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> Xi,..., X, sample from X
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Rao’s example
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Biased and censored samples

» Xi,..., X, sample from X
> X1, ..., Xy iind. Pr(X; < x) =Pr(X < x)

» Censored sample: Some X; are unknown.
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Rao’s example
Fisher’s example

Biased and censored samples

>
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X1, ..., X, sample from X
Xiy ooy Xp 1id. Pr(X; < x) = Pr(X < x)
Censored sample: Some X; are unknown.

Example: X =lifetime of...

2,3,5,6,7,...,17,3" 4% .
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Biased samples Definition

Rao’s example
Fisher’s example

Biased and censored samples

>
>
>
>

X1, ..., X, sample from X
Xiy ooy Xp 1id. Pr(X; < x) = Pr(X < x)
Censored sample: Some X; are unknown.

Example: X =lifetime of...

2,3,5,6,7,...,17,3" 4% .

v

1T means X; > 1

v

Biased sample: the sample probability of X; depends on X;.
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Biased and censored samples
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>
>

X1, ..., X, sample from X
Xiy ooy Xp 1id. Pr(X; < x) = Pr(X < x)
Censored sample: Some X; are unknown.

Example: X =lifetime of...
2,3,5,6,7,...,17,3" 4% .

» 1T means X; > 1
» Biased sample: the sample probability of X; depends on X;.

» Example: A sample from families recover from their children.
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Biased samples Definition

Rao’s example
Fisher’s example

Biased and censored samples

>
>
>
>

X1, ..., X, sample from X
Xiy ooy Xp 1id. Pr(X; < x) = Pr(X < x)
Censored sample: Some X; are unknown.

Example: X =lifetime of...
2,3,5,6,7,...,17,3" 4% .

1T means X; > 1
Biased sample: the sample probability of X; depends on X;.

Example: A sample from families recover from their children.

vV vV v VY

Censored samples are a particular case.
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Fisher’s example

A model for biased samples

» First example: Fisher (1934, Ann. Eugenics 6, 13-25).
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Biased samples Definition

Rao’s example
Fisher’s example

A model for biased samples

» First example: Fisher (1934, Ann. Eugenics 6, 13-25).
» Model: C.R. Rao (1965, Sankhya Ser. A 27, 311-324).
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Rao’s example

Fisher’s example

A model for biased samples

» First example: Fisher (1934, Ann. Eugenics 6, 13-25).
» Model: C.R. Rao (1965, Sankhya Ser. A 27, 311-324).

» Y has the biased (or weighted) distribution associated to X
and w(t) > 0 if
w(t)fx(t)
fy(t) =
E(w(X))
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A model for biased samples

» First example: Fisher (1934, Ann. Eugenics 6, 13-25).
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» With this model the probability of observe X; =t is
proportional to w(t).

» How to study X from a sample Yi,..., Y, from Y7
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Rao’s example
Fisher’s example

A model for biased samples

» First example: Fisher (1934, Ann. Eugenics 6, 13-25).
» Model: C.R. Rao (1965, Sankhya Ser. A 27, 311-324).

» Y has the biased (or weighted) distribution associated to X
and w(t) >0 if
(9 = MO
(w(X))
» With this model the probability of observe X; =t is
proportional to w(t).
» How to study X from a sample Yi,..., Y, from Y7

» Censored data in A: w(t) =1if t € A (0 elsewhere).
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Biased samples Definition

Rao’s example
Fisher’s example

A model for biased samples

» First example: Fisher (1934, Ann. Eugenics 6, 13-25).
» Model: C.R. Rao (1965, Sankhya Ser. A 27, 311-324).

» Y has the biased (or weighted) distribution associated to X
and w(t) >0 if
t)fx(t
o) - WO
E(w(X))
» With this model the probability of observe X; =t is
proportional to w(t).
» How to study X from a sample Yi,..., Y, from Y7
» Censored data in A: w(t) =1if t € A (0 elsewhere).

» Biased data: the probability of observe X; is proportional to
w(X;).
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Rao’s example

» Rao (1977, American Statistician 31, 24-26).
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Rao’s example
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Rao’s example

» Rao (1977, American Statistician 31, 24-26).
» In a survey we ask for the number of brother and sisters
(*including yourself):

Sex Brothers® | Sisters* Total
M or W Y; X; m; =Xi+Y;
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Rao’s example
Fisher’s example

Rao’s example

» Rao (1977, American Statistician 31, 24-26).
» In a survey we ask for the number of brother and sisters
(*including yourself):

Sex Brothers® | Sisters* Total
M or W Y; X; m; =Xi+Y;

» Predictions (sample from men)
L.M=YY,>W=YX
2. M—W =3 Y;—> Xi ~ k =n (sample size)

Jorge Navarro’ Biased samples (in honor of Prof. C.R. Rao)



Biased samples Definition

Rao’s example
Fisher’s example

Rao’s example

» Rao (1977, American Statistician 31, 24-26).
» In a survey we ask for the number of brother and sisters
(*including yourself):

Sex Brothers® | Sisters* Total
M or W Y; X; m; =Xi+Y;

» Predictions (sample from men)
1. M=YYi>>W=>X
2. M-—W=3Y;—> Xi >~ k = n (sample size)
3 M/IN=0Y)/(>Xmi)>>05 N=Y m=M+W
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Biased samples Definition

Rao’s example
Fisher’s example

Rao’s example

» Rao (1977, American Statistician 31, 24-26).
» In a survey we ask for the number of brother and sisters
(*including yourself):

Sex Brothers® | Sisters* Total
M or W Y; X; m; =Xi+Y;

» Predictions (sample from men)
1. M=YYi>>W=>X
2. M-—W=3Y;—> Xi >~ k = n (sample size)
3 M/N=0Y)/(>Xmi)>>05 N=Ym=M+W
4

CM/N=(SY)/(Sm ) =05+ ,szm
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Biased samples Definition

Rao’s example
Fisher’s example

Rao’s example

» Rao (1977, American Statistician 31, 24-26).
» In a survey we ask for the number of brother and sisters
(*including yourself):

Sex Brothers® | Sisters* Total
M or W Y; X; m; =Xi+Y;

» Predictions (sample from men)
1. M=YYi>>W=>X
2. M-—W=3Y;—> Xi >~ k = n (sample size)
3 M/N=0Y)/(>Xmi)>>05 N=Ym=M+W
4

CM/N=(SY)/(Sm ) =05+ ,szm

5.

M-k SYi—k
o 0.5

> mi—k
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Biased samples Definition

Rao’s example
Fisher’s example

Rao’s results

City N[ M[W[MW][ k [M/N]LI+ETM=E
Tehran | 105 [ 65 [ 40 | 25 | 21 [0.619 | 0.600 | 0.524
Isphahan | 77 | 45 | 32 13 11 | 0.584 | 0.571 | 0.515
Tokyo [124 90 | 34 | 56 | 50 [ 0.726 | 0.701 | 0.540
Delhi  [158 | 92 | 66 | 26 | 29 | 0.582 | 0.592 | 0.488
Calcutta | 726 | 414 [ 312 [ 102 [ 104 | 0.570 | 0.571 [ 0.498
Waltair [ 211123 88 | 35 | 39 | 0.583 | 0.592 | 0.488
Ahmed. [ 133 84 | 49 | 35 | 29 [ 0.632 | 0.609 | 0.529
Bangalore | 307 | 180 | 127 | 53 | 55 | 0.586 | 0.589 | 0.496
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» How to estimate py or py?
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Rao’s example
Fisher’s example

Questions

» How to estimate py or py?
» How to estimate E(m;)?
» Which sample is the best one?

» Can we use both samples together?
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Biased samples Definition

Rao’s example
Fisher’s example

Questions
>
>
>
»
»
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How to estimate py or pp?

How to estimate E(m;)?

Which sample is the best one?

Can we use both samples together?

How can we obtain the best results?



Biased samples Definition

Rao’s example
Fisher’s example

Solutions

» The number of brothers is a Binomial B(m, pp), with
pv =~ 0.5

px) = Pr(X:x):<’:>p>A</,_ o
E(X) = mpuy
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Rao’s example
Fisher’s example

Solutions

» The number of brothers is a Binomial B(m, pp), with
pv =~ 0.5

m X —X
p) = Prx =)= (7)ol
E(X) = mpum
» The sampling probability of Y; is proportional to Y;.
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Biased samples Definition

Rao’s example
Fisher’s example

Solutions

» The number of brothers is a Binomial B(m, pp), with
pv =~ 0.5

plx) = Pr(X:x):(m>p>A</,_ o
E(X) = mpuy

» The sampling probability of Y; is proportional to Y;.
» Hence Y is a length biased Binomial Y = B*(mj, py)

00 = = (7 ) R i)

X

xm;! x—1 _mj—x m; —1 x—1 _m—x
= X— / = x=1,2
m;x!(m; — x)!pM Pw < x—1)Pm Pw ’
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Biased samples Definition

Rao’s example
Fisher’s example

Solutions

» The number of brothers is a Binomial B(m, pp), with
pv =~ 0.5

plx) = Pr(X:x):(m>p>A</,_ o
E(X) = mpuy

» The sampling probability of Y; is proportional to Y;.
» Hence Y is a length biased Binomial Y = B*(mj, py)

00 = = (7 ) R i)

X

xm;! x—1 _mj—x m; —1 x—1 _m—x
= X— / = x=1,2
m;x!(m; — x)!pM Pw < x—1)Pm Pw ’

» Yi—1=B(mi—1,pum)
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Rao’s example
Fisher’s example

Predictions:

> Y,'—].EB(m,'—].,p/\//)

Jorge Navarro’ Biased samples (in honor of Prof. C.R. Rao)



Biased samples Definition

Rao’s example
Fisher’s example

Predictions:

> Y,'—].EB(m,'—].,p/\//)
» E(Y))=14+(mi—L1)py=1—py+ mipy
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Rao’s example
Fisher’s example

Predictions:

> Y,'—].EB(m,'—].,p/\//)
» E(Y))=14+(mi—L1)py=1—py+ mipy
» X; = B(mj — 1, pw)
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Biased samples Definition

Rao’s example
Fisher’s example

Predictions:

» Yi—1=B(mi—1,py)

» E(Y))=14+(mi—L1)py=1—py+ mipy
> Xi = B(m; —1,pw)

> E(X,-):(m,-—l)pW
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Biased samples

Definition
Rao’s example
Fisher’s example

Predictions:
> Y;—1=B(mi—1,pu)
> E(Y):1+(m;—1)pM:1—pM+m,-pM
» X;=B(m; —1,pw)
> E(X) = (mi — pw
> E(X V) = L E(Y) = X(1— pw + mipw) =

E(
k(1 = pm) + pm 32 mi
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Biased samples Definition

Rao’s example
Fisher’s example

Predictions:

>
>
>
>
>

Yi—1=B(m; -1, pu)

E(Yi) =1+ (mj —1)pm =1— pm + mipu

Xi = B(mj — 1, pw)

E(X;) = (mi — L)pw

EQXCYi) =2 E(Yi) =31 — pw + mipu) =

k(1= pm) + pm D mi

E(XCXi) =22 E(Xi) = >2(mi — L)pw = pw >_ mj — kpw
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Biased samples Definition

Rao’s example
Fisher’s example

Predictions:

>
>
>
>
>

Yi—1=B(mi—1,pm)

E(Yi)=14(mj —1)pmy =1— pm + mipy

Xi = B(m; — 1, pw)

E(X;) = (mi — L)pw

EQXCYi) =2 E(Yi) =31 — pw + mipu) =

(1= pm) + pm D> mi

> E(XCXi) =22 E(Xi) = X2(mi — L)pw = pw Y- mi — kpw
> E(Y Y — X)) = 2kpy ~ k

=
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Biased samples Definition

Rao’s example
Fisher’s example

Predictions:

» Yi—1=B(mi—1,py)
» E(Y))=14+(mi—L1)py=1—py+ mipy
> Xi = B(m; —1,pw)
> E(X) = (m,- — 1)pW
> E(X Vi) = S E(Y) = X1 — pw + mipu) =
k(1= pm) + pm D mi
> EQQCXi) = X2 E(Xi) = >_(mi — 1)pw = pw >_ mj — kpw
» EQCYi =Y. Xi) =2kpw ~ k
Yi kpw + pm ) mi kpw k
> E(%m) = Zmiz :pM+Zmi :0.5+22ml_
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Biased samples Definition

Rao’s example
Fisher’s example

Predictions:

» Yi—1=B(mi—1,py)
» E(Y))=14+(mi—L1)py=1—py+ mipy
> Xi = B(m; —1,pw)
> E(X) = (m,- — 1)p|/|/
> E(X Vi) = S E(Y) = X1 — pw + mipu) =
k(1= pm) + pm D mi
> EQQCXi) = X2 E(Xi) = >_(mi — 1)pw = pw >_ mj — kpw
> E(Y Y — S X)) = 2kpw =~ k
Yi kpw + pm ) mi kpw k
> E(%m) = Zmiz :pM+Zmi :0.5+22ml_
Yi—k\ k(1= pu)+pu S mi—k
<§m1_k> ( p"”z)mlf’_%: = py ~ 0.5
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» How to estimate pp;?
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» How to estimate pp;?
» We can use:
o= XYtk
>omi—k
Y Yi—k
E(T) = =
(1) = E(E =) =pu
Vat(T) = pMpW/Zm,-—k )—0

Y Yi—k = B mi—k pu)

T = Normal
T is an UMVUE
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» How to use both samples?
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» How to use both samples?
» Let Xj,..., X, be an unbiased sample from X; = B(n;, p).
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» How to use both samples?
» Let Xj,..., X, be an unbiased sample from X; = B(n;, p).
> Let Yi,..., Ym be a length biased sample.
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

>
>
>
>

How to use both samples?
Let X1, ..., X; be an unbiased sample from X;
Let Y1,..., Ym be a length biased sample.
Then Y; — 1= B(m; —1,p) and
>oni+ > (mj—1)
X; + Y:—1

B = geXtzlizh,
> ni+ 2 (mp—1)
Vat(T) = p(1=p)/(D_ni—D (m—1))
) = B m— Y (m— 1), pu)
T = Normal
T is UMVUE

B(nj, p).




Biased samples Definition

Rao’s example
Fisher’s example

Questions

» What is the best sample?
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» What is the best sample?
» If Y; =1, then the information is null.
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» What is the best sample?
» If Y; =1, then the information is null.
» X; has more information than Y; if n; > m; —1
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» What is the best sample?

» If Y; =1, then the information is null.

» X; has more information than Y; if n; > m; —1
> The Fisher's information (h = E[(Zp(x))?]) are:

n:

IXi(p) = ?;
m;—1

Iv,(p) = Jpq
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» What is the best sample?
» If Y; =1, then the information is null.
» X; has more information than Y; if n; > m; —1
> The Fisher's information (h = E[(Zp(x))?]) are:
n:
IX,'(p) = —
Pq
m; —1
Iy. p = J
/(P) Pq
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» What is the best sample?
» If Y; =1, then the information is null.
» X; has more information than Y; if n; > m; —1
> The Fisher's information (h = E[(Zp(x))?]) are:
n:
IX,'(p) = —
Pq
m; —1
Iy. p = J
/(P) Pq

> E(ni) =7, E(mj) =7 (m; > 1)
> In our survey m; — 1 = n;, so both samples have the same
information (in each data).
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Biased samples Definition

Rao’s example
Fisher’s example

Questions

» What is the best sample?
» If Y; =1, then the information is null.
» X; has more information than Y; if n; > m; —1
> The Fisher's information (h = E[(Zp(x))?]) are:
n:
IX,'(p) = —
Pq
m; —1
Iy. p = J
/(P) Pq

> E(ni) =7, E(mj) =7 (m; > 1)
> In our survey m; — 1 = n;, so both samples have the same
information (in each data).

» The best option is to use both samples together!
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» How to estimate the number of children m?
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» How to estimate the number of children m?

— 1 .
» Can we use m = ¢ Y m;?
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» How to estimate the number of children m?
» Can we use m = > m;?

» If we use men and women, the sampling probability of a
family with m; children is proportional to m;
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» How to estimate the number of children m?

» Can we use m = > m;?

» If we use men and women, the sampling probability of a
family with m; children is proportional to m;

» If we only use men, it is proportional to E(X;) = mipm
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» How to estimate the number of children m?

» Can we use m = > m;?

» If we use men and women, the sampling probability of a
family with m; children is proportional to m;

» If we only use men, it is proportional to E(X;) = mipm

» Then my, ..., mg is a length biased sample from m.
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» How to estimate the number of children m?
» Can we use m = > m;?

» If we use men and women, the sampling probability of a
family with m; children is proportional to m;

» If we only use men, it is proportional to E(X;) = mipm
» Then my, ..., mg is a length biased sample from m.

» How to estimate E(m) using my, ..., m?

Jorge Navarro’ Biased samples (in honor of Prof. C.R. Rao)



Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children

p(x) =p e #/xlix=0,1,..
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children
p(x) =p e #/xlix=0,1,..
» Hence m; = size biased Poisson with

(x)  xp¥e™r  p<lemk

px) ="

= = ix=1,2,..
r uxt (-1
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children
p(x) =p e #/xlix=0,1,..

» Hence m; = size biased Poisson with

X o— M x—=1,—p
p*(x) = xP(x) _ xpre ™ pe ix=1,2,...

pooopxd o ((x=1)!
» Then m; — 1 = Poisson()
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children
p(x) =p e #/xlix=0,1,..
» Hence m; = size biased Poisson with
p*(x) = xpl(‘x) _ XM;;—M _ ét(’;—l_el_)“!;x _12..
» Then m; — 1 = Poisson()
> E(m) =} X E(m) = X(p+1)=pn+1
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children

p(x) =p e #/xlix=0,1,..
» Hence m; = size biased Poisson with

x—1e—u

. xp(x) _ xpe ™™ p

T N (PR3]
Then m; — 1 = Poisson(j)

E(m )—kZE(m:)_%Z(MJrl):MJrl
» T=m-— —kZ(m,—l)

x=1,2,..

vV Yy
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children

p(x) =p e #/xlix=0,1,..
» Hence m; = size biased Poisson with

x—1e—u

. xp(x) _ xpe ™™ p
T N (PR3]
Then m; — 1 = Poisson(11)
E(m) = kZE(m:) =i X (u+1)=p+1
T=m-1=1% LS (m; —1)
E(T)=

x=1,2,..

vV VvyyYyy
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children

p(x) =p e #/xlix=0,1,..
» Hence m; = size biased Poisson with

x—1e—u

xp(x) xp¥e ™" u
i) = 2 e

= = ix=1,2,..
r uxt (-1

» Then m; — 1 = Poisson(y.)

> E(m )—kZE(m:)—%E(er):Hl
> T =m- —kZ(m,—l)

» E(T)=p

» Var(T)=p/k—0
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children
p(x) =p e #/xlix=0,1,..

» Hence m; = size biased Poisson with

iy XP(X) _ xpXeTh X Tleh

px) = po o opx! ((x—=1)!
Then m; — 1 = Poisson(11)
E(m) = ¢ X E(m) =% 3(n+1)=p+1
T=m—-1=¢Y(m—1)
E(T)=mp
Var(T) =p/k =0
> (m; — 1) = Poisson(kpu)

x=1,2,..

vV vvyVvyYVysey
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» If m = Poisson(j1), p =mean number of children
p(x) =p e #/xlix=0,1,..

» Hence m; = size biased Poisson with

) xp(x) _ xpXe Tt pTleh
T N (PR3]
Then m; — 1 = Poisson(11)
E(m) = ¢ X E(m) =% 3(n+1)=p+1
T=m-1=413(m—1)
E(T)=u
Var(T) =p/k =0
> (m; — 1) = Poisson(kpu)
T = Normal
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» Results
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

Results
> mi=N/k

\ A/
3|
Il
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» Results
»m=3> mi=N/k
» T=m—-1=(N—-k)/k
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Biased samples Definition

Rao’s example
Fisher’s example

Additional questions

» Results
> m=1>. m=N/k
» T=m—-1=(N—-k)/k

» Rao’s results

City N M | W k |m=N/k | T=m-1
Tehran 105 | 65 | 40 | 21 5.000 4
Isphahan 77 | 45 | 32 | 11 7.000 6
Tokyo 124 | 90 | 34 | 50 2.480 1.480
Delhi 158 | 92 | 66 | 29 5.448 4.448
Calcutta 726 | 414 | 312 | 104 6.980 5.980
Waltair 211 | 123 | 88 | 39 5.410 4.410
Ahmedabad | 133 | 84 | 49 | 29 4.580 3.580
Bangalore | 307 | 180 | 127 | 55 5.582 4.582
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Biased samples Definition

Rao’s example
Fisher’s example

Fisher's example

» R. A, Fisher (1934). The effect of methods of ascertainment
upon the estimation of frequencies. Annals Eugenics 6, 13-25.
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Biased samples Definition

Rao’s example
Fisher’s example

Fisher's example

» R. A, Fisher (1934). The effect of methods of ascertainment
upon the estimation of frequencies. Annals Eugenics 6, 13-25.

» Purpose: to study the proportion p of albino children from
non-albino parents (which can have albino children).
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Biased samples Definition

Rao’s example
Fisher’s example

Fisher's example

» R. A, Fisher (1934). The effect of methods of ascertainment
upon the estimation of frequencies. Annals Eugenics 6, 13-25.

» Purpose: to study the proportion p of albino children from
non-albino parents (which can have albino children).

» From Medel's laws, p should be 1/4
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Biased samples Definition

Rao’s example
Fisher’s example

Fisher's example

v

R. A., Fisher (1934). The effect of methods of ascertainment
upon the estimation of frequencies. Annals Eugenics 6, 13-25.

» Purpose: to study the proportion p of albino children from
non-albino parents (which can have albino children).

» From Medel's laws, p should be 1/4

» We do not know if two non-albino parents can have albino
children!
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Biased samples Definition

Rao’s example
Fisher’s example

Fisher's example

>

R. A., Fisher (1934). The effect of methods of ascertainment
upon the estimation of frequencies. Annals Eugenics 6, 13-25.

» Purpose: to study the proportion p of albino children from
non-albino parents (which can have albino children).

» From Medel's laws, p should be 1/4

» We do not know if two non-albino parents can have albino
children!

» So Fisher only consider families with albino children.
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Biased samples Definition

Rao’s example
Fisher’s example

Fisher's example

>

R. A., Fisher (1934). The effect of methods of ascertainment
upon the estimation of frequencies. Annals Eugenics 6, 13-25.

» Purpose: to study the proportion p of albino children from
non-albino parents (which can have albino children).

» From Medel's laws, p should be 1/4

» We do not know if two non-albino parents can have albino
children!

» So Fisher only consider families with albino children.

» He only consider families with 5 children, obtaining the
following data:
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Biased samples

Definition
Rao’s example
Fisher’s example

Fisher data
Number of albino children in the family

N 1 2 3 4 5 Total
1 140 80 35 4 0 259
2 - 52 12 7 1 72
3 - - 7 0 0 7
4 - - - 2 0 2
5 - - - - 0 0

Total 140 132 54 13 1 340

» N=Number of albino children in the sample.
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Biased samples

Definition
Rao’s example
Fisher’s example

Fisher data
Number of albino children in the family

N 1 2 3 4 5 Total
1 140 80 35 4 0 259
2 - 52 12 7 1 72
3 - - 7 0 0 7
4 - - - 2 0 2
5 - - - - 0 0

Total 140 132 54 13 1 340

» N=Number of albino children in the sample.

» Notice that we have 340 families sampled from 432 different
albino children.
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 1

» What to do with these data?
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Biased samples

Rao’s example
Fisher’s example

Solution 1

» What to do with these data?

> If Xi,..., X, is a sampe of size n = 340 from a
BinomialB(k =5,p = 1/4),
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 1

» What to do with these data?

> If Xi,..., X, is a sampe of size n = 340 from a
BinomialB(k =5,p = 1/4),

» p can be estimated as

>y Xi  140+2-132+... 623
PL=""g," = 5.340 ~ 1700

= 0.3665
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 1

» What to do with these data?

> If Xi,..., X, is a sampe of size n = 340 from a
BinomialB(k =5,p = 1/4),

» p can be estimated as

ST X 14042-1324... 623
PL=""g," = 5.340 = 1700 ~ 0-3009
» with variance
1 0.25-0.75
o2(py) = PL=P) _ = 0.0001.

50 1700
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 1

» What to do with these data?

> If Xi,..., X, is a sampe of size n = 340 from a
BinomialB(k =5,p = 1/4),

» p can be estimated as

ST X 14042-1324... 623
PL=""g," = 5.340 = 1700 ~ 0-3009
» with variance
R 1 0.25-0.75
o2(py) = PL=P) _ = 0.0001.

50 1700
» This gives 20(p1) ~ 0.021 and we reject p = 0.25.
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 1bis

» If we use the families several times then
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 1bis

» If we use the families several times then

» the sample size is n = 432 and p is estimated as

Y0 X 140+2-184+ ...

P1 5n 5432 = 0.399
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 1bis

» If we use the families several times then

» the sample size is n = 432 and p is estimated as

Y0 X 140+2-184+ ...

P1 5n 5.432 =0.399

» This also leads to reject p = 0.25.
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 2

» The families with 0 albino children cannot appear in the
sample.
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 2

» The families with 0 albino children cannot appear in the
sample.

» Thus, we might think in a censored sample with w(x) =1 for
x # 0 and w(0) = 0.
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 2

» The families with 0 albino children cannot appear in the
sample.

» Thus, we might think in a censored sample with w(x) =1 for
x # 0 and w(0) = 0.

» Then p*(x) = p(x)/(1 — ¢°), where p(x) = Binomial
B(5,1/4)
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 2

» The families with 0 albino children cannot appear in the
sample.

» Thus, we might think in a censored sample with w(x) =1 for
x # 0 and w(0) = 0.
» Then p*(x) = p(x)/(1 — ¢°), where p(x) = Binomial
B(5,1/4)
» Then the MLE satisfies
P _ i X
1—g° 5p '
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 2

» The families with 0 albino children cannot appear in the
sample.

» Thus, we might think in a censored sample with w(x) =1 for
x # 0 and w(0) = 0.
» Then p*(x) = p(x)/(1 — ¢°), where p(x) = Binomial
B(5,1/4)
» Then the MLE satisfies
P _ i X
1—g° 5p '

» which gives p, = 0.3085 (p, = 0.35 with the repeated
families).
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 2

» The families with 0 albino children cannot appear in the
sample.

» Thus, we might think in a censored sample with w(x) =1 for
x # 0 and w(0) = 0.
» Then p*(x) = p(x)/(1 — ¢°), where p(x) = Binomial
B(5,1/4)
» Then the MLE satisfies
P _ i X
1—g° 5p '

» which gives p, = 0.3085 (p, = 0.35 with the repeated
families).
» In both cases we reject p = 1/4.
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 3 (the correct one)

> Note that the sampling probability of a family with x albino
children is proportional to x.
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 3 (the correct one)

> Note that the sampling probability of a family with x albino
children is proportional to x.
» Then X; = length biased Binomial.
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 3 (the correct one)

> Note that the sampling probability of a family with x albino
children is proportional to x.

» Then X; = length biased Binomial.

» That is, X; — 1 =Binomial B(4,1/4)
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 3 (the correct one)

> Note that the sampling probability of a family with x albino
children is proportional to x.

» Then X; = length biased Binomial.

» That is, X; — 1 =Binomial B(4,1/4)

» Then, using the repeated families p is estimated as

Y (X—1)  1-1844+2-80+...
P3 = an = 113 = 0.2488
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 3 (the correct one)

> Note that the sampling probability of a family with x albino
children is proportional to x.

» Then X; = length biased Binomial.

» That is, X; — 1 =Binomial B(4,1/4)

» Then, using the repeated families p is estimated as

~ oim(Xi—=1)  1-18442-80+ ...
N 4n N 4432

» The variance satisfies 20(p3) ~ 0.0208, which is consistent

with p = 1/4.

= 0.2488
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Biased samples Definition

Rao’s example
Fisher’s example

Solution 3 (the correct one)

> Note that the sampling probability of a family with x albino
children is proportional to x.
» Then X; = length biased Binomial.
» That is, X; — 1 =Binomial B(4,1/4)
» Then, using the repeated families p is estimated as
~ oim(Xi—=1)  1-18442-80+ ...
B 4n B 4432
» The variance satisfies 20(p3) ~ 0.0208, which is consistent
with p = 1/4.
» Notice that if we do not use the repeated families the p is
underestimated as
L >ma(Xi—1)  1-132+2-54+ ..
pa = 4n - 4340
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

Age | Residual life

L}

Lifetime

e - v

maoo=-CcCm

Figure: If a passenger arrives at a bus-stop at some random point and
the interval time between the buses is 20 min, what is the mean waiting
time until the next bus?
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» R.C. Gupta 1979. Waiting time paradox and size biased
sampling. Communications in Statistics, Theory and Methods
A8 (6), 601-607.
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» R.C. Gupta 1979. Waiting time paradox and size biased
sampling. Communications in Statistics, Theory and Methods
A8 (6), 601-607.

> Let us assume that the buses pass every 20 min. and that we
do not know the time table:

Jorge Navarro’ Biased samples (in honor of Prof. C.R. Rao)



Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» R.C. Gupta 1979. Waiting time paradox and size biased
sampling. Communications in Statistics, Theory and Methods
A8 (6), 601-607.

> Let us assume that the buses pass every 20 min. and that we
do not know the time table:

» Then the waiting time T should be Uniform (0, 20)
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

>

R.C. Gupta 1979. Waiting time paradox and size biased
sampling. Communications in Statistics, Theory and Methods
A8 (6), 601-607.

> Let us assume that the buses pass every 20 min. and that we
do not know the time table:

» Then the waiting time T should be Uniform (0, 20)

» Then the expected waiting time should be
E(T)=20/2=10min.
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

>

R.C. Gupta 1979. Waiting time paradox and size biased
sampling. Communications in Statistics, Theory and Methods
A8 (6), 601-607.

> Let us assume that the buses pass every 20 min. and that we
do not know the time table:

» Then the waiting time T should be Uniform (0, 20)

» Then the expected waiting time should be
E(T)=20/2=10min.
» We know that this is not true!
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

» Then the time between buses is a random variable X.
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

» Then the time between buses is a random variable X.
» Let us assume that 1 = E(X) = 20 min.

Jorge Navarro’ Biased samples (in honor of Prof. C.R. Rao)



Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

» Then the time between buses is a random variable X.
» Let us assume that 1 = E(X) = 20 min.
» Then T =Uniforme (0, X)
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

Then the time between buses is a random variable X.
Let us assume that u = E(X) = 20min.
Then T =Uniforme (0, X)

The waiting time should be T = UX, where U =Uniform
(0,1).

vV v.vVvY
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

Then the time between buses is a random variable X.
Let us assume that u = E(X) = 20min.

Then T =Uniforme (0, X)

The waiting time should be T = UX, where U =Uniform
(0,1).

» Then the expected waiting time should be
E(T)=E(UX)=E(X)/2=10min

vV v.vVvY
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

Then the time between buses is a random variable X.

Let us assume that u = E(X) = 20min.

Then T =Uniforme (0, X)

The waiting time should be T = UX, where U =Uniform

(0,1).

» Then the expected waiting time should be
E(T)=E(UX)=E(X)/2=10min

» We know that this is not true!

vV v.vVvY

Jorge Navarro’ Biased samples (in honor of Prof. C.R. Rao)



Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

> If X1, Xp, ..., X, are the times between buses, the the
probability of have a time X; is proportional to X;.
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

> If X1, Xp, ..., X, are the times between buses, the the
probability of have a time X; is proportional to X;.

» Then T =Uniform (0, X*), where X* is the length biased r.v.

> 0 xf(x 2 o2
ey = [ Tartaao= [Tx e S8 i
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

> If X1, Xp, ..., X, are the times between buses, the the
probability of have a time X; is proportional to X;.

» Then T =Uniform (0, X*), where X* is the length biased r.v.

> 0 xf(x 2 o2
ey = [ Tartaao= [Tx e S8 i

» Thatis E(T) = E(X*/2) =10 + 0?/(20) > 10
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

If X1, Xa, ..., X, are the times between buses, the the
probability of have a time X; is proportional to X;.

Then T =Uniform (0, X*), where X* is the length biased r.v.

> 0 xf(x 2 o2
ey = [ Tartaao= [Tx e S8 i

That is E(T) = E(X*/2) = 10 + ¢2/(20) > 10
We only have E(T) = 10 if 02 = 0!

v

v

v

v
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Renewal processes Waiting time paradox
Equilibrium distribution

Waiting time paradox

» The real times are:

> If X1, Xp, ..., X, are the times between buses, the the
probability of have a time X; is proportional to X;.

» Then T =Uniform (0, X*), where X* is the length biased r.v.
e0 ° xf(x) E(X?) o?
E(X*) = / xf*xdx:/ X dx = =u+—
X% 0 () 0 K E(X) K

» Thatis E(T) = E(X*/2) =10 + 0?/(20) > 10
» We only have E(T) = 10 if 0% = 0!
> It is very important the regularity!

Jorge Navarro’ Biased samples (in honor of Prof. C.R. Rao)




Renewal processes Waiting time paradox
Equilibrium distribution

Exponential case

» In particular, if X = Exp(p = 20 min)
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Renewal processes Waiting time paradox
Equilibrium distribution

Exponential case

» In particular, if X = Exp(p = 20 min)
> E(X*)=p+o?/p=p+ P p=2p
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Renewal processes Waiting time paradox
Equilibrium distribution

Exponential case

» In particular, if X = Exp(p = 20 min)

> E(X*) =p+0?/p=p+pP/p=2p
> E(T) = E(X*/2) = E(X)!!
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Renewal processes Waiting time paradox
Equilibrium distribution

Exponential case

>
>
>
>

In particular, if X = Exp(p = 20 min)
EX*)=p+o0?/p=p+p?/p=2p

E(T)=E(X*/2) = E(X)!

Paradox: If the expected time between buses is 20 min., we
have to wait 20 min.!
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Renewal processes Waiting time paradox
Equilibrium distribution

Exponential case

In particular, if X = Exp(p = 20 min)
EX*)=p+o0?/p=p+p?/p=2p

E(T)=E(X*/2) = E(X)!

Paradox: If the expected time between buses is 20 min., we
have to wait 20 min.!

vV v v Vv

» Similar results are obtained in renewal processes (with random
inspections).
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Renewal processes iting time paradox
Equilibrium distribution

General solution

» When a unit fails, it is replaced by a similar one
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General solution

» When a unit fails, it is replaced by a similar one

» The unit lifetimes Xj, Xa, ... are i.i.d. from X
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Renewal processes iting time paradox
Equilibrium distribution

General solution

» When a unit fails, it is replaced by a similar one

» The unit lifetimes Xj, Xa, ... are i.i.d. from X

» We do random inspections.
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Renewal processes Wiaiting time paradox
Equilibrium distribution

General solution

» When a unit fails, it is replaced by a similar one

» The unit lifetimes Xj, Xa, ... are i.i.d. from X
» We do random inspections.

» The forward (or backward) time from a sample point is
T = UX, where U =Uniform (0,1) (X and U are
independent).
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Renewal processes Wiaiting time paradox
Equilibrium distribution

General solution

» When a unit fails, it is replaced by a similar one

» The unit lifetimes Xj, Xa, ... are i.i.d. from X
» We do random inspections.

» The forward (or backward) time from a sample point is
T = UX, where U =Uniform (0,1) (X and U are
independent).

» This is not true!
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Renewal processes iting time paradox
Equilibrium distribution

General solution

» The correct solution is T = UX*, and hence
f
f(x,u) = f*(x):w; O<u<l,x>0
1
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Renewal processes Wiaiting time paradox
Equilibrium distribution

General solution

» The correct solution is T = UX*, and hence
xf(x)
o
» If Fr(t) = Pr(T > t) = Pr(UX* > t), t >0,

0 [ [ 2o [ [

f(x,u) = f*(x)= ; 0<u<1l,x>0
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Renewal processes Wiaiting time paradox
Equilibrium distribution

General solution

» The correct solution is T = UX*, and hence
xf(x)
o
» If Fr(t) = Pr(T > t) = Pr(UX* > t), t >0,

A

f(x,u) = f*(x)= ; 0<u<1l, x>0

» Thus,
fr(t) = Fr(t) = Fit) - 1;(5)“) fff) = W(t)fif); t>0
w(t) = 1;(:_)(t) = hélt); where h(t) = 11(:')(15) is the hazard r
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Renewal processes iting time paradox
um distribution

Waiting time solution

> f X= T=UX*,t>0,

Fr(t) = /too Ffj)dx = /too exp(;x/p)dx = exp(—t/u)
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Renewal processes aiting time paradox
ium distribution

Waiting time solution

> f X= T=UX*,t>0,

Fr(t) = /too FLX)dx = /too exp(;x/y)dx = exp(—t/u)

» That is, T =Exponential: X =4 UX*.
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Renewal processes Wiaiting time paradox
Equilibrium distribution

Waiting time solution

> f X= T=UX*,t>0,

Fr(t) = /too FLX)dx = /too exp(;x/y)dx = exp(—t/u)

» That is, T =Exponential: X =4 UX*.

» Actually, the exponential model is the unique model such that
X —d ux* (or X —=d T)
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Renewal processes Wiaiting time paradox
Equilibrium distribution

Waiting time solution

> f X= T=UX*,t>0,

Fr(t) = /too FLX)dx = /too exp(;x/y)dx = exp(—t/u)

» That is, T =Exponential: X =4 UX*.

» Actually, the exponential model is the unique model such that
X —d ux* (or X —=d T)

» The distribution of T is called the equilibrium distribution and
very interesting properties.
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Renewal processes Wiaiting time paradox
Equilibrium distribution

Waiting time solution

> f X= T=UX*,t>0,

Fr(t) = /too FLX)dx = /too exp(;x/y)dx = exp(—t/u)

» That is, T =Exponential: X =4 UX*.

» Actually, the exponential model is the unique model such that
X —d ux* (or X —=d T)

» The distribution of T is called the equilibrium distribution and
very interesting properties.

» For example,

. fT(t‘) . FT(t) . 1
hT(t) - f'r(f) - ftoofT(X)dX - m(t)

where m(t) = E(X — t|X > t) in the mean residual life.
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

How to detect biased samples?

» In Fisher and Rao examples the results do not fit to the
expected values.
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How to detect biased samples? How to be a rich man?

How to detect biased samples?

» In Fisher and Rao examples the results do not fit to the
expected values.

» In the waiting time paradox the results do not coindice with
our experience.
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

How to detect biased samples?

» In Fisher and Rao examples the results do not fit to the
expected values.

» In the waiting time paradox the results do not coindice with
our experience.

» This example is based on two surveys to study the mean
sojourn time per tourist in Morocco (INSEA, 1966).

» G.P. Patil 1981. Proceedings of the Indian Statistical Institute
Jubilee International Conference on Statistics: Applications
and New Directions, 478-503)
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

How to detect biased samples?

» In Fisher and Rao examples the results do not fit to the
expected values.

» In the waiting time paradox the results do not coindice with
our experience.

» This example is based on two surveys to study the mean
sojourn time per tourist in Morocco (INSEA, 1966).

» G.P. Patil 1981. Proceedings of the Indian Statistical Institute

Jubilee International Conference on Statistics: Applications

and New Directions, 478-503)

A sample at the border stations: n=3000, mean=9.0 days

v
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

How to detect biased samples?

» In Fisher and Rao examples the results do not fit to the
expected values.

» In the waiting time paradox the results do not coindice with
our experience.

» This example is based on two surveys to study the mean
sojourn time per tourist in Morocco (INSEA, 1966).

» G.P. Patil 1981. Proceedings of the Indian Statistical Institute

Jubilee International Conference on Statistics: Applications

and New Directions, 478-503)

A sample at the border stations: n=3000, mean=9.0 days

A sample at the hotels: n=12321, mean=17.8 days

A\ 4
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

How to detect biased samples?

» In Fisher and Rao examples the results do not fit to the
expected values.

» In the waiting time paradox the results do not coindice with
our experience.

» This example is based on two surveys to study the mean
sojourn time per tourist in Morocco (INSEA, 1966).

» G.P. Patil 1981. Proceedings of the Indian Statistical Institute
Jubilee International Conference on Statistics: Applications
and New Directions, 478-503)

> A sample at the border stations: n=3000, mean=9.0 days
» A sample at the hotels: n=12321, mean=17.8 days
» The results are very different!
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

How to detect biased samples?

» In Fisher and Rao examples the results do not fit to the
expected values.

» In the waiting time paradox the results do not coindice with
our experience.

» This example is based on two surveys to study the mean
sojourn time per tourist in Morocco (INSEA, 1966).

» G.P. Patil 1981. Proceedings of the Indian Statistical Institute

Jubilee International Conference on Statistics: Applications

and New Directions, 478-503)

A sample at the border stations: n=3000, mean=9.0 days

A sample at the hotels: n=12321, mean=17.8 days

The results are very different!

vV vyVvYyy

The second sample was discarded.
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

Patil’s Solution

» The sample at the hotels is length biased !
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

Patil’s Solution

» The sample at the hotels is length biased !

» A tourist staying 6 days has double sampling probability than
a tourist staying 3 days.
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

Patil’s Solution

» The sample at the hotels is length biased !

» A tourist staying 6 days has double sampling probability than
a tourist staying 3 days.

» Hence E(X) ~9.0 < E(X*) ~17.8
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How to detect biased samples? How to be a rich man?

Patil’s Solution

» The sample at the hotels is length biased !

» A tourist staying 6 days has double sampling probability than
a tourist staying 3 days.

» Hence E(X) ~9.0 < E(X*) ~17.8

» Actually E(X*) ~ 2E(X) might indicate that X is
Exponential.
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

Patil’s Solution

>

The sample at the hotels is length biased !

v

A tourist staying 6 days has double sampling probability than
a tourist staying 3 days.

Hence E(X) ~ 9.0 < E(X*) ~ 17.8

Actually E(X*) ~ 2E(X) might indicate that X is
Exponential.

Correct estimation E(X) ~17.8/2=8.9

v

v

v
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

Patil’s Solution

>

The sample at the hotels is length biased !

v

A tourist staying 6 days has double sampling probability than
a tourist staying 3 days.

Hence E(X) ~ 9.0 < E(X*) ~ 17.8

Actually E(X*) ~ 2E(X) might indicate that X is
Exponential.

Correct estimation E(X) ~17.8/2=8.9

Similar examples in other fields.

v

v

v

v
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How to detect biased samples? How to be a rich man?

What to do?

» The best solution is to use all the information available!
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How to detect biased samples? How to be a rich man?

What to do?

» The best solution is to use all the information available!
» X1, ..., Xy is a sample from X = Exp(u).
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

What to do?

» The best solution is to use all the information available!
» X1, ..., Xy is a sample from X = Exp(u).
» Y1, ..., Ym is a sample from X* = Exp*(u).
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How to detect biased samples? How to be a rich man?

What to do?

>
>
>
>

The best solution is to use all the information available!
Xiy.eeey Xp is @ sample from X = Exp(u).

Y1, .eory Ym is @ sample from X* = Exp*(u).

The MLE (exponential) is:
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How to detect biased samples? How to be a rich man?

What to do?

» The best solution is to use all the information available!
» X1, ..., Xy is a sample from X = Exp(u).
» Y1, ..., Ym is a sample from X* = Exp*(u).
» The MLE (exponential) is:
1 n m
h= T om ZXHFZYJ
i=1 j=1
» It is unbiased since E(X;) = py E(Y;) =2u
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How to detect biased samples? How to be a rich man?

What to do?

» The best solution is to use all the information available!
» X1, ..., Xy is a sample from X = Exp(u).
» Y1, ..., Ym is a sample from X* = Exp*(u).
» The MLE (exponential) is:
1 n m
w= n+2m ZXI+Z\/J
i=1 j=1
» It is unbiased since E(X;) = py E(Y;) =2u
» With variance
12
Var(l) =
ar(i) =~
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How to detect biased samples? How to be a rich man?

What to do?

» The best solution is to use all the information available!
» X1, ..., Xy is a sample from X = Exp(u).

» Y1, ..., Ym is a sample from X* = Exp*(u).

» The MLE (exponential) is:

1
= Xi Y,
a n+2m ; ! +JZ; I
» It is unbiased since E(X;) = py E(Y;) =2u
» With variance )
. 7
Var(ii) = n+2m

» It is the UMVUE.



Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

The best estimation

» The best estimation is

1
3000 + 2-12321

fi = (3000 -9 + 12321 - 17.8) = 8.91,
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How to detect biased samples? How to be a rich man?

The best estimation

» The best estimation is

1
3000 + 2-12321

fi = (3000 -9 + 12321 - 17.8) = 8.91,

» with variance 20 () ~ 0.11
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How to detect biased samples? How to be a rich man?

The best estimation

» The best estimation is

1
3000 + 2-12321

fi = (3000 -9 + 12321 - 17.8) = 8.91,

» with variance 20 () ~ 0.11

» First sample 7 = 9.0
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How to detect biased samples? How to be a rich man?

The best estimation

>

The best estimation is

1

3000-9 +12321-17.8) =8.91
3000 + 2 - 12321( * ) ’

ii=

v

with variance 20(z) ~ 0.11

v

First sample 7 = 9.0

v

Second sample &t = 8.9
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How to detect biased samples? How to be a rich man?

General solution in the exponencial case

» What to do the next time ?
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General solution in the exponencial case

» What to do the next time ?
» Which sample is the best one?
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How to detect biased samples? How to be a rich man?

General solution in the exponencial case

» What to do the next time ?
» Which sample is the best one?

> Notice that the estimator from the second sample has less
variance.
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General solution in the exponencial case

» What to do the next time ?
» Which sample is the best one?

> Notice that the estimator from the second sample has less
variance.

» The Fisher information for n=m =1 are

M(p) = 2/u?
(w) = 142
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General solution in the exponencial case

» What to do the next time ?
» Which sample is the best one?

> Notice that the estimator from the second sample has less
variance.

» The Fisher information for n=m =1 are

M(p) = 2/u?
(w) = 142

» Each data in the second sample has double information!
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How to detect biased samples? How to be a rich man?

General solution in the exponencial case

» What to do the next time ?
» Which sample is the best one?

> Notice that the estimator from the second sample has less
variance.

» The Fisher information for n=m =1 are
M(p) = 2/u?
(w) = 142

» Each data in the second sample has double information!

> If the bias is w(x) = x¥, the Fisher information is increasing
in k.
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How to detect biased samples? How to be a rich man?

General solution in the exponencial case

» What to do the next time ?
» Which sample is the best one?

> Notice that the estimator from the second sample has less
variance.

» The Fisher information for n=m =1 are

M(p) = 2/u?
(w) = 142

» Each data in the second sample has double information!

> If the bias is w(x) = x¥, the Fisher information is increasing
in k.
» Other models, see Navarro et al. (2001, Biom. J. 43).
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How to detect biased samples? How to be a rich man?

DeGroot’s example

» G.P. Patil (1991). Encountered data, Statistical Ecology
Environmental Statistics and weighted distribution methods.
Environmetrics 2(4), 377-423.
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DeGroot’s example

» G.P. Patil (1991). Encountered data, Statistical Ecology
Environmental Statistics and weighted distribution methods.
Environmetrics 2(4), 377-423.

» Discussion by M.H. DeGroot (Profesor Carnegie Mellon
University, Pittsburgh).
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DeGroot’s example

» G.P. Patil (1991). Encountered data, Statistical Ecology
Environmental Statistics and weighted distribution methods.
Environmetrics 2(4), 377-423.

» Discussion by M.H. DeGroot (Profesor Carnegie Mellon
University, Pittsburgh).

» How to predict the stock market behavior?
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DeGroot’s example

» G.P. Patil (1991). Encountered data, Statistical Ecology
Environmental Statistics and weighted distribution methods.
Environmetrics 2(4), 377-423.

» Discussion by M.H. DeGroot (Profesor Carnegie Mellon
University, Pittsburgh).

» How to predict the stock market behavior?

> We send 128 letters, 64 saying:
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DeGroot’s example

» G.P. Patil (1991). Encountered data, Statistical Ecology
Environmental Statistics and weighted distribution methods.
Environmetrics 2(4), 377-423.

» Discussion by M.H. DeGroot (Profesor Carnegie Mellon
University, Pittsburgh).

» How to predict the stock market behavior?

> We send 128 letters, 64 saying:

» “I'm an expert analyst and | have a model to predict the the
stock market behavior. To show that | inform you fro FREE
that the stocks of the company SOME are going to go UP
this week.”.
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DeGroot’s example

>

G.P. Patil (1991). Encountered data, Statistical Ecology
Environmental Statistics and weighted distribution methods.
Environmetrics 2(4), 377-423.

» Discussion by M.H. DeGroot (Profesor Carnegie Mellon
University, Pittsburgh).

» How to predict the stock market behavior?
> We send 128 letters, 64 saying:

» “I'm an expert analyst and | have a model to predict the the
stock market behavior. To show that | inform you fro FREE
that the stocks of the company SOME are going to go UP
this week.”.

» The other 64 letters say: “... to go DOWN this week”.
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DeGroot’s example

» The next week we will send similar letter but only to the
people (64) with the correct predictions saying:
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DeGroot’s example

» The next week we will send similar letter but only to the
people (64) with the correct predictions saying:

» “Last week | sent you a correct predictions. To show you that
my model does not fail | send you another correct prediction
for FREE this week: the stocks of the company SOME are
going to go UP (DOWN)".
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DeGroot’s example

» The next week we will send similar letter but only to the
people (64) with the correct predictions saying:

» “Last week | sent you a correct predictions. To show you that
my model does not fail | send you another correct prediction
for FREE this week: the stocks of the company SOME are
going to go UP (DOWN)".

» We repeat this process 7 weeks.
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DeGroot’s example

» The next week we will send similar letter but only to the
people (64) with the correct predictions saying:

» “Last week | sent you a correct predictions. To show you that
my model does not fail | send you another correct prediction
for FREE this week: the stocks of the company SOME are
going to go UP (DOWN)".

» We repeat this process 7 weeks.

» Finally we sent the following letter:
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DeGroot’s example

» The next week we will send similar letter but only to the
people (64) with the correct predictions saying:

» “Last week | sent you a correct predictions. To show you that
my model does not fail | send you another correct prediction
for FREE this week: the stocks of the company SOME are
going to go UP (DOWN)".

» We repeat this process 7 weeks.

» Finally we sent the following letter:

> “Well | think that | have show you that my model does not
fail. Now if you want to know the next prediction you have to
pay 10.000%".
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Solution of DeGroot's example

» We have a sample Xi,..., X7 from a Bernoulli B(p) with a
probability p of a correct prediction X; = 1 and a estimation
p=7/7=1.
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Solution of DeGroot's example

» We have a sample Xi,..., X7 from a Bernoulli B(p) with a
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Mean sojourn time per tourist
How to detect biased samples? How to be a rich man?

Solution of DeGroot's example

» We have a sample Xi,..., X7 from a Bernoulli B(p) with a
probability p of a correct prediction X; = 1 and a estimation

p=7/7T=1.
» But, what is the probability of a value X; appear in the
sample?

» Clearly, it is proportional to X;!

» That is we have a sample from the length biased r.v. X* with
p*(x) = xp(x)/u, x = 0,1, that is, X* = 1.
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Conclusions
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» If we have two different samples (with a known bias), the best
solution is always to use both together. We need to change
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solution is always to use both together. We need to change
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» With a biased sample, we can obtain results as good as (or
even better) that an unbiased sample. We need to change the
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Conclusions

» We have to think about the selection methods in a sample!
» They can be biased but with a known bias.

» If we have two different samples (with a known bias), the best
solution is always to use both together. We need to change
the classical estimators.

» With a biased sample, we can obtain results as good as (or
even better) that an unbiased sample. We need to change the
classical estimators.

» If we have to choose, we should use the sample (biased or
not) with the highest information about the parameter.
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