A very short proof of the Multivariate Chebyshev’s Inequality.

J. Navarro1, Universidad de Murcia (Spain).
Notation

- $\mathbf{X} = (X_1, \ldots, X_k)'$ a random vector.
Notation

- $\mathbf{X} = (X_1, \ldots, X_k)'$ a random vector.
- $\mathbf{\mu} = E(\mathbf{X}) = (\mu_1, \ldots, \mu_k)'$ mean vector.
Notation

- \(\mathbf{X} = (X_1, \ldots, X_k)' \) a random vector.
- \(\mu = E(\mathbf{X}) = (\mu_1, \ldots, \mu_k)' \) mean vector.
- \(V = \text{Cov}(\mathbf{X}) = E((\mathbf{X} - \mu)(\mathbf{X} - \mu)') \) covariance matrix.
Notation

- $\mathbf{X} = (X_1, \ldots, X_k)'$ a random vector.
- $\mu = E(\mathbf{X}) = (\mu_1, \ldots, \mu_k)'$ mean vector.
- $V = \text{Cov}(\mathbf{X}) = E((\mathbf{X} - \mu)(\mathbf{X} - \mu)')$ covariance matrix.
- $\mathbf{x} = (x_1, \ldots, x_k)' \in \mathbb{R}^k$.
Notation

- $\mathbf{X} = (X_1, \ldots, X_k)'$ a random vector.
- $\mathbf{\mu} = E(\mathbf{X}) = (\mu_1, \ldots, \mu_k)'$ mean vector.
- $\mathbf{V} = \text{Cov} (\mathbf{X}) = E((\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})')$ covariance matrix.
- $\mathbf{x} = (x_1, \ldots, x_k)' \in \mathbb{R}^k$.
- Mahalanobis distance from \mathbf{x} to $\mathbf{\mu}$:

$$\Delta_V (\mathbf{x}, \mathbf{\mu}) = \sqrt{(\mathbf{x} - \mathbf{\mu})' \mathbf{V}^{-1} (\mathbf{x} - \mathbf{\mu})}.$$
The (univariate) Markov’s inequality.

- If Z is a non-negative random variable with finite mean $E(Z)$ and $\varepsilon > 0$, then

$$\varepsilon \Pr(Z \geq \varepsilon) = \varepsilon \int_{[\varepsilon, \infty)} dF_Z(x) \leq \int_{[\varepsilon, \infty)} xdF_Z(x) \leq \int_{[0, \infty)} xdF_Z(x) = E(Z)$$

where $F_Z(x) = \Pr(Z \leq x)$.
The (univariate) Markov’s inequality.

- If Z is a non-negative random variable with finite mean $E(Z)$ and $\varepsilon > 0$, then

$$\varepsilon \Pr(Z \geq \varepsilon) = \varepsilon \int_{[\varepsilon, \infty)} dF_Z(x) \leq \int_{[\varepsilon, \infty)} x dF_Z(x) \leq \int_{[0, \infty)} x dF_Z(x) = E(Z)$$

where $F_Z(x) = \Pr(Z \leq x)$.

- It can be stated as

$$\Pr(Z \geq \varepsilon) \leq \frac{E(Z)}{\varepsilon}.$$ (1)
The univariate Chebyshev’s inequality.

If X is a random variable with finite mean $\mu = E(X)$ and variance $\sigma^2 = Var(X) > 0$, then by taking $Z = (X - \mu)^2 / \sigma^2$ in (1), we get

$$\Pr \left(\frac{(X - \mu)^2}{\sigma^2} \geq \varepsilon \right) \leq \frac{1}{\varepsilon}$$

for all $\varepsilon > 0$.

RSME2017, Zaragoza

J. Navarro, E-mail: jorgenav@um.es, 4/36
The univariate Chebyshev’s inequality.

- If \(X \) is a random variable with finite mean \(\mu = E(X) \) and variance \(\sigma^2 = Var(X) > 0 \), then by taking \(Z = \frac{(X - \mu)^2}{\sigma^2} \) in (1), we get

\[
Pr\left(\frac{(X - \mu)^2}{\sigma^2} \geq \varepsilon \right) \leq \frac{1}{\varepsilon}
\]

(2)

for all \(\varepsilon > 0 \).

- It can also be written as

\[
Pr((X - \mu)^2 < \varepsilon \sigma^2) \geq 1 - \frac{1}{\varepsilon}
\]

or as

\[
Pr(|X - \mu| < r) \leq 1 - \frac{\sigma^2}{r^2}
\]

for all \(r > 0 \).
If \mathbf{X} is a random vector with finite mean $\mu = E(\mathbf{X})'$ and positive definite covariance matrix $V = \text{Cov}(\mathbf{X})$.

\[\text{Pr}((\mathbf{X} - \mu)' V^{-1} (\mathbf{X} - \mu) \geq \varepsilon) \leq k \varepsilon \] for all $\varepsilon > 0$.
The multivariate Chebyshev’s inequality (MCI).

- If \mathbf{X} is a random vector with finite mean $\mathbf{\mu} = E(\mathbf{X})$ and positive definite covariance matrix $\mathbf{V} = \text{Cov}(\mathbf{X})$.

- Then

$$\Pr((\mathbf{X} - \mathbf{\mu})' \mathbf{V}^{-1} (\mathbf{X} - \mathbf{\mu}) \geq \varepsilon) \leq \frac{k}{\varepsilon}$$

for all $\varepsilon > 0$.

If \mathbf{X} is a random vector with finite mean $\mu = E(\mathbf{X})'$ and positive definite covariance matrix $V = Cov(\mathbf{X})$.

Then

$$\Pr((\mathbf{X} - \mu)' V^{-1} (\mathbf{X} - \mu) \geq \varepsilon) \leq \frac{k}{\varepsilon}$$

for all $\varepsilon > 0$.

The multivariate Chebyshev’s inequality.

The inequality in (3) can also be written as

$$\Pr(((\mathbf{X} - \mu)'V^{-1}(\mathbf{X} - \mu) < \varepsilon) \geq 1 - \frac{k}{\varepsilon}$$

(4)

for all $\varepsilon > 0$.
The multivariate Chebyshev’s inequality.

- The inequality in (3) can also be written as

\[
Pr((\mathbf{X} - \mu)'V^{-1}(\mathbf{X} - \mu) < \varepsilon) \geq 1 - \frac{k}{\varepsilon}
\]

(4)

for all \(\varepsilon > 0 \).

- This inequality says that the ellipsoid

\[
E_\varepsilon = \{ \mathbf{x} \in \mathbb{R}^k : (\mathbf{x} - \mu)'V^{-1}(\mathbf{x} - \mu) < \varepsilon \}
\]

(5)

contains at least the \(100(1 - k/\varepsilon)\% \) of the population.
The multivariate Chebyshev’s inequality.

- The inequality in (3) can also be written as

\[\Pr((\mathbf{X} - \mathbf{\mu})'V^{-1}(\mathbf{X} - \mathbf{\mu}) < \varepsilon) \geq 1 - \frac{k}{\varepsilon} \]

(4)

for all \(\varepsilon > 0 \).

- This inequality says that the ellipsoid

\[E_{\varepsilon} = \{ \mathbf{x} \in \mathbb{R}^k : (\mathbf{x} - \mathbf{\mu})'V^{-1}(\mathbf{x} - \mathbf{\mu}) < \varepsilon \} \]

(5)

contains at least the \(100(1 - k/\varepsilon) \)% of the population.

- The inequality can also be written as

\[\Pr(\Delta_V(\mathbf{X}, \mathbf{\mu}) < r) \geq 1 - \frac{k}{r^2}. \]

(6)
The multivariate Chebyshev’s inequality.

- The inequality in (3) can also be written as
 \[\Pr((\mathbf{X} - \mu)'\mathbf{V}^{-1}(\mathbf{X} - \mu) < \varepsilon) \geq 1 - \frac{k}{\varepsilon} \quad (4) \]
 for all \(\varepsilon > 0 \).

- This inequality says that the ellipsoid
 \[E_{\varepsilon} = \{ \mathbf{x} \in \mathbb{R}^k : (\mathbf{x} - \mu)'\mathbf{V}^{-1}(\mathbf{x} - \mu) < \varepsilon \} \quad (5) \]
 contains at least the \(100(1 - k/\varepsilon) \)% of the population.

- The inequality can also be written as
 \[\Pr(\Delta_{\mathbf{V}}(\mathbf{X}, \mu) < r) \geq 1 - \frac{k}{r^2}. \quad (6) \]

- Hence (6) gives a lower bound for the percentage of points from \(\mathbf{X} \) in spheres “around” the mean \(\mu \) in the Mahalanobis distance based on \(\mathbf{V} \).
A very short proof.

Let us consider the random variable

\[Z = (X - \mu)' V^{-1} (X - \mu). \]
A very short proof.

- Let us consider the random variable

\[Z = (X - \mu)' V^{-1} (X - \mu). \]

- As \(V \) is positive definite, then \(Z \geq 0 \).
A very short proof.

- Let us consider the random variable
 \[Z = (\mathbf{X} - \mu)' \mathbf{V}^{-1}(\mathbf{X} - \mu). \]

- As \(V \) is positive definite, then \(Z \geq 0 \).

- Moreover, there exist symmetric matrices \(V^{1/2} \) and \(V^{-1/2} \) such that \(V^{1/2} V^{1/2} = V \), \(V^{-1/2} V^{-1/2} = V^{-1} \) and \(V^{1/2} V^{-1/2} = V^{-1/2} V^{1/2} = I_k \), where \(I_k \) is the identity matrix of dimension \(k \).
A very short proof.

- Let us consider the random variable
 \[Z = (\mathbf{X} - \mu)' V^{-1} (\mathbf{X} - \mu). \]

- As \(V \) is positive definite, then \(Z \geq 0 \).

- Moreover, there exist symmetric matrices \(V^{1/2} \) and \(V^{-1/2} \) such that
 \[V^{1/2} V^{1/2} = V, \quad V^{-1/2} V^{-1/2} = V^{-1} \]
 and
 \[V^{1/2} V^{-1/2} = V^{-1/2} V^{1/2} = I_k, \]
 where \(I_k \) is the identity matrix of dimension \(k \).

- Therefore
 \[Z = (\mathbf{X} - \mu)' V^{-1/2} V^{-1/2} (\mathbf{X} - \mu) = \mathbf{Y}' \mathbf{Y}, \]
 where \(\mathbf{Y} = (Y_1, \ldots, Y_k)' = V^{-1/2} (\mathbf{X} - \mu). \]
A very short proof.

- Let us consider the random variable
 \[Z = (X - \mu)' V^{-1} (X - \mu). \]

- As \(V \) is positive definite, then \(Z \geq 0 \).

- Moreover, there exist symmetric matrices \(V^{1/2} \) and \(V^{-1/2} \) such that
 \[V^{1/2} V^{1/2} = V, \quad V^{-1/2} V^{-1/2} = V^{-1} \]
 and
 \[V^{1/2} V^{-1/2} = V^{-1/2} V^{1/2} = I_k, \]
 where \(I_k \) is the identity matrix of dimension \(k \).

- Therefore
 \[Z = (X - \mu)' V^{-1/2} V^{-1/2} (X - \mu) = Y' Y, \]
 where \(Y = (Y_1, \ldots, Y_k)' = V^{-1/2} (X - \mu) \).

- Hence \(E(Y) = 0_k \) and
 \[\text{Cov}(Y) = V^{-1/2} \text{Cov}(X) V^{-1/2} = V^{-1/2} V V^{-1/2} = I_k. \]
Therefore $E(Y_i) = 0$, $Var(Y_i) = 1$ and

$$E(Z) = E(Y'Y) = E\left(\sum_{i=1}^{k} Y_i^2\right) = \sum_{i=1}^{k} E(Y_i^2) = \sum_{i=1}^{k} Var(Y_i) = k.$$
A very short proof.

Therefore \(E(Y_i) = 0 \), \(\text{Var}(Y_i) = 1 \) and

\[
E(Z) = E(Y'Y) = E \left(\sum_{i=1}^{k} Y_i^2 \right) = \sum_{i=1}^{k} E(Y_i^2) = \sum_{i=1}^{k} \text{Var}(Y_i) = k.
\]

Hence, from Markov’s inequality (1), we get

\[
\Pr(Z \geq \varepsilon) = \Pr((X - \mu)'V^{-1}(X - \mu) \geq \varepsilon) \leq \frac{E(Z)}{\varepsilon} = \frac{k}{\varepsilon}
\]

and therefore (3) holds for all \(\varepsilon > 0 \).
That’s all, thank you for your attention!!
That’s all, thank you for your attention!!

It’s a joke, let’s see something more (if you want).
Another short proof.

Let us consider the random variable

\[Z = (X - \mu)' V^{-1} (X - \mu) \geq 0. \]
Another short proof.

- Let us consider the random variable
 \[Z = (\mathbf{X} - \mu)' V^{-1} (\mathbf{X} - \mu) \geq 0. \]

- As \(V \) is positive definite and symmetric, there exists an orthogonal matrix \(T \) such that \(TT' = T' T = I_k \) and \(T' VT = D \) and \(D = \text{diag}(\lambda_1, \ldots, \lambda_k) \) is the diagonal matrix with the ordered eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_k > 0 \).
Another short proof.

- Let us consider the random variable
 \[Z = (\mathbf{X} - \mu)'V^{-1}(\mathbf{X} - \mu) \geq 0. \]

- As \(V \) is positive definite and symmetric, there exists an orthogonal matrix \(T \) such that \(TT' = T'T = I_k \) and \(T'VT = D \) and \(D = \text{diag}(\lambda_1, \ldots, \lambda_k) \) is the diagonal matrix with the ordered eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_k > 0 \).

- Then \(V = TDT' \) and \(V^{-1} = TD^{-1}T' \).
Another short proof.

- Let us consider the random variable

\[Z = (\mathbf{X} - \mu)' V^{-1} (\mathbf{X} - \mu) \geq 0. \]

- As \(V \) is positive definite and symmetric, there exists an orthogonal matrix \(T \) such that \(TT' = T' T = I_k \) and \(T' VT = D \) and \(D = \text{diag}(\lambda_1, \ldots, \lambda_k) \) is the diagonal matrix with the ordered eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_k > 0 \).

- Then \(V = TDT' \) and \(V^{-1} = TD^{-1} T' \).

- Therefore

\[
Z = (\mathbf{X} - \mu)' TD^{-1} T'(\mathbf{X} - \mu) \\
= [D^{-1/2} T'(\mathbf{X} - \mu)]'[D^{-1/2} T'(\mathbf{X} - \mu)] \\
= Z'Z,
\]

where \(Z = (Z_1, \ldots, Z_n)' = D^{-1/2} T'(\mathbf{X} - \mu) \) and \(D^{-1/2} = \text{diag}(\lambda_1^{-1/2}, \ldots, \lambda_k^{-1/2}) \).
Another short proof.

- The random vector \mathbf{Z} satisfies $E(\mathbf{Z}) = \mathbf{0}_k$ and

$$\text{Cov}(\mathbf{Z}) = \text{Cov}(D^{-1/2} T'(\mathbf{X} - \mu)) = D^{-1/2} T'VTD^{-1/2} = D^{-1/2}DD^{-1/2} = I_k.$$
Another short proof.

- The random vector \(Z \) satisfies \(E(Z) = 0_k \) and

\[
\text{Cov}(Z) = \text{Cov}(D^{-1/2} T'(X - \mu)) = D^{-1/2} T' V T D^{-1/2} = D^{-1/2} D D^{-1/2} = I_k.
\]

- Therefore \(E(Z_i) = 0 \), \(\text{Var}(Z_i) = 1 \) and

\[
E(Z) = E(Z'Z) = E \left(\sum_{i=1}^{k} Z_i^2 \right) = \sum_{i=1}^{k} E(Z_i^2) = \sum_{i=1}^{k} \text{Var}(Z_i) = k.
\]
Another short proof.

- The random vector \mathbf{Z} satisfies $E(\mathbf{Z}) = \mathbf{0}_k$ and

\[
\text{Cov}(\mathbf{Z}) = \text{Cov}(D^{-1/2} T'(\mathbf{X} - \mu)) = D^{-1/2} T' V T D^{-1/2} = D^{-1/2} D D^{-1/2} = I_k.
\]

- Therefore $E(Z_i) = 0$, $\text{Var}(Z_i) = 1$ and

\[
E(\mathbf{Z}) = E(\mathbf{Z}' \mathbf{Z}) = E \left(\sum_{i=1}^{k} Z_i^2 \right) = \sum_{i=1}^{k} E(Z_i^2) = \sum_{i=1}^{k} \text{Var}(Z_i) = k.
\]

- Hence, from Markov’s inequality (1), we get

\[
\Pr(\mathbf{Z} \geq \varepsilon) = \Pr((\mathbf{X} - \mu)' V^{-1} (\mathbf{X} - \mu) \geq \varepsilon) \leq \frac{E(\mathbf{Z})}{\varepsilon} = \frac{k}{\varepsilon}
\]

for all $\varepsilon > 0$.
Bounds for singular covariance matrices.

- \(Z = D^{-1/2} T'(X - \mu) \) is the vector of the standardized principal components of \(X \).
Bounds for singular covariance matrices.

- \(\mathbf{Z} = D^{-1/2} T'(\mathbf{X} - \mathbf{\mu}) \) is the vector of the standardized principal components of \(\mathbf{X} \).
- Then (3) can be written as

\[
\Pr(\mathbf{Z}'\mathbf{Z} < \varepsilon) \geq 1 - \frac{k}{\varepsilon}
\]

(7)

where \(\mathbf{Z}'\mathbf{Z} = \sum_{i=1}^{k} Z_i^2 \).
Bounds for singular covariance matrices.

- $\mathbf{Z} = D^{-1/2} T'(\mathbf{X} - \mu)$ is the vector of the standardized principal components of \mathbf{X}.
- Then (3) can be written as

$$\Pr(\mathbf{Z}'\mathbf{Z} < \varepsilon) \geq 1 - \frac{k}{\varepsilon}$$

(7)

where $\mathbf{Z}'\mathbf{Z} = \sum_{i=1}^{k} Z_i^2$.
- If V is singular, then $\lambda_1 \geq \cdots \geq \lambda_m > \lambda_{m+1} = \cdots = \lambda_k = 0$.
Bounds for singular covariance matrices.

- \(Z = D^{-1/2} T'(X - \mu) \) is the vector of the standardized principal components of \(X \).
- Then (3) can be written as
 \[
 Pr(Z'Z < \varepsilon) \geq 1 - \frac{k}{\varepsilon} \tag{7}
 \]
 where \(Z'Z = \sum_{i=1}^{k} Z_i^2 \).
- If \(V \) is singular, then \(\lambda_1 \geq \cdots \geq \lambda_m > \lambda_{m+1} = \cdots = \lambda_k = 0 \).
- Then (7) can be replaced with
 \[
 Pr \left(\sum_{i=1}^{m} Z_i^2 < \varepsilon \right) \geq 1 - \frac{m}{\varepsilon} \tag{8}
 \]
 for all \(\varepsilon > 0 \), where \(Z_i = \lambda_i^{-1/2} t'_i(X - \mu) \) is the \(i \)th standardized principal components of \(X \) and \(t_i \) is the normalized eigenvector associated with the eigenvalue \(\lambda_i \).
An example.

\[(X_1, X_3, X_3) \equiv \text{Multinomial}(p_1 = 1/3, p_2 = 1/3, p_3 = 1/3, n).\]
An example.

- \((X_1, X_3, X_3) \equiv \text{Multinomial}(p_1 = 1/3, p_2 = 1/3, p_3 = 1/3, n)\).
- Then \(\mu = E(X) = (n/3, n/3, n/3)'\) and

\[
V = \frac{n}{9} \begin{pmatrix}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{pmatrix}.
\]
An example.

- \((X_1, X_3, X_3) \equiv \text{Multinomial}(p_1 = 1/3, p_2 = 1/3, p_3 = 1/3, n)\).
- Then \(\mu = E(X) = (n/3, n/3, n/3)'\) and
 \[
 V = \frac{n}{9} \begin{pmatrix}
 2 & -1 & -1 \\
 -1 & 2 & -1 \\
 -1 & -1 & 2
 \end{pmatrix}.
 \]
- As \(X_1 + X_2 + X_3 = n\), we of course have \(|V| = 0|\).
An example.

- \((X_1, X_3, X_3) \equiv Multinomial(p_1 = 1/3, p_2 = 1/3, p_3 = 1/3, n)\).
- Then \(\mu = E(X) = (n/3, n/3, n/3)\)′ and
 \[
 V = \frac{n}{9} \begin{pmatrix}
 2 & -1 & -1 \\
 -1 & 2 & -1 \\
 -1 & -1 & 2
 \end{pmatrix}.
 \]
- As \(X_1 + X_2 + X_3 = n\), we of course have \(|V| = 0\),
- The eigenvalues are \(\lambda_1 = \lambda_2 = n/3\) and \(\lambda_3 = 0\).
An example.

- \((X_1, X_3, X_3) \equiv Multinomial(p_1 = 1/3, p_2 = 1/3, p_3 = 1/3, n)\).
- Then \(\mu = E(X) = (n/3, n/3, n/3)'\) and

\[
V = \frac{n}{9} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.
\]

- As \(X_1 + X_2 + X_3 = n\), we of course have \(|V| = 0\),
- The eigenvalues are \(\lambda_1 = \lambda_2 = n/3\) and \(\lambda_3 = 0\).
- Some two first standardized principal components are

\[
Z_1 = \frac{X_1 - X_2}{\sqrt{2n/3}}, \quad Z_2 = \frac{X_1 + X_2 - 2X_3}{\sqrt{2n}}
\]

and the multivariate Chebyshev’s inequality given in (8) gives

\[
Pr \left(\sqrt{(X_1 - X_2)^2 + (X_1 + X_2 - 2X_3)^2/3 < \delta} \right) \geq 1 - \frac{4n}{3\delta^2}.
\]
The bounds are sharp.

Theorem (Navarro SPL 2014)

Let $\mathbf{X} = (X_1, \ldots, X_k)'$ be a random vector with finite mean vector $\mu = E(\mathbf{X})$ and positive definite covariance matrix $V = \text{Cov}(\mathbf{X})$ and let $\varepsilon \geq k$. Then there exists a sequence $\mathbf{X}^{(n)} = (X_1^{(n)}, \ldots, X_k^{(n)})'$ of random vectors with mean vector μ and covariance matrix V such that

$$
\lim_{n \to \infty} \Pr((\mathbf{X}^{(n)} - \mu)' V^{-1} (\mathbf{X}^{(n)} - \mu) \geq \varepsilon) = \frac{k}{\varepsilon}.
$$

(9)
For $\varepsilon \geq k$, let us consider

$$D_n = \begin{cases}
\sqrt{Z_n} + \varepsilon & \text{with probability } \frac{p - 1/n}{2} \\
-\sqrt{Z_n} + \varepsilon & \text{with probability } \frac{p - 1/n}{2} \\
0 & \text{with probability } 1 - p + 1/n
\end{cases}$$

for $n > \varepsilon/k$, where $p = k/\varepsilon \leq 1$ and $Z_n \equiv \text{Exp}(\mu_n = \frac{\varepsilon/n}{p - 1/n} > 0)$.

The bounds are sharp (proof).
The bounds are sharp (proof).

- For $\varepsilon \geq k$, let us consider

$$D_n = \begin{cases}
\sqrt{Z_n} + \varepsilon & \text{with probability } (p - 1/n)/2 \\
-\sqrt{Z_n} + \varepsilon & \text{with probability } (p - 1/n)/2 \\
0 & \text{with probability } 1 - p + 1/n
\end{cases}$$

for $n > \varepsilon/k$, where $p = k/\varepsilon \leq 1$ and $Z_n \equiv \text{Exp}(\mu_n = \frac{\varepsilon/n}{p-1/n} > 0)$.

- Note that $\Pr(D_n^2 \geq \varepsilon) = p - 1/n$.
The bounds are sharp (proof).

- For $\varepsilon \geq k$, let us consider

$$D_n = \begin{cases}
\sqrt{Z_n + \varepsilon} & \text{with probability } (p - 1/n)/2 \\
-\sqrt{Z_n + \varepsilon} & \text{with probability } (p - 1/n)/2 \\
0 & \text{with probability } 1 - p + 1/n
\end{cases}$$

for $n > \varepsilon/k$, where $p = k/\varepsilon \leq 1$ and $Z_n \equiv \text{Exp}(\mu_n = \frac{\varepsilon/n}{p - 1/n} > 0)$.

- Note that $\Pr(D_n^2 \geq \varepsilon) = p - 1/n$.

- $E(D_n) = \frac{(p-1/n)}{2}E(\sqrt{Z_n + \varepsilon}) - \frac{(p-1/n)}{2}E(\sqrt{Z_n + \varepsilon}) = 0.$
The bounds are sharp (proof).

For $\varepsilon \geq k$, let us consider

$$D_n = \begin{cases}
\sqrt{Z_n + \varepsilon} & \text{with probability } (p - 1/n)/2 \\
-\sqrt{Z_n + \varepsilon} & \text{with probability } (p - 1/n)/2 \\
0 & \text{with probability } 1 - p + 1/n
\end{cases}$$

for $n > \varepsilon/k$, where $p = k/\varepsilon \leq 1$ and $Z_n \equiv \text{Exp}(\mu_n = \frac{\varepsilon/n}{p-1/n} > 0)$.

- Note that $\Pr(D_n^2 \geq \varepsilon) = p - 1/n$.
- $E(D_n) = \frac{(p-1/n)}{2} E(\sqrt{Z_n + \varepsilon}) - \frac{(p-1/n)}{2} E(-\sqrt{Z_n + \varepsilon}) = 0$.
- $E(D_n^2) = (p - 1/n)E(Z_n + \varepsilon) = (p - 1/n) \left(\frac{\varepsilon/n}{p-1/n} + \varepsilon \right) = k$.

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 15/36
The bounds are sharp (proof).

Let U_n be a r.v., independent of Z_n, with a uniform distribution over \{1, \ldots, k\}.
The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n, with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)} = (Y_1^{(n)}, \ldots, Y_k^{(n)})'$ defined by $Y_i^{(n)} = D_n$ and $Y_j^{(n)} = 0$ for $j = 1, \ldots, i - 1, i + 1, \ldots, k$ when $U_n = i$.
The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n, with a uniform distribution over $\{1, \ldots, k\}$.
- Let $Y^{(n)} = (Y_{1}^{(n)}, \ldots, Y_{k}^{(n)})'$ defined by $Y_{i}^{(n)} = D_{n}$ and $Y_{j}^{(n)} = 0$ for $j = 1, \ldots, i - 1, i + 1, \ldots, k$ when $U_{n} = i$.
- Hence $E(Y_{i}^{(n)}) = \frac{1}{k} E(D_{n}) = 0$ and
 \[
 \text{Var}(Y_{i}^{(n)}) = E((Y_{i}^{(n)})^2) = \frac{1}{k} E(D_{n}^2) = 1.
 \]
The bounds are sharp (proof).

Let \(U_n \) be a r.v., independent of \(Z_n \), with a uniform distribution over \(\{1, \ldots, k\} \).

Let \(Y^{(n)} = (Y_1^{(n)}, \ldots, Y_k^{(n)})' \) defined by \(Y_i^{(n)} = D_n \) and \(Y_j^{(n)} = 0 \) for \(j = 1, \ldots, i - 1, i + 1, \ldots, k \) when \(U_n = i \).

Hence \(E(Y_i^{(n)}) = \frac{1}{k} E(D_n) = 0 \) and

\[
\text{Var}(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k} E(D_n^2) = 1.
\]

Moreover, \(Y_i^{(n)} Y_j^{(n)} = 0 \) and \(E(Y_i^{(n)} Y_j^{(n)}) = 0 \) for all \(i \neq j \).
The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n, with a uniform distribution over \{1, \ldots, k\}.
- Let $Y^{(n)} = (Y_1^{(n)}, \ldots, Y_k^{(n)})'$ defined by $Y_i^{(n)} = D_n$ and $Y_j^{(n)} = 0$ for $j = 1, \ldots, i-1, i+1, \ldots, k$ when $U_n = i$.
- Hence $E(Y_i^{(n)}) = \frac{1}{k}E(D_n) = 0$ and
\[
\text{Var}(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k}E(D_n^2) = 1.
\]
- Moreover, $Y_i^{(n)}Y_j^{(n)} = 0$ and $E(Y_i^{(n)}Y_j^{(n)}) = 0$ for all $i \neq j$.
- Then $E(Y^{(n)}) = 0_k$ and $\text{Cov}(Y^{(n)}) = I_k$.
The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n, with a uniform distribution over \{1, \ldots, k\}.
- Let $Y^{(n)} = (Y_1^{(n)}, \ldots, Y_k^{(n)})'$ defined by $Y_i^{(n)} = D_n$ and $Y_j^{(n)} = 0$ for $j = 1, \ldots, i-1, i+1, \ldots, k$ when $U_n = i$.
- Hence $E(Y_i^{(n)}) = \frac{1}{k}E(D_n) = 0$ and

 $$Var(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k}E(D_n^2) = 1.$$

- Moreover, $Y_i^{(n)}Y_j^{(n)} = 0$ and $E(Y_i^{(n)}Y_j^{(n)}) = 0$ for all $i \neq j$.
- Then $E(Y^{(n)}) = 0_k$ and $Cov(Y^{(n)}) = I_k$.
- Then $X^{(n)} = \mu + \sqrt{\frac{V}{2}}Y^{(n)}$ has mean $E(X^{(n)}) = \mu$ and

 $$Cov(X^{(n)}) = Cov(\sqrt{\frac{V}{2}}Y^{(n)}) = \sqrt{\frac{V}{2}}\sqrt{\frac{V}{2}} = V.$$
The bounds are sharp (proof).

Moreover,

\[\Pr((\mathbf{X}^{(n)} - \mu)' V^{-1}(\mathbf{X}^{(n)} - \mu) \geq \varepsilon) \]

\[= \Pr((V^{1/2} \mathbf{Y}^{(n)})' V^{-1}(V^{1/2} \mathbf{Y}^{(n)}) \geq \varepsilon) \]

\[= \Pr((\mathbf{Y}^{(n)})' V^{1/2} V^{-1} V^{1/2} \mathbf{Y}^{(n)} \geq \varepsilon) \]

\[= \Pr((\mathbf{Y}^{(n)})' \mathbf{Y}^{(n)} \geq \varepsilon) \]

\[= \Pr \left(\sum_{i=1}^{k} (Y_{i}^{(n)})^2 \geq \varepsilon \right) \]

\[= \Pr(D_n^2 \geq \varepsilon) \]

\[= p - \frac{1}{n} \to p = \frac{k}{\varepsilon}, \text{ as } n \to \infty \]
Applications. Case $k = 2$.

Theorem

Let $(X, Y)'$ with $E(X) = \mu_X$, $E(Y) = \mu_Y$, $\text{Var}(X) = \sigma_X^2 > 0$, $\text{Var}(Y) = \sigma_Y^2 > 0$ and $\rho = \text{Cor}(X, Y) \in (-1, 1)$. Then

$$\Pr((X^* - Y^*)^2 + 2(1 - \rho)X^*Y^* < \delta) \geq 1 - 2\frac{1 - \rho^2}{\delta} \quad (10)$$

for all $\delta > 0$, where $X^* = (X - \mu_X)/\sigma_X$ and $Y^* = (X - \mu_Y)/\sigma_Y$.

$Z_1 = (X^* + Y^*)/\sqrt{2(1 + \rho)}$, $Z_2 = (X^* - Y^*)/\sqrt{2(1 - \rho)}$ and

$$\Pr\left(\frac{(X^* + Y^*)^2}{2(1 + \rho)} + \frac{(X^* - Y^*)^2}{2(1 - \rho)} < \varepsilon\right) \geq 1 - \frac{2}{\varepsilon} \quad (11)$$
An example

- (X, Y) with $E(X) = E(Y) = 1$, $Var(X) = Var(Y) = 1$ and $\rho = Cor(X, Y) = 0.9$. Then

$$\Pr(5(X - Y)^2 + (X - 1)(Y - 1) < 5\delta) \geq 1 - 2\frac{0.19}{\delta},$$

that is,

$$\Pr(5X^2 - 9XY + 5Y^2 - X - Y + 1 < \varepsilon) \geq 1 - \frac{1.9}{\varepsilon}$$

for all $\varepsilon > 1.9$.

- The distribution-free confidence regions for $\varepsilon = 3, 4, 5, 10$ containing respectively at least the 36.6666%, 52.5%, 62% and the 81% of the values of (X, Y) can be seen in the following figure.
Figure: Confidence regions for $\varepsilon = 3, 4, 5, 10$ containing at least the 36.66%, 52.5%, 62% and the 81% of the values of (X, Y).
Let $X_{1:k}, \ldots, X_{k:k}$ be the OS from (X_1, \ldots, X_k).
Order statistics

- Let $X_{1:k}, \ldots, X_{k:k}$ be the OS from (X_1, \ldots, X_k).
- For $k = 2$ we have

$$
\rho_{1,2:2} = Cor(X_{1:2}, X_{2:2}) = \rho \frac{\sigma_1 \sigma_2}{\sigma_{1:2} \sigma_{1:2}} + \frac{(\mu_1 - \mu_{1:2})(\mu_2 - \mu_{1:2})}{\sigma_{1:2} \sigma_{1:2}}
$$

where $\mu_i = E(X_i)$, $\mu_{i:2} = E(X_{i:2})$, $\sigma_i^2 = Var(X_i)$, $\sigma_{i:2}^2 = Var(X_{i:2})$, for $i = 1, 2$, and $\rho = Cor(X_1, X_2)$.

Order statistics

- Let $X_{1:k}, \ldots, X_{k:k}$ be the OS from (X_1, \ldots, X_k).
- For $k = 2$ we have

$$
\rho_{1,2:2} = Cor(X_{1:2}, X_{2:2}) = \rho \frac{\sigma_1 \sigma_2}{\sigma_{1:2} \sigma_{1:2}} + \frac{(\mu_1 - \mu_{1:2})(\mu_2 - \mu_{1:2})}{\sigma_{1:2} \sigma_{1:2}},
$$

where $\mu_i = E(X_i)$, $\mu_{i:2} = E(X_{i:2})$, $\sigma_i^2 = Var(X_i)$, $\sigma_{i:2}^2 = Var(X_{i:2})$, for $i = 1, 2$, and $\rho = Cor(X_1, X_2)$.

- Then

$$
Pr\left((X_{2:2}^* - X_{1:2}^*)^2 + 2(1 - \rho_{1,2:2})X_{2:2}^* X_{1:2}^* < \delta \right) \geq 1 - 2 \frac{1 - \rho_{1,2:2}^2}{\delta}, \quad (12)
$$

where $X_{i:2}^* = (X_{i:2} - \mu_{i:2})/\sigma_{i:2}$, $i = 1, 2$.
Order statistics. Example 1.

- \((X_1, X_2)\) has a Pareto distribution with

\[F(x, y) = \Pr(X_1 > x, X_2 > y) = (1 + \lambda x + \lambda y)^{-\theta} \]

for \(x, y \geq 0\), where \(\lambda > 0\) and \(\theta > 2\).
Order statistics. Example 1.

- \((X_1, X_2)\) has a Pareto distribution with

\[
\bar{F}(x, y) = \Pr(X_1 > x, X_2 > y) = (1 + \lambda x + \lambda y)^{-\theta}
\]

for \(x, y \geq 0\), where \(\lambda > 0\) and \(\theta > 2\).

- Then \(\mu = 1/(\lambda \theta - \lambda)\), \(\sigma^2 = \mu^2/(1 - 2\rho)\), \(\rho = 1/\theta\), \(\mu_{1:2} = \mu/2\), \(\mu_{2:2} = 3\mu/2\)

\[
\sigma^2_{1:2} = \frac{\mu^2}{4(1 - 2\rho)}, \quad \sigma^2_{2:2} = \frac{\mu^2(6 + 3\rho)}{4(1 - 2\rho)}, \quad \rho_{1,2:2} = \frac{1 + 2\rho}{\sqrt{6 + 3\rho}}.
\]
Order statistics. Example 1.

- (X_1, X_2) has a Pareto distribution with

 $$F(x, y) = \Pr(X_1 > x, X_2 > y) = (1 + \lambda x + \lambda y)^{-\theta}$$

 for $x, y \geq 0$, where $\lambda > 0$ and $\theta > 2$.

- Then $\mu = 1/(\lambda \theta - \lambda)$, $\sigma^2 = \mu^2/(1 - 2\rho)$, $\rho = 1/\theta$, $\mu_{1:2} = \mu/2$, $\mu_{2:2} = 3\mu/2$

 $$\sigma^2_{1:2} = \frac{\mu^2}{4(1 - 2\rho)}, \quad \sigma^2_{2:2} = \frac{\mu^2(6 + 3\rho)}{4(1 - 2\rho)}, \quad \rho_{1,2:2} = \frac{1 + 2\rho}{\sqrt{6 + 3\rho}}.$$

- If $\lambda = 0.5$ and $\theta = 3$, then $\mu = 1$, $\rho = 1/3$, $\mu_{1:2} = 1/2$, $\mu_{2:2} = 3/2$, $\sigma_{1:2} = 0.866$, $\sigma_{2:2} = 2.291$, $\rho_{1,2:2} = 0.6299$ and

 $$\Pr\left(\left[\frac{X_{2:2} - \frac{3}{2}}{2.291} - \frac{X_{1:2} - \frac{1}{2}}{0.866}\right]^2 + 0.74\frac{X_{2:2} - \frac{3}{2}}{2.291} \frac{X_{1:2} - \frac{1}{2}}{0.866} < \delta\right) \geq 1 - \frac{1.206}{\delta}.$$
Figure: Confidence regions for $\delta = 2, 4, 6$ containing at least the 39.68%, the 69.84% and the 79.89% of the values of $(X_{1:2}, X_{2:2})$.
Order statistics. Example 2.

- X_1, \ldots, X_k iid $\text{Exp}(\mu = 1)$, then

\[
\mu_{i:k} = \sum_{j=k-i+1}^{k} \frac{1}{j}, \quad \sigma^2_{i:k} = \sum_{j=k-i+1}^{k} \frac{1}{j^2}
\]

and

\[
\rho_{i,j:k} = \text{Cor}(X_{i:k}, X_{j:k}) = \frac{\sigma_{i:k}}{\sigma_{j:k}}, \quad 1 \leq i < j \leq k
\]
Order statistics. Example 2.

- X_1,\ldots, X_k iid $\text{Exp}(\mu = 1)$, then

$$\mu_{i:k} = \sum_{j=k-i+1}^{k} \frac{1}{j}, \quad \sigma_{i:k}^2 = \sum_{j=k-i+1}^{k} \frac{1}{j^2}$$

and

$$\rho_{i,j:k} = \text{Cor}(X_{i:k}, X_{j:k}) = \frac{\sigma_{i:k}}{\sigma_{j:k}}, \quad 1 \leq i < j \leq k$$

- If $k = 3$, $i = 2$ and $j = 3$, then $\mu_{2:3} = 5/6$, $\mu_{3:3} = 11/6$, $\sigma_{2:3} = 0.6009$, $\sigma_{3:3} = 1.1667$, and $\rho_{2,3:3} = 0.5151$.

Order statistics. Example 2.

- X_1, \ldots, X_k iid $\text{Exp}(\mu = 1)$, then
 \[\mu_{i:k} = \frac{1}{j}, \quad \sigma^2_{i:k} = \frac{1}{j^2} \]

and

- $\rho_{i,j:k} = \text{Cor}(X_{i:k}, X_{j:k}) = \frac{\sigma_{i:k}}{\sigma_{j:k}}$, $1 \leq i < j \leq k$

- If $k = 3$, $i = 2$ and $j = 3$, then $\mu_{2:3} = 5/6$, $\mu_{3:3} = 11/6$, $\sigma_{2:3} = 0.6009$, $\sigma_{3:3} = 1.1667$, and $\rho_{2,3:3} = 0.5151$.

- Hence
 \[
 \Pr \left(\left(\frac{X_{3:3} - \frac{11}{6}}{1.1667} - \frac{X_{2:3} - \frac{5}{6}}{0.6009} \right)^2 + 0.969 \frac{X_{3:3} - \frac{11}{6}}{1.1667} \frac{X_{2:3} - \frac{5}{6}}{0.6009} < \delta \right) \geq 1 - \frac{1.469}{\delta}. \]
Figure: Confidence regions for $\delta = 2, 3, 4$ containing at least 63.26%, the 75.51% and the 81.63% of the values of $(X_{2:3}, X_{3:3})$.
Order statistics. Example 2.

For \((X_{1:3}, X_{2:3}, X_{3:3})'\) we obtain the confidence region

\[
R_\varepsilon = \{(x, y, z) : 1.444x^2 - 1.602xy + 1.805y^2 - 1.402yz + 1.361z^2 < \varepsilon\}
\]

containing \((X^*_{1:3}, X^*_{2:3}, X^*_{3:3})'\) with a probability greater than \(1 - 3/\varepsilon\),

where \(X^*_{i:k} = (X_{i:k} - \mu_{i:k})/\sigma_{i:k}\) for \(i = 1, 2, 3\).
Order statistics. Example 2.

- For \((X_{1:3}, X_{2:3}, X_{3:3})'\) we obtain the confidence region
 \[
 R_\varepsilon = \{(x, y, z) : 1.444x^2 - 1.602xy + 1.805y^2 - 1.402yz + 1.361z^2 < \varepsilon\}
 \]
 containing \((X_{1:3}^*, X_{2:3}^*, X_{3:3}^*)'\) with a probability greater than \(1 - 3/\varepsilon\), where \(X_{i:k}^* = (X_{i:k} - \mu_{i:k})/\sigma_{i:k}\) for \(i = 1, 2, 3\).

- If we use the two principal components
 \[
 \Pr \left(\frac{Y_1^2}{1.9129431} + \frac{Y_2^2}{0.77153779} < \varepsilon \right) \geq 1 - \frac{2}{\varepsilon} \tag{13}
 \]
 for all \(\varepsilon > 0\), where
 \[
 Y_1 = 0.5548133X_{1:3}^* + 0.6382230X_{2:3}^* + 0.5337169X_{3:3}^*
 \]
 and
 \[
 Y_2 = 0.66914423X_{1:3}^* + 0.03890251X_{2:3}^* - 0.7421136X_{3:3}^*.
 \]
Figure: Confidence regions for $\varepsilon = 4, 6, 8$ containing at least the 50%, the 66.6667% and the 75% of the scores of $(X_{1:3}, X_{2:3}, X_{3:3})$.
Data sets.

If we have a data set \(O_i = (X_i, Y_i)' \), \(i = 1, \ldots, n \), the mean is

\[
\overline{O} = \frac{1}{n} \sum_{i=1}^{n} O_i = (\overline{X}, \overline{Y})
\]

and its covariance matrix is

\[
\hat{V} = \frac{1}{n} \sum_{m=1}^{n} (O_m - \overline{O})(O_m - \overline{O})' = (\hat{V}_{i,j}),
\]
If we have a data set $O_i = (X_i, Y_i)'$, $i = 1, \ldots, n$, the mean is

$$\bar{O} = \frac{1}{n} \sum_{i=1}^{n} O_i = (\bar{X}, \bar{Y})$$

and its covariance matrix is

$$\hat{V} = \frac{1}{n} \sum_{m=1}^{n} (O_m - \bar{O})(O_m - \bar{O})' = (\hat{V}_{i,j}),$$

The correlation is $r = \frac{\hat{V}_{1,2}}{\sqrt{\hat{V}_{1,1} \hat{V}_{2,2}}}$ and

$$\Pr((X_i^* - Y_i^*)^2 + 2(1 - r)X_i^*Y_i^* < \delta) \geq 1 - 2 \frac{1 - r^2}{\delta}, \quad (14)$$

where $X_i^* = (X_i - \bar{X})/\sqrt{\hat{V}_{1,1}}$, $Y_i^* = (Y_i - \bar{Y})/\sqrt{\hat{V}_{2,2}}$ and $l = i$ with probability $1/n$.
Data sets.

- Then, by taking $\delta = 4(1 - r^2)$

$$R_1 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 4(1 - r^2)\},$$

contains (for sure) at least the 50% of the data.
Then, by taking \(\delta = 4(1 - r^2) \)

\[
R_1 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 4(1 - r^2)\},
\]

contains (for sure) at least the 50% of the data.

By taking \(\delta = 8(1 - r^2) \)

\[
R_2 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 8(1 - r^2)\},
\]

contains (for sure) at least the 75% of the data and the complementary region

\[
\overline{R}_2 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* \geq 8(1 - r^2)\},
\]

contains (for sure) at most the 25% of the data.
Data sets.

- Then, by taking $\delta = 4(1 - r^2)$

 $$R_1 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 4(1 - r^2)\},$$

 contains (for sure) at least the 50% of the data.

- By taking $\delta = 8(1 - r^2)$

 $$R_2 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 8(1 - r^2)\},$$

 contains (for sure) at least the 75% of the data and the complementary region

 $$\overline{R}_2 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* \geq 8(1 - r^2)\},$$

 contains (for sure) at most the 25% of the data.

- These regions are similar to (univariate) box plots.
Data sets. An example.

- Consider in the data set “iris” from R (Fisher, 1936), the variables $X = \text{Petal.Length}$ and $Y = \text{Petal.Width}$.
Consider in the data set “iris” from R (Fisher, 1936), the variables $X = \text{Petal.Length}$ and $Y = \text{Petal.Width}$.

We obtain $r = 0.9628654$ and R_1 and R_2 determined by

\[
\left(\frac{x - 3.758}{1.759} - \frac{y - 1.199}{0.759} \right)^2 + 2(1 - r)\left(\frac{x - 3.758}{1.759} \frac{y - 1.199}{0.759} \right) < 0.292
\]

and

\[
\left(\frac{x - 3.758}{1.759} - \frac{y - 1.199}{0.759} \right)^2 + 2(1 - r)\left(\frac{x - 3.758}{1.759} \frac{y - 1.199}{0.759} \right) < 0.583,
\]

respectively.
Consider in the data set “*iris*” from R (Fisher, 1936), the variables \(X = \text{Petal.Length} \) and \(Y = \text{Petal.Width} \).

We obtain \(r = 0.9628654 \) and \(R_1 \) and \(R_2 \) determined by

\[
\left(\frac{x - 3.758}{1.759} - \frac{y - 1.199}{0.759} \right)^2 + 2(1 - r) \frac{x - 3.758}{1.759} \frac{y - 1.199}{0.759} < 0.292
\]

and

\[
\left(\frac{x - 3.758}{1.759} - \frac{y - 1.199}{0.759} \right)^2 + 2(1 - r) \frac{x - 3.758}{1.759} \frac{y - 1.199}{0.759} < 0.583,
\]

respectively.

These regions contain more than the 50% and the 75% of the data (i.e. more than 75 and 113 data in this case).
Figure: Regions R_1 and R_2 containing (for sure) at least the 50% and 75% of the data from $X = \text{Petal.Length}$ and $Y = \text{Petal.Width}$.
Figure: Regions R_1 and R_2 by species containing (for sure) at least the 50% and 75% of the data from $X = \text{Petal.Length}$ and $Y = \text{Petal.Width}$.
Data sets. An example.

The two first principal components Y_1 and Y_2 of the four variables in this data set are

$$Y_1 = 0.521X_1^* - 0.269X_2^* + 0.580X_3^* + 0.565X_4^*$$

and

$$Y_2 = -0.377X_1^* - 0.923X_2^* - 0.025X_3^* - 0.067X_4^*,$$

where $X_i^* = (X_i - \overline{X_i})/\sqrt{\hat{V}_{i,i}}$, $i = 1, 2, 3, 4$.
The two first principal components Y_1 and Y_2 of the four variables in this data set are

$$Y_1 = 0.521X_1^* - 0.269X_2^* + 0.580X_3^* + 0.565X_4^*$$

and

$$Y_2 = -0.377X_1^* - 0.923X_2^* - 0.025X_3^* - 0.067X_4^*,$$

where $X_i^* = (X_i - \bar{X}_i)/\sqrt{\hat{V}_{i,i}}$, $i = 1, 2, 3, 4$.

In this case, $Y_1 = Y_2 = 0$ and $r = 0$ and hence

$$R_1 = \{(x, y) : \frac{x^2}{2.918} + \frac{y^2}{0.914} < 4\}$$

and

$$R_2 = \{(x, y) : \frac{x^2}{2.918} + \frac{y^2}{0.914} < 8\}.$$
Figure: Regions R_1 and R_2 for the scores in the two first principal components containing (for sure) at least the 50% and 75% of the data scores.
References

Thank you for your attention!!