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Biased and censored samples

I X1; :::;Xn sample from X

I X1; :::;Xn i.i.d. Pr(Xi � x) = Pr(X � x)I Censored sample: Some Xi are unknown.I Example: X =lifetime of...
2; 3; 5; 6; 7; :::; 1+; 3+; 4+; :::

I 1+ means Xi > 1I Biased sample: the sample probability of Xi depends on Xi .I Example: A sample from families recover from their children.I Censored samples are a particular case.
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A model for biased samples

I First example: Fisher (1934, Ann. Eugenics 6, 13-25).

I Model: C.R. Rao (1965, Sankhya Ser. A 27, 311-324).I Y has the biased (or weighted) distribution associated to Xand w(t) � 0 if
fY (t) = w(t)fX (t)E (w(X ))I With this model the probability of observe Xi = t isproportional to w(t).I How to study X from a sample Y1; :::;Yn from Y ?I Censored data in A: w(t) = 1 if t 2 A (0 elsewhere).I Biased data: the probability of observe Xi is proportional tow(Xi ).
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Rao's example

I Rao (1977, American Statistician 31, 24-26).

I In a survey we ask for the number of brother and sisters((�)including yourself):
Sex Brothers� Sisters� TotalM or W Yi Xi mi = Xi + Yi- - - -

I Predictions (sample from men)

1. M =PYi >>W =PXi2. M �W =PYi �PXi ' k = n (sample size)3. M=N = (PYi )=(Pm i ) >> 0:5; N =Pmi = M +W
4. M=N = (PYi )=(Pm i ) ' 0:5 + k2Pmi5. M � kN � k = PYi � kPmi � k ' 0:5
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Rao's results

City N M W M-W k M/N 12 + k2N M�kN�kTehran 105 65 40 25 21 0.619 0.600 0.524Isphahan 77 45 32 13 11 0.584 0.571 0.515Tokyo 124 90 34 56 50 0.726 0.701 0.540Delhi 158 92 66 26 29 0.582 0.592 0.488Calcutta 726 414 312 102 104 0.570 0.571 0.498Waltair 211 123 88 35 39 0.583 0.592 0.488Ahmed. 133 84 49 35 29 0.632 0.609 0.529Bangalore 307 180 127 53 55 0.586 0.589 0.496
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Questions

I How to estimate pH or pM?

I How to estimate E (mi )?I Which sample is the best one?I Can we use both samples together?I How can we obtain the best results?
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Solutions

I The number of brothers is a Binomial B(m; pM), withpM ' 0:5
p(x) = Pr(X = x) = �mx

�pxM � pm�xW
E (X ) = mpM

I The sampling probability of Yi is proportional to Yi .I Hence Y is a length biased Binomial Y � B�(mi ; pM)
p�(x) = xp(x)E (X ) = x�mix

�pxM � pmi�xW =(mipM)
= x xmi !mix!(mi � x)!px�1M pmi�xW = �mi � 1x � 1

�px�1M pm�xW ; x = 1; 2; :::
I Yi � 1 � B(mi � 1; pM)
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Predictions:

I Yi � 1 � B(mi � 1; pM)

I E (Yi ) = 1 + (mi � 1)pM = 1� pM +mipMI Xi � B(mi � 1; pW )I E (Xi ) = (mi � 1)pWI E (PYi ) =PE (Yi ) =P(1� pW +mipM) =k(1� pM) + pMPmiI E (PXi ) =PE (Xi ) =P(mi � 1)pW = pW Pmi � kpWI E (PYi �PXi ) = 2kpW ' k
I E �PYiPmi

� = kpW + pMPmiPmi = pM+ kpWPmi ' 0:5+ k2Pmi
I E �PYi � kPmi � k

� = k(1� pM) + pMPmi � kPmi � k = pM ' 0:5
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I How to estimate pM?

I We can use:
T = PYi � kPmi � k

E (T ) = E (PYi � kPmi � k ) = pM
Vat(T ) = pMpW =(Xmi � k)! 0XYi � k � B(Xmi � k ; pM)

T u NormalT is an UMVUE
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Questions

I What is the best sample?

I If Yj = 1; then the information is null.I Xi has more information than Yj if ni > mj � 1I The Fisher's information (I1 = E [( @@pp(x))2]) are:
IXi (p) = nipq
IYj (p) = mj � 1pq

I E (ni ) =?;E (mj) =? (mj � 1)I In our survey mj � 1 = nj , so both samples have the sameinformation (in each data).I The best option is to use both samples together!
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Additional questions

I How to estimate the number of children m?

I Can we use m = 1k Pmi?I If we use men and women, the sampling probability of afamily with mi children is proportional to miI If we only use men, it is proportional to E (Xi ) = mipMI Then m1; :::;mk is a length biased sample from m.I How to estimate E (m) using m1; :::;mk?
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Additional questions

I If m � Poisson(�); � =mean number of children
p(x) = �xe��=x!; x = 0; 1; :::

I Hence mj � size biased Poisson with
p�(x) = xp(x)� = x�xe��

�x! = �x�1e��
((x � 1)! ; x = 1; 2; :::

I Then mj � 1 � Poisson(�)I E (m) = 1k PE (mi ) = 1k P(�+ 1) = �+ 1I T = m � 1 = 1k P(mi � 1)I E (T ) = �I Var(T ) = �=k ! 0I P(mi � 1) � Poisson(k�)I T u Normal
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Additional questions

I Results

I m = 1k Pmi = N=kI T = m � 1 = (N � k)=kI Rao's resultsCity N M W k m = N=k T = m � 1Tehran 105 65 40 21 5.000 4Isphahan 77 45 32 11 7.000 6Tokyo 124 90 34 50 2.480 1.480Delhi 158 92 66 29 5.448 4.448Calcutta 726 414 312 104 6.980 5.980Waltair 211 123 88 39 5.410 4.410Ahmedabad 133 84 49 29 4.580 3.580Bangalore 307 180 127 55 5.582 4.582
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Fisher's example

I R. A., Fisher (1934). The e�ect of methods of ascertainmentupon the estimation of frequencies. Annals Eugenics 6, 13-25.

I Purpose: to study the proportion p of albino children fromnon-albino parents (which can have albino children).I From Medel's laws, p should be 1=4I We do not know if two non-albino parents can have albinochildren!I So Fisher only consider families with albino children.I He only consider families with 5 children, obtaining thefollowing data:
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Fisher data

Number of albino children in the familyN 1 2 3 4 5 Total1 140 80 35 4 0 2592 - 52 12 7 1 723 - - 7 0 0 74 - - - 2 0 25 - - - - 0 0Total 140 132 54 13 1 340
I N=Number of albino children in the sample.

I N�otice that we have 340 families sampled from 432 di�erentalbino children.
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Solution 1

I What to do with these data?

I If X1; :::;Xn is a sampe of size n = 340 from aBinomialB(k = 5; p = 1=4),I p can be estimated as
bp1 =

Pni=1 Xi5n = 140 + 2 � 132 + :::5 � 340 = 6231700 = 0:3665
I with variance

�2(bp1) = p(1� p)5n = 0:25 � 0:751700 = 0:0001:
I This gives 2�(bp1) ' 0:021 and we reject p = 0:25.
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Solution 1bis

I If we use the families several times then

I the sample size is n = 432 and p is estimated as
bp1 =

Pni=1 Xi5n = 140 + 2 � 184 + :::5 � 432 = 0:399
I This also leads to reject p = 0:25.
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Solution 2

I The families with 0 albino children cannot appear in thesample.

I Thus, we might think in a censored sample with w(x) = 1 forx 6= 0 and w(0) = 0:I Then p�(x) = p(x)=(1� q5); where p(x) � BinomialB(5; 1=4)I Then the MLE satis�es
p1� q5 = Pni=1 Xi5n ;

I which gives bp2 = 0:3085 (bp2 = 0:35 with the repeatedfamilies).I In both cases we reject p = 1=4:
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Solution 3 (the correct one)

I Note that the sampling probability of a family with x albinochildren is proportional to x .

I Then Xi � length biased Binomial.I That is, Xi � 1 �Binomial B(4; 1=4)I Then, using the repeated families p is estimated as
bp3 =

Pni=1(Xi � 1)4n = 1 � 184 + 2 � 80 + :::4 � 432 = 0:2488
I The variance satis�es 2�(bp3) ' 0:0208, which is consistentwith p = 1=4.I Notice that if we do not use the repeated families the p isunderestimated as

bp4 =
Pni=1(Xi � 1)4n = 1 � 132 + 2 � 54 + :::4 � 340 = 0:2080
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Waiting time paradox

Figure: If a passenger arrives at a bus-stop at some random point andthe interval time between the buses is 20 min, what is the mean waitingtime until the next bus?
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Waiting time paradox

I R.C. Gupta 1979. Waiting time paradox and size biasedsampling. Communications in Statistics, Theory and Methods
A8 (6), 601-607.

I Let us assume that the buses pass every 20min. and that wedo not know the time table:
j � � ��j � ���j � ���j � ���j � ���j � ���j

I Then the waiting time T should be Uniform (0; 20)I Then the expected waiting time should beE (T ) = 20=2 = 10min :I We know that this is not true!
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Waiting time paradox

I The real times are:
j ��� j ����� j����� j��j ������j��� j

I Then the time between buses is a random variable X .I Let us assume that � = E (X ) = 20min :I Then T �Uniforme (0;X )I The waiting time should be T = UX ; where U �Uniform(0; 1).I Then the expected waiting time should beE (T ) = E (UX ) = E (X )=2 = 10minI We know that this is not true!
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E (X �) = Z 1
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I That is E (T ) = E (X �=2) = 10 + �2=(20) > 10I We only have E (T ) = 10 if �2 = 0!I It is very important the regularity!
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Exponential case

I In particular, if X � Exp(� = 20min)

I E (X �) = �+ �2=� = �+ �2=� = 2�I E (T ) = E (X �=2) = E (X )!!I Paradox: If the expected time between buses is 20 min., wehave to wait 20 min.!I Similar results are obtained in renewal processes (with randominspections).
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General solution

I When a unit fails, it is replaced by a similar one
j ��� j ����� j����� j��j ������j��� j

I The unit lifetimes X1;X2; ::: are i.i.d. from XI We do random inspections.I The forward (or backward) time from a sample point isT = UX ; where U �Uniform (0; 1) (X and U areindependent).I This is not true!
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General solution

I The correct solution is T = UX �; and hence
f (x ; u) = f �(x) = xf (x)� ; 0 < u < 1; x > 0

I If FT (t) = Pr(T > t) = Pr(UX � > t), t > 0,
FT (t) = Z 1

t
Z 1
t=x

xf (x)� dudx = Z 1
t

(x � t)f (x)� dx = Z 1
t

F (x)� dx
I Thus,

fT (t) = F 0T (t) = F (t)� = 1� F (t)f (t) f (t)� = w(t) f (t)� ; t > 0
w(t) = 1� F (t)f (t) = 1h(t) ; where h(t) = f (t)1� F (t) is the hazard rate
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Waiting time solution

I If X �, T = UX � , t > 0,
FT (t) = Z 1

t
F (x)� dx = Z 1

t
exp(�x=�)� dx = exp(�t=�)

I That is, T �Exponential: X =d UX �.I Actually, the exponential model is the unique model such thatX =d UX � (or X =d T ).I The distribution of T is called the equilibrium distribution andvery interesting properties.I For example,
hT (t) = fT (t)FT (t) = FT (t)R1t FT (x)dx = 1m(t)

where m(t) = E (X � tjX > t) in the mean residual life.
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How to detect biased samples?

I In Fisher and Rao examples the results do not �t to theexpected values.

I In the waiting time paradox the results do not coindice withour experience.I This example is based on two surveys to study the meansojourn time per tourist in Morocco (INSEA, 1966).I G.P. Patil 1981. Proceedings of the Indian Statistical InstituteJubilee International Conference on Statistics: Applicationsand New Directions, 478-503)I A sample at the border stations: n=3000, mean=9.0 daysI A sample at the hotels: n=12321, mean=17.8 daysI The results are very di�erent!I The second sample was discarded.
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Patil's Solution

I The sample at the hotels is length biased !

I A tourist staying 6 days has double sampling probability thana tourist staying 3 days.I Hence E (X ) ' 9:0 < E (X �) ' 17:8I Actually E (X �) ' 2E (X ) might indicate that X isExponential.I Correct estimation E (X ) ' 17:8=2 = 8: 9I Similar examples in other �elds.
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What to do?

I The best solution is to use all the information available!

I X1; ::::;Xn is a sample from X � Exp(�).I Y1; ::::;Ym is a sample from X � � Exp�(�).I The MLE (exponential) is:
b� = 1n + 2m

0
@ nX

i=1 Xi +
mX
j=1 Yj

1
A

I It is unbiased since E (Xi ) = � y E (Yj) = 2�I With variance
Var(b�) = �2n + 2mI It is the UMVUE.
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b� = 1n + 2m

0
@ nX

i=1 Xi +
mX
j=1 Yj

1
A

I It is unbiased since E (Xi ) = � y E (Yj) = 2�I With variance
Var(b�) = �2n + 2mI It is the UMVUE.
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The best estimation

I The best estimation is
b� = 13000 + 2 � 12321(3000 � 9 + 12321 � 17:8) = 8: 91;

I with variance 2�(b�) ' 0:11I First sample b� = 9:0I Second sample b� = 8:9
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General solution in the exponencial case

I What to do the next time ?

I Which sample is the best one?I Notice that the estimator from the second sample has lessvariance.I The Fisher information for n = m = 1 are
I �(�) = 2=�2I (�) = 1=�2

I Each data in the second sample has double information!I If the bias is w(x) = xk ; the Fisher information is increasingin k .I Other models, see Navarro et al. (2001, Biom. J. 43).
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DeGroot's example

I G.P. Patil (1991). Encountered data, Statistical EcologyEnvironmental Statistics and weighted distribution methods.Environmetrics 2(4), 377-423.

I Discussion by M.H. DeGroot (Profesor Carnegie MellonUniversity, Pittsburgh).I How to predict the stock market behavior?I We send 128 letters, 64 saying:I \I'm an expert analyst and I have a model to predict the thestock market behavior. To show that I inform you fro FREEthat the stocks of the company SOME are going to go UPthis week.".I The other 64 letters say: \... to go DOWN this week".
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DeGroot's example

I The next week we will send similar letter but only to thepeople (64) with the correct predictions saying:

I \Last week I sent you a correct predictions. To show you thatmy model does not fail I send you another correct predictionfor FREE this week: the stocks of the company SOME aregoing to go UP (DOWN)".I We repeat this process 7 weeks.I Finally we sent the following letter:I \Well I think that I have show you that my model does notfail. Now if you want to know the next prediction you have topay 10.000$".
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Solution of DeGroot's example

I We have a sample X1; :::;X7 from a Bernoulli B(p) with aprobability p of a correct prediction Xi = 1 and a estimationbp = 7=7 = 1:

I But, what is the probability of a value Xi appear in thesample?I Clearly, it is proportional to Xi !I That is we have a sample from the length biased r.v. X � withp�(x) = xp(x)=�, x = 0; 1, that is, X � = 1.
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Conclusions

I We have to think about the selection methods in a sample!

I They can be biased but with a known bias.I If we have two di�erent samples (with a known bias), the bestsolution is always to use both together. We need to changethe classical estimators.I With a biased sample, we can obtain results as good as (oreven better) that an unbiased sample. We need to change theclassical estimators.I If we have to choose, we should use the sample (biased ornot) with the highest information about the parameter.
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