\[F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} q_{j:j}^C(F(t)) = q_{i:n}^C(F(t)) \]
Both \(F_{j:j} \) and \(F_{i:n} \) are DD from \(F \).
In the EXC case the left hand side of (1.5) holds with
\[F_{j:j}(t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = F(t, \ldots, t, \infty, \ldots, \infty). \]

The copula representation for \(F \) is
\[F(x_1, \ldots, x_n) = C(F_1(x_1), \ldots, F_n(x_n)), \quad (1.6) \]
where \(F_i(t) = \Pr(X_i \leq t) \) and \(C \) is the copula.

In the EXC case, \(F_1 = \cdots = F_n = F \) and
\[F_{j:j}(t) = C(F(t), \ldots, F(t), 1, \ldots, 1) = q_{j:j}^C(F(t)) \]
\[F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} q_{j:j}^C(F(t)) = q_{i:n}^C(F(t)) \]

Both \(F_{j:j} \) and \(F_{i:n} \) are DD from \(F \).
In the EXC case the left hand side of (1.5) holds with
\[F_{j:j}(t) = \Pr(\max(X_1, \ldots, X_j) \leq t) = F(t, \ldots, t, \infty, \ldots, \infty). \]

The copula representation for \(F \) is
\[F(x_1, \ldots, x_n) = C(F_1(x_1), \ldots, F_n(x_n)), \]
where \(F_i(t) = \Pr(X_i \leq t) \) and \(C \) is the copula.

In the EXC case, \(F_1 = \cdots = F_n = F \) and
\[F_{j:j}(t) = C(F(t), \ldots, F(t), 1, \ldots, 1) = q_{j:j}^C(F(t)) \]
\[F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} q_{j:j}^C(F(t)) = q_{i:n}^C(F(t)) \]

Both \(F_{j:j} \) and \(F_{i:n} \) are DD from \(F \).
In the general case

\[F_{i:n}(t) = \Pr(X_{i:n} \leq t) = \Pr \left(\bigcup_{j=1}^{r} \{ X_{j}^{C} \leq t \} \right) \]

where \(X_{j}^{C} = \max_{k \in C_j} X_k \) and \(|C_j| = i, j = 1, \ldots, r, r = \binom{n}{i} \).

Then

\[F_{i:n}(t) = \sum_{j=1}^{r} \Pr(X_{j}^{C} \leq t) - \sum_{j \neq k} \Pr(X_{j}^{C} \cup X_{k}^{C} \leq t) + \ldots \pm \Pr(X_{1}^{C} \cup \ldots \cup X_{r}^{C} \leq t) \]

By using the copula representation (1.6)

\[F^{A}(t) = \Pr(X^{A} \leq t) = \Pr(\max_{j \in A} X_j \leq t) = C(F_1(x_1^{A}), \ldots, F_n(x_n^{A})) \]

where \(x_{i}^{A} = t \) if \(i \in A \) and \(x_{i}^{A} = \infty \) if \(i \notin A, A \subseteq \{1, \ldots, n\} \).
In the general case

\[F_{i:n}(t) = \Pr(X_{i:n} \leq t) = \Pr \left(\bigcup_{j=1}^{r} \{ X^{C_j} \leq t \} \right) \]

where \(X^{C_j} = \max_{k \in C_j} X_k \) and \(|C_j| = i, j = 1, \ldots, r, r = \binom{n}{i} \).

Then

\[F_{i:n}(t) = \sum_{j=1}^{r} \Pr(X^{C_j} \leq t) - \sum_{j \neq k} \Pr(X^{C_j \cup C_k} \leq t) + \cdots \pm \Pr(X^{C_1 \cup \cdots \cup C_r} \leq t) \]

By using the copula representation (1.6)

\[F^A(t) = \Pr(X^A \leq t) = \Pr(\max_{j \in A} X_j \leq t) = C(F_1(x^A_1), \ldots, F_n(x^A_n)), \]

where \(x^A_i = t \) if \(i \in A \) and \(x^A_i = \infty \) if \(i \notin A, A \subseteq \{1, \ldots, n\} \).
In the general case

\[F_{i:n}(t) = \Pr(X_{i:n} \leq t) = \Pr \left(\bigcup_{j=1}^{r} \{X_C \leq t\} \right) \]

where \(X_C = \max_{k \in C_j} X_k \) and \(|C_j| = i, j = 1, \ldots, r, r = \binom{n}{i} \).

Then

\[
F_{i:n}(t) = \sum_{j=1}^{r} \Pr(X_C \leq t) - \sum_{j \neq k} \Pr(X_{C_j \cup C_k} \leq t) + \ldots \pm \Pr(X_{C_1 \cup \ldots \cup C_r} \leq t)
\]

By using the copula representation (1.6)

\[F^A(t) = \Pr(X^A \leq t) = \Pr(\max_{j \in A} X_j \leq t) = C(F_1(x^A_1), \ldots, F_n(x^A_n)), \]

where \(x^A_i = t \) if \(i \in A \) and \(x^A_i = \infty \) if \(i \notin A \), \(A \subseteq \{1, \ldots, n\} \).
Therefore

\[F^A(t) = Q_A^C(F_1(t), \ldots, F_n(t)) \]

for all \(A \subseteq \{1, \ldots, n\} \), where \(Q_A^C(u_1, \ldots, u_n) = C(u_1^A, \ldots, u_n^A) \)
and \(u_i^A = u_i \) if \(i \in A \) and \(u_i^A = 1 \) if \(i \notin A \).

So

\[
F_{i:n}(t) = \sum_{j=1}^{r} Q_{C_j}^C(F_1(t), \ldots, F_n(t)) - \sum_{j \neq k} Q_{C_j \cup C_k}^C(F_1(t), \ldots, F_n(t)) \\
+ \cdots \pm Q_{C_1 \cup \cdots \cup C_r}^C(F_1(t), \ldots, F_n(t)) \\
= Q_{i:n}^C(F_1(t), \ldots, F_n(t)).
\]

Both \(F^A \) and \(F_{i:n} \) are GDD from \(F_1, \ldots, F_n \).
Both are DD when \(F_1 = \cdots = F_n \) (ID).
Therefore

\[F^A(t) = Q^C_A(F_1(t), \ldots, F_n(t)) \]

for all \(A \subseteq \{1, \ldots, n\} \), where \(Q^C_A(u_1, \ldots, u_n) = C(u^A_1, \ldots, u^A_n) \)
and \(u^A_i = u_i \) if \(i \in A \) and \(u^A_i = 1 \) if \(i \notin A \).

So

\[
F_{i:n}(t) = \sum_{j=1}^{r} \left(\sum_{Q^C_{C_j} \subseteq C_k} Q^C_{C_j} \right) (F_1(t), \ldots, F_n(t)) - \sum_{j \neq k} Q^C_{C_j \cup C_k} (F_1(t), \ldots, F_n(t)) \\
+ \cdots \pm Q^C_{C_1 \cup \ldots \cup C_r} (F_1(t), \ldots, F_n(t)) \\
= Q^C_{i:n} (F_1(t), \ldots, F_n(t)).
\]

Both \(F^A \) and \(F_{i:n} \) are GDD from \(F_1, \ldots, F_n \).

Both are DD when \(F_1 = \cdots = F_n \) (ID).
Therefore

\[F^A(t) = Q_C^A(F_1(t), \ldots, F_n(t)) \]

for all \(A \subseteq \{1, \ldots, n\} \), where \(Q_C^A(u_1, \ldots, u_n) = C(u_1^A, \ldots, u_n^A) \)
and \(u_i^A = u_i \) if \(i \in A \) and \(u_i^A = 1 \) if \(i \notin A \).

So

\[
F_{i:n}(t) = \sum_{j=1}^{r} Q_C^{C_j}(F_1(t), \ldots, F_n(t)) - \sum_{j \neq k} Q_C^{C_j \cup C_k}(F_1(t), \ldots, F_n(t)) \\
+ \cdots \pm Q_C^{C_1 \cup \ldots \cup C_r}(F_1(t), \ldots, F_n(t)) \\
= Q_C^{C_i}(F_1(t), \ldots, F_n(t)).
\]

Both \(F^A \) and \(F_{i:n} \) are GDD from \(F_1, \ldots, F_n \).

Both are DD when \(F_1 = \cdots = F_n \) (ID).
Therefore

\[F^A(t) = Q_A^C(F_1(t), \ldots, F_n(t)) \]

for all \(A \subseteq \{1, \ldots, n\} \), where \(Q_A^C(u_1, \ldots, u_n) = C(u_A^1, \ldots, u_A^n) \) and \(u_A^i = u_i \) if \(i \in A \) and \(u_A^i = 1 \) if \(i \notin A \).

So

\[
F_{i:n}(t) = \sum_{j=1}^{r} Q_{C_j}^C(F_1(t), \ldots, F_n(t)) - \sum_{j \neq k} Q_{C_j \cup C_k}^C(F_1(t), \ldots, F_n(t)) \\
+ \cdots \pm Q_{C_{1 \cup \cdots \cup C_r}}^C(F_1(t), \ldots, F_n(t)) \\
= Q_{i:n}^C(F_1(t), \ldots, F_n(t)).
\]

Both \(F^A \) and \(F_{i:n} \) are GDD from \(F_1, \ldots, F_n \).

Both are DD when \(F_1 = \cdots = F_n \) (ID).
An example-General case

Let us consider $X_{2:3}$, then $C_1 = \{1, 2\}$, $C_2 = \{1, 3\}$, $C_3 = \{2, 3\}$

$$F_{2:3}(t) = \Pr\left(\{X^{1,2} \leq t\} \cup \{X^{1,3} \leq t\} \cup \{X^{2,3} \leq t\}\right)$$

$$= \Pr\left(\{X^{1,2} \leq t\}\right) + \Pr\left(\{X^{1,3} \leq t\}\right) + \Pr\left(\{X^{2,3} \leq t\}\right)$$

$$- 2 \Pr\left(\{X^{1,2,3} \leq t\}\right)$$

$$= \mathbf{F}(t, t, \infty) + \mathbf{F}(t, \infty, t) + \mathbf{F}(\infty, t, t) - 2\mathbf{F}(t, t, t)$$

$$= C(F_1(t), F_2(t), 1) + C(F_1(t), 1, F_3(t)) + C(1, F_2(t), F_3(t))$$

$$- 2C(F_1(t), F_2(t), F_3(t)) = Q_{2:3}^C(F_1(t), F_2(t), F_3(t)),$$

where

$$Q_{2:3}^C(u_1, u_2, u_3) = C(u_1, u_2, 1) + C(u_1, 1, u_3) + C(1, u_2, u_3) - 2C(u_1, u_2, u_3).$$
An example—Particular cases

- In the EXC case, we get
 \[
 F_{2:3}(t) = C(F(t), F(t), 1) + C(F(t), 1, F(t)) + C(1, F(t), F(t)) \\
 - 2C(F(t), F(t), F(t)) \\
 = 3C(F(t), F(t), 1) - 2C(F(t), F(t), F(t)) = q_{2:3}^C(F(t)),
 \]
 where \(q_{2:3}^C(u) = 3C(u, u, 1) - 2C(u, u, u) \).

- In the IID case, for \(q_{2:3}(u) = 3u^2 - 2u^3 \), we have
 \[
 F_{2:3}(t) = F^2(t) - 3F^3(t) = q_{2:3}(F(t)).
 \]

- In the INID case, we get
 \[
 F_{2:3}(t) = F_1(t)F_2(t) + F_1(t)F_3(t) + F_2(t)F_3(t) - 2F_1(t)F_2(t)F_3(t) \\
 = Q_{2:3}(F_1(t), F_2(t), F_3(t)),
 \]
 where \(Q_{2:3}(u_1, u_2, u_3) = u_1u_2 + u_1u_3 + u_2u_3 - 2u_1u_2u_3 \).
In the EXC case, we get

\[F_{2:3}(t) = C(F(t), F(t), 1) + C(F(t), 1, F(t)) + C(1, F(t), F(t)) - 2C(F(t), F(t), F(t)) \\
= 3C(F(t), F(t), 1) - 2C(F(t), F(t), F(t)) = q^C_{2:3}(F(t)), \]

where \(q^C_{2:3}(u) = 3C(u, u, 1) - 2C(u, u, u) \).

In the IID case, for \(q_{2:3}(u) = 3u^2 - 2u^3 \), we have

\[F_{2:3}(t) = F^2(t) - 3F^3(t) = q_{2:3}(F(t)). \]

In the INID case, we get

\[F_{2:3}(t) = F_1(t)F_2(t) + F_1(t)F_3(t) + F_2(t)F_3(t) - 2F_1(t)F_2(t)F_3(t) \\
= Q_{2:3}(F_1(t), F_2(t), F_3(t)), \]

where \(Q_{2:3}(u_1, u_2, u_3) = u_1u_2 + u_1u_3 + u_2u_3 - 2u_1u_2u_3. \)
In the EXC case, we get

\[F_{2:3}(t) = C(F(t), F(t), 1) + C(F(t), 1, F(t)) + C(1, F(t), F(t)) - 2C(F(t), F(t), F(t)) = 3C(F(t), F(t), 1) - 2C(F(t), F(t), F(t)) = q_C^{2:3}(F(t)), \]

where \(q_C^{2:3}(u) = 3C(u, u, 1) - 2C(u, u, u). \)

In the IID case, for \(q^{2:3}(u) = 3u^2 - 2u^3 \), we have

\[F_{2:3}(t) = F^2(t) - 3F^3(t) = q_{2:3}(F(t)). \]

In the INID case, we get

\[F_{2:3}(t) = F_1(t)F_2(t) + F_1(t)F_3(t) + F_2(t)F_3(t) - 2F_1(t)F_2(t)F_3(t) = Q_{2:3}(F_1(t), F_2(t), F_3(t)), \]

where \(Q_{2:3}(u_1, u_2, u_3) = u_1u_2 + u_1u_3 + u_2u_3 - 2u_1u_2u_3. \)
A coherent system is

\[\phi = \phi(x_1, \ldots, x_n) : \{0, 1\}^n \rightarrow \{0, 1\}, \]

where \(x_i \in \{0, 1\} \) (it represents the state of the \(i \)th component) and where \(\phi \) (which represents the state of the system) is increasing in \(x_1, \ldots, x_n \) and strictly increasing in \(x_i \) for at least a point \((x_1, \ldots, x_n) \), for all \(i = 1, \ldots, n \).

- If \(X_1, \ldots, X_n \) are the component lifetimes, then there exists \(\psi \) such that the system lifetime \(T = \psi(X_1, \ldots, X_n) \).
- \(X_{1:n}, \ldots, X_{n:n} \) are the lifetimes of \(k \)-out-of-\(n \) systems.
- \(X_{1:n} \) is the series system lifetime and \(X_{n:n} \) is the parallel system lifetime.
Coherent systems

- **A coherent system** is

 \[\phi = \phi(x_1, \ldots, x_n) : \{0, 1\}^n \to \{0, 1\}, \]

 where \(x_i \in \{0, 1\} \) (it represents the state of the \(i\)th component) and where \(\phi \) (which represents the state of the system) is increasing in \(x_1, \ldots, x_n \) and strictly increasing in \(x_i \) for at least a point \((x_1, \ldots, x_n)\), for all \(i = 1, \ldots, n \).

- If \(X_1, \ldots, X_n \) are the component lifetimes, then there exists \(\psi \) such that the system lifetime \(T = \psi(X_1, \ldots, X_n) \).

- \(X_{1:n}, \ldots, X_{n:n} \) are the lifetimes of \(k\)-out-of-\(n \) systems.

- \(X_{1:n} \) is the series system lifetime and \(X_{n:n} \) is the parallel system lifetime.
A coherent system is

$$\phi = \phi(x_1, \ldots, x_n) : \{0, 1\}^n \rightarrow \{0, 1\},$$

where $x_i \in \{0, 1\}$ (it represents the state of the ith component) and where ϕ (which represents the state of the system) is increasing in x_1, \ldots, x_n and strictly increasing in x_i for at least a point (x_1, \ldots, x_n), for all $i = 1, \ldots, n$.

- If X_1, \ldots, X_n are the component lifetimes, then there exists ψ such that the system lifetime $T = \psi(X_1, \ldots, X_n)$.
- $X_{1:n}, \ldots, X_{n:n}$ are the lifetimes of k-out-of-n systems.
- $X_{1:n}$ is the series system lifetime and $X_{n:n}$ is the parallel system lifetime.
A coherent system is

$$\phi = \phi(x_1, \ldots, x_n) : \{0, 1\}^n \rightarrow \{0, 1\},$$

where $x_i \in \{0, 1\}$ (it represents the state of the ith component) and where ϕ (which represents the state of the system) is increasing in x_1, \ldots, x_n and strictly increasing in x_i for at least a point (x_1, \ldots, x_n), for all $i = 1, \ldots, n$.

If X_1, \ldots, X_n are the component lifetimes, then there exists ψ such that the system lifetime $T = \psi(X_1, \ldots, X_n)$.

$X_{1:n}, \ldots, X_{n:n}$ are the lifetimes of k-out-of-n systems.

$X_{1:n}$ is the series system lifetime and $X_{n:n}$ is the parallel system lifetime.
Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:

\[\bar{F}_T(t) = \sum_{i=1}^{n} p_i \bar{F}_{i:n}(t), \] \hspace{1cm} (1.7)

where \(p_i = \Pr(T = X_{i:n}). \)

- \(p = (p_1, \ldots, p_n) \) is the signature of the system.
- IID case: \(p_i \) only depends on \(\phi \)

\[p_i = \frac{\left| \{ \sigma : \phi(x_1, \ldots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \ldots < x_{\sigma(n)} \} \right|}{n!} \] \hspace{1cm} (1.8)

- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.7) holds for EXC r.v. when \(p \) is given by (1.8).
- In both cases \(\bar{F}_T \) is a DD from \(\bar{F}. \)
Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:
 \[
 \bar{F}_T(t) = \sum_{i=1}^{n} p_i \bar{F}_{i:n}(t),
 \]
 where \(p_i = \Pr(T = X_{i:n}) \).

- \(\mathbf{p} = (p_1, \ldots, p_n) \) is the signature of the system.
 - IID case: \(p_i \) only depends on \(\phi \)
 \[
 p_i = \frac{\left| \{ \sigma : \phi(x_1, \ldots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \ldots < x_{\sigma(n)} \} \right|}{n!}
 \]
 - Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.7) holds for EXC r.v. when \(\mathbf{p} \) is given by (1.8).
 - In both cases \(\bar{F}_T \) is a DD from \(\bar{F} \).
Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:

\[
\bar{F}_T(t) = \sum_{i=1}^{n} p_i \bar{F}_{i:n}(t),
\]

where \(p_i = \Pr(T = X_{i:n}) \).

- \(\mathbf{p} = (p_1, \ldots, p_n) \) is the signature of the system.

- IID case: \(p_i \) only depends on \(\phi \)

\[
p_i = \frac{|\{\sigma : \phi(x_1, \ldots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \ldots < x_{\sigma(n)}\}|}{n!}
\]

Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.7) holds for EXC r.v. when \(\mathbf{p} \) is given by (1.8).

- In both cases \(\bar{F}_T \) is a DD from \(\bar{F} \).
Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:
 \[
 \overline{F}_T(t) = \sum_{i=1}^{n} p_i \overline{F}_{i:n}(t),
 \tag{1.7}
 \]
 where \(p_i = \text{Pr}(T = X_{i:n}) \).
- \(p = (p_1, \ldots, p_n) \) is the signature of the system.
- IID case: \(p_i \) only depends on \(\phi \)
 \[
 p_i = \frac{\left| \{\sigma : \phi(x_1, \ldots, x_n) = x_{i:n}, \ \text{when} \ x_{\sigma(1)} < \ldots < x_{\sigma(n)} \} \right|}{n!}
 \tag{1.8}
 \]
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.7) holds for EXC r.v. when \(p \) is given by (1.8).

In both cases \(\overline{F}_T \) is a DD from \(\overline{F} \).
Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:
 \[
 F_T(t) = \sum_{i=1}^{n} p_i F_{i:n}(t),
 \]
 where \(p_i = \Pr(T = X_{i:n}) \).
- \(\mathbf{p} = (p_1, \ldots, p_n) \) is the signature of the system.
- IID case: \(p_i \) only depends on \(\phi \)
 \[
 p_i = \frac{\left| \{ \sigma : \phi(x_1, \ldots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \ldots < x_{\sigma(n)} \} \right|}{n!}
 \]
 \[\text{(1.8)}\]
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.7) holds for EXC r.v. when \(\mathbf{p} \) is given by (1.8).
- In both cases \(F_T \) is a DD from \(F \).
Generalized mixture representations

- Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

\[\bar{F}_T(t) = \sum_{i=1}^{n} a_i \bar{F}_{1:i}(t). \quad (1.9) \]

- \(a = (a_1, \ldots, a_n) \) is the minimal signature of \(T \).
- \(a_i \) only depends on \(\phi \) but can be negative and so (1.9) is called a generalized mixture.

- In the IID case:

\[\bar{F}_T(t) = \sum_{i=1}^{n} a_i \bar{F}_i(t) = \bar{q}_\phi(\bar{F}(t)), \quad (1.10) \]

\[\bar{q}_\phi(x) = \sum_{i=1}^{n} a_i x^i \] is the domination (reliability) polynomial.
Generalized mixture representations

- Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:
 \[F_T(t) = \sum_{i=1}^{n} a_i F_{1:i}(t). \]
 (1.9)

- \(a = (a_1, \ldots, a_n) \) is the minimal signature of \(T \).
- \(a_i \) only depends on \(\phi \) but can be negative and so (1.9) is called a generalized mixture.

- In the IID case:
 \[F_T(t) = \sum_{i=1}^{n} a_i F^i(t) = q_\phi(F(t)), \]
 (1.10)

- \(q_\phi(x) = \sum_{i=1}^{n} a_i x^i \) is the domination (reliability) polynomial.
Generalized mixture representations

Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

\[F_T(t) = \sum_{i=1}^{n} a_i F_{1:i}(t). \]

(1.9)

-a = (a_1, \ldots, a_n) is the minimal signature of T.

-a_i only depends on \phi but can be negative and so (1.9) is called a generalized mixture.

In the IID case:

\[F_T(t) = \sum_{i=1}^{n} a_i F^{i}(t) = \overline{q}_\phi(F(t)), \]

(1.10)

\[\overline{q}_\phi(x) = \sum_{i=1}^{n} a_i x^i \] is the domination (reliability) polynomial.
Generalized mixture representations

- Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

\[
\bar{F}_T(t) = \sum_{i=1}^{n} a_i \bar{F}_{1:i}(t). \tag{1.9}
\]

- \(a = (a_1, \ldots, a_n)\) is the minimal signature of \(T\).
- \(a_i\) only depends on \(\phi\) but can be negative and so (1.9) is called a generalized mixture.

- In the IID case:

\[
\bar{F}_T(t) = \sum_{i=1}^{n} a_i \bar{F}_i(t) = \bar{q}_\phi(\bar{F}(t)), \tag{1.10}
\]

\[
\bar{q}_\phi(x) = \sum_{i=1}^{n} a_i x^i \text{ is the domination (reliability) polynomial.}
\]
A path set of T is a set $P \subseteq \{1, \ldots, n\}$ such that if all the components in P work, then the system works.

A minimal path set of T is a path set which does not contains other path sets.

If P_1, \ldots, P_r are the minimal path sets of T, then $T = \max_{j=1,\ldots,r} X_{P_j}$, where $X_P = \min_{i \in P} X_i$ and

$$
\bar{F}_T(t) = \Pr \left(\max_{j=1,\ldots,r} X_{P_j} > t \right) = \Pr \left(\bigcup_{j=1}^r \{X_{P_j} > t\} \right) = \sum_{i=1}^r \bar{F}_{P_i}(t) - \sum_{i \neq j} \bar{F}_{P_i \cup P_j}(t) + \cdots \pm \bar{F}_{P_1 \cup \cdots \cup P_r}(t)
$$

where $\bar{F}_P(t) = \Pr(X_P > t)$.
A **path set** of T is a set $P \subseteq \{1, \ldots, n\}$ such that if all the components in P work, then the system works.

A **minimal path set** of T is a path set which does not contains other path sets.

If P_1, \ldots, P_r are the minimal path sets of T, then $T = \max_{j=1,\ldots,r} X_{P_j}$, where $X_P = \min_{i \in P} X_i$ and

$$
\bar{F}_T(t) = \Pr \left(\max_{j=1,\ldots,r} X_{P_j} > t \right) = \Pr \left(\bigcup_{j=1}^r \{ X_{P_j} > t \} \right) = \sum_{i=1}^r \bar{F}_{P_i}(t) - \sum_{i \neq j} \bar{F}_{P_i \cup P_j}(t) + \cdots \pm \bar{F}_{P_1 \cup \cdots \cup P_r}(t)
$$

where $\bar{F}_P(t) = \Pr(X_P > t)$.

11th International Conference on Ordered Statistical Data

Jorge Navarro, E-mail: jorgenav@um.es
A path set of T is a set $P \subseteq \{1, \ldots, n\}$ such that if all the components in P work, then the system works.

A minimal path set of T is a path set which does not contains other path sets.

If P_1, \ldots, P_r are the minimal path sets of T, then $T = \max_{j=1,\ldots,r} X_{P_j}$, where $X_P = \min_{i \in P} X_i$ and

$$
\overline{F}_T(t) = \Pr\left(\max_{j=1,\ldots,r} X_{P_j} > t \right) = \Pr \left(\bigcup_{j=1}^r \{ X_{P_j} > t \} \right)
$$

$$
= \sum_{i=1}^r \overline{F}_{P_i}(t) - \sum_{i \neq j} \overline{F}_{P_i \cup P_j}(t) + \cdots \pm \overline{F}_{P_1 \cup \cdots \cup P_r}(t)
$$

where $\overline{F}_P(t) = \Pr(X_P > t)$.
Coherent systems-General case

- The copula representation for the RF of \((X_1, \ldots, X_n)\) is
 \[F(x_1, \ldots, x_n) = K(F_1(x_1), \ldots, F(x_n)), \]
 where \(F_i(t) = \Pr(X_i > t)\) and \(K\) is the survival copula.

- Then
 \[F_P(t) = Q_{P,K}(F_1(t), \ldots, F_n(t)), \]
 where \(Q_{P,K}(u_1, \ldots, u_n) = K(u_1^P, \ldots, u_n^P)\) and \(u_i^P = u_i\) for \(i \in P\) and \(u_i^P = 1\) for \(i \notin P\).

- Therefore, from the minimal path set repres., we get
 \[F_T(t) = Q_{\phi,K}(F_1(t), \ldots, F_n(t)). \]

- In the ID case
 \[F_T(t) = q_{\phi,K}(F(t)). \quad (1.11) \]
Coherent systems-General case

The copula representation for the RF of \((X_1, \ldots, X_n)\) is

\[
\bar{F}(x_1, \ldots, x_n) = K(\bar{F}_1(x_1), \ldots, \bar{F}(x_n)),
\]

where \(\bar{F}_i(t) = \Pr(X_i > t)\) and \(K\) is the survival copula.

Then

\[
\bar{F}_P(t) = Q_{P,K}(\bar{F}_1(t), \ldots, \bar{F}_n(t)),
\]

where \(Q_{P,K}(u_1, \ldots, u_n) = K(u_1^P, \ldots, u_n^P)\) and \(u_i^P = u_i\) for \(i \in P\) and \(u_i^P = 1\) for \(i \notin P\).

Therefore, from the minimal path set repres., we get

\[
\bar{F}_T(t) = Q_{\phi,K}(\bar{F}_1(t), \ldots, \bar{F}_n(t)).
\]

In the ID case

\[
\bar{F}_T(t) = q_{\phi,K}(\bar{F}(t)).
\] (1.11)
The copula representation for the RF of \((X_1, \ldots, X_n)\) is

\[
F(x_1, \ldots, x_n) = K(F_1(x_1), \ldots, F(x_n)),
\]

where \(F_i(t) = \Pr(X_i > t)\) and \(K\) is the survival copula.

Then

\[
F_P(t) = Q_{P,K}(F_1(t), \ldots, F_n(t)),
\]

where \(Q_{P,K}(u_1, \ldots, u_n) = K(u_1^P, \ldots, u_n^P)\) and \(u_i^P = u_i\) for \(i \in P\) and \(u_i^P = 1\) for \(i \notin P\).

Therefore, from the minimal path set repres., we get

\[
F_T(t) = Q_{\phi,K}(F_1(t), \ldots, F_n(t)).
\]

In the ID case

\[
F_T(t) = q_{\phi,K}(F(t)). \quad (1.11)
\]
Coherent systems-General case

- The copula representation for the RF of \((X_1, \ldots, X_n)\) is
 \[
 \bar{F}(x_1, \ldots, x_n) = K(\bar{F}_1(x_1), \ldots, \bar{F}(x_n)),
 \]
 where \(\bar{F}_i(t) = \Pr(X_i > t)\) and \(K\) is the survival copula.

- Then
 \[
 \bar{F}_P(t) = Q_{P,K}(\bar{F}_1(t), \ldots, \bar{F}(t)),
 \]
 where \(Q_{P,K}(u_1, \ldots, u_n) = K(u^P_1, \ldots, u^P_n)\) and \(u^P_i = u_i\) for \(i \in P\) and \(u^P_i = 1\) for \(i \notin P\).

- Therefore, from the minimal path set repres., we get
 \[
 \bar{F}_T(t) = Q_{\phi,K}(\bar{F}_1(t), \ldots, \bar{F}(t)).
 \]

- In the ID case
 \[
 \bar{F}_T(t) = q_{\phi,K}(\bar{F}(t)). \tag{1.11}
 \]
Example
Coherent system lifetime $T = \min(X_1, \max(X_2, X_3))$.
Example

3! = 6 permutations.
Example

\[X_1 < X_2 < X_3 \Rightarrow T = X_1 = X_{1:3} \]
Example

\[X_1 < X_3 < X_2 \Rightarrow T = X_1 = X_{1:3} \]
Example

\[X_2 < X_1 < X_3 \Rightarrow T = X_1 = X_{2:3} \]
\[X_2 < X_3 < X_1 \Rightarrow T = X_3 = X_{2:3} \]
Example

\[X_3 < X_1 < X_2 \Rightarrow T = X_1 = X_{2:3} \]
Example

\[X_3 < X_2 < X_1 \Rightarrow T = X_2 = X_{2:3} \]
Example

IID \(F \) cont.: \(p = (2/6, 4/6, 0) = (1/3, 2/3, 0) \).
IID \overline{F} cont.: $\overline{F}_{T}(t) = \frac{1}{3} \overline{F}_{1:3}(t) + \frac{2}{3} \overline{F}_{2:3}(t)$.
Coherent system lifetime $T = \max(\min(X_1, X_2), \min(X_1, X_3))$.

Minimal path sets $P_1 = \{1, 2\}$ and $P_1 = \{1, 3\}$.
$F_T(t) = \Pr(\{X_{\{1,3\}} > t\} \cup \{X_{\{1,2\}} > t\})$

$= \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) - \overline{F}_{\{1,2,3\}}(t)$.
Example-general case

\[F_{\{1,2\}}(t) = \bar{F}(t, t, 0) = K(\bar{F}_1(t), \bar{F}_2(t), 1), \ldots \]

\[F_T(t) = Q_{\phi,K}(\bar{F}_1(t), \bar{F}_2(t), \bar{F}_3(t)) \] where

\[Q_{\phi,K}(u_1, u_2, u_3) = K(u_1, u_2, 1) + K(u_1, 1, u_3) - K(u_1, u_2, u_3). \]
Example-general case

EXC: $\bar{F}_T(t) = 2\bar{F}_{1:2}(t) - \bar{F}_{1:3}(t) = q_{\phi,K}(\bar{F}(t))$, where $q_{\phi,K}(u) = 2K(u, u, 1) - K(u, u, u)$. Minimal signature $\mathbf{a} = (0, 2, -1)$.
Example-general case

\[\text{IID: } \bar{F}_T(t) = 2\bar{F}^2(t) - \bar{F}^3(t) = q_\phi(\bar{F}(t)), \]
\[\text{where } q_\phi(u) = 2u^2 - u^3. \]
The minimal signatures for \(n \leq 5 \) can be seen in: Navarro and Rubio (2010, Comm Stat Simul Comp 39, 68–84).
Generalized Order Statistics (GOS)

For an arbitrary DF F, GOS $X_{1:n}^{GOS}, \ldots, X_{n:n}^{GOS}$ based on F can be obtained (Kamps, 1995, B. G. Teubner Stuttgart, p.49) via the quantile transformation

$$X_{r:n}^{GOS} = F^{-1}(U_{r:n}^{GOS}), \quad r = 1, \ldots, n,$$

where $(U_{1:n}^*, \ldots, U_{n:n}^*)$ has the joint PDF

$$g^{GOS}(u_1, \ldots, u_n) = k \left(\prod_{j=1}^{n-1} \gamma_j \right) \left(\prod_{i=1}^{n-1} (1 - u_i)^{m_i} \right) (1-u_n)^{k-1}$$

for $0 \leq u_1 \leq \ldots \leq u_n < 1$, $n \geq 2$, $k \geq 1$, $\gamma_1, \ldots, \gamma_n > 0$ and $m_i = \gamma_i - \gamma_{i+1} - 1$.
Generalized Order statistics (GOS)

If $\gamma_1, \ldots, \gamma_n$ are pairwise different, then

$$F_{r:n}^{GOS}(t) = 1 - c_{r-1} \sum_{i=1}^{r} a_{i,r} \left(1 - F(t)\right)^{\gamma_i} = q_{r:n}^{GOS}(F(t))$$

with the constants

$$c_{r-1} = \prod_{j=1}^{r} \gamma_j, \quad a_{i,r} = \prod_{j=1}^{r} \frac{1}{\gamma_j - \gamma_i}, \quad 1 \leq i \leq r \leq n$$

where the empty product \prod_{\emptyset} is defined to be 1.

Then the GOS are DD from F.

Generalized Order statistics (GOS)

If $\gamma_1, \ldots, \gamma_n$ are pairwise different, then

$$F_{r:n}^{GOS}(t) = 1 - c_{r-1} \sum_{i=1}^{r} \frac{a_{i,r}}{\gamma_i} (1 - F(t))^{\gamma_i} = q_{r:n}^{GOS}(F(t))$$

with the constants

$$c_{r-1} = \prod_{j=1}^{r} \gamma_j, \quad a_{i,r} = \prod_{j=1}^{r} \frac{1}{\gamma_j - \gamma_i}, \quad 1 \leq i \leq r \leq n$$

where the empty product \prod_{\emptyset} is defined to be 1.

Then the GOS are DD from F.

Jorge Navarro, E-mail: jorgenav@um.es
Particular cases of GOS

- The GOS include:
 - OS, IID case \(m_1 = \cdots = m_{n-1} = 0 \) and \(k = 1 \).
 - kRV, k-th record values \(m_1 = \cdots = m_{n-1} = -1 \) and \(k = 1, 2, \ldots \).
 - RV, record values \(m_1 = \cdots = m_{n-1} = -1 \) and \(k = 1 \).
 - SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with \(F_r = F^{\alpha_r} \) for \(r = 1, \ldots, n \) \((\gamma_r = (n - r + 1)\alpha_r \) and \(k = \alpha_n \).\)
 - The SOS can be seen as OS in EXC models. So they are DD.
Particular cases of GOS

- The GOS include:
- OS, IID case \((m_1 = \cdots = m_{n-1} = 0\) and \(k = 1\)).
- kRV, k-th record values \((m_1 = \cdots = m_{n-1} = -1\) and \(k = 1, 2, \ldots\)).
- RV, record values \((m_1 = \cdots = m_{n-1} = -1\) and \(k = 1\)).
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with \(F_r = F^{\alpha_r}\) for \(r = 1, \ldots, n\) (\(\gamma_r = (n - r + 1)\alpha_r\) and \(k = \alpha_n\)).
- The SOS can be seen as OS in EXC models. So they are DD.
Particular cases of GOS

- The GOS include:
- OS, IID case ($m_1 = \cdots = m_{n-1} = 0$ and $k = 1$).
- kRV, k-th record values ($m_1 = \cdots = m_{n-1} = -1$ and $k = 1, 2, \ldots$).
- RV, record values ($m_1 = \cdots = m_{n-1} = -1$ and $k = 1$).
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $F_r = F^{\alpha_r}$ for $r = 1, \ldots, n$ ($\gamma_r = (n - r + 1)\alpha_r$ and $k = \alpha_n$).
- The SOS can be seen as OS in EXC models. So they are DD.
Particular cases of GOS

- The GOS include:
 - OS, IID case \((m_1 = \cdots = m_{n-1} = 0\) and \(k = 1\)).
 - kRV, k-th record values \((m_1 = \cdots = m_{n-1} = -1\) and \(k = 1, 2, \ldots\)).
 - RV, record values \((m_1 = \cdots = m_{n-1} = -1\) and \(k = 1\)).
 - SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with \(\overline{F}_r = \overline{F}^{\alpha_r}\) for \(r = 1, \ldots, n\) \((\gamma_r = (n - r + 1)\alpha_r\) and \(k = \alpha_n\)).
- The SOS can be seen as OS in EXC models. So they are DD.
Particular cases of GOS

- The GOS include:
 - OS, IID case \((m_1 = \cdots = m_{n-1} = 0\) and \(k = 1\)).
 - kRV, k-th record values \((m_1 = \cdots = m_{n-1} = -1\) and \(k = 1, 2, \ldots\)).
 - RV, record values \((m_1 = \cdots = m_{n-1} = -1\) and \(k = 1\)).
 - SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with \(F_r = F_1^{\gamma_r}\) for \(r = 1, \ldots, n\) (\(\gamma_r = (n - r + 1)\alpha_r\) and \(k = \alpha_n\)).

- The SOS can be seen as OS in EXC models. So they are DD.
Particular cases of GOS

- The GOS include:
 - OS, IID case ($m_1 = \cdots = m_{n-1} = 0$ and $k = 1$).
 - kRV, k-th record values ($m_1 = \cdots = m_{n-1} = -1$ and $k = 1, 2, \ldots$).
 - RV, record values ($m_1 = \cdots = m_{n-1} = -1$ and $k = 1$).
 - SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $F_r = \overline{F}^{\alpha_r}$ for $r = 1, \ldots, n$ ($\gamma_r = (n - r + 1)\alpha_r$ and $k = \alpha_n$).

- The SOS can be seen as OS in EXC models. So they are DD.
Preservation results

- If \(q_1 \) and \(q_2 \) are two DF,
 \[
 q_1(F) \leq_{ord} q_2(F) \text{ for all } F?
 \]

- If \(q \) is a DF,
 \[
 F \leq_{ord} G \Rightarrow q(F) \leq_{ord} q(G)\?
 \]

- If \(Q_1 \) and \(Q_2 \) are two MDF,
 \[
 Q_1(F_1, \ldots, F_n) \leq_{ord} Q_2(F_1, \ldots, F_n)\?
 \]

- If \(Q \) is a MDF,
 \[
 F_i \leq_{ord} G_i, \ i = 1, \ldots, n, \Rightarrow Q(F_1, \ldots, F_n) \leq_{ord} Q(G_1, \ldots, G_n)\?
 \]

Preservation results

- If q_1 and q_2 are two DF,
 \[q_1(F) \leq_{ord} q_2(F) \text{ for all } F \]

- If q is a DF,
 \[F \leq_{ord} G \Rightarrow q(F) \leq_{ord} q(G) \]

- If Q_1 and Q_2 are two MDF,
 \[Q_1(F_1, \ldots, F_n) \leq_{ord} Q_2(F_1, \ldots, F_n) \]

- If Q is a MDF,
 \[F_i \leq_{ord} G_i, \ i = 1, \ldots, n, \Rightarrow Q(F_1, \ldots, F_n) \leq_{ord} Q(G_1, \ldots, G_n) \]

Preservation results

- If q_1 and q_2 are two DF,
 \[q_1(F) \leq_{ord} q_2(F) \text{ for all } F? \]

- If q is a DF,
 \[F \leq_{ord} G \Rightarrow q(F) \leq_{ord} q(G)? \]

- If Q_1 and Q_2 are two MDF,
 \[Q_1(F_1, \ldots, F_n) \leq_{ord} Q_2(F_1, \ldots, F_n)? \]

- If Q is a MDF,
 \[F_i \leq_{ord} G_i, i = 1, \ldots, n, \Rightarrow Q(F_1, \ldots, F_n) \leq_{ord} Q(G_1, \ldots, G_n)? \]

Preservation results

- If \(q_1 \) and \(q_2 \) are two DF,
 \[q_1(F) \leq_{ord} q_2(F) \text{ for all } F ? \]

- If \(q \) is a DF,
 \[F \leq_{ord} G \Rightarrow q(F) \leq_{ord} q(G) ? \]

- If \(Q_1 \) and \(Q_2 \) are two MDF,
 \[Q_1(F_1, \ldots, F_n) \leq_{ord} Q_2(F_1, \ldots, F_n) ? \]

- If \(Q \) is a MDF,
 \[F_i \leq_{ord} G_i, i = 1, \ldots, n, \Rightarrow Q(F_1, \ldots, F_n) \leq_{ord} Q(G_1, \ldots, G_n) ? \]

Main stochastic orderings

- \(X \leq_{ST} Y \iff F_X(t) \leq F_Y(t) \), stochastic order.
- \(X \leq_{HR} Y \iff h_X(t) \geq h_Y(t) \), hazard rate order.
- \(X \leq_{HR} Y \iff (X - t|X > t) \leq_{ST} (Y - t|Y > t) \) for all \(t \).
- \(X \leq_{MRL} Y \iff E(X - t|X > t) \leq E(Y - t|Y > t) \) for all \(t \).
- \(X \leq_{LR} Y \iff f_Y(t)/f_X(t) \) is nondecreasing, likelihood ratio order.
- \(X \leq_{RHR} Y \iff (t - X|X < t) \geq_{ST} (t - Y|Y < t) \) for all \(t \).

\[\begin{align*}
X & \leq_{RHR} Y & \iff & X \leq_{MRL} Y & \Rightarrow & E(X) \leq E(Y) \\
\uparrow & & & \uparrow & & \uparrow \\
X & \leq_{LR} Y & \Rightarrow & X \leq_{HR} Y & \Rightarrow & X \leq_{ST} Y
\end{align*} \]
Main stochastic orderings

- $X \leq_{ST} Y \Leftrightarrow F_X(t) \leq F_Y(t)$, stochastic order.
- $X \leq_{HR} Y \Leftrightarrow h_X(t) \geq h_Y(t)$, hazard rate order.
 - $X \leq_{HR} Y \Leftrightarrow (X - t | X > t) \leq_{ST} (Y - t | Y > t)$ for all t.
 - $X \leq_{MRL} Y \Leftrightarrow E(X - t | X > t) \leq E(Y - t | Y > t)$ for all t.
 - $X \leq_{LR} Y \Leftrightarrow f_Y(t)/f_X(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{RHR} Y \Leftrightarrow (t - X | X < t) \geq_{ST} (t - Y | Y < t)$ for all t.

Then

$$X \leq_{RHR} Y \quad \quad X \leq_{MRL} Y \quad \Rightarrow \quad E(X) \leq E(Y)$$

$$X \leq_{LR} Y \quad \Rightarrow \quad X \leq_{HR} Y \quad \Rightarrow \quad X \leq_{ST} Y$$
Main stochastic orderings

- $X \leq_{ST} Y \Leftrightarrow \bar{F}_X(t) \leq \bar{F}_Y(t)$, stochastic order.
- $X \leq_{HR} Y \Leftrightarrow h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \Leftrightarrow (X - t|X > t) \leq_{ST} (Y - t|Y > t)$ for all t.
- $X \leq_{MRL} Y \Leftrightarrow E(X - t|X > t) \leq E(Y - t|Y > t)$ for all t.
- $X \leq_{LR} Y \Leftrightarrow \frac{f_Y(t)}{f_X(t)}$ is nondecreasing, likelihood ratio order.
- $X \leq_{RHR} Y \Leftrightarrow (t - X|X < t) \geq_{ST} (t - Y|Y < t)$ for all t.

Then

$X \leq_{RHR} Y \uparrow \quad X \leq_{MRL} Y \uparrow \quad E(X) \leq E(Y) \uparrow$

$X \leq_{LR} Y \Rightarrow X \leq_{HR} Y \Rightarrow X \leq_{ST} Y$
Main stochastic orderings

- $X \leq_{ST} Y \iff F_X(t) \leq F_Y(t)$, stochastic order.
- $X \leq_{HR} Y \iff h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \iff (X - t | X > t) \leq_{ST} (Y - t | Y > t)$ for all t.
- $X \leq_{MRL} Y \iff E(X - t | X > t) \leq E(Y - t | Y > t)$ for all t.
- $X \leq_{LR} Y \iff f_Y(t)/f_X(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{RHR} Y \iff (t - X | X < t) \geq_{ST} (t - Y | Y < t)$ for all t.

Then

\[
\begin{align*}
X &\leq_{RHR} Y \implies X \leq_{MRL} Y \implies E(X) \leq E(Y) \\
X &\leq_{LR} Y \implies X \leq_{HR} Y \implies X \leq_{ST} Y
\end{align*}
\]
Main stochastic orderings

- \(X \leq_{ST} Y \iff \bar{F}_X(t) \leq \bar{F}_Y(t) \), stochastic order.
- \(X \leq_{HR} Y \iff h_X(t) \geq h_Y(t) \), hazard rate order.
- \(X \leq_{HR} Y \iff (X - t|X > t) \leq_{ST} (Y - t|Y > t) \) for all \(t \).
- \(X \leq_{MRL} Y \iff E(X - t|X > t) \leq E(Y - t|Y > t) \) for all \(t \).
- \(X \leq_{LR} Y \iff f_Y(t)/f_X(t) \) is nondecreasing, likelihood ratio order.
- \(X \leq_{RHR} Y \iff (t - X|X < t) \geq_{ST} (t - Y|Y < t) \) for all \(t \).

Then

\[
\begin{align*}
X \leq_{RHR} Y & \iff X \leq_{MRL} Y \implies E(X) \leq E(Y) \\
X \leq_{LR} Y & \implies X \leq_{HR} Y \implies X \leq_{ST} Y
\end{align*}
\]
Main stochastic orderings

- \(X \leq_{ST} Y \iff F_X(t) \leq F_Y(t) \), stochastic order.
- \(X \leq_{HR} Y \iff h_X(t) \geq h_Y(t) \), hazard rate order.
- \(X \leq_{HR} Y \iff (X - t | X > t) \leq_{ST} (Y - t | Y > t) \) for all \(t \).
- \(X \leq_{MRL} Y \iff E(X - t | X > t) \leq E(Y - t | Y > t) \) for all \(t \).
- \(X \leq_{LR} Y \iff f_Y(t)/f_X(t) \) is nondecreasing, likelihood ratio order.
- \(X \leq_{RHR} Y \iff (t - X | X < t) \geq_{ST} (t - Y | Y < t) \) for all \(t \).

Then

\[
\begin{align*}
X \leq_{RHR} Y & \uparrow \quad X \leq_{MRL} Y \quad \Rightarrow \quad E(X) \leq E(Y) \\
\uparrow & \quad X \leq_{LR} Y \quad \Rightarrow \quad X \leq_{HR} Y \quad \Rightarrow \quad X \leq_{ST} Y
\end{align*}
\]
Main stochastic orderings

- $X \leq_{ST} Y \iff \overline{F}_X(t) \leq \overline{F}_Y(t)$, stochastic order.
- $X \leq_{HR} Y \iff h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \iff (X - t | X > t) \leq_{ST} (Y - t | Y > t)$ for all t.
- $X \leq_{MRL} Y \iff E(X - t | X > t) \leq E(Y - t | Y > t)$ for all t.
- $X \leq_{LR} Y \iff f_Y(t)/f_X(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{RHR} Y \iff (t - X | X < t) \geq_{ST} (t - Y | Y < t)$ for all t.

Then

\[
\begin{align*}
X \leq_{RHR} Y & \quad \iff \quad X \leq_{MRL} Y \quad \implies \quad E(X) \leq E(Y) \\
X \leq_{LR} Y & \quad \implies \quad X \leq_{HR} Y \quad \implies \quad X \leq_{ST} Y
\end{align*}
\]
Preservation of stochastic orders-DD

- If T_i has the DD $q_i(F(t))$, $i = 1, 2$, then:
 - $T_1 \leq_{ST} T_2$ for all F if and only if $q_1(u)/q_2(u) \geq 1$ in $(0, 1)$.
 - $T_1 \leq_{HR} T_2$ for all F if and only if \bar{q}_2/\bar{q}_1 decreases in $(0, 1)$.
 - $T_1 \leq_{LR} T_2$ (\geq_{LR}) for all F if and only if $q_2(q_1^{-1}(u))$ is concave (convex) in $(0, 1)$.
 - $T_1 \leq_{LR} T_2$ for all F if and only if $q'_1(u)/q'_2(u)$ decreases.
 - NEW $T_1 \leq_{MRL} T_2$ for all F if $E(T_1) \leq E(T_2)$ and \bar{q}_2/\bar{q}_1 is bathtub in $(0, 1)$.
Preservation of stochastic orders-DD

- If T_i has the DD $q_i(F(t))$, $i = 1, 2$, then:
 - $T_1 \leq_{ST} T_2$ for all F if and only if $q_1(u)/q_2(u) \geq 1$ in $(0, 1)$.
 - $T_1 \leq_{HR} T_2$ for all F if and only if $q_2(q_1^{-1}(u))$ decreases.
 - $T_1 \leq_{LR} T_2$ (\geq_{LR}) for all F if and only if $q_2(q_1^{-1}(u))$ is concave (convex) in $(0, 1)$.
 - $T_1 \leq_{LR} T_2$ for all F if and only if $q_1'(u)/q_2'(u)$ decreases.
 - NEW $T_1 \leq_{MRL} T_2$ for all F if $E(T_1) \leq E(T_2)$ and q_2/q_1 is bathtub in $(0, 1)$.
Preservation of stochastic orders-DD

- If T_i has the DD $q_i(F(t))$, $i = 1, 2$, then:
- $T_1 \leq_{ST} T_2$ for all F if and only if $q_1(u)/q_2(u) \geq 1$ in $(0, 1)$.
- $T_1 \leq_{HR} T_2$ for all F if and only if \bar{q}_2/\bar{q}_1 decreases in $(0, 1)$.
- $T_1 \leq_{LR} T_2$ (\geq_{LR}) for all F if and only if $q_2(q_1^{-1}(u))$ is concave (convex) in $(0, 1)$.
- $T_1 \leq_{LR} T_2$ for all F if and only if $q'_1(u)/q'_2(u)$ decreases.
- NEW $T_1 \leq_{MRL} T_2$ for all F if $E(T_1) \leq E(T_2)$ and \bar{q}_2/\bar{q}_1 is bathtub in $(0, 1)$.
Preservation of stochastic orders-DD

- If T_i has the DD $q_i(F(t))$, $i = 1, 2$, then:
 - $T_1 \leq_{ST} T_2$ for all F if and only if $q_1(u)/q_2(u) \geq 1$ in $(0, 1)$.
 - $T_1 \leq_{HR} T_2$ for all F if and only if \bar{q}_2/\bar{q}_1 decreases in $(0, 1)$.
 - $T_1 \leq_{LR} T_2 \ (\geq_{LR})$ for all F if and only if $q_2(q_1^{-1}(u))$ is concave (convex) in $(0, 1)$.
 - $T_1 \leq_{LR} T_2$ for all F if and only if $q_1'(u)/q_2'(u)$ decreases.
 - NEW $T_1 \leq_{MRL} T_2$ for all F if $E(T_1) \leq E(T_2)$ and \bar{q}_2/\bar{q}_1 is bathtub in $(0, 1)$.
Preservation of stochastic orders-DD

- If T_i has the DD $q_i(F(t))$, $i = 1, 2$, then:
 - $T_1 \leq_{ST} T_2$ for all F if and only if $q_1(u)/q_2(u) \geq 1$ in $(0, 1)$.
 - $T_1 \leq_{HR} T_2$ for all F if and only if $\overline{q}_2/\overline{q}_1$ decreases in $(0, 1)$.
 - $T_1 \leq_{LR} T_2$ (\geq_{LR}) for all F if and only if $q_2(q_1^{-1}(u))$ is concave (convex) in $(0, 1)$.
 - $T_1 \leq_{LR} T_2$ for all F if and only if $q_1'(u)/q_2'(u)$ decreases.
 - NEW $T_1 \leq_{MRL} T_2$ for all F if $E(T_1) \leq E(T_2)$ and $\overline{q}_2/\overline{q}_1$ is bathtub in $(0, 1)$.
Preservation of stochastic orders-DD

- If T_i has the DD $q_i(F(t))$, $i = 1, 2$, then:
 - $T_1 \leq_{ST} T_2$ for all F if and only if $q_1(u)/q_2(u) \geq 1$ in $(0, 1)$.
 - $T_1 \leq_{HR} T_2$ for all F if and only if q_2/\underline{q}_1 decreases in $(0, 1)$.
 - $T_1 \leq_{LR} T_2$ (\geq_{LR}) for all F if and only if $q_2(q_1^{-1}(u))$ is concave (convex) in $(0, 1)$.
 - $T_1 \leq_{LR} T_2$ for all F if and only if $q_1'(u)/q_2'(u)$ decreases.
 - **NEW** $T_1 \leq_{MRL} T_2$ for all F if $E(T_1) \leq E(T_2)$ and \bar{q}_2/\bar{q}_1 is bathtub in $(0, 1)$.

Preservation of stochastic orders-DD

- $F_1 \leq_{ST} F_2 \Rightarrow q(F_1) \leq_{ST} q(F_2)$.

- If $\alpha(u)$ is decreasing in $(0, 1)$, then

$$F_1 \leq_{HR} F_2 \Rightarrow q(F_1) \leq_{HR} q(F_2),$$

where $\alpha(u) = uq'(1 - u)/(1 - q(1 - u)) = u\bar{q}'(u)/\bar{q}(u)$.

- If $\beta_q(u)$ is decreasing and nonnegative in $(0, 1)$, then

$$F_1 \leq_{LR} F_2 \Rightarrow q(F_1) \leq_{LR} q(F_2),$$

where $\beta_q(u) = -uq''(1 - u)q'(1 - u) = u\bar{q}''(u)/\bar{q}'(u)$.
Preservation of stochastic orders-DD

- $F_1 \leq_{ST} F_2 \Rightarrow q(F_1) \leq_{ST} q(F_2)$.

- If $\alpha(u)$ is decreasing in $(0, 1)$, then

$$F_1 \leq_{HR} F_2 \Rightarrow q(F_1) \leq_{HR} q(F_2),$$

where $\alpha(u) = uq'(1-u)/(1-q(1-u)) = u\bar{q}'(u)/\bar{q}(u)$.

- If $\beta_q(u)$ is decreasing and nonnegative in $(0, 1)$, then

$$F_1 \leq_{LR} F_2 \Rightarrow q(F_1) \leq_{LR} q(F_2),$$

where $\beta_q(u) = -uq''(1-u)q'(1-u) = u\bar{q}''(u)/\bar{q}'(u)$.
F_1 \leq_{ST} F_2 \Rightarrow q(F_1) \leq_{ST} q(F_2).

If \alpha(u) is decreasing in (0, 1), then

F_1 \leq_{HR} F_2 \Rightarrow q(F_1) \leq_{HR} q(F_2),

where \alpha(u) = uq'(1 - u)/(1 - q(1 - u)) = u\bar{q}'(u)/\bar{q}(u).

If \beta_q(u) is decreasing and nonnegative in (0, 1), then

F_1 \leq_{LR} F_2 \Rightarrow q(F_1) \leq_{LR} q(F_2),

where \beta_q(u) = -uq''(1 - u)q'(1 - u) = u\bar{q}''(u)/\bar{q}'(u).
Preservation of stochastic orders-GDDNEW

- If $G_i = Q_i(F_1, \ldots, F_n)$, $i = 1, 2$, then:
 - $G_1 \leq_{ST} G_2$ for all F_1, \ldots, F_n if and only if $Q_1/Q_2 \geq 1$ in $(0, 1)^n$.
 - $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if and only if $\overline{Q}_2/\overline{Q}_1$ is decreasing in $(0, 1)^n$.
 - $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if $\alpha_i^{Q_1} \geq \alpha_i^{Q_2}$ in $(0, 1)^n$ for $i = 1, \ldots, n$, where
 \[
 \alpha_i^{\Phi}(u_1, \ldots, u_n) = \frac{u_i D_i \Phi(u_1, \ldots, u_n)}{\Phi(u_1, \ldots, u_n)}
 \]
 (2.1)
 and $D_i \overline{Q}(u_1, \ldots, u_n) = \frac{\partial}{\partial u_i} \overline{Q}(u_1, \ldots, u_n)$.
 - $G_1 \leq_{RHR} G_2$ for all F_1, \ldots, F_n if and only if Q_2/Q_1 is increasing in $(0, 1)^n$.

11th International Conference on Ordered Statistical Data
Jorge Navarro, E-mail: jorgenav@um.es
If $G_i = Q_i(F_1, \ldots, F_n)$, $i = 1, 2$, then:

- $G_1 \leq_{ST} G_2$ for all F_1, \ldots, F_n if and only if $Q_1/Q_2 \geq 1$ in $(0, 1)^n$.

- $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if and only if $\overline{Q}_2/\overline{Q}_1$ is decreasing in $(0, 1)^n$.

- $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if $\alpha_i^Q \geq \alpha_i^Q$ in $(0, 1)^n$ for $i = 1, \ldots, n$, where

$$\alpha_i^\Phi(u_1, \ldots, u_n) = \frac{u_i D_i \Phi(u_1, \ldots, u_n)}{\Phi(u_1, \ldots, u_n)} \quad (2.1)$$

and $D_i \overline{Q}(u_1, \ldots, u_n) = \frac{\partial}{\partial u_i} \overline{Q}(u_1, \ldots, u_n)$.

- $G_1 \leq_{RHR} G_2$ for all F_1, \ldots, F_n if and only if Q_2/Q_1 is increasing in $(0, 1)^n$.

References

Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Preservation of stochastic orders-GDD^{NEW}
Preservation of stochastic orders-GDDNEW

- If $G_i = Q_i(F_1, \ldots, F_n), i = 1, 2$, then:
 - $G_1 \leq_{ST} G_2$ for all F_1, \ldots, F_n if and only if $Q_1/Q_2 \geq 1$ in $(0, 1)^n$.
 - $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if and only if $\overline{Q}_2/\overline{Q}_1$ is decreasing in $(0, 1)^n$.
 - $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if $\alpha_i^{Q_1} \geq \alpha_i^{Q_2}$ in $(0, 1)^n$ for $i = 1, \ldots, n$, where
 \[
 \alpha_i^\Phi(u_1, \ldots, u_n) = \frac{u_iD_i\Phi(u_1, \ldots, u_n)}{\Phi(u_1, \ldots, u_n)} \quad (2.1)
 \]
 and $D_i\overline{Q}(u_1, \ldots, u_n) = \frac{\partial}{\partial u_i}\overline{Q}(u_1, \ldots, u_n)$.
 - $G_1 \leq_{RHR} G_2$ for all F_1, \ldots, F_n if and only if Q_2/Q_1 is increasing in $(0, 1)^n$.

Jorge Navarro, E-mail: jorgenav@um.es
If $G_i = Q_i(F_1, \ldots, F_n)$, $i = 1, 2$, then:

1. $G_1 \leq_{ST} G_2$ for all F_1, \ldots, F_n if and only if $Q_1/Q_2 \geq 1$ in $(0, 1)^n$.
2. $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if and only if $\overline{Q}_2/\overline{Q}_1$ is decreasing in $(0, 1)^n$.
3. $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if $\alpha_i^{\overline{Q}_1} \geq \alpha_i^{\overline{Q}_2}$ in $(0, 1)^n$ for $i = 1, \ldots, n$, where

$$\alpha_i^\Phi(u_1, \ldots, u_n) = \frac{u_i D_i \Phi(u_1, \ldots, u_n)}{\Phi(u_1, \ldots, u_n)} \quad (2.1)$$

and $D_i \overline{Q}(u_1, \ldots, u_n) = \frac{\partial}{\partial u_i} \overline{Q}(u_1, \ldots, u_n)$.

4. $G_1 \leq_{RHR} G_2$ for all F_1, \ldots, F_n if and only if Q_2/Q_1 is increasing in $(0, 1)^n$.
If $G_i = Q_i(F_1, \ldots, F_n), \ i = 1, 2$, then:

- $G_1 \leq_{ST} G_2$ for all F_1, \ldots, F_n if and only if $Q_1 / Q_2 \geq 1$ in $(0, 1)^n$.
- $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if and only if $\overline{Q}_2 / \overline{Q}_1$ is decreasing in $(0, 1)^n$.
- $G_1 \leq_{HR} G_2$ for all F_1, \ldots, F_n if $\alpha_i \frac{Q_1}{Q_i} \geq \alpha_i \frac{Q_2}{Q_i}$ in $(0, 1)^n$ for $i = 1, \ldots, n$, where

$$\alpha_i \Phi(u_1, \ldots, u_n) = \frac{u_i D_i \Phi(u_1, \ldots, u_n)}{\Phi(u_1, \ldots, u_n)} \quad (2.1)$$

and $D_i \overline{Q}(u_1, \ldots, u_n) = \frac{\partial}{\partial u_i} \overline{Q}(u_1, \ldots, u_n)$.

- $G_1 \leq_{RHR} G_2$ for all F_1, \ldots, F_n if and only if Q_2 / Q_1 is increasing in $(0, 1)^n$.
If $F_Q = Q(F_1, \ldots, F_n)$ and $G_Q = Q(G_1, \ldots, G_n)$, then:

- $F_i \leq_{ST} G_i$ for $i = 1, \ldots, n \Rightarrow F_Q \leq_{ST} G_Q$.
- If $F_i \leq_{HR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{HR} G_Q$ for all MDF Q such that α_i^Q is decreasing in $(0, 1)^n$ for $i = 1, \ldots, n$.
- If $F_i \leq_{RHR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{RHR} G_Q$ for all MDF Q such that α_i^Q is decreasing in $(0, 1)^n$ for $i = 1, \ldots, n$.
Preservation of stochastic orders-GDDNEW

- If $F_Q = Q(F_1, \ldots, F_n)$ and $G_Q = Q(G_1, \ldots, G_n)$, then:
 - $F_i \leq_{ST} G_i$ for $i = 1, \ldots, n$ \Rightarrow $F_Q \leq_{ST} G_Q$.
- If $F_i \leq_{HR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{HR} G_Q$ for all MDF Q such that α^Q_i is decreasing in $(0, 1)^n$ for $i = 1, \ldots, n$.
- If $F_i \leq_{RHR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{RHR} G_Q$ for all MDF Q such that α^Q_i is decreasing in $(0, 1)^n$ for $i = 1, \ldots, n$.

11th International Conference on Ordered Statistical Data

Jorge Navarro, E-mail: jorgenav@um.es
Preservation of stochastic orders-GDDNEW

- If $F_Q = Q(F_1, \ldots, F_n)$ and $G_Q = Q(G_1, \ldots, G_n)$, then:
- $F_i \leq_{ST} G_i$ for $i = 1, \ldots, n \Rightarrow F_Q \leq_{ST} G_Q$.
- If $F_i \leq_{HR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{HR} G_Q$ for all MDF Q such that α_i^Q is decreasing in $(0, 1)^n$ for $i = 1, \ldots, n$.
- If $F_i \leq_{RHR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{RHR} G_Q$ for all MDF Q such that α_i^Q is decreasing in $(0, 1)^n$ for $i = 1, \ldots, n$.

11th International Conference on Ordered Statistical Data
Jorge Navarro, E-mail: jorgenav@um.es
If $F_Q = Q(F_1, \ldots, F_n)$ and $G_Q = Q(G_1, \ldots, G_n)$, then:

- $F_i \leq_{ST} G_i$ for $i = 1, \ldots, n \Rightarrow F_Q \leq_{ST} G_Q$.
- If $F_i \leq_{HR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{HR} G_Q$ for all MDF Q such that α_i^Q is decreasing in $(0, 1)^n$ for $i = 1, \ldots, n$.
- If $F_i \leq_{RHR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{RHR} G_Q$ for all MDF Q such that α_i^Q is decreasing in $(0, 1)^n$ for $i = 1, \ldots, n$.
Preservation of stochastic orders-GDDNEW

- If $F_i \leq_{HR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{HR} G_Q$ for all MDF Q such that
 \[
 \beta Q = \frac{Q(u_1 v_1, \ldots, u_n v_n)}{Q(u_1, \ldots, u_n)}.
 \] (2.2)

 is decreasing in u_1, \ldots, u_n and increasing in v_1, \ldots, v_n in $(0, 1)^n \times (1, \infty)^n$.

- If $F_i \leq_{LR} G_i$ and F_i is IHR (DHR) for $i = 1, \ldots, n$, then $F_Q \leq_{LR} G_Q$ for all MDF Q such that
 \[
 \gamma Q = \frac{w_1 z_1 u_1 D_1 Q(u_1 v_1, \ldots, u_n v_n) + \cdots + w_n z_n u_n D_n Q(u_1 v_1, \ldots, u_n v_n)}{z_1 u_1 D_1 Q(u_1, \ldots, u_n) + \cdots + z_n u_n D_n Q(u_1, \ldots, u_n)}
 \]

 is decreasing in u_1, \ldots, u_n, increasing in $v_1, \ldots, v_n, w_1, \ldots, w_n$

 and increasing (decreasing) in z_i in $(0, 1)^n \times (1, \infty) \times (0, \infty)^{2n}$.
Preservation of stochastic orders-GDDNEW

- If $F_i \leq_{HR} G_i$ for $i = 1, \ldots, n$, then $F_Q \leq_{HR} G_Q$ for all MDF Q such that
 \[\beta Q = \frac{Q(u_1v_1, \ldots, u_nv_n)}{Q(u_1, \ldots, u_n)} \]
 is decreasing in u_1, \ldots, u_n and increasing in v_1, \ldots, v_n in $(0, 1)^n \times (1, \infty)^n$.

- If $F_i \leq_{LR} G_i$ and F_i is IHR (DHR) for $i = 1, \ldots, n$, then $F_Q \leq_{LR} G_Q$ for all MDF Q such that
 \[\gamma Q = \frac{w_1z_1u_1D_1Q(u_1v_1, \ldots, u_nv_n) + \cdots + w_nz_nu_nD_nQ(u_1v_1, \ldots, u_nv_n)}{z_1u_1D_1Q(u_1, \ldots, u_n) + \cdots + z_nu_nD_nQ(u_1, \ldots, u_n)} \]
 is decreasing in u_1, \ldots, u_n, increasing in $v_1, \ldots, v_n, w_1, \ldots, w_n$ and increasing (decreasing) in z_i in $(0, 1)^n \times (1, \infty) \times (0, \infty)^{2n}$.
Preservation of stochastic orders-GDDNEW

- If $F_Q = Q(F_1, F_2, \ldots, F_n)$ and $G_Q = Q(G_1, F_2, \ldots, F_n)$, then:
- If $F_1 \leq_{HR} G_1$ and $F_1 \geq_{HR} F_i \ (\leq_{HR})$ for $i = 2, \ldots, n$, then $F_Q \leq_{HR} G_Q$ for all MDF Q such that

\[
\delta\overline{Q} = \frac{\overline{Q}(u_1v_1, u_1v_2, \ldots, u_1v_n)}{\overline{Q}(u_1, u_1v_2, \ldots, u_1v_n)}
\]

is decreasing in u_1 and decreasing (increasing) in v_i, $i = 1, \ldots, n$.

- If $F_1 \leq_{LR} G_1$ and $F_1 \leq_{LR} F_i \ (\geq_{LR})$ for $i = 2, \ldots, n$, then $F_Q \leq_{LR} G_Q$ for all MDF Q such that

\[
\lambda\overline{Q} = \frac{w_1D_1\overline{Q}(u_1v_1, \ldots, u_1v_n) + \cdots + w_nD_n\overline{Q}(u_1v_1, \ldots, u_1v_n)}{D_1\overline{Q}(u_1, u_1v_2, \ldots, u_1v_n) + \cdots + D_n\overline{Q}(u_1, u_1v_2, \ldots, u_1v_n)}
\]

is decreasing in u_1, increasing in v_1 and increasing (decreasing) in v_i and w_i for $i = 2, \ldots, n$.

11th International Conference on Ordered Statistical Data

Jorge Navarro, E-mail: jorgenav@um.es
Preservation of stochastic orders-GDD

- If $F_Q = Q(F_1, F_2, \ldots, F_n)$ and $G_Q = Q(G_1, F_2, \ldots, F_n)$, then:
- If $F_1 \leq_{HR} G_1$ and $F_1 \geq_{HR} F_i$ (\leq_{HR}) for $i = 2, \ldots, n$, then $F_Q \leq_{HR} G_Q$ for all MDF Q such that

$$
\delta Q = \frac{Q(u_1 v_1, u_1 v_2, \ldots, u_1 v_n)}{Q(u_1, u_1 v_2, \ldots, u_1 v_n)}
$$

is decreasing in u_1 and decreasing (increasing) in v_i, $i = 1, \ldots, n$.

- If $F_1 \leq_{LR} G_1$ and $F_1 \leq_{LR} F_i$ (\geq_{LR}) for $i = 2, \ldots, n$, then $F_Q \leq_{LR} G_Q$ for all MDF Q such that

$$
\lambda Q = \frac{w_1 D_1 Q(u_1 v_1, \ldots, u_1 v_n) + \cdots + w_n D_n Q(u_1 v_1, \ldots, u_1 v_n)}{D_1 Q(u_1, u_1 v_2, \ldots, u_1 v_n) + \cdots + D_n Q(u_1, u_1 v_2, \ldots, u_1 v_n)}
$$

is decreasing in u_1, increasing in v_1 and increasing (decreasing) in v_i and w_i for $i = 2, \ldots, n$.
Preservation of stochastic orders-GDD^{NEW}

- If \(F_Q = Q(F_1, F_2, \ldots, F_n) \) and \(G_Q = Q(G_1, F_2, \ldots, F_n) \), then:
- If \(F_1 \leq_{HR} G_1 \) and \(F_1 \geq_{HR} F_i (\leq_{HR}) \) for \(i = 2, \ldots, n \), then \(F_Q \leq_{HR} G_Q \) for all MDF \(Q \) such that
 \[
 \delta \bar{Q} = \frac{Q(u_1 v_1, u_1 v_2, \ldots, u_1 v_n)}{Q(u_1, u_1 v_2, \ldots, u_1 v_n)}
 \]
 is decreasing in \(u_1 \) and decreasing (increasing) in \(v_i \), \(i = 1, \ldots, n \).
- If \(F_1 \leq_{LR} G_1 \) and \(F_1 \leq_{LR} F_i (\geq_{LR}) \) for \(i = 2, \ldots, n \), then \(F_Q \leq_{LR} G_Q \) for all MDF \(Q \) such that
 \[
 \lambda \bar{Q} = \frac{w_1 D_1 \bar{Q}(u_1 v_1, \ldots, u_1 v_n) + \cdots + w_n D_n \bar{Q}(u_1 v_1, \ldots, u_1 v_n)}{D_1 \bar{Q}(u_1, u_1 v_2, \ldots, u_1 v_n) + \cdots + D_n \bar{Q}(u_1, u_1 v_2, \ldots, u_1 v_n)}
 \]
 is decreasing in \(u_1 \), increasing in \(v_1 \) and increasing (decreasing) in \(v_i \) and \(w_i \) for \(i = 2, \ldots, n \).
Preservation results of aging classes

- Let C be an aging class.
- If q is a distorted function,

$$F \in C \Rightarrow q(F) \in C?$$

- If Q is a multivariate distorted function,

$$F_i \in C, i = 1, \ldots, n, \Rightarrow Q(F_1, \ldots, F_n) \in C?$$

Preservation results of aging classes

- Let \mathcal{C} be an aging class.
- If q is a distorted function,
 \[F \in \mathcal{C} \implies q(F) \in \mathcal{C}? \]
- If Q is a multivariate distorted function,
 \[F_i \in \mathcal{C}, \ i = 1, \ldots, n, \implies Q(F_1, \ldots, F_n) \in \mathcal{C}? \]

Navarro, E-mail: jorgenav@um.es
Preservation results of aging classes

- Let \mathcal{C} be an aging class.
- If q is a distorted function,

 $$F \in \mathcal{C} \Rightarrow q(F) \in \mathcal{C}?$$

- If Q is a multivariate distorted function,

 $$F_i \in \mathcal{C}, i = 1, \ldots, n, \Rightarrow Q(F_1, \ldots, F_n) \in \mathcal{C}?$$

Preservation results of aging classes

- Let \mathcal{C} be an aging class.
- If q is a distorted function,
 \[F \in \mathcal{C} \Rightarrow q(F) \in \mathcal{C}? \]
- If Q is a multivariate distorted function,
 \[F_i \in \mathcal{C}, i = 1, \ldots, n, \Rightarrow Q(F_1, \ldots, F_n) \in \mathcal{C}? \]
Stochastic aging classes

- X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is increasing (decreasing).
- X is IHR $\iff (X - s | X > s) \geq_{ST} (X - t | X > t)$ for all $s < t$.
- X is New Better (Worse) than Used NBU (NWU) if $X \geq_{ST} (X - t | X > t)$ (\leq_{ST}) for all $t > 0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\iff (X - s | X > s) \geq_{LR} (X - t | X > t)$ for all $s < t$.
- $ILR \Rightarrow IHR \Rightarrow NBU$.
Stochastic aging classes

- \(X \) is Increasing (Decreasing) Hazard Rate IHR (DHR) if \(h \) is increasing (decreasing).

- \(X \) is IHR \(\iff (X - s | X > s) \succeq_{ST} (X - t | X > t) \) for all \(s < t \).

- \(X \) is New Better (Worse) than Used NBU (NWU) if \(X \succeq_{ST} (X - t | X > t) (\preceq_{ST}) \) for all \(t > 0 \).

- \(X \) is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if \(f \) is log-concave (log-convex).

- \(X \) is ILR \(\iff (X - s | X > s) \succeq_{LR} (X - t | X > t) \) for all \(s < t \).

- \(ILR \Rightarrow IHR \Rightarrow NBU \).
Stochastic aging classes

- X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is increasing (decreasing).
- X is IHR $\iff (X - s|X > s) \geq_{ST} (X - t|X > t)$ for all $s < t$.
- X is New Better (Worse) than Used NBU (NWU) if $X \geq_{ST} (X - t|X > t)$ for all $t > 0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\iff (X - s|X > s) \geq_{LR} (X - t|X > t)$ for all $s < t$.
- $ILR \Rightarrow IHR \Rightarrow NBU$.
Stochastic aging classes

- X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is increasing (decreasing).
- X is IHR $\iff (X - s|X > s) \geq_{ST} (X - t|X > t)$ for all $s < t$.
- X is New Better (Worse) than Used NBU (NWU) if $X \geq_{ST} (X - t|X > t)$ (\leq_{ST}) for all $t > 0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\iff (X - s|X > s) \geq_{LR} (X - t|X > t)$ for all $s < t$.
- $ILR \Rightarrow IHR \Rightarrow NBU$.
Stochastic aging classes

- X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is increasing (decreasing).
- X is IHR $\iff (X - s | X > s) \geq_{ST} (X - t | X > t)$ for all $s < t$.
- X is New Better (Worse) than Used NBU (NWU) if $X \geq_{ST} (X - t | X > t)$ (\leq_{ST}) for all $t > 0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\iff (X - s | X > s) \geq_{LR} (X - t | X > t)$ for all $s < t$.
- $ILR \Rightarrow IHR \Rightarrow NBU$.
Stochastic aging classes

- X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is increasing (decreasing).
- X is IHR $\Leftrightarrow (X - s|X > s) \geq_{ST} (X - t|X > t)$ for all $s < t$.
- X is New Better (Worse) than Used NBU (NWU) if $X \geq_{ST} (X - t|X > t)$ (\leq_{ST}) for all $t > 0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\Leftrightarrow (X - s|X > s) \geq_{LR} (X - t|X > t)$ for all $s < t$.
- $ILR \Rightarrow IHR \Rightarrow NBU$.
Let $F_q = q(F)$ and $\alpha(u) = u \frac{q'(u)}{q(u)}$. Then:

- The IHR class is preserved (i.e. F_q is IHR for all F IHR) if and only if α is decreasing in $(0, 1)$.
- The DHR class is preserved if and only if α is increasing in $(0, 1)$.
- The IHR and DHR classes are preserved if and only if the PHR holds (α is constant).
- The NBU (NWU) class is preserved if and only if

$$\overline{q}(uv) \leq \overline{q}(u) \overline{q}(v) \quad (\geq), \quad 0 \leq u, v \leq 1. \quad (2.4)$$

- The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Preservation of Stochastic aging classes DD

Let $F_q = q(F)$ and $\alpha(u) = u \bar{q}'(u)/\bar{q}(u)$. Then:

- The IHR class is preserved (i.e. F_q is IHR for all F IHR) if and only if α is decreasing in $(0, 1)$.
- The DHR class is preserved if and only if α is increasing in $(0, 1)$.
- The IHR and DHR classes are preserved if and only if the PHR holds (α is constant).
- The NBU (NWU) class is preserved if and only if
 \[\bar{q}(uv) \leq \bar{q}(u)\bar{q}(v) \ (\geq), \ 0 \leq u, v \leq 1. \]
 \[(2.4)\]
- The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Preservation of Stochastic aging classes DD

- Let \(F_q = q(F) \) and \(\alpha(u) = u\bar{q}'(u)/\bar{q}(u) \). Then:
 - The IHR class is preserved (i.e. \(F_q \) is IHR for all \(F \) IHR) if and only if \(\alpha \) is decreasing in \((0, 1)\).
 - The DHR class is preserved if and only if \(\alpha \) is increasing in \((0, 1)\).
 - The IHR and DHR classes are preserved if and only if the PHR holds (\(\alpha \) is constant).
 - The NBU (NWU) class is preserved if and only if
 \[
 \bar{q}(uv) \leq \bar{q}(u)\bar{q}(v) \quad (\geq), \quad 0 \leq u, v \leq 1. \quad (2.4)
 \]
 - The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Let $F_q = q(F)$ and $\alpha(u) = u\bar{q}'(u)/\bar{q}(u)$. Then:

- The IHR class is preserved (i.e. F_q is IHR for all F IHR) if and only if α is decreasing in $(0,1)$.
- The DHR class is preserved if and only if α is increasing in $(0,1)$.
- The IHR and DHR classes are preserved if and only if the PHR holds (α is constant).
- The NBU (NWU) class is preserved if and only if

$$\bar{q}(uv) \leq \bar{q}(u)\bar{q}(v) \quad (\geq), \quad 0 \leq u, v \leq 1. \quad (2.4)$$

- The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Preservation of Stochastic aging classes DD

Let $F_q = q(F)$ and $\alpha(u) = u\overline{q}'(u)/\overline{q}(u)$. Then:

- The IHR class is preserved (i.e. F_q is IHR for all F IHR) if and only if α is decreasing in $(0, 1)$.
- The DHR class is preserved if and only if α is increasing in $(0, 1)$.
- The IHR and DHR classes are preserved if and only if the PHR holds (α is constant).
- The NBU (NWU) class is preserved if and only if
 \[
 \overline{q}(uv) \leq \overline{q}(u)\overline{q}(v) \quad (\geq), \quad 0 \leq u, v \leq 1.
 \] (2.4)
- The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Let $F_q = q(F)$ and $\alpha(u) = u\overline{q}'(u)/\overline{q}(u)$. Then:

- The IHR class is preserved (i.e. F_q is IHR for all F IHR) if and only if α is decreasing in $(0, 1)$.
- The DHR class is preserved if and only if α is increasing in $(0, 1)$.
- The IHR and DHR classes are preserved if and only if the PHR holds (α is constant).
- The NBU (NWU) class is preserved if and only if

$$\overline{q}(uv) \leq \overline{q}(u)\overline{q}(v) \quad (\geq), \quad 0 \leq u, v \leq 1. \quad (2.4)$$

- The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Preservation of Stochastic aging classes

- In the IID case:
 - The IHR class and the HR order are preserved for $X_{i:n}$ since $\alpha_{i:n}(u)$ is decreasing (Esary and Proschan 1963, Tech.).
 - The DHR class is not necessarily preserved for $X_{i:n}$! It is only preserved for $X_{1:n}$ since $\alpha_{1:n}(u)$ is constant.
 - The IHR and DHR classes are not necessarily preserved under the formation of coherent systems! It depends on the system structure.
 - In the ID case the IHR class is not necessarily preserved for $X_{i:n}$! It depends on the copula (dependence).
Preservation of Stochastic aging classes

- In the IID case:
 - The IHR class and the HR order are preserved for $X_{i:n}$ since $\alpha_{i:n}(u)$ is decreasing (Esary and Proschan 1963, Tech.).
 - The DHR class is not necessarily preserved for $X_{i:n}$! It is only preserved for $X_{1:n}$ since $\alpha_{1:n}(u)$ is constant.
 - The IHR and DHR classes are not necessarily preserved under the formation of coherent systems! It depends on the system structure.
 - In the ID case the IHR class is not necessarily preserved for $X_{i:n}$! It depends on the copula (dependence).
Preservation of Stochastic aging classes

- In the IID case:
 - The IHR class and the HR order are preserved for $X_{i:n}$ since $\alpha_{i:n}(u)$ is decreasing (Esary and Proschan 1963, Tech.).
 - The DHR class is not necessarily preserved for $X_{i:n}$! It is only preserved for $X_{1:n}$ since $\alpha_{1:n}(u)$ is constant.
 - The IHR and DHR classes are not necessarily preserved under the formation of coherent systems! It depends on the system structure.
 - In the ID case the IHR class is not necessarily preserved for $X_{i:n}$! It depends on the copula (dependence).
Preservation of Stochastic aging classes

- In the IID case:
 - The IHR class and the HR order are preserved for $X_{i:n}$ since $\alpha_{i:n}(u)$ is decreasing (Esary and Proschan 1963, Tech.).
 - The DHR class is not necessarily preserved for $X_{i:n}$! It is only preserved for $X_{1:n}$ since $\alpha_{1:n}(u)$ is constant.
 - The IHR and DHR classes are not necessarily preserved under the formation of coherent systems! It depends on the system structure.

- In the ID case the IHR class is not necessarily preserved for $X_{i:n}$! It depends on the copula (dependence).
Preservation of Stochastic aging classes

- In the IID case:
- The IHR class and the HR order are preserved for $X_{i:n}$ since $\alpha_{i:n}(u)$ is decreasing (Esary and Proschan 1963, Tech.).
- The DHR class is not necessarily preserved for $X_{i:n}$! It is only preserved for $X_{1:n}$ since $\alpha_{1:n}(u)$ is constant.
- The IHR and DHR classes are not necessarily preserved under the formation of coherent systems! It depends on the system structure.
- In the ID case the IHR class is not necessarily preserved for $X_{i:n}$! It depends on the copula (dependence).
Preservation of Stochastic aging classes DD

Let $F_q = q(F)$ and let

$$\beta(u) = \frac{uq''(u)}{q'(u)},$$

and

$$\overline{\beta}(u) = \frac{(1 - u)q''(u)}{q'(u)}.$$

Then:

- If F is ILR and there exists $a \in [0, 1]$ such that β is non-negative and decreasing in $(0, a)$ and $\overline{\beta}$ is non-positive and decreasing in $(a, 1)$, then F_q is ILR.
- If F is DLR with support (l, ∞) ($l \geq 0$), β is non-negative and increasing in $(0, 1)$, then F_q is DLR.
Let $F_q = q(F)$ and let

$$
\beta(u) = u\overline{q}''(u)/\overline{q}'(u),
$$

and

$$
\overline{\beta}(u) = (1 - u)\overline{q}''(u)/\overline{q}'(u).
$$

Then:

- If F is ILR and there exists $a \in [0, 1]$ such that β is non-negative and decreasing in $(0, a)$ and $\overline{\beta}$ is non-positive and decreasing in $(a, 1)$, then F_q is ILR.
- If F is DLR with support (l, ∞) ($l \geq 0$), β is non-negative and increasing in $(0, 1)$, then F_q is DLR.
Preservation of Stochastic aging classes DD

Let $F_q = q(F)$ and let

$$\beta(u) = \frac{u \overline{q}''(u)}{\overline{q}'(u)},$$

and

$$\overline{\beta}(u) = \frac{(1 - u) \overline{q}''(u)}{\overline{q}'(u)}.$$

Then:

- If F is ILR and there exists $a \in [0, 1]$ such that β is non-negative and decreasing in $(0, a)$ and $\overline{\beta}$ is non-positive and decreasing in $(a, 1)$, then F_q is ILR.
- If F is DLR with support (l, ∞) ($l \geq 0$), β is non-negative and increasing in $(0, 1)$, then F_q is DLR.
Preservation of Stochastic aging classes GDD

Let $\bar{F}_Q = \overline{Q}(\bar{F}_1, \ldots, \bar{F}_n)$ and

$$\alpha_i(u_1, \ldots, u_n) = \frac{u_i D_i \overline{Q}(u_1, \ldots, u_n)}{\overline{Q}(u_1, \ldots, u_n)}.$$

Then:

- The IHR (DHR) class is preserved if α_i is decreasing (increasing) in $(0, 1)^n$ for $i = 1, \ldots, n$.
- The NBU (NWU) class is preserved if

$$\overline{Q}(u_1 v_1, \ldots, u_n v_n) \leq \overline{Q}(u_1, \ldots, u_n) \overline{Q}(v_1, \ldots, v_n) \quad (\geq)$$

for all $u_1, \ldots, u_n, v_1, \ldots, v_n \in (0, 1)$,
- The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Preservation of Stochastic aging classes GDD

Let $\overline{F}_Q = \overline{Q}(\overline{F}_1, \ldots, \overline{F}_n)$ and

$$\alpha_i(u_1, \ldots, u_n) = \frac{u_i D_i \overline{Q}(u_1, \ldots, u_n)}{\overline{Q}(u_1, \ldots, u_n)}.$$

Then:

- The IHR (DHR) class is preserved if α_i is decreasing (increasing) in $(0, 1)^n$ for $i = 1, \ldots, n$.

- The NBU (NWU) class is preserved if

$$\overline{Q}(u_1 v_1, \ldots, u_n v_n) \leq \overline{Q}(u_1, \ldots, u_n) \overline{Q}(v_1, \ldots, v_n) \quad (\geq)$$

for all $u_1, \ldots, u_n, v_1, \ldots, v_n \in (0, 1)$,

- The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Preservation of Stochastic aging classes GDD

- Let $\overline{F}_Q = \overline{Q}(\overline{F}_1, \ldots, \overline{F}_n)$ and

$$\alpha_i(u_1, \ldots, u_n) = \frac{u_i D_i \overline{Q}(u_1, \ldots, u_n)}{\overline{Q}(u_1, \ldots, u_n)}.$$

Then:

- The IHR (DHR) class is preserved if α_i is decreasing (increasing) in $(0, 1)^n$ for $i = 1, \ldots, n$.
- The NBU (NWU) class is preserved if

$$\overline{Q}(u_1 v_1, \ldots, u_n v_n) \leq \overline{Q}(u_1, \ldots, u_n) \overline{Q}(v_1, \ldots, v_n) \quad (\geq)$$

for all $u_1, \ldots, u_n, v_1, \ldots, v_n \in (0, 1)$.
- The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Preservation of Stochastic aging classes GDD

- Let $F_Q = Q(F_1, \ldots, F_n)$ and

 $$\alpha_i(u_1, \ldots, u_n) = \frac{u_i D_i Q(u_1, \ldots, u_n)}{Q(u_1, \ldots, u_n)}.$$

 Then:
 - The IHR (DHR) class is preserved if α_i is decreasing (increasing) in $(0, 1)^n$ for $i = 1, \ldots, n$.
 - The NBU (NWU) class is preserved if

 $$Q(u_1 v_1, \ldots, u_n v_n) \leq Q(u_1, \ldots, u_n) Q(v_1, \ldots, v_n) \quad (\geq)$$

 for all $u_1, \ldots, u_n, v_1, \ldots, v_n \in (0, 1)$,
 - The NBU (NWU) class is preserved if the IHR (DHR) class is preserved.
Preservation of Stochastic aging classes GDD

If X_1, \ldots, X_n are independent, then:

- The NBU class is preserved under the formation of coherent systems (Esary, Marshall and Proschan, 1970, SIAM J Appl Math).
- The IHR class is not preserved under the formation of coherent systems (order statistics) in the independent case.
Preservation of Stochastic aging classes GDD

- If \(X_1, \ldots, X_n \) are independent, then:

- The NBU class is preserved under the formation of coherent systems (Esary, Marshall and Proschan, 1970, SIAM J Appl Math).

- The IHR class is not preserved under the formation of coherent systems (order statistics) in the independent case.
If X_1, \ldots, X_n are independent, then:

- The NBU class is preserved under the formation of coherent systems (Esary, Marshall and Proschan, 1970, SIAM J Appl Math).
- The IHR class is not preserved under the formation of coherent systems (order statistics) in the independent case.
Example-system IID case

Coherent system lifetime $T = \min(X_1, \max(X_2, X_3))$.

In the IID case: $q(u) = u + u^2 - u^3$ and $\bar{q}(u) = 2u^2 - 3u^3$.

Then $\alpha(u) = \frac{4 - 3u}{2 - u}$ is strictly decreasing.

The HR order is preserved.

The IHR class is preserved and the DHR is not always preserved.
Coherent system lifetime $T = \min(X_1, \max(X_2, X_3))$.

In the IID case: $q(u) = u + u^2 - u^3$ and $\overline{q}(u) = 2u^2 - 3u^3$.

Then $\alpha(u) = \frac{4 - 3u}{2 - u}$ is strictly decreasing.

The HR order is preserved.

The IHR class is preserved and the DHR is not always preserved.
Coherent system lifetime $T = \min(X_1, \max(X_2, X_3))$.

In the IID case: $q(u) = u + u^2 - u^3$ and $\bar{q}(u) = 2u^2 - 3u^3$.

Then $\alpha(u) = \frac{4-3u}{2-u}$ is strictly decreasing.

The HR order is preserved.

The IHR class is preserved and the DHR is not always preserved.
Coherent system lifetime $T = \min(X_1, \max(X_2, X_3))$.

In the IID case: $q(u) = u + u^2 - u^3$ and $\overline{q}(u) = 2u^2 - 3u^3$.

Then $\alpha(u) = \frac{4-3u}{2-u}$ is strictly decreasing.

The HR order is preserved.

The IHR class is preserved and the DHR is not always preserved.
Example-system IID case

- Coherent system lifetime $T = \min(X_1, \max(X_2, X_3))$.
- In the IID case: $q(u) = u + u^2 - u^3$ and $\bar{q}(u) = 2u^2 - 3u^3$.
- Then $\alpha(u) = \frac{4 - 3u}{2 - u}$ is strictly decreasing.
- The HR order is preserved.
- The IHR class is preserved and the DHR is not always preserved.
Coherent system lifetime $T = \min(X_1, \max(X_2, X_3))$.

In the IID case: $q(u) = u + u^2 - u^3$ and $\bar{q}(u) = 2u^2 - 3u^3$.

Then $\alpha(u) = \frac{4-3u}{2-u}$ is strictly decreasing.

The HR order is preserved.

The IHR class is preserved and the DHR is not always preserved.
Example - paradoxical system IID case

- Coherent system lifetime $T = \max(X_1, \min(X_2, X_3))$.
- In the IID case: $\bar{q}(u) = u + u^2 - u^3$ and $q(u) = 2u^2 - 3u^3$.
- Then $\alpha(u) = \frac{1 + 2u - 3u^2}{1 + u - u^2}$ is strictly increasing in $(0, u_0)$ and strictly decreasing in $(u_0, 1)$, with $u_0 = \sqrt{5} - 2 = 0.236068$.
- The HR order is not necessarily preserved.
- Neither the IHR class nor the DHR are preserved.
Coherent system lifetime $T = \max(X_1, \min(X_2, X_3))$.

In the IID case: $\bar{q}(u) = u + u^2 - u^3$ and $q(u) = 2u^2 - 3u^3$.

Then $\alpha(u) = \frac{1+2u-3u^2}{1+u-u^2}$ is strictly increasing in $(0, u_0)$ and strictly decreasing in $(u_0, 1)$, with $u_0 = \sqrt{5} - 2 = 0.236068$.

The HR order is not necessarily preserved.

Neither the IHR class nor the DHR are preserved.
Example- paradoxical system IID case

- Coherent system lifetime $T = \max(X_1, \min(X_2, X_3))$.
- In the IID case: $\bar{q}(u) = u + u^2 - u^3$ and $q(u) = 2u^2 - 3u^3$.
- Then $\alpha(u) = \frac{1+2u-3u^2}{1+u-u^2}$ is strictly increasing in $(0, u_0)$ and strictly decreasing in $(u_0, 1)$, with $u_0 = \sqrt{5} - 2 = 0.236068$.
- The HR order is not necessarily preserved.
- Neither the IHR class nor the DHR are preserved.
Example- paradoxical system IID case

- Coherent system lifetime $T = \max(X_1, \min(X_2, X_3))$.
- In the IID case: $\bar{q}(u) = u + u^2 - u^3$ and $q(u) = 2u^2 - 3u^3$.
- Then $\alpha(u) = \frac{1+2u-3u^2}{1+u-u^2}$ is strictly increasing in $(0, u_0)$ and strictly decreasing in $(u_0, 1)$, with $u_0 = \sqrt{5} - 2 = 0.236068$.
- The HR order is not necessarily preserved.
- Neither the IHR class nor the DHR are preserved.
Coherent system lifetime $T = \max(X_1, \min(X_2, X_3))$.

In the IID case: $\bar{q}(u) = u + u^2 - u^3$ and $q(u) = 2u^2 - 3u^3$.

Then $\alpha(u) = \frac{1 + 2u - 3u^2}{1 + u - u^2}$ is strictly increasing in $(0, u_0)$ and strictly decreasing in $(u_0, 1)$, with $u_0 = \sqrt{5} - 2 = 0.236068$.

The HR order is not necessarily preserved.

Neither the IHR class nor the DHR are preserved.
Figure: HR (left) and RF (left) of the residual lifetimes \((T - t | T > t)\) of the system \(T = \max(X_1, \min(X_2, X_3))\) when \(X_i\) are IID \(\sim \text{Exp}(\mu = 1)\) with \(t = 0, 1, 2, 3\) (black, blue, red, green).
Figure: HR X_1 (left) and $T = \max(X_1, \min(X_2, X_3))$ (right) when X_i are IID with $\bar{F}(t) = 1 - (1 - e^{-t})^a$ for $t > 0$ and $a = 2, 5$ (blue, black).
Example-DID case

- Series system \(X_{1:n} = \min(X_1, \ldots, X_n) \) with ID components having a Clayton-Oakes survival copula

\[
K(u_1, \ldots, u_n) = \left(\sum_{i=1}^{n} u_i^{1-\theta} - (n-1) \right)^{1/(1-\theta)}, \quad \theta > 1.
\]

- Then

\[
\bar{q}(u) = K(u, \ldots, u) = (nu^{1-\theta} - n + 1)^{1/(1-\theta)}.
\]

- As \(\alpha(u) = \frac{\theta}{n-(n-1)u^{\theta-1}} \) is a strictly increasing function for all \(\theta > 1 \), the DHR class is preserved for all \(n \).
- However, the IHR class is not necessarily preserved.
- The HR order is not necessarily preserved.
Example-DID case

- Series system $X_{1:n} = \min(X_1, \ldots, X_n)$ with ID components having a Clayton-Oakes survival copula

$$K(u_1, \ldots, u_n) = \left(\sum_{i=1}^{n} u_i^{1-\theta} - (n - 1) \right)^{1/(1-\theta)}, \quad \theta > 1.$$

- Then

$$\bar{q}(u) = K(u, \ldots, u) = (nu^{1-\theta} - n + 1)^{1/(1-\theta)}.$$

- As $\alpha(u) = \frac{n}{n-(n-1)u^{\theta-1}}$ is a strictly increasing function for all $\theta > 1$, the DHR class is preserved for all n.

- However, the IHR class is not necessarily preserved.

- The HR order is not necessarily preserved.
Example-DID case

- Series system $X_{1:n} = \min(X_1, \ldots, X_n)$ with ID components having a Clayton-Oakes survival copula

$$K(u_1, \ldots, u_n) = \left(\sum_{i=1}^{n} u_i^{1-\theta} - (n - 1) \right)^{1/(1-\theta)}$$

- Then

$$\bar{q}(u) = K(u, \ldots, u) = (nu^{1-\theta} - n + 1)^{1/(1-\theta)}.$$

- As $\alpha(u) = \frac{n}{n-(n-1)u^{\theta-1}}$ is a strictly increasing function for all $\theta > 1$, the DHR class is preserved for all n.

- However, the IHR class is not necessarily preserved.

- The HR order is not necessarily preserved.
Example-DID case

• Series system $X_{1:n} = \min(X_1, \ldots, X_n)$ with ID components having a Clayton-Oakes survival copula

$$K(u_1, \ldots, u_n) = \left(\sum_{i=1}^{n} u_i^{1-\theta} - (n-1) \right)^{1/(1-\theta)}, \quad \theta > 1.$$

• Then

$$\bar{q}(u) = K(u, \ldots, u) = (nu^{1-\theta} - n + 1)^{1/(1-\theta)}.$$

• As $\alpha(u) = \frac{n}{n-(n-1)u^{\theta-1}}$ is a strictly increasing function for all $\theta > 1$, the DHR class is preserved for all n.

• However, the IHR class is not necessarily preserved.

• The HR order is not necessarily preserved.
Example-DID case

- Series system $X_{1:n} = \min(X_1, \ldots, X_n)$ with ID components having a Clayton-Oakes survival copula

$$K(u_1, \ldots, u_n) = \left(\sum_{i=1}^{n} u_i^{1-\theta} - (n - 1) \right)^{1/(1-\theta)}, \quad \theta > 1.$$

- Then

$$\bar{q}(u) = K(u, \ldots, u) = (nu^{1-\theta} - n + 1)^{1/(1-\theta)}.$$

- As $\alpha(u) = \frac{n}{n-\left(n-1\right)u^{\theta-1}}$ is a strictly increasing function for all $\theta > 1$, the DHR class is preserved for all n.
- However, the IHR class is not necessarily preserved.
- The HR order is not necessarily preserved.
Figure: HR of $T = \min(X_1, X_2)$ when (X_1, X_2) has a C-O survival copula with $\theta = 2$ and $\bar{F}_i(t) = \exp(-t^a)$, $t > 0$, $i = 1, 2$ with $a = 1$ (black, Exponential), $a = 1.1, 1.2, 1.3, 1.4$ (blue, red, green, purple, IHR Weibull).
Example: Parallel system IND case

- Parallel system \(X_{1:2} = \max(X_1, X_2) \) with IND components.
- Then \(Q_{2:2}(u_1, u_2) = u_1 + u_2 - u_1 u_2 \).
- As \(\alpha_1^Q(u_1, u_2) = (u_1 - u_1 u_2)/(u_1 + u_2 - u_1 u_2) \) is increasing in \(u_1 \) and decreasing in \(u_2 \), then the IHR and DHR classes are not necessarily preserved.
- For the series system \(Q_{1:2}(u) = u_1 u_2 \) and as

\[
\frac{Q_{2:2}(u_1, u_2)}{Q_{1:2}(u_1, u_2)} = \frac{1}{u_1} + \frac{1}{u_2} - 1
\]

is decreasing, then \(X_{1:2} \leq_{HR} X_{2:2} \).
- \(X_1 \) and \(X_{2:2} \) are not always HR-ordered since

\[
\frac{Q_{2:2}(u_1, u_2)}{u_1} = 1 + \frac{u_2}{u_1} - u_2
\]

is decreasing in \(u_1 \) but increasing in \(u_2 \).
Example-Parallel system IND case

- Parallel system $X_{1:2} = \max(X_1, X_2)$ with IND components.
- Then $Q_{2:2}(u_1, u_2) = u_1 + u_2 - u_1 u_2$.
- As $\alpha_{Q}(u_1, u_2) = (u_1 - u_1 u_2) / (u_1 + u_2 - u_1 u_2)$ is increasing in u_1 and decreasing in u_2, then the IHR and DHR classes are not necessarily preserved.
- For the series system $Q_{1:2}(u) = u_1 u_2$ and as

 \[
 \frac{Q_{2:2}(u_1, u_2)}{Q_{1:2}(u_1, u_2)} = \frac{1}{u_1} + \frac{1}{u_2} - 1
 \]

 is decreasing, then $X_{1:2} \leq_{HR} X_{2:2}$.
- X_1 and $X_{2:2}$ are not always HR-ordered since
 \[
 \frac{Q_{2:2}(u_1, u_2)}{u_1} = 1 + \frac{u_2}{u_1} - u_2
 \]

 is decreasing in u_1 but increasing in u_2.
Example-Parallel system IND case

- Parallel system $X_{1:2} = \max(X_1, X_2)$ with IND components.
- Then $Q_{2:2}(u_1, u_2) = u_1 + u_2 - u_1 u_2$.
- As $\alpha_1(Q(u_1, u_2)) = (u_1 - u_1 u_2)/(u_1 + u_2 - u_1 u_2)$ is increasing in u_1 and decreasing in u_2, then the IHR and DHR classes are not necessarily preserved.
- For the series system $Q_{1:2}(u) = u_1 u_2$ and as
 \[
 \frac{Q_{2:2}(u_1, u_2)}{Q_{1:2}(u_1, u_2)} = \frac{1}{u_1} + \frac{1}{u_2} - 1
 \]
 is decreasing, then $X_{1:2} \leq_{HR} X_{2:2}$.
- X_1 and $X_{2:2}$ are not always HR-ordered since
 \[
 \frac{Q_{2:2}(u_1, u_2)}{u_1} = 1 + \frac{u_2}{u_1} - u_2
 \]
 is decreasing in u_1 but increasing in u_2.

11th International Conference on Ordered Statistical Data
Jorge Navarro, E-mail: jorgenav@um.es
Example-Parallel system IND case

- Parallel system $X_{1:2} = \max(X_1, X_2)$ with IND components.
- Then $\overline{Q}_{2:2}(u_1, u_2) = u_1 + u_2 - u_1 u_2$.
- As $\alpha^Q_1(u_1, u_2) = (u_1 - u_1 u_2)/(u_1 + u_2 - u_1 u_2)$ is increasing in u_1 and decreasing in u_2, then the IHR and DHR classes are not necessarily preserved.
- For the series system $\overline{Q}_{1:2}(u) = u_1 u_2$ and as
 \[
 \frac{\overline{Q}_{2:2}(u_1, u_2)}{\overline{Q}_{1:2}(u_1, u_2)} = \frac{1}{u_1} + \frac{1}{u_2} - 1
 \]
 is decreasing, then $X_{1:2} \leq_{HR} X_{2:2}$.
- X_1 and $X_{2:2}$ are not always HR-ordered since
 \[
 \frac{\overline{Q}_{2:2}(u_1, u_2)}{u_1} = 1 + \frac{u_2}{u_1} - u_2
 \]
 is decreasing in u_1 but increasing in u_2.
Example-Parallel system IND case

- Parallel system $X_{1:2} = \max(X_1, X_2)$ with IND components.
- Then $Q_{2:2}(u_1, u_2) = u_1 + u_2 - u_1 u_2$.
- As $\alpha_Q(u_1, u_2) = (u_1 - u_1 u_2)/(u_1 + u_2 - u_1 u_2)$ is increasing in u_1 and decreasing in u_2, then the IHR and DHR classes are not necessarily preserved.
- For the series system $Q_{1:2}(u) = u_1 u_2$ and as
 \[
 \frac{Q_{2:2}(u_1, u_2)}{Q_{1:2}(u_1, u_2)} = \frac{1}{u_1} + \frac{1}{u_2} - 1
 \]
 is decreasing, then $X_{1:2} \leq_{HR} X_{2:2}$.
- X_1 and $X_{2:2}$ are not always HR-ordered since
 \[
 \frac{Q_{2:2}(u_1, u_2)}{u_1} = 1 + \frac{u_2}{u_1} - u_2
 \]
 is decreasing in u_1 but increasing in u_2.

Figure: HR of X_i (red), $X_{1:2}$ (blue) and $X_{2:2}$ (black) when $X_i \sim \text{Exp}(\mu = 1/i), i = 1, 2$. X_i are IHR and DHR but $X_{2:2}$ is neither IHR nor DHR.
Parrondo’s paradox series systems-IID case

- Parrondo’s paradox shows (Game Theory) how, in some games, a random strategy might be better than any deterministic strategy.
- The same paradox holds for coherent systems.
- Let us assume that we have two kind of units with reliability functions $\overline{F}_1 \geq \overline{F}_2$ (in a similar number) to build series systems with two independent units.
- Let $T = \min(X_1, X_2)$ be the system obtained when $\overline{F}_i(t) = \Pr(X_i > t)$, $i = 1, 2$.
- Let S be the system obtained when the units are chosen randomly.
- Then $T \leq_{ST} S$ since
 \[\overline{F}_T(t) = \overline{F}_1(t)\overline{F}_2(t) \leq (0.5\overline{F}_1(t) + 0.5\overline{F}_1(t))^2 = \overline{F}_S(t). \]
Parrondo’s paradox shows (Game Theory) how, in some games, a random strategy might be better than any deterministic strategy.

The same paradox holds for coherent systems.

Let us assume that we have two kind of units with reliability functions $F_1 \geq F_2$ (in a similar number) to build series systems with two independent units.

Let $T = \min(X_1, X_2)$ be the system obtained when $F_i(t) = \Pr(X_i > t)$, $i = 1, 2$.

Let S be the system obtained when the units are chosen randomly.

Then $T \leq S$ since

$$F_T(t) = F_1(t)F_2(t) \leq (0.5F_1(t) + 0.5F_1(t))^2 = F_S(t).$$
Parrondo’s paradox series systems-IID case

- Parrondo’s paradox shows (Game Theory) how, in some games, a random strategy might be better than any deterministic strategy.
- The same paradox holds for coherent systems.
- Let us assume that we have two kind of units with reliability functions $F_1 \geq F_2$ (in a similar number) to build series systems with two independent units.
- Let $T = \min(X_1, X_2)$ be the system obtained when $F_i(t) = \Pr(X_i > t)$, $i = 1, 2$.
- Let S be the system obtained when the units are chosen randomly.
- Then $T \preceq_S S$ since
 \[
 F_T(t) = F_1(t)F_2(t) \leq (0.5F_1(t) + 0.5F_1(t))^2 = F_S(t).
 \]
Parrondo’s paradox series systems-IID case

- Parrondo’s paradox shows (Game Theory) how, in some games, a random strategy might be better than any deterministic strategy.
- The same paradox holds for coherent systems.
- Let us assume that we have two kinds of units with reliability functions $F_1 \geq F_2$ (in a similar number) to build series systems with two independent units.
- Let $T = \min(X_1, X_2)$ be the system obtained when $F_i(t) = \Pr(X_i > t), i = 1, 2$.
- Let S be the system obtained when the units are chosen randomly.
- Then $T \leq S$ since
 $$F_T(t) = F_1(t)F_2(t) \leq (0.5F_1(t) + 0.5F_1(t))^2 = F_S(t).$$
Parrondo’s paradox shows (Game Theory) how, in some games, a random strategy might be better than any deterministic strategy.

The same paradox holds for coherent systems.

Let us assume that we have two kinds of units with reliability functions $F_1 \geq F_2$ (in a similar number) to build series systems with two independent units.

Let $T = \min(X_1, X_2)$ be the system obtained when $F_i(t) = \Pr(X_i > t)$, $i = 1, 2$.

Let S be the system obtained when the units are chosen randomly.

Then $T \leq S$ since

$$F_T(t) = F_1(t)F_2(t) \leq (0.5F_1(t) + 0.5F_1(t))^2 = F_S(t).$$
Parrondo’s paradox series systems-IID case

- Parrondo’s paradox shows (Game Theory) how, in some games, a random strategy might be better than any deterministic strategy.
- The same paradox holds for coherent systems.
- Let us assume that we have two kind of units with reliability functions $F_1 \geq F_2$ (in a similar number) to build series systems with two independent units.
- Let $T = \min(X_1, X_2)$ be the system obtained when $F_i(t) = \Pr(X_i > t), i = 1, 2$.
- Let S be the system obtained when the units are chosen randomly.
- Then $T \leq_{ST} S$ since
 $$F_T(t) = F_1(t)F_2(t) \leq (0.5F_1(t) + 0.5F_1(t))^2 = F_S(t).$$
Figure: Reliability functions of systems T (black) and S (blue) when the units have exponential distributions with means 5 and 1.
Parrondo’s paradox in other systems

- The same happen with series systems of size n with independent components.
- The orderings are reversed for parallel systems.
- In both cases, we compare the GDD $Q(F_1, \ldots, F_n)$ and $Q(G, \ldots, G)$, where $G = F_1 + \cdots + F_n)/n$.
- A function $g : \mathbb{R}^n \to \mathbb{R}$ is weakly Schur-concave (convex) if

$$g(u_1, u_2, \ldots, u_n) \leq g(\bar{u}, \bar{u}, \ldots, \bar{u}) \quad (\geq)$$

for all (u_1, u_2, \ldots, u_n), where $\bar{u} = (u_1 + u_2 + \ldots + u_n)/n$.
The same happen with series systems of size \(n \) with independent components.

The orderings are reversed for parallel systems.

In both cases, we compare the GDD \(Q(F_1, \ldots, F_n) \) and \(Q(G, \ldots, G) \), where \(G = F_1 + \cdots + F_n)/n \).

A function \(g : \mathbb{R}^n \to \mathbb{R} \) is weakly Schur-concave (convex) if

\[
g(u_1, u_2, \ldots, u_n) \leq g(\bar{u}, \bar{u}, \ldots, \bar{u}) \quad (\geq)
\]

for all \((u_1, u_2, \ldots, u_n)\), where \(\bar{u} = (u_1 + u_2 + \ldots + u_n)/n \).
Parrondo’s paradox in other systems

- The same happen with series systems of size n with independent components.
- The orderings are reversed for parallel systems.
- In both cases, we compare the GDD $Q(F_1, \ldots, F_n)$ and $Q(G, \ldots, G)$, where $G = F_1 + \cdots + F_n)/n$.
- A function $g : \mathbb{R}^n \to \mathbb{R}$ is weakly Schur-concave (convex) if
 \[g(u_1, u_2, \ldots, u_n) \leq g(\bar{u}, \bar{u}, \ldots, \bar{u}) \quad (\geq) \]
 for all (u_1, u_2, \ldots, u_n), where $\bar{u} = (u_1 + u_2 + \ldots + u_n)/n$.

11th International Conference on Ordered Statistical Data
Jorge Navarro, E-mail: jorgenav@um.es
Parrondo’s paradox in other systems

- The same happen with series systems of size n with independent components.
- The orderings are reversed for parallel systems.
- In both cases, we compare the GDD $Q(F_1, \ldots, F_n)$ and $Q(G, \ldots, G)$, where $G = F_1 + \cdots + F_n)/n$.
- A function $g : \mathbb{R}^n \to \mathbb{R}$ is weakly Schur-concave (convex) if
 \[g(u_1, u_2, \ldots, u_n) \leq g(\bar{u}, \bar{u}, \ldots, \bar{u}) \quad (\geq) \]
 for all (u_1, u_2, \ldots, u_n), where $\bar{u} = (u_1 + u_2 + \ldots + u_n)/n$.

Jorge Navarro, E-mail: jorgenav@um.es
Theorem (Navarro and Spizzichino, ASMBI 2010)

If \((X_1, X_2, \ldots, X_n)\) and \((Y_1, Y_2, \ldots, Y_n)\) have the same copula,

\[
\overline{F}_i(t) = \Pr(X_i > t) \quad \text{and} \quad \overline{F}(t) = (\overline{F}_1(t) + \ldots + \overline{F}_n(t))/n = \Pr(Y_i > t) \quad \text{for } i = 1, \ldots, n, \text{ and}
\]

\(Q_{\phi,K}\) is weakly Schur-concave (convex), then

\[
T = \phi(X_1, \ldots, X_n) \leq_{ST} S = \phi(Y_1, \ldots, Y_n) \quad (\geq_{ST}).
\]
Parrondo’s paradox in other systems

- This theorem can be applied to GDD.
- For $X_{1:n}$ with independent components
 $$\bar{Q}_{1:n}(u_1,\ldots,u_n) = u_1 \ldots u_n$$
 which is Schur-concave and so Parrondo’s paradox holds.
- For $X_{1:n}$ with dependent components
 $$\bar{Q}_{1:n,K}(u_1,\ldots,u_n) = K(u_1,\ldots,u_n).$$
- Many copulas are Schur-concave (e.g. Archimedean copulas) and so Parrondo’s paradox holds in many series systems.
- However there are copulas which are weakly Schur-convex and hence the ordering can be reversed for series systems (see Navarro and Spizzichino, ASMBI 2010).
- The preceding properties are reversed for parallel systems.
Parrondo’s paradox in other systems

- This theorem can be applied to GDD.
- For $X_{1:n}$ with independent components
 $\overline{Q}_{1:n}(u_1, \ldots, u_n) = u_1 \ldots u_n$ which is Schur-concave and so Parrondo’s paradox holds.
- For $X_{1:n}$ with dependent components
 $\overline{Q}_{1:n,K}(u_1, \ldots, u_n) = K(u_1, \ldots, u_n)$.
- Many copulas are Schur-concave (e.g. Archimedean copulas) and so Parrondo’s paradox holds in many series systems.
- However there are copulas which are weakly Schur-convex and hence the ordering can be reversed for series systems (see Navarro and Spizzichino, ASMBI 2010).
- The preceding properties are reversed for parallel systems.
Parrondo’s paradox in other systems

- This theorem can be applied to GDD.
- For $X_{1:n}$ with independent components $Q_{1:n}(u_1, \ldots, u_n) = u_1 \ldots u_n$ which is Schur-concave and so Parrondo’s paradox holds.
- For $X_{1:n}$ with dependent components $Q_{1:n,K}(u_1, \ldots, u_n) = K(u_1, \ldots, u_n)$.
- Many copulas are Schur-concave (e.g. Archimedean copulas) and so Parrondo’s paradox holds in many series systems.
- However there are copulas which are weakly Schur-convex and hence the ordering can be reversed for series systems (see Navarro and Spizzichino, ASMBI 2010).
- The preceding properties are reversed for parallel systems.
Parrondo’s paradox in other systems

- This theorem can be applied to GDD.
- For $X_{1:n}$ with independent components
 \[Q_{1:n}(u_1, \ldots, u_n) = u_1 \ldots u_n \]
 which is Schur-concave and so Parrondo’s paradox holds.
- For $X_{1:n}$ with dependent components
 \[Q_{1:n,K}(u_1, \ldots, u_n) = K(u_1, \ldots, u_n). \]
- Many copulas are Schur-concave (e.g. Archimedean copulas)
 and so Parrondo’s paradox holds in many series systems.
- However there are copulas which are weakly Schur-convex and
 hence the ordering can be reversed for series systems (see
 Navarro and Spizzichino, ASMBI 2010).
- The preceding properties are reversed for parallel systems.
Parrondo’s paradox in other systems

- This theorem can be applied to GDD.
- For $X_{1:n}$ with independent components
 \[\overline{Q}_{1:n}(u_1, \ldots, u_n) = u_1 \ldots u_n \]
 which is Schur-concave and so Parrondo’s paradox holds.
- For $X_{1:n}$ with dependent components
 \[\overline{Q}_{1:n,K}(u_1, \ldots, u_n) = K(u_1, \ldots, u_n). \]
- Many copulas are Schur-concave (e.g. Archimedean copulas) and so Parrondo’s paradox holds in many series systems.
- However there are copulas which are weakly Schur-convex and hence the ordering can be reversed for series systems (see Navarro and Spizzichino, ASMBI 2010).
- The preceding properties are reversed for parallel systems.
Parrondo’s paradox in other systems

- This theorem can be applied to GDD.
- For $X_{1:n}$ with independent components $Q_{1:n}(u_1, \ldots, u_n) = u_1 \ldots u_n$ which is Schur-concave and so Parrondo’s paradox holds.
- For $X_{1:n}$ with dependent components $\overline{Q}_{1:n,K}(u_1, \ldots, u_n) = K(u_1, \ldots, u_n)$.
- Many copulas are Schur-concave (e.g. Archimedean copulas) and so Parrondo’s paradox holds in many series systems.
- However there are copulas which are weakly Schur-convex and hence the ordering can be reversed for series systems (see Navarro and Spizzichino, ASMBI 2010).
- The preceding properties are reversed for parallel systems.
If \bar{Q} is a GDF, we consider the GDD with RF

$$F_k(t) = \bar{Q}(\underbrace{F_X(t), \ldots, F_X(t)}_{k\text{-times}}, \underbrace{F_Y(t), \ldots, F_Y(t)}_{(n-k)\text{-times}}), \quad k = 0, \ldots, n$$

(3.1)

Here, e.g., we can assume $X \succeq_{ST} Y$.

The randomized GDD is obtained when the number k of “god components” is chosen randomly according to a discrete random variable K with support included in $\{0, \ldots, n\}$.

It is represented by the random variable T_K.

Randomized GDD

- If Q is a GDF, we consider the GDD with RF

$$F_k(t) = Q\left(\underbrace{F_X(t), \ldots, F_X(t)}_{k\text{-times}}, \underbrace{F_Y(t), \ldots, F_Y(t)}_{(n-k)\text{-times}}\right), k = 0, \ldots, n$$ (3.1)

- Here, e.g., we can assume $X \geq_{ST} Y$.

- The randomized GDD is obtained when the number k of “god components” is chosen randomly according to a discrete random variable K with support included in $\{0, \ldots, n\}$.

- It is represented by the random variable T_K.
Randomized GDD

- If \overline{Q} is a GDF, we consider the GDD with RF

$$\overline{F}_k(t) = \overline{Q}(\frac{\overline{F}_X(t)}{k-\text{times}}, \frac{\overline{F}_X(t)}{k-\text{times}}, \frac{\overline{F}_Y(t)}{(n-k)-\text{times}}, \frac{\overline{F}_Y(t)}{(n-k)-\text{times}}), k = 0, \ldots, n$$

(3.1)

- Here, e.g., we can assume $X \geq_{ST} Y$.

- The randomized GDD is obtained when the number k of “god components” is chosen randomly according to a discrete random variable K with support included in $\{0, \ldots, n\}$.

- It is represented by the random variable T_K.
Randomized GDD

- If \(\overline{Q} \) is a GDF, we consider the GDD with RF

\[
\overline{F}_k(t) = \overline{Q}(\underbrace{\overline{F}_X(t), \ldots, \overline{F}_X(t)}_{k\text{-times}}, \underbrace{\overline{F}_Y(t), \ldots, \overline{F}_Y(t)}_{(n-k)\text{-times}}), \quad k = 0, \ldots, n
\]

(3.1)

- Here, e.g., we can assume \(X \geq_{st} Y \).
- The randomized GDD is obtained when the number \(k \) of “god components” is chosen randomly according to a discrete random variable \(K \) with support included in \(\{0, \ldots, n\} \).
- It is represented by the random variable \(T_K \)
Proposition (Navarro, Pellerey and Di Crecenzo, 2014)

If k is chosen randomly according to K_1 or K_2 and

$$
\varphi(k) = \overline{Q}(u, \ldots, u, v, \ldots, v)
$$

k–times $(n-k)$–times

is convex (concave) in $\{0, 1, \ldots, m\}$ for all $u, v \in (0, 1)$, then:

(i) $K_1 \leq_{CX} K_2$ implies $T_{K_1} \leq_{ST} T_{K_2}$ (\geq_{st}).

(ii) $X \geq_{ST} Y$ and $K_1 \leq_{ICX} K_2$ (\leq_{ICV}) imply $T_{K_1} \leq_{ST} T_{K_2}$.
Figure: Reliability functions of systems T (black) and S (blue) when the units have exponential distributions with means 1 and 5.
Parrondo paradox example

- \(T = \min(X_1, X_2) \) with \(\overline{Q}(u, v) = uv \).
- It is obtained with \(K_1 \) such that \(\Pr(K_1 = 1) = 1 \).
- \(S \) is obtained with \(K_2 \) such that \(\Pr(K_2 = 1) = 1/2 \) and \(\Pr(K_2 = 0) = \Pr(K_2 = 2) = 1/4 \).
- Another reasonable option is obtained with \(K_3 \) such that \(\Pr(K_3 = i) = 1/3 \) for \(i = 0, 1, 2 \).
- The green line is obtained with \(K_4 \) such that \(\Pr(K_4 = 0) = \Pr(K_4 = 2) = 1/2 \).
- Note that \(E(K_i) = 1 \) for \(i = 1, 2, 3, 4 \).
- As \(\varphi(k) = u^k v^{1-k} \) is convex and \(K_1 \leq_C X K_2 \leq_C X K_3 \leq_C X K_4 \), then
 \[\overline{F}_{K_1} \leq_{ST} \overline{F}_{K_2} \leq_{ST} \overline{F}_{K_3} \leq_{ST} \overline{F}_{K_4}. \]
- Actually, \(K_4 \) is the best option (the most convex) whenever \(E(K) = 1 \).
Parrondo paradox example

- \(T = \min(X_1, X_2) \) with \(Q(u, v) = uv \).
- It is obtained with \(K_1 \) such that \(\Pr(K_1 = 1) = 1 \).
- \(S \) is obtained with \(K_2 \) such that \(\Pr(K_2 = 1) = 1/2 \) and \(\Pr(K_2 = 0) = \Pr(K_2 = 2) = 1/4 \).
- Another reasonable option is obtained with \(K_3 \) such that \(\Pr(K_3 = i) = 1/3 \) for \(i = 0, 1, 2 \).
- The green line is obtained with \(K_4 \) such that \(\Pr(K_4 = 0) = \Pr(K_4 = 2) = 1/2 \).
- Note that \(E(K_i) = 1 \) for \(i = 1, 2, 3, 4 \).
- As \(\varphi(k) = u^k v^{1-k} \) is convex and \(K_1 \leq_{C_X} K_2 \leq_{C_X} K_3 \leq_{C_X} K_4 \), then
 \[
 \overline{F}_{K_1} \leq_{ST} \overline{F}_{K_2} \leq_{ST} \overline{F}_{K_3} \leq_{ST} \overline{F}_{K_4}.
 \]
- Actually, \(K_4 \) is the best option (the most convex) whenever \(E(K) = 1 \).
Parrondo paradox example

- \(T = \min(X_1, X_2) \) with \(\bar{Q}(u, v) = uv \).
- It is obtained with \(K_1 \) such that \(\Pr(K_1 = 1) = 1 \).
- \(S \) is obtained with \(K_2 \) such that \(\Pr(K_2 = 1) = 1/2 \) and \(\Pr(K_2 = 0) = \Pr(K_2 = 2) = 1/4 \).
- Another reasonable option is obtained with \(K_3 \) such that \(\Pr(K_3 = i) = 1/3 \) for \(i = 0, 1, 2 \).
- The green line is obtained with \(K_4 \) such that \(\Pr(K_4 = 0) = \Pr(K_4 = 2) = 1/2 \).
- Note that \(E(K_i) = 1 \) for \(i = 1, 2, 3, 4 \).
- As \(\varphi(k) = u^k v^{1-k} \) is convex and \(K_1 \leq_{cx} K_2 \leq_{cx} K_3 \leq_{cx} K_4 \), then
 \[
 \bar{F}_{K_1} \leq_{st} \bar{F}_{K_2} \leq_{st} \bar{F}_{K_3} \leq_{st} \bar{F}_{K_4}.
 \]
- Actually, \(K_4 \) is the best option (the most convex) whenever \(E(K) = 1 \).
Parrondo paradox example

- $T = \min(X_1, X_2)$ with $Q(u, v) = uv$.
- It is obtained with K_1 such that $\Pr(K_1 = 1) = 1$.
- S is obtained with K_2 such that $\Pr(K_2 = 1) = 1/2$ and $\Pr(K_2 = 0) = \Pr(K_2 = 2) = 1/4$.
- Another reasonable option is obtained with K_3 such that $\Pr(K_3 = i) = 1/3$ for $i = 0, 1, 2$.
- The green line is obtained with K_4 such that $\Pr(K_4 = 0) = \Pr(K_4 = 2) = 1/2$.
- Note that $E(K_i) = 1$ for $i = 1, 2, 3, 4$.
- As $\varphi(k) = u^k v^{1-k}$ is convex and $K_1 \leq_C X K_2 \leq_C X K_3 \leq_C X K_4$, then
 $$\overline{F}_{K_1} \leq_{ST} \overline{F}_{K_2} \leq_{ST} \overline{F}_{K_3} \leq_{ST} \overline{F}_{K_4}.$$
- Actually, K_4 is the best option (the most convex) whenever $E(K) = 1$.
Parrondo paradox example

- \(T = \min(X_1, X_2) \) with \(\bar{Q}(u, v) = uv \).
- It is obtained with \(K_1 \) such that \(\Pr(K_1 = 1) = 1 \).
- \(S \) is obtained with \(K_2 \) such that \(\Pr(K_2 = 1) = 1/2 \) and \(\Pr(K_2 = 0) = \Pr(K_2 = 2) = 1/4 \).
- Another reasonable option is obtained with \(K_3 \) such that \(\Pr(K_3 = i) = 1/3 \) for \(i = 0, 1, 2 \).
- The green line is obtained with \(K_4 \) such that \(\Pr(K_4 = 0) = \Pr(K_4 = 2) = 1/2 \).
- Note that \(E(K_i) = 1 \) for \(i = 1, 2, 3, 4 \).
- As \(\varphi(k) = u^k v^{1-k} \) is convex and \(K_1 \leq_{cx} K_2 \leq_{cx} K_3 \leq_{cx} K_4 \), then
 \[
 \overline{F}_{K_1} \leq_{ST} \overline{F}_{K_2} \leq_{ST} \overline{F}_{K_3} \leq_{ST} \overline{F}_{K_4}.
 \]
- Actually, \(K_4 \) is the best option (the most convex) whenever \(E(K) = 1 \).
Parrondo paradox example

- \(T = \min(X_1, X_2) \) with \(Q(u, v) = uv \).
- It is obtained with \(K_1 \) such that \(\Pr(K_1 = 1) = 1 \).
- \(S \) is obtained with \(K_2 \) such that \(\Pr(K_2 = 1) = 1/2 \) and \(\Pr(K_2 = 0) = \Pr(K_2 = 2) = 1/4 \).
- Another reasonable option is obtained with \(K_3 \) such that \(\Pr(K_3 = i) = 1/3 \) for \(i = 0, 1, 2 \).
- The green line is obtained with \(K_4 \) such that \(\Pr(K_4 = 0) = \Pr(K_4 = 2) = 1/2 \).
- Note that \(E(K_i) = 1 \) for \(i = 1, 2, 3, 4 \).
- As \(\varphi(k) = u^k v^{1-k} \) is convex and \(K_1 \leq_{cx} K_2 \leq_{cx} K_3 \leq_{cx} K_4 \), then
 \[
 \bar{F}_{K_1} \leq_{ST} \bar{F}_{K_2} \leq_{ST} \bar{F}_{K_3} \leq_{ST} \bar{F}_{K_4}.
 \]
- Actually, \(K_4 \) is the best option (the most convex) whenever \(E(K) = 1 \).
Parrondo paradox example

- \(T = \min(X_1, X_2) \) with \(\overline{Q}(u, v) = uv \).
- It is obtained with \(K_1 \) such that \(\Pr(K_1 = 1) = 1 \).
- \(S \) is obtained with \(K_2 \) such that \(\Pr(K_2 = 1) = 1/2 \) and
 \(\Pr(K_2 = 0) = \Pr(K_2 = 2) = 1/4 \).
- Another reasonable option is obtained with \(K_3 \) such that
 \(\Pr(K_3 = i) = 1/3 \) for \(i = 0, 1, 2 \).
- The green line is obtained with \(K_4 \) such that
 \(\Pr(K_4 = 0) = \Pr(K_4 = 2) = 1/2 \).
- Note that \(E(K_i) = 1 \) for \(i = 1, 2, 3, 4 \).
- As \(\varphi(k) = u^k v^{1-k} \) is convex and
 \(K_1 \leq_{CX} K_2 \leq_{CX} K_3 \leq_{CX} K_4 \), then
 \[
 \overline{F}_{K_1} \leq_{ST} \overline{F}_{K_2} \leq_{ST} \overline{F}_{K_3} \leq_{ST} \overline{F}_{K_4}.
 \]
- Actually, \(K_4 \) is the best option (the most convex) whenever
 \(E(K) = 1 \).
Parrondo paradox example

- \(T = \min(X_1, X_2) \) with \(\overline{Q}(u, v) = uv \).
- It is obtained with \(K_1 \) such that \(\Pr(K_1 = 1) = 1 \).
- \(S \) is obtained with \(K_2 \) such that \(\Pr(K_2 = 1) = 1/2 \) and
 \(\Pr(K_2 = 0) = \Pr(K_2 = 2) = 1/4 \).
- Another reasonable option is obtained with \(K_3 \) such that
 \(\Pr(K_3 = i) = 1/3 \) for \(i = 0, 1, 2 \).
- The green line is obtained with \(K_4 \) such that
 \(\Pr(K_4 = 0) = \Pr(K_4 = 2) = 1/2 \).
- Note that \(E(K_i) = 1 \) for \(i = 1, 2, 3, 4 \).
- As \(\varphi(k) = u^k v^{1-k} \) is convex and
 \(K_1 \leq_{C_X} K_2 \leq_{C_X} K_3 \leq_{C_X} K_4 \), then
 \[\overline{F}_{K_1} \leq_{ST} \overline{F}_{K_2} \leq_{ST} \overline{F}_{K_3} \leq_{ST} \overline{F}_{K_4}. \]
- Actually, \(K_4 \) is the best option (the most convex) whenever
 \(E(K) = 1 \).
Figure: Reliability functions of systems $T = T_{K_1}$ (black), $S = T_{K_2}$ (blue), T_{K_3} (purple) and T_{K_4} (green) when the units have exponential distributions with means 5 and 1.
Our Main References

Ng, Navarro and Balakrishnan (2012). Parametric inference from system lifetime data under a proportional hazard rate model. Metrika 75, 367–388.
For the more references, please visit my personal web page:

https://webs.um.es/jorgenav/

Thank you for your attention!!
References

For the more references, please visit my personal web page:

https://webs.um.es/jorgenav/

Thank you for your attention!!