
TEST (2023) 32:1307–1335
https://doi.org/10.1007/s11749-023-00874-x

ORIG INAL PAPER

On connections between skewed, weighted and distorted
distributions: applications to model extreme value
distributions

Jorge Navarro1 · Jorge M Arevalillo2,3

Received: 24 November 2022 / Accepted: 21 July 2023 / Published online: 5 August 2023
© The Author(s) 2023

Abstract
The purpose of the paper is to explore the connections between skew symmetric,
weighted and distorted univariate distributions as well as how they appear related to
the distributions of the extreme values in a sample of identically distributed random
variables under both the independence and dependence scenarios. Some extensions of
the concept of skewed distributions are proposed in order to cover the most general
cases of extremes. Their natural connections to the likelihood ratio ordering and the
role played by the P–P plots for handling thesemodels are also highlighted. The results
can also be applied to order statistics and coherent systems although these cases do not
always lead to skewed distributions. The theoretical findings are illustrated by applied
examples to model extremes as well as by several applications concerned with the
analysis of artificial and real data.

Keywords Skewness · Distortions · Order statistics · Copula

Mathematics Subject Classification 60E15 · 62N05

1 Introduction

The normal (or Gaussian) model is closed under operations such as linear combina-
tions, marginalization and conditioning. However, it is not closed under the extreme
value operator: for example, if X1, . . . , Xn is a sample of independent and identically
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distributed (IID) normal variables then Xn:n = max(X1, . . . , Xn) does not follow a
normal distribution. The same thing happens if we consider X1:n = min(X1, . . . , Xn)

or if the random variables X1, . . . , Xn are dependent, where the dependence can be
modeled by copulas. This kind of data arise in areas like reliability, climatology and
environmental studies (Blenkinsop et al. 2017; Buishand 1989; Ghosh and Ng 2019;
Navarro 2022) just to name a few fields fertile for data analysis.

It is well-known that the models for the maximum and minimum are no longer
normal since their distributions correspond to asymmetric models that were used to
define the univariate skew normal distribution, seeRoberts (1966) andAzzalini (1985).
This model assumes a movement of the probability mass to the right (Xn:n) or to the
left (X1:n) which results in asymmetric departures from normality. This property was
extended to the multivariate case and to other (non-normal) models by using skew
symmetric distributions (Arellano-Valle and Genton 2008; Azzalini 2005; Azzalini
and Capitanio 2003) which are useful to model the asymmetry arising for example in
finance data (De Luca and Loperfido 2004). Other related distributions were studied
in Ferreira and Steel (2006), Jones (2015) and Ley (2015).

On the other hand, the weighted distributions introduced by Fisher (1934), Rao
(1965) and Patil and Rao (1978) are concerned with the modification of a given initial
baseline model through a weighted function which handles unequal sampling proba-
bilities; this is actually what happens with the extreme values selected from a set of
baseline values using a specific sampling procedure. A relatively recent generalization
of weighted distributions, obtained by the extension of Azzalini’s skewing approach,
has been addressed in Domma et al. (2015).

The third related concept is the so called distorted distributions. They were intro-
duced in the theory of choice under risk (Wang 1996; Yaari 1987) to model a change
(a distortion) in the baseline distribution for the risks or the claims. They have also
been applied to model order statistics and coherent systems (Navarro 2022; Navarro
et al. 2018).

In this paper we connect these three concepts in the univariate case showing how
they can be used tomodel the distributions of extremes (minima andmaxima). The rep-
resentations based on weighted and distorted distributions always hold for extremes.
In order to establish a unified framework that includes these models and skew dis-
tributions, we propose two univariate extensions that assess skewness by means of
distributions defined as the product of a baseline probability density function and a
distribution (survival) function.We show that both variants—distributionor survival—
would cover many extreme related models, with the only limitation of disregarding a
few particular cases of dependencemodels (copulas). The connections of the proposed
representations with the likelihood ratio order and PP-plots are also discussed putting
the focus on their implications for modeling extremes.

The rest of the paper is organized as follows: The notation, definitions and prelimi-
nary results are placed in Sect. 2, which also includes the new extensions of univariate
skewed distributions. The main results are given in Sect. 3 which studies different
representations of the distributions of extremes; some illustrative examples of these
representations are presented in Sect. 4. The numerical work illustrating the results of
the theory is provided in Sect. 5; it includes applications with artificial data and a real
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data study about daily and monthly maximum temperatures. Finally, Sect. 6 contains
the conclusions and some thoughts for future research.

2 Skewed, weighted, distorted distributions and their connections

2.1 Univariate models

Let X1, . . . , Xn be a sample of identically distributed (ID) random variables with a
common absolutely continuous cumulative distribution function (CDF) F and with
probability density function (PDF) f = F ′ (a.e.). Let F̄ = 1 − F be the survival or
reliability function and let X1:n ≤ · · · ≤ Xn:n be the associated order statistics derived
from the sample. In particular, the extreme values are X1:n = min(X1, . . . , Xn) and
Xn:n = max(X1, . . . , Xn). The main properties of order statistics have been studied
in Arnold et al. (2008) and David and Nagaraja (2003). In many cases X1, . . . , Xn

correspond to the lifetimes (or survival times) of some items; so we only observe the
first failure time X1:n . In some other cases, they correspond to claims, environmental
or climatology extreme values and we just observe X1:n or Xn:n .

Sometimes the assumption of independence of the sample random variables (IID
case) is well suited to the sampling procedure. However, in other situations where the
observed values share the same environment (or the same risks) such assumption fails;
in such cases the sampling procedure responds to the dependence scheme. For both
scenarios, the joint distribution function of (X1, . . . , Xn) can be represented as

Pr(X1 ≤ x1, . . . , Xn ≤ xn) = C(F(x1), . . . , F(xn)),

where C : [0, 1]n → [0, 1] is a copula function (Durante and Sempi 2016; Nelsen
2006). From Sklar’s theorem (Schweizer and Sklar 1974),C is unique provided that F
is continuous. Here, we will assume that both C and F are absolutely continuous with
PDFs c = ∂1,...,nC and f = F ′ respectively, where ∂iC denotes the partial derivative
ofC with respect to its i th variable, ∂i, jC the second partial derivative ofC with respect
to its j th and i th variables and so on. The independence is represented by the product
copula C(u1, . . . , un) = u1, . . . , un with c(u1, . . . , un) = 1 for u1, . . . , un ∈ [0, 1].
A similar representation holds for the joint survival function

Pr(X1 > x1, . . . , Xn > xn) = ̂C(F̄(x1), . . . , F̄(xn)),

where ̂C : [0, 1]n → [0, 1] is a copula function called survival copula.
The univariate skew normal (SN) distribution was introduced by Azzalini (1985) to

handle asymmetry deviations from normality. Due to its simple analytical form, this
distribution has become a widely used model to handle the non-normality of data; its
PDF is defined by

fλ(x) = 2φ(x)�(λx): x ∈ R, (2.1)
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where φ and � are the PDF and CDF of a standard normal variable respectively and
λ ∈ R is a shape parameter that regulates the asymmetry of the model. If λ > 0 then
�(λx) is a distribution function and the density fλ arises as a deformation of φ that
results by injecting probability to the right tail of the normal model (i.e. the likelihood
of the greater values increases). If λ < 0 then �(λx) = 1 − �(−λx) is a survival
function and fλ captures the movement of the probability mass to the left, augmenting
the likelihood of lower values. In both cases, the model can be formulated to consider
location and scale parameters (Azzalini 1985; Azzalini and Capitanio 2014). When
λ = 0 the SN reduces to the normal distribution.Wewill write X ∼ SN (λ) to indicate
that X follows a SN distribution with PDF given by expression (2.1).

The idea of perturbing the symmetrymotivated the extension of the SNmodel to the
class of skew symmetric distribution studied inAzzalini andCapitanio (2003),Azzalini
(2005), Azzalini and Regoli (2012), see also the term ‘perturbation’ used in Azzalini
and Capitanio (2003), Azzalini and Capitanio (2014) and the term ‘modulation of
distributions’ in Azzalini and Capitanio (2014). The PDF of a skew symmetric scalar
variable is defined by

fG,h(x) = 2 f (x)G(h(x)), (2.2)

where f is a symmetric PDF around zero, G is a CDF such that G(−x) = 1 − G(x)
and h is a real function such that h(−x) = −h(x) for all x .We put X ∼ SSD( f ,G, h)

to denote that a random variable X has the PDF in (2.2). Clearly, the SN distribution
is obtained when we take f = φ, G = � and h(x) = λx . Expression (2.2) can be
extended naturally to the multivariate case, see Azzalini and Regoli (2018). For other
extensions and their relationships see Jones (2015) and Ley (2015).

A second idea related to the perturbation of a density function is concerned with
the well-known biased or weighted distributions which can be traced back to Fisher
(1934) and Rao (1965). If w : R → R is a nonnegative weight function and f is a
PDF then the weighted PDF associated to w and f is defined by

fw(x) = cww(x) f (x), (2.3)

where we assume that 0 < μw = ∫

R
w(x) f (x)dx < ∞ with cw = 1/μw being

the normalizing constant. The weight function w appearing in (2.3) is used to modify
the sampling probabilities of the density f . Of course, if w is constant then we will
be sampling from the baseline variable with PDF f . However, in other situations the
functionw will serve to down weight or up weight the probability so that the sampling
scheme is modified accordingly. Perhaps, the most typical case is the length biased (or
size biased) weight function where X ≥ 0, w(x) = x for x ≥ 0 and μw = μ = E(X)

(Patil and Rao 1978). In this case, the sampling probability of a data Xi is proportional
to Xi and the baseline probability mass from f is moved to the right to get the PDF
fw; so it is also “right skewed”. However, this is not the case for other weight functions
which will not necessarily represent skewed distributions. We put X ∼ WD( f , w) to
indicate that the a random variable X follows a weighted distribution with PDF given
by (2.3).
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It is clear that theSN (λ) distribution is aweighted distributionwithweight function
w(x) = �(λx) and cw = 2. Hence, it can be seen as a model having a probability
assignment scheme proportional to �(λx) = Pr(X ≤ λx). If λ > 0 the probability
increases in x ; meanwhile, ifλ < 0 then it is a decreasing function of x . In the first case,
the higher values are more likely than the smaller ones, and vice versa for the second
case. In particular, if λ = 1 then we get w(x) = �(x) = Pr(X ≤ x) (the standard
normal distribution function); on the other hand, when λ = −1 it is obtained that
w(x) = �(−x) = 1 − �(x) = Pr(X > x) (the standard normal survival function).
The same observation applies to the SSD( f ,G, h) family which is a subclass of the
class ofweighted distributionswithweight functionw(x) = G(h(x)) and cw = 2. The
weighted distributions can also be extended to the multivariate case, see e.g. Navarro
et al. (2006). For the connections between (2.2) and (2.3) in the multivariate case see
Section 7 of Azzalini and Regoli (2018).

The third related concept is known as the distorted distribution. It was introduced
in the context of the theory of choice under risk in order to allow a change (distortion)
of the initial (or past) baseline distribution (Wang 1996; Yaari 1987). The distorted
distribution function associated to a CDF F and a distortion function q : [0, 1] →
[0, 1] is defined by

Fq(x) = q(F(x)), (2.4)

where q is a continuous increasing function such that q(0) = 0 and q(1) = 1. Under
these assumptions for q, Fq is a proper CDF and the respective survival functions
F̄q = 1 − Fq and F̄ = 1 − F satisfy a similar relationship F̄q(x) = q̄(F̄(x)), where
q̄(u) = 1 − q(1 − u) is another distortion function called dual distortion. Note that
q̄ is a CDF and that it is not the survival function associated to q. The distribution Fq
has PDF given by

fq(x) = q ′(F(x)) f (x) = q̄ ′(F̄(x)) f (x), (2.5)

which is also a weighted model with w depending on both q and F . This represen-
tation can be applied to extreme data, order statistics and coherent systems with ID
components (Navarro 2022); a recent multivariate extension can be seen in Navarro
et al. (2022). We put X ∼ DD(q, F) to denote that a variable X follows a distribution
with PDF given by expression (2.5).

A typical case arises when q(u) = uα for α > 0. This distortion leads to Fq =
Fα , known as Lehmann’s alternative in hypothesis testing, also equivalent to the
Proportional Reversed Hazard Rate (PRHR) model. Analogously, the dual distortion
q̄(u) = uα leads to the well-known Proportional Hazard Rate (PHR) Cox model with
F̄q = F̄α (Cox 1972). Here, the index α represents a risk parameter that can be related
to the characteristics of each individual.

Note that if α = 2, the PRHR and PHR models lead to the PDFs fq(x) =
2 f (x)F(x) and fq(x) = 2 f (x)F̄(x), respectively giving the PDFs of X2:2 and X1:2
in the IID case. The first one is a skew symmetric distribution SSD( f ,G, h) from
f , with G = F and h(x) = x if we assume that f is symmetric around zero. Under
this assumption, the second one fq is also a skew symmetric distribution from f , with
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G = F and h(x) = −x since F̄(x) = F(−x). The survival function is F̄2 and it repre-
sents an accelerated life testing with double hazard rate hq = fq/F̄q = 2 f /F̄ = 2h;
hence, the probability mass of X is moved to the left (i.e. the sample items fail before).

Ferreira and Steel (2006) (see also Jones 2015) defined a class of skewed dis-
tributions by ‘perturbing’ a reference baseline density f to get the PDF f ∗(x) =
f (x)h(F(x)), where f is a symmetric PDF, F is its CDF and h is a PDF with support
on the unit interval [0, 1]. The CDF of the model is F∗(x) = H(F(x))where H is the
CDF of h; thus, it is equivalent to the distortion model (applied to a symmetric PDF).
It is worthwhile noting that this model does not always lead to a more skewed version
of f . Actually, in some cases, the PDF f ∗ may be symmetric (see Remark 3.8).

2.2 Connections with stochastic orderings

Weighted, skew symmetric and distorted distributions have close connections with
the convex ordering defined in Chan et al. (1990), also known as the likelihood ratio
ordering (Shaked and Shanthikumar 2007). We say that the random variable X is less
than Y in the likelihood ratio order, shortly written as X ≤lr Y or as FX ≤lr FY , if
fY / fX is increasing in the union of their supports, where fX , FX and fY , FY represent
the PDFs and CDFs of the variables X and Y . This ordering implies other popular
orders as the usual stochastic and hazard rate orders; its main properties can be seen
in Shaked and Shanthikumar (2007), pp. 42–70.

The weighted distribution is more (less) skewed than the baseline distribution
with respect to the likelihood ratio ordering (Chan et al. 1990) when w is increasing
(decreasing) since fw(x)/ f (x) = cww(x). Thus we have

F ≤lr Fw (≥lr ) ⇔ w increases (decreases).

As an immediate consequence we get

� ≤lr Fλ (≥lr ) ⇔ λ ≥ 0 (λ ≤ 0),

where Fλ is the skew normal distribution having the PDF fλ in equation (2.1). A
similar statement can be obtained for the SSD( f ,G, h) family:

F ≤lr FG,h (≥lr ) ⇔ h increases (decreases),

where FG,h is the distribution function of the skew symmetricmodel, with PDFdefined
by equation (2.2), and F is the distribution function associated to the PDF f .

Analogously, the distorted distribution is more (less) skewed than the baseline
distribution with respect this convex ordering when q is convex (concave). This is
due to the facts that the distortion function q from equation (2.4) can be written as
q(u) = Fq(F−1(u)) for u ∈ (0, 1) and that the ordering F ≤lr G holds if and only if
G(F−1) is convex, see Shaked and Shanthikumar (2007), p. 43. Thus we have

F ≤lr Fq (≥lr ) ⇔ q convex (concave).
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It is worthwhile noting that the convexity of Fq(F−1) implies the convexity of the
P–P plot since Fq(x) = Fq(F−1(F(x))) so that the CDF Fq is obtained through a
convex transformation of the CDF F . Note that a P–P plot can be obtained by plotting
(u, Fq(F−1(u))) for u ∈ (0, 1), that is, the distortion function q, or equivalently by
plotting (F(t), Fq(t)) for t ∈ R, see Thas (2010), Chapter 8.

Interestingly, the P–P plot and the Q–Q plot have emerged as useful graphical
tools for comparing probabilities and quantiles among distributions, see e.g. Thas
(2010), Chapter 8. P–P plots are handy for the visual assessment of the likelihood
ratio ordering since the convexity of G(F−1(u)) is equivalent to F ≤lr G, see Shaked
and Shanthikumar (2007), p. 43. Moreover, it depicts the distortion function q(u) =
G(F−1(u)); such distortion is actually the mapping that transforms the less skewed
distribution to the distributionwith the higher skewness:G(x) = q(F(x)). Unlike P–P
plots, the Q–Q plot depicts the functionG−1(F(x))which in turn defines the mapping
between quantile functions: G−1(u) = G−1(F(F−1(u))); its convexity ensures the
convex transform ordering between distributions, denoted by F ≤c G, as defined by
Van Zwet (1964). This ordering has been used to describe the concept of skewness
in a better way so that skewness measures have been revisited in connection with the
ordering (Groeneveld andMeeden 1984);moreover, theQ–Qplot has arised as a useful
tool for the visual assessment of this ordering (Arriaza et al. 2019). We are not aware
of similar implications, as the aforementioned ones for the P–P plot and the likelihood
ratio ordering, that allow to connect the convex transform ordering with weighted
distributions, skew symmetric distributions and distortions, with the exception of a
work concerned with the skew normal distribution (Arevalillo and Navarro 2019).
In fact, the likelihood ratio ordering provides a general framework that comprises
the concept of being more (less) skewed for a gamut of distribution families like the
previous ones. This fact motivates the following definition to capture the idea of being
more right (less left) skewed with respect to a given baseline PDF f .

Definition 2.1 If f is a univariate PDF and G is a univariate CDF, we define the right
skewed distribution associated to f andG (shortly written asRS( f ,G)) as the model
with PDF

fR(x) = cRG(x) f (x), (2.6)

where cR = 1/
∫

R
G(x) f (x)dx . Analogously, If f is a PDF and Ḡ is a survival

function, we define the left skewed distribution associated to f and Ḡ (shortly written
as LS( f , Ḡ)) as the model with PDF

fL(x) = cL Ḡ(x) f (x), (2.7)

where cL = 1/
∫

R
Ḡ(x) f (x)dx .

It can be noted that

0 ≤
∫

R

G(x) f (x)dx ≤
∫

R

f (x)dx = 1.
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1314 J. Navarro, J. M. Arevalillo

Hence, the function fR is a proper PDF iff
∫

R
G(x) f (x)dx > 0; moreover cR ≥ 1.

Also note that cR = 1/Pr(U < X), where U and X are two independent random
variables with CDFsG and F , respectively. Similar properties hold for the left skewed
PDF defined in (2.7) with cL ≥ 1 and cL = 1/Pr(U > X).

Note that the symmetry of f is not necessarily assumed in Definition 2.1; in fact,
if the baseline distribution with PDF f is already skewed then the derived distribution
with PDF fR ( fL ) results in a more (less) skewed distribution in accordance to the
convex ordering. Also note that the normalizing constants cR and cL can be different
from 2. Therefore, themodels in (2.6) and (2.7) are not included in the skew symmetric
distributionmodel, themodel in Proposition 1.1 of Azzalini and Capitanio (2014) or in
the model called ‘family 1’ in Jones (2015), that is, they are more flexible models than
skew symmetric distributions and the family 1 class. In fact, they naturally respond
to the intuitive idea of injecting right or left asymmetry into a given not necessarily
symmetric PDF.

Clearly, both models in Definition 2.1 are weighted models with sampling proba-
bilities proportional to G(x) and Ḡ(x), respectively. Note that the skew normal model
SN (λ) is a right skewed distribution of the normal model when λ > 0 and it is a left
skewed distribution when λ < 0. However, the skew symmetric distribution cannot
be represented in this way since we do not know if the function h is monotone. Con-
versely, the RS and LS models do not admit the skew symmetric formulation (2.2)
with h(x) = ±x since it is not necessarily assumed that f and g = G ′ are symmetric
around zero. Some extensions to the multivariate case can be seen in Jupp et al. (2016).

Another two particular cases of interest are obtained when we take G(x) = F(λx)
for λ > 0 or Ḡ(x) = F(λx) for λ < 0, where F is the distribution function associated
to the baseline PDF f .

A desired and relevant property which follows immediately from the previous
observations is stated by the next proposition.

Proposition 2.2 If F is the CDF of f , FR ∼ RS( f ,G) and FL ∼ LS( f , Ḡ), then

FL ≤lr F ≤lr FR

for any f ,G.

Note that this property tells us that the new distributions aremore (less) skewed than
the baseline distribution. Also note that FR satisfies this property as long as G is an
increasing function and the expression for fR in (2.6) defines a PDF.Hence, this family
could be extended by replacing the condition “G is a CDF” with both requirements.
As we will see in the following section, this extension will allow us to cover additional
models for extreme observations under dependency (see also Example 4.5). A similar
extension can be obtained for the left skewed distribution by relaxing the condition
“Ḡ is a survival function”.

The chain of stochastic inequalities obtained in Proposition 2.2 implies that the
theoretical P–P plot FR(F−1(u)) is a convex function mapping F(x) in FR(x); mean-
while the P–P plot FL(F−1(u)) is a concave function that maps F(x) in FL(x). On
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the other hand, the P–P plot can be put as follows:

FR(F−1(u)) =
∫ F−1(u)

−∞
cRG(x) f (x)dx

= cR

∫ u

0
G(F−1(v))dv =

∫ u
0 G(F−1(v))dv

∫ 1
0 G(F−1(v))dv

(2.8)

which allows to characterize it as the proportional cumulative area under the P–P plot
given by G(F−1(u)), which in turn is the theoretical P–P plot between the baseline
CDF F and the CDF G, which controls the right skewed perturbation in Definition
2.1. If we assume that the CDF G is a distortion of F , that is, G = q(F), then so is
FR with FR = q∗(F) for

q∗(u) =
∫ u
0 q(v)dv

∫ 1
0 q(v)dv

.

Also note that the PDF associated to the CDF q∗ is proportional to q.
Analogously, for the left skewed distribution we get

F̄L(F̄−1(u)) =
∫ ∞

F̄−1(u)

cL Ḡ(x) f (x)dx = cL

∫ u

0
Ḡ(F̄−1(v))dv =

∫ u
0 Ḡ(F̄−1(v))dv

∫ 1
0 Ḡ(F̄−1(v))dv

.

If Ḡ admits a distortion representation from F̄ = 1 − F with dual distortion q̄ , that
is, Ḡ = q̄(F̄), then we get a similar representation for F̄L with dual distortion

q̄∗(u) =
∫ u
0 q̄(v)dv

∫ 1
0 q̄(v)dv

for u ∈ [0, 1].
Finally, we include some preservation properties for the unimodality of models

(2.6) and (2.7). In this sense a PDF f is said to be increasing likelihood ratio (ILR)
or strongly unimodal if f is log-concave (i.e. log f is concave). This is an aging class
that implies the popular increasing hazard rate (IHR) and decreasing reversed hazard
rate (DRHR) aging classes, where the hazard rate and reversed hazard rate functions
are defined by f /F̄ and f /F , respectively. The ILR property is equivalent to the
increasing property for the eta Glaser function η = − f ′/ f . Analogously, the IHR
and DRHR classes can be characterized by the log-concavity of functions F̄ and F ,
respectively.

Thus we can obtain the following results for the unimodality property for fR and
fL .

Proposition 2.3 Let fR and fL be the PDFs in (2.6) and (2.7).

(i) If f is ILR and G is DRHR, then fR is ILR and, in particular, it is unimodal.
(ii) If f is ILR and G is IHR, then fL is ILR and, in particular, it is unimodal.
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Fig. 1 Value of λ (left) in a bivariate normal distribution with correlation ρ. PDFs (right) for X2:2 and
X1:2 for ρ = −0.5 (black), 0 (red) and 0.5 (blue). The green line represents the standard normal PDF
(ρ = 1, λ = 0) (color figure online)

The proof is easy. In particular, note that if both f and G are ILR, then both models
are unimodal. For the skew normal model we have G(x) = F(λx) when λ > 0 or
Ḡ(x) = F(λx) when λ < 0. Moreover, the normal PDF f is ILR and then so is G (in
both cases). Therefore, we get that the skew normal model is ILR and, in particular,
it is unimodal (a well-known property). The particular cases in which G = q(F) or
Ḡ = q̄(F̄) (they are distorted distribution of F) can be studied with the preservation
properties for these classes given in Navarro (2022), p. 120.

3 Distributions of extremes

Once we have explored the relationships among weighted distributions, skew sym-
metric distributions and distortions along with their connections with the likelihood
ratio ordering, in this section we study how they are related to the distributions of
extremes. Our purpose is to show that the distributions of the sample extremes X1:n
and Xn:n belong to the family of skewed distributions introduced in Definition 2.1.

For the sake of motivation, let us start with the case n = 2 under normality: we will
assume that (X1, X2) has a bivariate normal distribution with standardized marginal
CDFs� and correlationρ; then it can be shown that X2:2 has a skewnormal distribution
SN (λ) with λ = √

(1 − ρ)/(1 + ρ) > 0. This result dates back to an early work by
Roberts (1966) and it is a precursor of the skew normalmodel introduced byAzzalini’s
seminal paper (Azzalini 1985); later on it has been revisited and generalized under
different settings (Azzalini and Capitanio 2003; Loperfido et al. 2007) including its
extension to elliptical distributions (Loperfido 2008); an analogous argument would
prove that X1:2 has a skew normal distribution with SN (−λ). Both cases can be
interpreted as sampling procedures for which the higher (lower) values have the largest
sampling probabilities. It is easy to see that λ is a decreasing function of ρ withλ → ∞
as ρ → −1 and λ → 0 as ρ → 1 (see the left plot of Fig. 1). If ρ = 0 (IID case)
then λ = 1 and the distribution function of the maximum becomes F2:2(x) = �2(x).
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The skewed PDFs of the extremes X2:2 and X1:2 for the values ρ = −0.5, 0, 0.5 can
be seen in the right plot of Fig. 1. Note that the most skewed distributions correspond
to ρ = −0.5 (black lines), that is, the most extreme values are obtained with negative
dependence as expected. Of course, when ρ → 1 we get the normal distribution, that
is, the singular case with X1 = X2 = X1:2 = X2:2.

The results for the bivariate normal distribution can be extended as follows for
exchangeable (EXC) random vectors: We say that a random vector (X1, . . . , Xn) is
EXC if it has the same distribution as (Xσ(1), . . . , Xσ(n)) for any permutation σ . The
random vector (X1, . . . , Xn) is EXC if and only if X1, . . . , Xn are ID and its copula
(or its survival copula) is invariant under permutations.

The following proposition, partially borrowed from Corollary 1 in Arellano-Valle
and Genton (2008), gives the extension to EXC bivariate vectors. For completeness,
we provide a proof here since the statement establishes a new copula formulation for
the resulting skewed distribution.

Proposition 3.1 Let (X1, X2) be an EXC random vector with absolutely continuous
copula C and common marginal CDF F and PDF f . Then the PDF of X2:2 can be
written as

f2:2(x) = cR f (x)G(x), (3.1)

with G(x) = ∂1C(F(x), F(x)) and cR = 2.

Proof The distribution function of X2:2 is

F2:2(x) = Pr(max(X1, X2) ≤ x) = Pr(X1 ≤ x, X2 ≤ x) = C(F(x), F(x))

for all x . Hence its PDF is

f2:2(x) = F ′
2:2(x) = f (x)∂1C(F(x), F(x)) + f (x)∂2C(F(x), F(x)).

Taking into account that C is permutation symmetric, we obtain (3.1). �

Remark 3.2 From (3.1), X2:2 has a right skewed representation if and only if
G(x) = ∂1C(F(x), F(x)) is a CDF. Note that equation (3.1) is useful to get the
explicit expression of the skewed distribution of X2:2 for different copulas as illus-
trated in the examples of Sect. 4. In the independent case ∂1C(u, v) = v so that
f2:2(x) = 2 f (x)F(x) and the distribution of X2:2 has a right skewed representation.
In order to check if G(x) = ∂1C(F(x), F(x)) is a distribution function, we argue as
follows: from the copula representation, the joint PDF of the bivariate vector (X1, X2)

can be written as

f(x1, x2) = f (x1) f (x2)∂1,2C(F(x1), F(x2)).

Hence the PDF of the conditional random variable (X2|X1 = x) is

f2|1(x2|x1) = f(x1, x2)
f (x1)

= f (x2)∂1,2C(F(x1), F(x2))
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1318 J. Navarro, J. M. Arevalillo

for x1 such that f (x1) > 0. Then its distribution function is

F2|1(x2|x1) =
∫ x2

−∞
f2|1(z|x1)dz =

∫ x2

−∞
f (z)∂1,2C(F(x1), F(z))dz

= [∂1C(F(x1), F(z))]x2z=−∞ = ∂1C(F(x1), F(x2))

whenever limz→−∞ ∂1C(F(x1), F(z)) = 0 holds. Therefore we get

G(x) = ∂1C(F(x), F(x)) = F2|1(x |x)

provided that limv→0+ ∂1C(F(x), v) = 0 holds for all x . The expression above can
also be obtained fromProposition 1 inArnold et al. (2008). However, note thatG(x) =
F2|1(x |x) is not necessarily a CDF in x . For many copulas, it can be shown that G is
a CDF, although this is not always the case (see Sect. 4).

Using an analogous argument, we could prove a similar result for the minimum.
The result is stated by the following proposition.

Proposition 3.3 Let (X1, X2) be an EXC random vector with absolutely continuous
survival copula ̂C and common marginal CDF F and PDF f . Then the PDF of X1:2
can be written as

f1:2(x) = cL f (x)Ḡ(x), (3.2)

with Ḡ(x) = ∂1̂C(F̄(x), F̄(x)) and cL = 2.

Remark 3.4 Expression (3.2) shows that X1:2 has a LS( f , Ḡ) distribution if and only
if Ḡ is a survival function. The requirements resulting from Propositions 3.1 and 3.3,
that allow to derive skewed distributions, hold for many copulas. However, they are
not satisfied in all the cases; see Navarro and Sordo (2018) or the Examples 4.4 and 4.5
of the next section for counterexamples. An alternative direct proof without copulas
can be obtained by using that

f2:2(x) = f1(x)Pr(X2 ≤ x |X1 = x) + f2(x)Pr(X1 ≤ x |X2 = x)

which under the EXC assumption leads to

f2:2(x) = 2 f (x)Pr(X2 ≤ x |X1 = x)

as stated in the first proposition. Note that here we just use the conditional distribution
function of (X2 ≤ x |X1 = x). This representation can be applied to models with
known conditionals. Several models with known conditionals were obtained in Arnold
et al. (1999). If we relax the EXC condition and we just assume that X1 and X2 are
ID with a common PDF f , then

f2:2(x) = 2 f (x)G(x)
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where

G(x) = 1

2
Pr(X2 ≤ x |X1 = x) + 1

2
Pr(X1 ≤ x |X2 = x).

Provided that we can ensure that Pr(X2 ≤ x |X1 = x) and Pr(X1 ≤ x |X2 = x)
are CDFs, we found that G is a mixture of two CDFs which in turn implies that the
maximum X2:2 has a right skewed distribution. Similar results hold for the minimum
X1:2. These findings are in agreement with the results in Arellano-Valle and Genton
(2008), showing that X2:2 has aRS( f ,G)under the elliptically contoured distribution.

The results for the bivariate case can be extended to the n dimensional case, that
is, for X1:n and Xn:n . The results for the n dimensional normal distribution were
obtained in Loperfido et al. (2007). In order to establish the result for the general n
dimensional ID case, the following definition is needed: The diagonal section of a
copula C is δC (u) = C(u, . . . , u) for u ∈ [0, 1]. It can be shown that δC (u) is a
distortion function which can be extended to a continuous CDF with support included
in [0, 1]. For additional properties and details about diagonal sections of copulas see
Durante and Sempi (2016) and Nelsen (2006).

Proposition 3.5 Let (X1, . . . , Xn) be a random vector with copula C and common
marginal CDF and PDF given by F and f , respectively. Then the PDF of Xn:n can
be written as

fn:n(x) = f (x)δ′
C (F(x)), (3.3)

where δ′
C is the first derivative of the diagonal section of C.

Proof The CDF of Xn:n is

Fn:n(x) = Pr(max(X1, . . . , Xn) ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x)

= C(F(x), . . . , F(x)) = δC (F(x))

for all x . Hence its PDF is fn:n(x) = F ′
n:n(x) and (3.3) holds. �


We have a similar result for the minimum.

Proposition 3.6 Let (X1, . . . , Xn) be a random vector with survival copula ̂C and
common marginal CDF and PDF given by F and f , respectively. Then the PDF of
X1:n can be written as

f1:n(x) = f (x)δ ′̂
C
(F̄(x)), (3.4)

where δ ′̂
C
is the first derivative of the diagonal section of ̂C.
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1320 J. Navarro, J. M. Arevalillo

Proof The survival function of Xn:n can be written as

F̄1:n(x) = Pr(min(X1, . . . , Xn) > x) = Pr(X1 > x, . . . , Xn > x)

= ̂C(F̄(x), . . . , F̄(x)) = δ
̂C (F̄(x))

for all x . Hence its PDF is

f1:n(x) = F ′
1:n(x) = f (x)δ ′̂

C
(F̄(x))

and (3.4) holds. �

Remark 3.7 As in the bivariate case, (3.3) gives a weighted PDF for Xn:n . This implies
a movement of the probability mass of f to the right when δ′

C is increasing (i.e. δC
is convex). However, in order to get a proper right skewed distribution, as in Defi-
nition 2.1, the function δ′

C (F(x)) needs to be proportional to a distribution function
G(x). In such a case, fn:n(x) = cR f (x)G(x), admitting a right skewed represen-
tation, and the respective P–P plots can be obtained as G(F−1(u)) = (1/cR)δ′

C (u)

and Fn:n(F−1(u)) = δC (u) which is a convex function. For example, in the IID
n-dimensional case, we get δC (u) = un and δ′

C (u) = nun−1. Therefore, the dis-
tribution of Xn:n gets more right skewed than f with skewness mechanism given
by G(x) = Fn−1(x) and cR = n. It can also be interpreted as a sampling proce-
dure over f where the sampling probability for a value X = x is proportional to
w(x) = Fn−1(x) = Pr(X1 ≤ x, . . . , Xn−1 ≤ x), that is, X = x is bigger than n − 1
random independent values X1, . . . , Xn−1 from X . Other examples with different
copulas are given in Sect. 4. The results are similar for the minimum: for example, in
the independent case, we get that X1:n has more left skewed distribution than f with
Ḡ(x) = F̄n−1(x) and cL = n. The interpretation as a weighted sampling is analogous:
a value X = x is available in the sample if it is less than n − 1 independent copies of
X .

Remark 3.8 Similar results can be obtained for the other order statistics Xi :n for i =
2, . . . , n − 1. If we assume that X1, . . . , Xn are ID (dependent or independent), their
PDFs can also be written as

fi :n(x) = f (x)q ′
i :n(F(x))

for i = 2, . . . , n − 1, where qi :n is a distortion function which depends on C , i and n
(see e.g. Navarro 2022, p. 61). In particular, in the IID case qi :n is a polynomial and

q ′
i :n(u) = i

(

n

i

)

ui−1(1 − u)n−i

for u ∈ [0, 1]. In this case, q ′
i :n(F(x)) is not proportional to a distribution function so

we cannot obtain a skewed representation for i = 2, . . . , n − 1. However, note that
Xi :n has both aweighted representationwithw(x) = Fi−1(x)F̄n−i (x) and a distortion
representation with distortion qi :n . For example, for X2:3 we get w(x) = F(x)F̄(x)

123



On connections between skewed, weighted and distorted… 1321

andq2:3(u) = 3u2−2u3 foru ∈ [0, 1]. These transformations donot provide a skewing
mechanism; it can be noted that if f is symmetric then f2:3 is also symmetric.

Remark 3.9 In order to write the distribution of Xn:n as a right skewed distribution,
Definition 2.1 could be extended by considering

fR(x) = cR f (x)Gx (h(x))

for all x ∈ R, where f is a PDF, Gx is a k-dimensional distribution function and
h : R → R

k . By doing so, from Corollary 1 in Arellano-Valle and Genton (2008), we
get that if (X1, . . . , Xn) is EXC, then Xn:n has a right skewed distribution of order
k = n − 1 derived from the common marginal PDF f ,

Gx (x1, . . . , xn−1) = Pr(X1 ≤ x1, . . . , Xn−1 ≤ xn−1|Xn = x),

h(x) = (x, . . . , x) and cR = n. The same thing happens for elliptically contoured
distributions (see Corollary 2 in Arellano-Valle and Genton 2008). In this case Gx is
a fixed distribution, that is, it does not depend on x . Actually, as in this case G(x) =
Gx (h(x)) is a univariate CDF, then Xn:n follows aRS( f ,G) distribution. This is not
always the case for other EXC distributions.

Finally, we provide a characterization of the right skewed representation for Xn:n .
A similar characterization can be obtained for X1:n .

Proposition 3.10 Let (X1, . . . , Xn) be a random vector with copula C and common
marginal CDF and PDF given by F and f . Then Xn:n follows a distribution having
a right skewed representation from f if and only if δC is convex and δ′

C (0) = 0.
Moreover, in this case, cR ∈ (0, n].
Proof If Xn:n can be written as RS( f ,G), then fn:n(x) = cR f (x)G(x), where G is
a CDF. Taking into account (3.3), we get δ′

C (F(x)) = cRG(x) ≥ 0 and

δ′
C (0) = δ′

C (F(−∞)) = cRG(−∞) = 0.

Conversely, if we assume that δC is convex and δ′
C (0) = 0 then δ′

C is an increasing
function in (0, 1). Moreover, from δC (u) = C(u, . . . , u), we get

δ′
C (u) =

n
∑

i=1

∂iC(u, . . . , u)

for u ∈ [0, 1]. Then, from Theorem 1.6.1 in Durante and Sempi (2016), p. 21, we
obtain δ′

C (u) ≤ n for all u ∈ [0, 1]. Thus we define cR = δ′
C (1) ∈ (0, n] so that we

get

fn:n(x) = f (x)δ′
C (F(x)) = cR f (x)G(x),
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where G(x) = (1/cR)δ′
C (F(x)) is an increasing function satisfying

G(−∞) = 1

cR
δ′
C (F(−∞)) = 1

cR
δ′
C (0) = 0

and

G(∞) = 1

cR
δ′
C (F(∞)) = 1

cR
δ′
C (1) = 1.

Hence, G is a CDF and Xn:n ∼ RS( f ,G). �

Note that the condition δ′

C (0) = 0 can be removed from the assumptions in the
previous proposition provided that we extend the right skewed class by allowing G
to be a pseudo-distribution function with a possible mass at −∞. In fact the case
δ′
C (0) > 0 may come up for some copulas as the Example 4.5 in the next section will
show; meanwhile, the condition about the convexity of the diagonal section cannot be
dropped out from the assumptions (see Example 4.4).

4 Examples

In the first example we consider a dependent case (copula) where X2:2 admits a right
skewed representation.

Example 4.1 Let us consider a bivariate random vector (X1, X2) with a com-
mon marginal CDF F , PDF f = F ′ and the following EXC copula, known as
Farlie-Gumbel-Morgenstern (FGM) copula:

C(u, v) = uv + θuv(1 − u)(1 − v)

for u, v ∈ [0, 1], where θ ∈ [−1, 1] is a dependence parameter (see Nelsen 2006, p.
77). Its first partial derivative is

∂1C(u, v) = v + θ(1 − 2u)(v − v2)

for u, v ∈ [0, 1]. A straightforward calculation shows that

q(u) = ∂1C(u, u) = u + θ(1 − 2u)(u − u2)

for all u ∈ [0, 1] is a distortion function for any θ ∈ [−1, 1]. Hence, from (3.1), X2:2
has the following right skewed representation

f2:2(x) = 2 f (x)G(x),

where

G(x) = q(F(x)) = F(x) + θ(1 − 2F(x))F(x)F̄(x)
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Fig. 2 Distortion function q (left) in Example 4.1 for θ = 0 (red), −1,−0.75,−0.5,−0.25 (blue) and
0.25, 0.5, 0.75, 1 (black). PDF f2:2 (right) of the maximum for the same parameter values and a standard
normal PDF (green line) (color figure online)

is a genuine distribution function for any θ ∈ [−1, 1]. The distortion functions q
obtained for different values of θ are plotted in Fig. 2, left. The respective PDFs f2:2
for the standard normal model are plotted in Fig. 2, right. All of them are right skewed
versions of the standard normal PDF (green line). As we can see, all of them are
unimodal and very similar in skewness. This is due to the weak dependence induced
by the FGM copula. We can get more skewed models by using extreme copulas with
negative dependency, whereas copulas with positive dependency will lead to models
similar to the parent distribution. For example, with the counter-monotonic copula
(i.e. the lower Fréchet-Hoeffding bound), the measure of skewness of Arnold and
Groeneveld (1995) of X2:2 reaches the maximum value 1 when f is symmetric with
respect to its mode.

The diagonal section of C is

δC (u) = u2 + θ(u − u2)2

with first derivative

δ′
C (u) = 2u + 2θ(1 − 2u)(u − u2).

Therefore, by using (3.3), we get the same representation for f2:2 (as expected). The
representations for X1:2 are obtained in a similar way due to the symmetry of the
model; they are left skewed distributions.

On the other hand, from expression (2.8) and Remark 3.7, the respective theoretical
P–P plots are G(F−1(u)) = q(u) and FR(F−1(u)) = δC (u) for u ∈ [0, 1]. As
expected, δC is a convex function for any θ ∈ [−1, 1]; hence, F ≤lr F2:2 holds.
However, G(F−1) is not a convex function (see Fig. 2, left).

The previous example can be generalized to the n dimensional case as follows.
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1324 J. Navarro, J. M. Arevalillo

Example 4.2 Let us consider a random vector (X1, . . . , Xn) with a common marginal
CDF F , PDF f = F ′ and the following FGM EXC copula:

C(u1, . . . , un) = u1 . . . un + θu1 . . . un(1 − u1) . . . (1 − un)

for u1, . . . , un ∈ [0, 1], where θ ∈ [−1, 1] is a dependence parameter. Its diagonal
section is

δC (u) = un + θ(u − u2)n

and its derivative

δ′
C (u) = nun−1 + nθ(1 − 2u)(u − u2)n−1.

Then, by using (3.3), we get

fn:n(x) = f (x)δ′
C (F(x)) = n f (x)G(x),

where

G(x) = Fn−1(x) + θ(1 − 2F(x))(F(x) − F2(x))n−1 = q(F(x))

and q(u) = un−1 + θ(1 − 2u)(u − u2)n−1. In order to prove that G is a distribution
function for any n = 3, 4, . . . (the case n = 2 was addressed in the previous example)
and θ ∈ [−1, 1], we consider

q ′(u) = (n − 1)un−2 − 2θ(u − u2)n−1 + θ(n − 1)(1 − 2u)2(u − u2)n−2

= (n − 1)un−2 − 2θ(u − u2)n−1 + θ(n − 1)(1 − 4u + 4u2)(u − u2)n−2

= (n − 1)un−2 − 2θ(u − u2)n−1 + θ(n − 1)(u − u2)n−2

− 4θ(n − 1)(u − u2)n−1.

Hence

q ′(u)

(n − 1)un−2 = 1 − 2

n − 1
θ(1 − u)n−2(u − u2) + θ(1 − u)n−2

− 4θ(1 − u)n−2(u − u2)

= 1 + θ(1 − u)n−2
[

1 − 4n − 2

n − 1
(u − u2)

]

.

Here we know that (u−u2) ∈ [0, 1/4] for u ∈ [0, 1] and that (4n−2)/(n−1) ∈ [4, 5]
for n = 3, 4, . . . . Therefore

1 − 4n − 2

n − 1
(u − u2) ∈ [−1/4, 1]
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Fig. 3 Distortion function q (left) in Example 4.2 for θ = 0 (red), −1,−0.75,−0.5,−0.25 (blue) and
0.25, 0.5, 0.75, 1 (black). PDF f3:3 (right) of the maximum for the same parameter values and a standard
normal PDF (green line) (color figure online)

and so, for u ∈ [0, 1], we have
q ′(u)

(n − 1)un−2 ≥ 1 − 0.25θ(1 − u)n−2 ≥ 0

for θ ≥ 0 and

q ′(u)

(n − 1)un−2 ≥ 1 + θ(1 − u)n−2 ≥ 0

for θ ≤ 0. Hence q is an increasing function in the interval u ∈ [0, 1] for which
q(0) = 0 and q(1) = 1; consequently, it is a distortion function and G is a distribution
function for any CDF F , dependency parameter θ ∈ [−1, 1] and n = 3, 4, . . . . Thus
the distribution of the maximum Xn:n admits a right skewed representation.

The different distortion functions q obtained for n = 3 and θ = 0 (red, IID
case), −1,−0.75,−0.5, −0.25 (blue) and 0.25, 0.5, 0.75, 1 (black) are displayed in
Fig. 3, left. The respective PDFs f2:2 obtained with a standard normal PDF are shown
in the right plot. Note that they are more right skewed than the distribution function
obtained with n = 2 (see the plot of Fig. 2, right).

As in the previous example, the theoretical P–P plots can be obtained as
G(F−1(u)) = q(u) and FR(F−1(u)) = δC (u).We have proved above that the last one
is a convex function and so F ≤lr Fn:n holds. The first one is also a convex function
when n = 3 (see Fig. 2, left).

In the next example we consider a non-exchangeable tridimensional copula that
also leads to a right skewed representation for X3:3.

Example 4.3 To get a non-exchangeable copula we consider a random vector
(X1, X2, X3) with copula C(u, v, w) = uD(v,w), where

D(v,w) = vw

v + w − vw
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Fig. 4 Distortion function q (left) in Example 4.3 and PDF f3:3 (right, black line) for a standard normal
PDF (right, green line) (color figure online)

is a Clayton copula with θ = 1 (see Nelsen 2006, p. 116). Under the copula C , X1 is
independent of X2 and X3 but X2 and X3 are dependent with copula D. The diagonal
section of C has derivative

δ′
C (u) = 4u − u2

(2 − u)2
.

Hence, from (3.3), X3:3 has a right skewed PDF given by

f3:3(x) = f (x)δ′
C (F(x)) = 3 f (x)G(x)

with

G(x) = q(F(x)) = 1

3

4F(x) − F2(x)

(2 − F(x))2
,

and

q(u) = 1

3

4u − u2

(2 − u)2
.

A straightforward calculation shows that G is a genuine CDF for any distribution
function F . In Fig. 4, we plot the distortion function q (left) and the PDF f3:3 (right)
for a standard normal distribution.

From expression (2.8) and Remark 3.7, the theoretical P–P plots are G(F−1(u)) =
q(u) (plotted in Fig. 4, left) and FR(F−1(u)) = δC (u) which are convex functions.

We must say that with the majority of the copulas we get right and left skewed
representations for the distributions of the extremes Xn:n and X1:n , respectively. How-
ever, for some specific copulas, these representations fail. Let us consider an example
based on a copula defined in Example 4.1 of Navarro et al. (2018).
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Example 4.4 Let (X1, X2) be two ID random variables having an EXC copula C with
diagonal section

δC (u) =
⎧

⎨

⎩

u, for 0 ≤ u ≤ 1/3;
1/3, for 1/3 < u ≤ 2/3;
2u − 1, for 2/3 < u ≤ 1.

This function satisfies the properties of a proper diagonal section of an EXC copula,
see Example 4.1 of Navarro et al. (2018). Hence, from (3.3), the PDF of X2:2 is

f2:2(x) = f (x)δ′
C (F(x)),

where

δ′
C (u) =

⎧

⎨

⎩

1, for 0 ≤ u ≤ 1/3;
0, for 1/3 < u ≤ 2/3;
2, for 2/3 < u ≤ 1.

Therefore δ′
C (F(x)) is not proportional to a CDF so that X2:2 PDF does not admit

a right skewed representation. However, note that F2:2 can be written as a distortion
distribution since

F2:2(x) = δC (F(x)) =
⎧

⎨

⎩

F(x), for x : 0 ≤ F(x) ≤ 1/3;
1/3, for x : 1/3 < F(x) ≤ 2/3;
2F(x) − 1, for x : 2/3 < F(x) ≤ 1.

Its PDF can be written as a weighted distribution since f2:2(x) = f (x)w(x) with

w(x) =
⎧

⎨

⎩

1, for x : 0 ≤ F(x) ≤ 1/3;
0, for x : 1/3 < F(x) ≤ 2/3;
2, for x : 2/3 < F(x) ≤ 1.

As w is not increasing, the “natural” likelihood ratio ordering F ≤lr F2:2 does not
hold. The same thing happens for the hazard rate order (see Example 4.1 of Navarro
et al. 2018). The PDFs f2:2 for baseline uniform and normal distributions are displayed
in Fig. 5.

In the last example we show a case where G is increasing but it is not a genuine
CDF since it assigns probability mass at−∞. As we have alreadymentioned, this case
could also fall within the right skewed representation scheme as long as the conditions
in Definition 2.1 is slightly relaxed, because we can still ensure the ordering F ≤lr FR

due to the increasing behavior of G.

Example 4.5 Let us consider themaximum of two ID random variables with a standard
normal distribution, that is, X2:2 = max(X1, X2), where Xi ∼ N (0, 1). If they are
dependent with the following Clayton copula:

C(u, v) = uv

u + v − uv
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Fig. 5 PDF f2:2 for the representation of X2:2 in Example 4.4 for a standard uniform distribution (left) and
a standard normal distribution (right). The green lines represent the baseline (marginal) PDF (color figure
online)

for u, v ∈ (0, 1) thence, the CDF of X2:2 can be obtained as

F2:2(x) = Pr(X2:2 ≤ x) = C(�(x),�(x)) = δC (�(x)),

where the diagonal section of C is

δC (u) = C(u, u) = u

2 − u
.

Therefore δ′
C (u) = 2

(2 − u)2
for u ∈ [0, 1]. This is a convex function satisfying

that δ′
C (1) = 2 whereas δ′

C (0) = 1/2. Hence, the PDF f2:2 admits the following
representation:

f2:2(x) = φ(x)δ′
C (�(x)) = 2φ(x)G(x),

where φ is the PDF of a standard normal and G(x) = 0.5δ′
C (�(x)). Note that G is an

increasing and continuous function satisfying G(∞) = 1 so the ordering F ≤lr F2:2
follows; however, G is not a CDF because G(−∞) = 1/4. Even so, we could get
a right skewed formulation of the distribution by allowing G to be a pseudo-CDF
having positive mass at −∞. If we replace the normal distribution with a lifetime
distributionwith support (0,∞) (e.g. an exponential distribution), wewould overcome
this problem since G is a CDF with a positive mass probability at x = 0.

5 Numerical work

This section illustrates the previous theoretical findings with several numerical exam-
ples that involve both artificial and real data. In the first examplewe analyze a simulated
data set from IID random variables whereas the second example considers a data

123



On connections between skewed, weighted and distorted… 1329

Max

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0
1

2
3

Fig. 6 Histogram (left) made with 100 data from X3:3 in Example 5.1 for a standard normal distribution.
The green line represent the baseline (marginal) normal PDF and the red line the real skewed PDF f3:3.
The box-plot (right) shows the asymmetry of the data (color figure online)

experiment that involves two dependent random variables with the copula considered
in Example 4.5. Finally, a real data set about daily maximum temperatures in the
Spanish Iberian Peninsula throughout a thirty year period is analyzed.

Example 5.1 Let us consider the maximum of three IID random variables with a stan-
dard normal distribution, that is, X3:3 = max(X1, X2, X3), where Xi ∼ N (0, 1).
We simulate 100 observations from this model; the histogram of the sample data is
displayed in Fig. 6, left. The maximum X3:3 follows a right skewed distribution with
PDF

f3:3(x) = 3φ(x)G(x),

where G(x) = �2(x) is a distribution function and � is the standard normal distri-
bution. The histogram shows a clear skewed model derived from the baseline normal
distribution. In Fig. 6 (right) we also depict the box-plot that shows the asymmetry
of the data; it is worthwhile noting that four sample observations are highlighted as
possible outliers in a wrong way as they do not come from a normal model. In this case
the P–P plot derived from (2.8) is given by the convex function FR(F−1(u)) = u3 for
u ∈ [0, 1]. Note that it is the diagonal section of the product copula of dimension 3.

In the second examplewe simulate data from themaximumof the dependent random
variables of Example 4.5.

Example 5.2 Let us consider themaximum of two ID random variables with a standard
normal CDF�, that is, X2:2 = max(X1, X2), where Xi ∼ N (0, 1). Let us assume that
they are dependent variables whose dependency is assessed by the Clayton copula of
Example 4.5. In order to simulate data from this model, we use the inverse transform
method based on

F−1
2:2 (u) = �−1(δ−1

C (u)),
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Fig. 7 Histogram (left) made with 100 data from X2:2 in Example 5.2 for a standard normal distribution.
The green line represent the baseline (marginal) normal PDF and the red line the real skewed PDF f2:2.
The box-plot (right) shows the weak asymmetry of the data (color figure online)

for 0 < u < 1, where �−1 is the quantile function of a standard normal distribution
and δ−1

C is the inverse of the diagonal section obtained in Example 4.5 given by

δ−1
C (u) = 2u

1 + u
.

Using this expressionwedraw100 observations from X2:2; the histogramof the sample
data is shown in Fig. 7 (left) together with the baseline normal PDF and the theoretical
skewed PDF which is given by

f2:2(x) = δ′
C (�(x))φ(x) = 2φ(x)G(x),

where G(x) = 1/(2 − �(x))2 is a pseudo-distribution function having mass 1/4 at
−∞. Figure7 (right) displays the sample data box-plot which highlights the asymme-
try of the underlying model. As in the previous example, one observation is wrongly
identified as a potential outlier since the data do not come from a normal model. How-
ever, in this case, the asymmetry is weak due to the positive dependence represented
by this Clayton copula.

Example 5.3 This example analyzes data aboutmaximumdaily temperatures collected
during a thirty year period from 1981 to 2010 in the Spanish Iberian Peninsula. The
dataset is available from the agroclim R package (Serrano-Notivoli 2022).

We will focus on daily temperatures for July and August summer months; then
the maximum monthly temperature values are calculated from the daily records. The
histograms for daily and monthly maximum temperatures are shown in Fig. 8, left; it
can be noted that daily temperatures exhibit a skewed shape. On the other hand, the
monthly values exhibit an apparent change in location as well as a more right skewed
behavior than daily ones. The convexity of the P–P plot at the right side of Fig. 8 gives
empirical support to assert that the distribution of maximum monthly temperatures is
more skewed to the right than the distribution of daily ones, which is indeed a natural
fact.
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Fig. 8 Histograms of daily and monthly maximum temperatures observed for July and August summer
months (left). Empirical P–P plot between daily and monthly maximum temperatures (right)

We now address the comparison of summer temperatures by decades. Our purpose
is to elucidatewhether there has been a decadewith hotter summers on the basis of their
comparisons in skewness. To this aim, we consider daily temperatures of both summer
months for the following three decades: 1981−1990 (decade 1), 1991−2000 (decade
2) and 2001 − 2010 (decade 3). The estimated PDFs in Fig. 9 highlight a slightly
more right-skewed distribution for decade 2; this is corroborated by the nearly convex
shape of P–P plots between decades (1, 2) and decades (3, 2) —see the right panels.
Therefore, the analysis with P–P plots highlights hotter summers in the nineties than
in the eighties and the first decade of XXI century, with the latter two having nearly
equal temperatures (see the left bottom P–P plot of Fig. 9).

6 Concluding remarks

We have studied the relationships between three stochastic strategies that allow to
change the shape of an initial baseline distribution; these shape perturbation schemes
lead to skewed, weighted and distorted distributions. For the first one, the probability
mass of the baseline PDF gets moved to the right or to the left; such a movement is
assessed by an order called the likelihood ratio (lr) order which is quite related to the
idea of injecting skewness into the baseline model. This is not the case for the other
two shape deformation schemes which just represent some “changes” in the baseline
initial model, not necessarily related to the idea of skewing a baseline model to get a
more right (left) skewed distribution. In this sense we propose two extensions of the
classical univariate skewed models, called right and left skewed distributions, which
are compatible with the lr stochastic ordering and the underlying idea of comparing
distributions in skewness. These models do not assume a symmetric baseline PDF
function and can also be seen as weighted or distorted distributions.
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Fig. 9 Histograms of the maximum daily temperature by decade (top left). Empirical P–P plot between
decades 1 and 2 (top right), 1 and 3 (bottom left) and 3 and 2 (bottom right) for summer daily temperatures

In the second part of the paper we have proved that the distributions of extremes
(maxima or minima) of independent or dependent identically distributed random vari-
ables can be represented bymeans of thesemodels; theweighted and distortionmodels
always can be used for this purpose. The right and left skewed distributions come up
very often when modeling extremes, although they may also fail to model a few
dependence scenarios as shown in some counterexamples. When they appear as valid
models, the lr-ordering between the original data and the associated extreme values
will necessarily hold, a fact that can be corroborated graphically by means of P–P
plots. Several theoretical and numerical examples have been presented throughout the
paper to illustrate these findings.

There are several tasks for future research projects. The main one is concerned with
the development of parameter estimation procedures and fit-tests for specific models
and extreme data. To this end, we must fix an initial baseline model (e.g. normal
or exponential) and then introduce skewness parameters under some operations for
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extreme observations; such parameters are also related to the copula used for modeling
the data dependence.

On the other hand, some of the univariate distributions of the paper have mul-
tivariate extensions which are closed under affine transformations, as for example
the skew-normal and the extended skew-normal (Arnold and Beaver 2000) which is a
weighted extension of the normal distribution. This fact encourages to look for projec-
tions of multivariate skewed vectors in the context of projection pursuit (Huber 1985)
and study if there might be a connection between skewness maximization and the
likelihood ratio ordering; some ideas on projection pursuit by skewness maximization
(Loperfido 2018; Arevalillo and Navarro 2020) may serve to start this project. Finally,
the monograph work on skewness and kurtosis orderings (Arnold and Groeneveld
1993) also hints the exploration of kurtosis orderings and multivariate extensions,
which may be addressed by kurtosis maximization along the lines of previous work
(Loperfido 2020) and seemingly non related results on convex transform orderings
(Wang 2009; Arevalillo and Navarro 2012, 2023).

Acknowledgements The authors wish to thank the fruitful comments of two anonymous reviewers and the
work of the Associate Editor.

Funding Open Access funding provided by the CRUE-CSIC agreement with Springer Nature. JN thanks
the partial support of Ministerio de Ciencia e Innovación of Spain under grant PID2019-103971GB-
I00/AEI/10.13039/501100011033 and the partial support of MCIN/AEI/10.13039/501100011033 and the
European Union “NextGenerationEU”/PRTR (TED2021-129813A-I00). JMA acknowledges NextGenera-
tionEU and states that his research was partially supported by Social Probing project (TED2021-131264B-
I00), funded by MCIN/AEI /10.13039/501100011033 and the European Union-NextGenerationEU/PRTR.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arellano-Valle RB, Genton MG (2008) On the exact distribution of the maximum of absolutely continuous
dependent random variables. Stat Probab Lett 78:27–35

Arevalillo JM, Navarro H (2012) A study of the effect of kurtosis on discriminant analysis under elliptical
populations. J Multivar Anal 107:53–63

Arevalillo JM, Navarro H (2020) Data projections by skewness maximization under scale mixtures of
skew-normal vectors. Adv Data Anal Classif 14:435–461

Arevalillo JM, Navarro H (2023) New insights on the multivariate skew exponential power distribution.
Math Slovaca 73(2):529–544

Arevalillo JM, Navarro H (2019) A stochastic ordering based on the canonical transformation of skew-
normal vectors. TEST 28:475–498

ArnoldBC,GroeneveldRA (1993) Skewness and kurtosis orderings: an introduction. Stochastic Inequalities
IMS Lecture Notes - Monograph Series Volume 22

Arnold BC, Groeneveld RA (1995) Measuring skewness with respect to the mode. Am Stat 49:34–38
Arnold BC, Castillo E, Sarabia JM (1999) Conditional specification of statistical models. Springer Series

in Statistics. Springer-Verlag, New York

123

http://creativecommons.org/licenses/by/4.0/


1334 J. Navarro, J. M. Arevalillo

Arnold BC, Beaver RJ (2000) Hidden truncation models. Sankhya Ser A 62:22–35
Arnold BC, Balakrishnan N, Nagaraja HN (2008) A first course in order statistics. SIAM, Philadelphia
Arriaza A, Di Crescenzo A, Sordo MA, Suáirez-Llorens A (2019) Shape measures based on the convex

transform order. Metrika 82:99–124
Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178
Azzalini A (2005) The skew-normal distribution and related multivariate families. Scand J Stat 32:159–188
Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a

multivariate skew t-distribution. J R Stat Soc B 65:367–389
Azzalini A, Capitanio A (2014) The skew-normal and related families. Cambridge University Press,

Cambridge
Azzalini A, Regoli G (2012) Some properties of skew-symmetric distributions. Ann Inst Stat Math 64:857–

879
Azzalini A, Regoli G (2018) On symmetry-modulated distributions: revisiting an old result and a step

further. Stat 7:e171
Blenkinsop S, Lewis E, Chan SC, Fowler HJ (2017) Quality-control of an hourly rainfall dataset and

climatology of extremes for the UK. Int J Climatol 37:722–740
Buishand TA (1989) Statistics of extremes in climatology. Stat Neerl 43:1–30
Chan W, Proschan F, Sethuraman J (1990) Convex-ordering among functions,with applications to relia-

bility and mathematical statistics. In Block HW, Sampson AR, Savits TH (eds) Topics in statistical
dependence. IMS Lecture Notes-Monograph Series 16. Hayward, California, pp 121–134

Cox DR (1972) Regression models and life-tables. J R Stat Soc B 34:187–220
David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, Hoboken
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